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1,2James J. Lien, 1Takeo Kanade, 3Adena J. Zlochower, 3Jeffrey F. Cohn, and 2Ching-Chung Li

1VASC, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
2Dept. of Electrical Engineering, University of Pittsburgh, Pittsburgh, PA 15260

3Dept. of Psychology, University of Pittsburgh, Pittsburgh, PA 15260

jjlien@cs.cmu.edu

Abstract

We developed a computer vision system that automatically
recognizes facial action units (AUs) or AU combinations
using Hidden Markov Models (HMMs).  AUs are defined
as visually discriminable muscle movements.  The facial
expressions are recognized in digitized image sequences of
arbitrary length.  In this paper, we use two approaches to
extract the expression information: (1) facial feature point
tracking, which is sensitive to subtle feature motion, in the
mouth region, and (2) pixel-wise flow tracking, which
includes more motion information, in the forehead and
brow regions.  In the latter approach, we use principal
component analysis (PCA) to compress the data.  We
accurately recognize 93% of the lower face expressions and
91% of the upper face expressions.

1. Introduction

Facial expression provides cues about emotion and
regulates interpersonal interaction.  Because of its
relevance to the study of psychological phenomena and the
development of human-computer interaction (HCI),
automated recognition of facial expression is an important
addition to computer vision research.  A number of
automated facial expression recognition systems analyze
six basic emotions (joy, fear, anger, disgust, sadness and
surprise), and the associated expressions are classified into
emotion categories rather than facial action [2, 10, 15].  In
reality, humans are capable of producing thousands of
expressions varying in complexity and meaning that are
not fully captured with a limited number of expressions
and emotion categories.  Our goal is to recognize a variety
of facial actions.

Automated recognition of individual motion sequences is a
challenging task.  Currently, most facial expression
recognition systems use either complicated three-
dimensional wireframe face models to recognize and

synthesize facial expressions [5, 12] or use averaged
optical flow within local regions (e.g., forehead, eyes, nose,
mouth, cheek, and chin) for recognition.  In an individual
region, the flow direction is changed to conform to the
flow plurality of the region [2, 10, 15] or averaged over an
entire region [7, 8].  Black and colleagues [2, 3] also
assign parameter thresholds to their classification
paradigm.  These methods are relatively insensitive to
subtle motion because information about small deviations
is lost when their flow pattern is removed or thresholds are
imposed.  As a result, the recognition ability and accuracy
of the systems may be reduced.

Our goal is to develop a system that recognizes both subtle
feature motion and complex facial expressions.  Our
approach to facial expression analysis is based on the
Facial Action Coding System (FACS) [4].  FACS separates
expressions into upper and lower face action units (AUs),
which are the smallest visibly discriminable muscle
actions that combine to form expressions.  We use optical
flow to track facial feature points and pixel-wise facial
motion.  Use of optical flow to track motion is optimized in
facial skin and features because they naturally have a great
deal of texture.

2. Normalization

In our work, frontal views of all subjects are videotaped
under constant illumination using fixed light sources, and
none of the subjects wear eyeglasses.  These constraints are
imposed to prevent significant optical flow degradation.

Because subjects produce little out-of-plane motion, affine
transformation is adequate to normalize face position and
maintain face magnification invariance.  We normalize the
positions of all tracking points in each frame by mapping
them to a standard two-dimensional face model based on
three facial feature points: the medial canthus of both eyes
and the uppermost point on the philtrum (see Figure 1).



3. Facial Feature Point Tracking

We select facial feature points that represent underlying
muscle activation and track their movement across an
image sequence using optical flow.  In our current work,
we recognize the following lower face expressions in the
mouth: AU 12 (lip corners pulled obliquely), 12+25 (lip
corners pulled obliquely and mouth opened), 20+25 (lips
stretched and mouth opened), 15+17 (lip corners depressed
and chin raised), and 17+23+24 (lips tightened and
pressed and chin raised).  See Figure 2 for an illustration
of these AUs.

We use a computer mouse to manually select 10 facial
feature points around the lip contour in the first frame of
each image sequence.  Each point is the center of a 13x13-
flow window that includes the horizontal and vertical
flows.  By using the hierarchical optical flow tracking
method [6], the facial feature points are tracked
automatically in the remaining frames of the image
sequence.  The displacement of each feature point is
calculated by subtracting its normalized position in the
first frame from its current normalized position.  Since

each frame has 10 feature points surrounding the lip
region, the resulting 10-dimensional horizontal
displacement vector by 10-dimensional vertical
displacement vector is concatenated to produce a 20-
dimensional displacement vector.

4. Pixel-wise Tracking and Principal Component
Analysis

To recognize pixel-wise motion in the upper face, we use
Wu’s pixel-wise optical flow algorithm [14] to track the
entire face image (417 x 385 = row x column pixels).
Currently, the following upper face expressions are
recognized in the forehead and brow regions: AUs 4
(brows lowered), 1+4 (inner part of the brow raised and
drawn together), and 1+2 (entire brow raised).  See Figure
3.

Because we have a large image database in which
consecutive frames of the sequences are strongly
correlated, the expressions need to be compressed to their
low-dimensional representations without losing the
significant characteristics and inter-frame correlations.
Principal component analysis (PCA) has excellent
properties for our purposes, including image data
compression and maintenance of a strong correlation
between two consecutive motion frames.  Since our goal is
to recognize expression rather than identifying individuals
or objects [1, 9, 13], we analyze facial motion using optical
flow -not the gray value- to ignore differences across
individual subjects.

Before using PCA, the images are automatically
normalized using affine transformation to ensure that the
pixel-wise flows of each frame have exact geometric
correspondence.  Using PCA and focusing on the (110 x
240 pixels) upper face region, 10 “eigenflows” are created
(10 eigenflows from the horizontal- and 10 eigenflows
from the vertical direction flows).  These eigenflows are
defined as the most prominent eigenvectors corresponding
to the 10 largest eigenvalues of the 832 x 832-covariance
matrix constructed by 832 flow-based training frames from
the 44 training image sequences (see Figure 4).

AU12 AU12+25 AU20+25

AU15+17 AU17+23+24

Figure 2.  Facial feature point tracking of lower face
expressions.

Affine
Transformation

Figure 1.  Normalization using affine transformation.

AU4 AU1+4 AU1+2
Figure 3.  Pixel-wise tracking of upper face
expressions.



Each flow-based frame of the expression sequences is
projected onto the flow-based eigenspace by taking its
inner product with each element of the eigenflow set,
which produces a 10-dimensional weighted vector (see
Figure 5).  The 10-dimensional horizontal-flow weighted
vector and the 10-dimensional vertical-flow weighted
vector are concatenated to form a 20-dimensional weighted
vector.

5. Recognition Using Hidden Markov Models

Mase and Pentland [7] use a similar flow-based PCA
approach for lip-reading recognition.  They use a template
matching method that analyzes the minimum value of the
sum-squared-difference (SSD) between the projected flow
curve of the test word and that of the word templates in the
two-dimensional eigenspace.  In this case, time warping is
an essential preprocessing step.  This approach is
impractical for our purposes because the length of our
image sequences is arbitrary (it varies between 9 and 44
frames) and the projected flow curve is in a higher
dimensional eigenspace.

We employ Hidden Markov Models (HMMs) [11] for
facial expression recognition because they perform well in
the spatio-temporal domain and are analogous to human
performance (e.g., for speech and gesture recognition).

After separately vector quantizing the 20-dimensional
training displacement vectors from the feature point
tracking and the 20-dimensional training weighted vectors
from the PCA, we train two sets of facial expression

HMMs representing the lower (mouth) and upper face
expressions (forehead and brows), respectively.  Because
the HMM set represents the most likely individual AU or
AU combination, it can be employed to evaluate the test-
input sequence.  We evaluate the test-input sequence by
selecting the maximum output probability value from the
HMM set.

6. Experimental Results

The database consists of 80 subjects, both male and female,
with more than 140 image sequences and 2800 images.
Subjects range in age (18-35) and ethnicity (Caucasian,
African-American, and Asian/Indian).  Certified FACS
coders coded the videotaped image sequences.

Using feature point tracking in the mouth region, 93% of
the 43 lower face test image sequences (based on 40
training image sequences) are correctly recognized (see
Table 1).  Using pixel-wise flows with PCA in the forehead
and brow regions, 91% of the 47 upper face test image
sequences (based on 44 training image sequences) are
accurately recognized (see Table 2).

7. Conclusion

We have developed a computer vision system that
automatically recognizes a series of complex facial
expressions.  Our recognition system may be applied to
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psychological research (i.e., to code facial behavior), lip-
reading and speech analysis, development of tele- or
video-conferencing, and human-computer interaction
(HCI).  We use two approaches to extract facial motion:
feature point tracking and pixel-wise flow tracking with
PCA.  Feature point tracking is an easy way to track facial
motion, and it is sensitive to subtle feature motion.
However, using this method, motion information in
unselected regions (e.g., forehead, cheek, and chin) is lost.
To compensate for this shortcoming, we track pixel-wise
flows across the entire face and use PCA to compress the
high-dimensional pixel-wise flows to low-dimensional
weighted vectors.  Unlike feature point tracking, pixel-
wise flow tracking with PCA may introduce motion
insensitivity.  In future work, we will combine both
methods to design a more robust system.

HMM

Human

AU
12

AU
12+
25

AU
20+
25

AU
15+
17

AU17
+23+

24

Recognition
Rate

AU12 9 0 0 0 0 100%
AU12+

25
0 8 0 0 0 100%

AU20+
25

0 2 7 0 0 78%

AU15+
17

0 0 0 8 1 89%

AU17+
23+24

0 0 0 0 8 100%

     HMM
Human

AU4 AU1+4 AU1+2 Recognition
Rate

AU4 11 1 0 92%
AU1+4 0 7 1 88%
AU1+2 0 2 25 93%
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Table 1: Lower face expression recognition based on 43
test sequences.  The average recognition rate is 93%.

Table 2: Upper face expression recognition based on 47
test sequences.  The average recognition rate is 91%.


