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ABSTRACT

We introduce the study of live social insect colonies as a
relevant and exciting domain for the development and ap-
plication of multi-agent systems modeling tools. Social in-
sects provide a rich source of traceable social behavior for
testing multi-agent tracking, prediction and modeling algo-
rithms. An additional benefit of this research is the potential
for contributions to experimental biology — the principled
techniques developed for analyzing artificial multi-agent sys-
tems can be applied to advance the state of knowledge of
insect behavior. We contribute a novel machine vision sys-
tem that addresses the challenge of tracking hundreds of
small animals simultaneously. Fast color-based tracking is
combined with movement-based tracking to locate ants in
a real-time video stream. We also introduce new methods
for analyzing the spatial activity of ant colonies. The sys-
tem was validated in experiments with laboratory colonies
of Camponotus festinatus and several example analyses of
the colonies’ spatial behavior are provided.

1. INTRODUCTION
The behavior of social insects is a growing source of in-

spiration for computer scientists, especially those investigat-
ing multi-agent systems and robotics. “Ant algorithms” are
employed in network routing systems, robot navigation and
scheduling problems [3, 13]. Most of the work in this area
has focused on applying biological models of social insect
behavior to information technology tasks.

In contrast, this work is focused on applying and extend-
ing research in computer science to the study of biology.
Our ultimate goal is to achieve full automation of the fol-
lowing processes: (i) simultaneous tracking of multiple ants,
(ii) recognition of individual and colony behaviors, (iii) ac-
quisition of new single and multi-agent behavior models,
and (iv) application of the acquired models to multi-agent
software and robotic systems. We believe this will enable
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a wide range of challenging and exciting research in auto-
mated multi-agent modeling, in particular for ant colonies,
but also for observation and modeling tasks in general. This
work will contribute:

• New multi-agent science: New multi-agent observ-
ing and tracking algorithms will provide a wealth of
data for testing and developing multi-agent modeling
tools.

• New biological science: The algorithms developed
for this research domain will substantially advance the
state of knowledge of social insect behavior.

Here we describe progress towards these goals, namely:
setting up ant colonies for automated observation, machine
vision algorithms for effective simultaneous tracking of mul-
tiple moving animals, and novel methods of analyzing a
colony’s spatial behavior. We contribute a fully implemented
observation system for ant colonies that is reproducible by
other researchers in their labs.

To motivate our interest in ants as a target for multi-agent
research we begin with a brief introduction to ant behavior
and the techniques used by myrmecologists to study and
model it. Next we describe our laboratory setup, includ-
ing details on keeping captive ant colonies. After that we
present our machine vision algorithm for finding ants in im-
ages. Finally we show how the system has been used to
track and analyze the behavior of captive colonies.

1.1 The Complexity of Ant Society
An ant colony is a complex system of individuals inter-

acting with each other and their environment. Even though
colonies have at least one queen, and they appear to act
cooperatively and purposefully, there is no leader. Aggre-
gate colony behavior emerges from chemical cues, contact
between individuals and environmental pressures.

Nearly all ant species are eusocial: they care for their
young cooperatively, there is a division into reproductive
and sterile castes, and generations overlap (older individu-
als help raise younger generations). In most ant species, a
single queen establishes a colony after she leaves her home
and is fertilized (sometimes by multiple males). The queen
establishes a nest and begins to rear non-reproducing work-
ers who, in turn care for her and their siblings. Individual
workers rarely live longer than 12 months, but a queen may
live for 20 years and produce millions of workers. When the
queen dies, however, the colony withers.



Figure 1: Individuals in a colony assume distinct
task-based roles as they age. Individual morphology
and environmental pressures affect the speed with
which they move from role to role, and which roles
they assume. (From Holldobler and Wilson, 1990).

There are a number of tasks for workers in the colony.
In general, but depending on the species, workers are ded-
icated to brood care (nursing), nest maintenance, foraging
and colony defense. However, individuals are not commit-
ted to a single task for their entire life. In fact, they switch
from task to task as they mature [9] (Figure 1). Newly
eclosed (hatched) ants start their lives as brood care work-
ers. Later, they move on to nest maintenance, and finally,
foraging. Some species include castes morphologically suited
for combat; these individuals become soldiers rather than
foragers.

Myrmecologists have developed a number of methods for
modeling ant behavior at the individual and colony level. An
example of one kind of model, referred to as an ethogram,
is provided in Figure 2. The nodes of this diagram repre-
sent the behavioral acts of individual animals. The links
between the nodes show how behaviors are sequenced. The
frequency of observed transitions is also recorded and repre-
sented. Similar models have been developed for colony-level
behavior as well (e.g. [14]).

Computer scientists will recognize a similarity between
the diagram in Figure 2 and a Markov Process (MP). The
nodes representing behavioral acts in an ethogram corre-
spond to states in an MP. Transitions between behaviors
correspond to the probabilistic transitions of an MP. Re-
searchers are already investigating methods for automati-
cally learning Markov Models, including some who apply
the approach to learning models of behavior (e.g. [11]). A
goal of this work is to employ a similar approach to the task
of learning ant behavior models.

The spatial aspects of ant behavior are also quite in-
teresting and important. There is evidence, for example,
that Linepithema humile colonies employ a strategy for ex-
ploring new spaces that is similar to what would result
from Bayesian updating of expectations for success [12].
Other researchers have investigated how encounters between
ants regulate behavior of the colony [5]. Outside the nest,
ants organize efficient 2-dimensional foraging pathways [6],
negotiate foraging territories with neighboring colonies [5],
and wage war [14]. Of particular interest is a mechanism
whereby colonies adjust their foraging strategies according
to the density of ants [5] (Figure 3).

Figure 2: An ethogram of individual ant behav-
ior. Behavioral acts, ai, are linked by arcs indicat-
ing transitions from act to act. Thicker lines in-
dicate higher probability transitions. (From Holl-
dobler and Wilson, 1990).

Figure 3: The shape of foraging paths of Linep-
ithema humile change as the density of ants increases
(left to right). When the density is low, paths are
straighter, but they are more convoluted when den-
sity is high. (From Gordon, 1999).

1.2 Technical Barriers to Ant Research
All of the research outlined above relies on careful obser-

vation and recording of animal activity. Observation in the
field can be especially arduous; researchers are often in place
before dawn, and remain until dusk for weeks at a time to
monitor the activities of their subjects [10, 5].

Even for laboratory experiments, collecting behavioral data
is a time-consuming operation. Researchers must sit pa-
tiently for hours at a time to observe and record the actions
of their subjects with pen and paper. There are several ob-
vious limitations to this approach. Any lapse in attention
by the observer, for instance, may result in missing a po-
tentially significant event. Also, because colony activity is
often distributed spatially, either one observer must split her
attention between areas, or multiple observers must attend
to the same experiment.

To address this, researchers are adopting technological
methods (e.g. videotape) for collecting data. However, even
when video recording is employed, a human observer must
watch and record events manually. In this paper we describe
a novel video processing algorithm that reliably tracks mul-
tiple (up to hundreds) of ants simultaneously. Each ant can
be tracked individually, and it’s movement recorded digi-
tally. Automating the monitoring and recording of animal
activity can significantly impact the accuracy and breadth
of research in ant behavior.

In the work most closely related to our approach, Gordon
reports using image processing techniques to track ants in
her study of foraging patterns in Linepithema humile [5].



Figure 4: A laboratory colony of Camponotus pennsyl-
vanicus consisting of a queen (large), seven workers
and brood. This colony was reared from a single,
locally captured queen. The ants live in test tubes,
moving from tube to tube according to their prefer-
ences for humidity.

However, to our knowledge, details of the system she used
were not published, so we are unable to compare it with our
approach.

2. APPARATUS
Keeping laboratory colonies of hardy ant species requires

perseverance and a watchful eye, but overall it is not too
difficult. Primary considerations are: containment, temper-
ature, humidity, and food. In our lab we keep two colonies
of Camponotus festinatus, a species native to the southwest-
ern U.S., and eight colonies of Camponotus pennsylvanicus
(carpenter ants). The one year old C. festinatus colonies in-
clude one queen and about 250 workers each. The recently
founded carpenter ant colonies number 3 to 15 workers each.
These colonies were all raised from captured queens.

The colonies are housed in open 10mm by 75mm test tubes
(Figure 4). The animals are allowed to move between the
test tubes freely. Some test tubes are filled about 1

3
with dis-

tilled water and fitted with a cotton stopper, others are dry.
The inside of the test tubes with water is considerably more
humid than the outside environment — this is important for
insects who usually live in moist earth. The ants move from
tube to tube according to their humidity preferences.

The test tubes are mounted in 6 inch diameter petri dishes
with modeling clay. All of our colonies are small enough
to live comfortably in these covered petri dishes. However,
because we are interested in studying their exploration and
foraging activities, we place the open petri dishes in larger
containers (10 gallon aquaria) for observation. The walls of
the aquaria are treated with machine oil to prevent escape.

Color video cameras with wide angle lenses are mounted
above the the observation aquaria looking downward to pro-
vide full coverage of the experimental arena (Figure 5). The
camera output is connected to a Pentium computer that
captures images using an off-the-shelf video capture card.
The capture card provides 640 by 480 pixel images at 30Hz
to the image processing algorithms. The video stream is
processed in real-time to calculate the locations of ants in
the arena.

Figure 5: Experimental arena. The colony is housed
in a petri dish on the right, three food items are
placed on the left.

Background

Figure 6: Block diagram of image processing opera-
tions for finding moving objects in the video stream.

We describe the details of image processing to locate the
ants in the next section.

3. FINDING ANTS IN IMAGES
One of the main contributions of this work is an algorithm

for finding ants in images and tracking them over time. Even
though the laboratory arena provides a high-contrast back-
ground that aids image processing, the task is complicated
by several factors:

• Small targets: As Figure 5 illustrates, the ants are
rather small in the image.

• Color ambiguities: Because ants are dark (nearly
black) their color is ambiguous with respect to other
items in the arena (e.g. food, shadows and waste).

• Noise: Dark areas in the image are noisy.

To address these issues we use a hybrid approach combin-
ing color-based classification and movement-based classifi-
cation techniques. The basic idea is to use color classifica-
tion (a fast operation) to identify regions in the image that
should be further scrutinized for indications of movement
using more costly image differencing.

An overview of the system is provided in Figure 6. The
output of a video camera overlooking the arena is fed into



a capture card that provides digital color images at 30Hz.
The image stream is used to build the background image
— an approximation of the arena with all moving objects
removed.

Incoming images are also processed by a color region seg-
mentation algorithm. Pixels that match specific color spec-
ifications are grouped together and identified by bounding
boxes. A bounding box is a rectangular region in the image
that contains the specified color.

The color region bounding boxes are used to identify re-
gions in the incoming image to be further analyzed for move-
ment. Pixels that contain moving objects are detected us-
ing image differencing (described below). Finally, bounding
boxes describing the colored regions of interest, and colored
regions that contain moving objects are written to a log file
for later examination Now we describe the processing steps
in more detail.

3.1 Tracking by Color
Images are initially processed using the CMVision algo-

rithm [1]. CMVision offers fast and reliable color-based
classification and has been successfully applied to a vari-
ety of robot vision tasks. Color classes are specified using
six threshold parameters in a three-dimensional color space
(YUV or RGB). The six thresholds for each color correspond
to upper and lower bounds in each dimension. In addition
to classifying pixels by color, CMVision groups adjacent pix-
els of the same color together as segmented regions. On a
medium power workstation CMVision can classify hundreds
of objects of up to 32 different colors in images at 30Hz.

CMVision is quite effective in identifying marked objects.
It is possible in many robotic applications to mark the en-
vironment or relevant objects for color identification. How-
ever, it is difficult and sometimes dangerous (for the ants)
to mark ants in a similar manner. To complicate matters,
most species of ants are black or brown, and these colors are
common even in a controlled laboratory environment. The
classifier cannot distinguish the black pixels of an ant from
the black pixels along the edge of a petri dish.

Fortunately, ants can be distinguished from other objects
of the same color by their movement. By filtering most of the
image using color first, we are able to focus the more costly
search for movement on regions that are likely to contain an
ant.

3.2 Tracking by Movement
Frame differencing is a standard technique for finding move-

ment in a series of images. Pixels in the current camera
image are compared with the corresponding pixels in the
previous camera image. If a pixel has changed sufficiently it
is classified as containing movement. Typically, and also in
our approach, the differencing is only applied to the inten-
sity, or Y dimension of the images.

Frame differencing is effective, but it is subject to sev-
eral limitations. First, because the time scale over which
movement can be detected is short, (usually only one or two
image frames or 33 to 66 milliseconds), only rapidly mov-
ing objects are detected. Furthermore, frame differencing is
generally not effective at extracting all of the relevant mov-
ing pixels if the object is uniform in color; only the pixels
along the edges of the object will be classified as moving.

In the approach we use, referred to as adaptive background
subtraction, an image representing the scene devoid of mov-

Figure 7: Use of background differencing to find
moving objects. Left: Background image computed
using a running locally weighted average. Center:
Sample “live” image. Right: Difference between
background and live image reveals the locations of
two ants.
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a1 t a1

a2 t

t+1

Figure 8: A case where greedy association fails. Two
ants, a1 and a2, are shown at times t and t+1. The
arrows show the incorrect greedy association that
matches one ant at a time (ant a2 is matched before
ant a1) based on minimum distance.

ing objects is computed by averaging camera images over
time [2]. We subtract the current image from the back-
ground image to find movement. The process is illustrated
in Figure 7. Because the background image is stable and
computed over a long period, it avoids most limitations of
simple frame differencing.

The background image is computed using a locally weighted
running average as follows:

Bij = (α − 1)Bij + αIij

where Bij is the pixel in the ith column and jth row of
the background image, Iij is the corresponding pixel in the
current camera image, and α is a parameter specifying the
“learning rate” or speed at which the background image
adapts to changes.

When α is set to a very low value, new objects in the scene
only become part of the background image if they remain for
a long time (typically α is set to a value near 0.0005). The
idea is that moving objects (e.g. ants) will only occupy a
particular location for a short period, and will therefore have
little impact on the corresponding pixels in the background
image at that location.

In the final steps of the algorithm, the intensity values of
pixels matching the “ant color” specification are subtracted
from the background image. If this difference is greater than
a specified threshold value the pixel is considered “moving
ant color.” The threshold may be set to any value between
0 and 255; 35 was used in the experiments here. Next, con-
nected pixels of “moving ant color” are grouped into regions;
sufficiently large regions are recorded as containing an ant.

Summarizing the approach, first we search for regions of
“ant color” in the image, then we examine those regions us-



Figure 9: A new method for evaluating the spatial behavior of multi-agent systems. This experiment compares
activity in the arena depicted in Figure 5 with and without the presence of food. Both graphs depict the
number of visits by ants to each location in the arena over a 30 minute period. Left: Foraging activity with
no food present. Right: Activity with food placed in the center of the arena. A distinct peak is evident at
the location of the food.

ing background differencing to find regions of “moving ant
color.” Sufficiently large regions of “moving ant color” are
classified as ants. Our approach to building a background
image as a means of detecting motion was developed inde-
pendently, but is similar to the method proposed by Collins,
et al [2]. A key difference is our use of color filters to limit
the area examined for movement.

3.3 Associating Observations with Individuals
The data gathered through observation corresponds to

multiple observed agents, in this case, ants. To identify
colony behaviors, it is crucial for our automated system be
able to track individual ants. When tracking artificial crea-
tures, such as robotic agents, it is possible to add a pattern
on the robot for the purpose of identification. When us-
ing live creatures like ants, however, adding identification
patterns to the moving animals is not always feasible. In
earlier work we developed a data association algorithm that
is capable of identifying and tracking multiple soccer play-
ing robots without any specific identification [7]. We have
now applied and extended this algorithm to the problem of
individual ant tracking.

Formally, data association addresses the problem of re-
taining the ant identification in subsequent frames gathered
by the observation system. Our algorithm retains associa-
tion based on the spatial locations of the ants. We assume
that the starting positions of all the ants are known. We
then use a minimum distance scheme to retain association
between consecutive frames under the assumption that the
ants will move only within a circle of some maximum dis-
tance over consecutive captured frames.

Given two consecutive frames gathered at times t and t+1,
the points corresponding to each ant detected at time t + 1
are matched with the closest positions of each detected ant
of the frame at time t. This greedy association algorithm
is computationally effective but it can generate an incorrect
match, as shown in Figure 8.

There is an improved algorithm that can solve this prob-

lem. This algorithm generates all possible sets of observed
matching points between two consecutive frames and then
calculates the total fitness of the each of the sets globally
according to a least square criteria:

N∑

i=1

(dist(previ, curi))
2
,

where (previ, curi) are the ith matching pair. And the func-
tion dist(x, y) is the Euclidean distance. The set of matches
that minimizes the above criteria is selected. Even so, this
algorithm does guarantee perfect association, in particular
with our cluttered environment, but the implementation has
shown to be robust.

4. RESULTS
We have accessed the accuracy and utility of the system in

several experimental observations of Camponotus festinatus.

4.1 Quantifying Spatially Distributed Activity
One of the important contributions of this work is a new

method for evaluating the distributed spatial activity of in-
sect colonies. This capability is critical to the investigation
of distributed behavior, for instance to evaluate how neigh-
boring colonies establish boundaries between their foraging
areas. Our method represents spatial activity as a three-
dimensional surface. The two-dimensional arena is divided
into an array of “bins.” Each time an ant enters the area
corresponding to a bin, the bin’s value is incremented. A
three-dimensional surface is constructed where the height
at each position indicates the number of visits to that area.
The surface shows peaks in areas of concentrated activity.

Figure 9 illustrates an example analysis. In this experi-
ment we evaluate how the presence of food impacts the spa-
tial activity of one of our laboratory colonies. The two ac-
tivity plots generated in this experiment are quite different,
indicating that the colony changes its exploration strategy
depending on whether food is present.



Figure 11: Tracking the movement of multiple ants simultaneously. This sequence of images depicts the paths
of multiple ants patrolling the arena depicted in Figure 5. The snapshots, sequenced from left to right, were
taken at 60 second intervals; the entire sequence was recorded in three minutes. The ants do not often visit
the area on top of their nest (a cardboard square).

Figure 10: Spatially distributed interactions be-
tween ants. The plot shows the number of times
ants interacted with one another across the two-
dimensional arena. This type of analysis could be
employed to study “skirmishes” between nearby
colonies sharing a foraging arena to determine how
they establish territories.

The surface on the left of Figure 9 shows activity over
30 minutes when no food is available in the arena. Note
that the entire arena is covered fairly evenly by the explor-
ing ants. The outline of the petri dish where the ants live,
and the boundary of the arena are evident as slightly raised
“hills.” This may indicate that the ants use vertical walls
as references for navigation [5].

The image on the right in Figure 9 also shows activity
over 30 minutes. However during this experiment, food was
placed in the center of the arena. A large peak is clearly
evident in the center of the surface corresponding to the
location of the food. Two other characteristics of this plot
are worth noting. First, activity behind and near the nest
is reduced, indicating that there is less interest in exploring
those areas when food is available elsewhere. Also, during
these experiments, we noticed that the ants often interact
at the entrance to the nest as they return from gathering
food. These interactions are reflected in the activity peak
on the side of the nest towards the food.

In related work, Goldberg and Mataric suggest quantifica-
tion of the interactions between agents as a tool for evaluat-
ing the effectiveness of foraging strategies [4]. We are able to
conduct a similar analysis of the interactions between ants
under observation. Each time two ants are present in the
same small area, the corresponding bin is incremented. Fig-
ure 10 illustrates the results of this evaluation in the arena
over 30 minutes after food is placed in the middle. Increased
numbers of interactions are evident near the nest and at the
location of the food.

4.2 Tracking Multiple Ants Simultaneously
A long-range goal of this work is to infer the behavioral

state of individual ants by evaluating traces of their move-
ment. To support that goal, our system must be able to
recognize and record the movement of multiple individual
ants simultaneously.

Our system is able to trace the movement of multiple in-
dividuals simultaneously. An example of this capability is
provided in Figure 11. In this experiment we recorded the
activity of ants in the arena over a three-minute period.
During this time, four to six ants explored the entire arena.

4.3 Performance: Accuracy and Efficiency
Many investigations of ant behavior rely on counting the

number of animals in specific regions over time. Our objec-
tive in this experiment was to evaluate the accuracy of the
vision system in counting the number of ants outside the
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Figure 12: The number of insects recognized in the experimental arena by the automated tracking system
(dotted line) compared with the number of insects actually present. Average error is 1.2 ants per observation.
The evaluation was conducted over one hour, with samples taken every 30 seconds.

nest, exploring the arena. To do this, we compared human
observations with the automated system’s.

Using the arena illustrated in Figure 6, a human observer
counted the number of ants outside the nest at 30 second
intervals over one hour. The human’s results were compared
with the tracking system’s count at each of 120 samples. The
two counts are compared in the graph in Figure 12. There
were an average of 10.5 ants present in each sample. On
average the human and our vision system differed by 1.2 ants
(about 11%) at each sample. We repeated this experiment
twice with approximately the same results.

To evaluate the efficiency of our algorithms tests were
conducted on a 700MHz Pentium III computer running the
Linux operating system. On average, it takes 42ms to cap-
ture an image and process it. When allowed to run as fast as
possible, the system is able to process 24 frames per second.
At a moderate 10 frames per second, processing utilizes 35%
of the CPU resource, leaving the rest available for additional
analysis tasks.

Compressed log files consume about 3MB per hour of ob-
servation. This enables 20 days of observation data to be
saved on a single CDROM.

The scalability of the system was tested by evaluating its
ability to track 100 targets simultaneously. There was no
noticeable degradation in performance. This is because the
fixed costs of searching the entire image for color classifi-
cation predominates. The small targets cover only a small
percentage of the image, and the algorithm only spends ad-
ditional time on pixels of the appropriate color. The cost
of associating tracks with observations is a separate post-
processing step that is not included in this performance eval-
uation.

5. LIMITATIONS
Our tracking software has proven to be quite reliable, but

there are still a few limitations to be addressed, including:

• Occlusion: Ants are sometimes occluded by the walls
of the petri dish they live in.

• Clumping: When two ants are very close, or on top
of one another, the system may count them as only
one ant.

• Splitting: In some cases, the bounding box for one

ant may split into multiple bounding boxes (e.g. a
specular reflection may confuse the system). In these
cases the system will count more ants than are actually
present.

• Motionless ants: If an ant remains motionless for
too long of a time, it merges into the background image
and can no longer be tracked.

In our continuing work we are investigating methods for
eliminating these sources of error. Clumping and splitting
can be addressed in a post-processing step that evaluates
the sizes of bounding boxes. Boxes that are very large, for
instance, are likely to enclose multiple ants. Occlusion can
be addressed using a memory of tracked objects — when
an object disappears, it should not be immediately dropped
from the list of tracked objects.

Because stationary objects become part of the background,
stationary ant colored objects (e.g. refuse, food objects,
shadows) are not classified as ants. However, when an ant
bumps an ant colored object, the object will be classified
as “moving” for some time, but it will eventually be clas-
sified as background again. Similarly, an ant that remains
stationary for a long time may also become background and
no longer be tracked. The rate at which this occurs de-
pends on α. In our experiments we set α so that an ant
must remain stationary for at least 15 minutes before it is
no longer tracked. Even so, there is sufficient information in
the logged data to recover the positions of ants that remain
motionless for long periods.

6. CONCLUSION
We propose the study of live insect colonies as an inter-

esting and challenging domain for multi-agent systems mod-
eling research. Ant societies are complex systems of inter-
acting individuals regulated by chemical signals, physical
contact and external environmental pressures. Computer
science already draws from biology — specifically by apply-
ing “ant algorithms” to many information processing tasks.
In contrast, we argue for the application of computer science
techniques to the study of biology.

We establish the feasibility of this research direction by
describing how ant colonies can be kept successful in the lab
and by contributing a novel computer vision algorithm capa-



ble of reliably and accurately tracking the activities of hun-
dreds of insects simultaneously. The hybrid vision algorithm
uses a combination of color-based tracking and movement-
based tracking to find ants in an image.

Two novel techniques for accessing the spatial activity
of ant colonies are presented. They are illustrated using
example analyses of the foraging behavior of a captive colony
of C. festinatus.

6.1 Towards Behavior Recognition and Mod
eling

Our longer-range goal is to recognize colony behavior by
evaluating the trails of multiple individual ants. We have
previously developed an extension of Hidden Markov Mod-
els, called Behavior Hidden Markov Models (BHMMs) to
describe behaviors in robot systems [8]. We also developed
an algorithm, using this representation, for automatically
recognizing behaviors of single robots [8]. One of the main
aspects of this work involves mapping from observations to
possible internal states of the robots. We realized that the
sequence of actions of a robot left behind a “trace” of their
trajectories. The trace provides the observation data. We
then mapped the observations into the states of a Hidden
Markov Model, where each state captures the transitions be-
tween a particular behavior class. We successfully applied
our approach to the recognition of a few alternative behav-
iors (up to 10) for a single robot.

The system we have developed for observing ants pro-
vides the same type of observational data used successfully
to recognize behavior in robots. We are encouraged by the
fact that myrmecologists utilize a representation for behav-
ior (ethograms) that is quite similar to BHMMs. As we
continue this research we expect to encode ethograms as
BHMMs and use them to implement the same capability
for recognizing behavior in ants. Furthermore, in the longer
term we plan to develop methods for learning the BHMMs
themselves.
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