
Automatically Tuned Linear Algebra Software

R. Clint Whaley
Jack J. Dongarra

Computer Science Department
University of Tennessee

Knoxville, TN 37996-1301

and

Mathematical Sciences Section
Oak Ridge National Laboratory

Oak Ridge, TN 37831

1 Abstract

This paper describes an approach for the automatic generation and optimization of numer-
ical software for processors with deep memory hierarchies and pipelined functional units.
The production of such software for machines ranging from desktop workstations to embed-
ded processors can be a tedious and time consuming process. The work described here can
help in automating much of this process. We will concentrate our e�orts on the widely used
linear algebra kernels called the Basic Linear Algebra Subroutines (BLAS). In particular,
the work presented here is for general matrix multiply, DGEMM. However much of the
technology and approach developed here can be applied to the other Level 3 BLAS and the
general strategy can have an impact on basic linear algebra operations in general and may
be extended to other important kernel operations.

1

Contents

1 Abstract 1

2 Motivation 4

3 ATLAS 6

3.1 The ATLAS approach . 6
3.2 Building the general matrix multiply from the on-chip multiply 6

3.2.1 Choosing the correct looping structure 8
3.2.2 L2 Cache blocking . 9

3.3 Generation of the on-chip multiply . 10
3.3.1 Instruction cache reuse . 11
3.3.2 Floating point instruction ordering 11
3.3.3 Reducing loop overhead . 12
3.3.4 Exposing parallelism . 12
3.3.5 Finding the correct number of cache misses 12
3.3.6 Putting it all together . 12
3.3.7 Cleanup code . 13

3.4 Why Can't the Compiler Do This? . 13
3.5 Requirements for Good Performance . 14

3.5.1 E�ects of poor compilers . 14
3.5.2 Performance loss from the lack of an on-chip cache 15

3.6 Other BLAS . 15

4 Results 16

4.1 Results with varying timing methods . 18
4.2 Square matrix multiply . 20
4.3 LU timings . 23
4.4 Threaded GEMM timings . 24

5 Comparison to Other Work 25

6 Downloading ATLAS 25

7 Future Work 26

8 Conclusions 26

A BLAS and compiler details 28

B On-chip multiply details 28

2

List of Tables

1 ATLAS performance comparison on AS600 and T3E 14
2 DGEMM performance in MFLOPS for the SGI R8000 processor 15
3 System Summary . 17
4 Cache ushing with large matrices . 19
5 Cache ushing with small matrices . 19
6 Theoretical and observed peak MFLOPS . 20
7 System and ATLAS DGEMM comparison across platforms 21
8 System and ATLAS SGEMM comparison across platforms 22
9 Double precision LU timings on various platforms 23
10 Asymptotic double precision LU performance 24
11 Threaded DGEMM timings across various platforms 24
12 BLAS library and version . 28
13 Compiler and version . 29
14 Compiler ags . 30
15 On-chip multiply details across systems . 31

List of Figures

1 ATLAS/vendor performance preview . 5
2 One step of matrix-matrix multiply . 7
3 General matrix multiplication with A as innermost matrix 8
4 General matrix multiplication with B as innermost matrix 9

3

2 Motivation

Today's microprocessors have peak execution rates ranging from 300 Mop/s to 1.2 Gop/s.
However, straightforward implementation in Fortran or C of computations based on simple
loops rarely results in such high performance. To realize such peak rates of execution for
even the simplest of operations has required tedious, hand coded, programming e�orts.

Since their inception, the use of defacto standards like the BLAS [5, 4] has been a
means of achieving portability and e�ciency for a wide range of kernel scienti�c computa-
tions. While these BLAS are used heavily in linear algebra computations, such as solving
dense systems of equations, they have also found their way into the basic computing in-
frastructure of many applications. The BLAS (Basic Linear Algebra Subprograms) are
high quality \building block" routines for performing basic vector and matrix operations.
Level 1 BLAS do vector-vector operations, Level 2 BLAS do matrix-vector operations, and
Level 3 BLAS do matrix-matrix operations. Because the BLAS are e�cient, portable, and
widely available, they are commonly used in the development of high quality linear algebra
software, such as LAPACK [1] and ScaLAPACK [2], for example.

The BLAS themselves are just a standard or speci�cation of the semantics and syntax
for the operations. There is a set of reference implementations written in Fortran, but no
attempt was made with these reference implementations to promote e�ciency. Many ven-
dors provide a \optimized" implementation of the BLAS for a speci�c machine architecture.
These optimized BLAS libraries are provided by the computer vendor or by an independent
software vendor (ISV).

In general, the existing BLAS have proven to be very e�ective in assisting portable,
e�cient software for sequential, vector and shared memory high-performance computers.
However, hand-optimized BLAS are expensive and tedious to produce for any particular
architecture, and in general will only be created when there is a large enough market, which
is not the true for all platforms. The process of generating an optimized set of BLAS for a
new architecture or a slightly di�erent machine version can be a time consuming process.
The programmer must understand the architecture, how the memory hierarchy can be
used to provide data in an optimum fashion, how the functional units and registers can be
manipulated to generate the correct operands at the correct time, and how best to use the
compiler optimization. Care must be taken to optimize the operations to account for many
parameters such as blocking factors, loop unrolling depths, software pipelining strategies,
loop ordering, register allocations, and instruction scheduling.

Many computer vendors have invested considerable resources in producing optimized
BLAS for their architectures. In many cases near optimum performance can be achieved
for some operations. However the coverage and the level of performance achieved has not
been uniform across all platforms. An example is that up until this point we have not had
an e�cient version of matrix multiply for the Pentium/Linux architecture.

Our goal is to develop a methodology for the automatic generation of highly e�cient
basic linear algebra routines for today's microprocessors. The process will work on pro-
cessors that have an on-chip cache and a reasonable C compiler. Our approach, called
Automatically Tuned Linear Algebra Software (ATLAS), has been able to match or exceed
the performance of the vendor supplied version of matrix multiply in almost every case.

More complete timings will be given in section 4, where we report on the timings of

4

various problem sizes across multiple architectures. As a preview of this more complete
coverage, �gure 1 shows the performance of ATLAS versus the vendor-supplied DGEMM
(where available) for a 500x500 matrix multiply. See section 4 for further details on these
results.

500x500 double precision matrix-matrix multiply across various systems

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

D
E

C
 A

lp
ha

S
ta

tio
n

25
5

D
E

C
 A

lp
ha

S
ta

tio
n

60
0

5/
26

6

H
P

90
00

/7
35

/1
25

H
P

90
00

/7
15

/5
0

IB
M

 P
ow

er
2

(t
hi

n
no

de
)

IB
M

 P
ow

er
P

C
 (

hi
gh

no
de

)

P
en

tiu
m

 M
M

X
15

0M
hz

P
en

tiu
m

 P
ro

20
0M

hz

P
en

tiu
m

 II
 2

66
M

hz

P
en

tiu
m

 II
 3

00
M

hz

S
G

I R
46

00

S
G

I R
50

00

S
G

I R
10

00
0i

p2
8

S
G

I R
10

00
0i

p2
7

S
un

 M
ic

ro
sp

ar
c

II
M

od
el

 7
0

S
un

 U
ltr

a1
 M

od
el

14
0

S
un

 U
ltr

a2
 M

od
el

21
70

S
un

 U
ltr

a2
 M

od
el

22
00

System

M
flo

ps Vendor

ATLAS

Figure 1: ATLAS/vendor performance preview

5

3 ATLAS

We have developed a general methodology for the generation of the Level 3 BLAS and
describe here how this approach is carried out and some of the preliminary results we
have achieved. At the moment, the operation we are supporting matrix multiply. We can
describe matrix multiply as C �op(A)op(B) + �C, where op(X) = X or XT . C is an
M �N matrix, and A and B are matrices of size M �K and K �N , respectively.

In general, the arrays A, B, and C will be too large to �t into cache. Using a block-
partitioned algorithm for matrix multiply it is still possible to arrange for the operations to
be performed with data for the most part in cache by dividing the matrix into blocks. For
additional details see [6].

3.1 The ATLAS approach

In our approach, we have isolated the machine-speci�c features of the operation to several
routines, all of which deal with performing an optimized on-chip (i.e., in L1 cache) matrix
multiply. This section of code is automatically created by a code generator which uses
timings to determine the correct blocking and loop unrolling factors to perform an optimized
on-chip multiply. The user may directly supply the code generator with as much detail as
desired (i.e., the user may explicitly indicate the L1 cache size, the blocking factor(s) to try,
etc); if such details are not provided, the generator will determine appropriate settings via
timings.

The rest of the code does not change across architectures, and handles the looping,
blocking, and so on necessary to build the complete matrix-matrix multiply from the on-
chip multiply.

3.2 Building the general matrix multiply from the on-chip multiply

In this section we describe the code which remains the same across all platforms: the routines
necessary to build a general matrix-matrix multiply using a �xed-size on-chip multiply.

The following section describes the on-chip multiply and its code generator in detail. For
this section, it is enough to know that we have an e�cient on-chip matrix matrix multiply
of the form C ATB + C. This multiply is of �xed size, with all dimensions set to a
system-speci�c value, NB (i.e, M = N = K = NB). Also available are several \cleanup"
codes, which handle the cases caused by dimensions which are not multiples of the blocking
factor.

When the user calls our GEMM, the �rst decision is whether the problem is large enough
to bene�t from our special techniques. Our algorithm requires copying of the operand ma-
trices; if the problem is small enough, this O(N2) cost, along with miscellaneous overheads
such as function calls and multiple layers of looping, can actually make the \optimized"
GEMM slower than the traditional 3 do loops. The size required for the O(N3) costs
to dominate these lower order terms varies across machines, and so this switch point is
automatically determined at installation time.

For these very small problems, a standard 3-loop multiply with some simple loop un-
rolling is called. This code will also be called if the algorithm is unable to allocate enough
space to do the blocking (see below for further details).

6

Assuming the matrix is large enough, there are presently two algorithms for performing
the general, o�-chip multiply. The two algorithms correspond to di�erent orderings of the
loops; i.e., is the outer loop over M (over the rows of A), and thus the second loop is over
N (over the columns of B), or is this order reversed. The dimension common to A and B
(i.e., the K loop) is currently always the innermost loop.

Let us de�ne the input matrix looped over by the outer loop as the outer or outermost
matrix; the other input matrix will therefore be the inner or innermost matrix. Both
algorithms then try to allocate enough space to store a NB � NB output temporary, Ĉ,
1 panel of the outermost matrix, and the entire inner matrix. If this fails, the algorithms
attempt to allocate enough space to hold Ĉ, and 1 panel from both A and B. The minimum
workspace required by these routines is therefore NB

2 + (M + K)NB. If this amount of
workspace cannot be allocated, the previously mentioned small case code is called instead.

If there is enough space to copy the entire innermost matrix, we see several bene�ts to
doing so:

� Each matrix is copied only one time

� If all of the workspaces �t into L2 cache, we get complete L2 reuse on the innermost
matrix

� Data copying is limited to the outermost loop, protecting the inner loops from un-
needed cache thrashing

If enough space for a copy of the entire innermost matrix cannot be allocated, the
innermost matrix will be entirely copied for each panel of the outermost matrix (i.e., if A
is our outermost matrix, we will copy B dM=NBe times). Further, our usable L2 cache is
reduced (the copy of a panel of the innermost matrix will take up twice the panel's size in
L2 cache; the same is true of the outermost panel copy, but that will only be seen the �rst
time through the secondary loop).

Regardless of which looping structure or allocation procedure used, the inner loop is
always along K. Therefore, the operation done in the inner loop by both routines is the
same, and it is shown in �gure 2.

C3;2 A3;1A3;2

M

N

C M

K

A

N

K� B

B1;2

B2;2

B3;2

Figure 2: One step of matrix-matrix multiply

In this operation, the following actions are performed in order to calculate the NB�NB

block Ci;j , where i and j are in the range 0 � i < dM=NBe, 0 � j < dN=NBe:

1. Zero out NB �NB section of workspace to store AB; call this workspace Ĉi;j .

7

work = allocate(M*K + NB*(NB+K))

if (allocated(work)) then

PARTIAL_MATRIX = .FALSE.

copy A into block major format

else

PARTIAL_MATRIX = .TRUE.

work = allocate(NB*(NB+2*K))

if (.NOT.allocated(work)) call small_case_code

return

end if

do j = 1, N, NB

Bwork = ALPHA*B(:,J:J+NB-1); Bwork in block major format

do i = 1, M, NB

if (PARTIAL_MATRIX) Awork = A(i:i+NB-1,:); Awork in block major format

Cwork(1:NB,1:NB) = 0

do k = 1, K, NB

ON_CHIP_MATMUL(Awork, Bwork, Cwork)

end do

C(i:i+NB-1, j:j+NB-1) = BETA*Cwork

end do

end do

Figure 3: General matrix multiplication with A as innermost matrix

2. Call on-chip multiply to multiply block k of the row panel i of A with block k of the
column panel j of B, 8k; 0 � k < dK=NBe. The on-chip multiply is performing the
operation C AB+C, so as expected this results in multiplying the row panel of A
with the column panel of B.

3. Perform block operation Ci;j Ĉi;j + �Ci;j.

Building on this inner loop, we have the loop orderings giving us our two algorithms for
o�-chip matrix multiplication. Figures 3, 4 give the pseudo-code for these two algorithms.
We simplify this code by not showing the cleanup code necessary for cases where dimensions
do not evenly divide NB. The matrix copies are shown as if coming from the notranpose,
notranpose case. If they do not, only the array access on the copy changes.

3.2.1 Choosing the correct looping structure

When the call to the matrix multiply is made, the routine must decide which loop structure
to call (i.e., which matrix to put as outermost). If the matrices are of di�erent size, L2 cache
reuse can be encouraged by deciding the looping structure based on the following criteria:

� If either matrix will �t completely into L2 cache, put it as the innermost matrix (we
get L2 cache reuse on entire inner matrix)

� If neither matrix �ts completely into L2 cache, put the one with the largest panel that

8

work = allocate(N*K + NB*(NB+K))

if (allocated(work)) then

PARTIAL_MATRIX = .FALSE.

copy B into block major format

else

PARTIAL_MATRIX = .TRUE.

work = allocate(NB*(NB+2*K))

if (.NOT.allocated(work)) call small_case_code

return

end if

do i = 1, M, NB

Awork = ALPHA*A(i:i+NB-1,:); Awork in block major format

do j = 1, N, NB

if (PARTIAL_MATRIX) Bwork = B(:,J:J+NB-1); Bwork in block major format

Cwork(1:NB,1:NB) = 0

do k = 1, K, NB

ON_CHIP_MATMUL(Awork, Bwork, Cwork)

end do

C(i:i+NB-1, j:j+NB-1) = BETA*Cwork

end do

end do

Figure 4: General matrix multiplication with B as innermost matrix

will �t into L2 cache as the outermost matrix (we get L2 cache reuse on the panel of
the outer matrix)

The present code does no explicit L2 blocking, however (for instance, the size of the L2
cache is not known anywhere in the code) , and so these criteria are not presently used for
this selection. Rather, if one matrix must be accessed by row-panels during the copy (for
instance, the matrix A when TRANSA='N'), that matrix will be put where it can be copied
most e�ciently.

This means that if we have enough workspace to copy it up front, it will be accessed
column-wise by putting it as the innermost loop and copying the entire matrix; otherwise
it will be placed as the outermost loop, where the cost of copying the row-panel is a lower
order term. If both matrices have the same access patterns, B will be made the outermost
matrix, so that C is accessed by columns.

3.2.2 L2 Cache blocking

As previously mentioned, the present algorithms perform no explicit L2 cache blocking,
but we achieve substantial implicit caching in certain cases. If the innermost matrix �ts
completely into L2 cache, the present algorithm will get maximal cache reuse. If there is
room in the cache only for one panel from each matrix (and for the copy of the innermost
panel, if we don't have the space to copy all of the innermost matrix up front), we will again
get extremely good cache reuse, by reusing the outermost matrix panel against all panels

9

of the innermost matrix. There are two other obvious opportunities for cache reuse, which
the code presently does not take advantage of.

The �rst is the case where the L2 cache is not big enough to hold an entire panel of
both A and B. In this case, the K loop must be intermixed with the outer loops in order to
achieve L2 cache reuse. In this algorithm, X blocks of one of the panels is retained in the
L2 cache, and the appropriate sections of the other input matrix are brought in to perform
the multiplication. This requires either X NB�NB panels of Ĉ to be retained in L2 cache,
or multiple writes to C. Either option tends to degrade performance. We have run some
experiments to test to the feasibility of this idea, and have yet to see any performance gain.

More interesting is the case where multiple matrix panels will �t into L2 cache, but the
entire innermost matrix will not. In this case the looping mechanism must become slightly
more complex. This algorithm copies X panels of the outermost matrix into L2 cache, and
then reuses them by applying them to the panels of the innermost matrix. If X becomes
as small as 1 or as large as the number of panels in the outermost matrix, we are in a
previously discussed case. Within this restriction, cache reuse grows with X .

This idea was promising enough that it was implemented. Of the 14 platforms surveyed
in the timing section, only the DEC AlphaStation 600 showed appreciable performance
gains; this platform showed maximal speedup of 1:08; obviously many problem sizes showed
no speedup at all . No other platform gained speedup greater than 1:02. It was decided
that this modest gain did not at this point justify the added code complexity of supporting
explicit L2 blocking.

There are other reasons to consider explicit L2 references (for instance, deciding which
matrix should be innermost), and if for one of these reasons we support the explicit calcu-
lation of L2 size, this algorithm should be easy to add.

3.3 Generation of the on-chip multiply

As previously mentioned, the on-chip matrix-matrix multiply is the only code which must
change depending on the platform. Since we copy the input matrices into blocked form,
only one case is required, which we have chosen as C ATB + C. This case was chosen
(as opposed to, for instance C AB + C), because it generates the largest (ops)/(cache
misses) ratio possible when the loops are written with no unrolling. Machines with hardware
allowing a smaller ratio can be addressed using loop unrolling on the M and N loops (this
could also be addressed by permuting the order of the K loop, but we do not at present
use this technique).

In a multiply designed for L1 cache reuse, one brings one of the input matrices completely
into the L1 cache, and reuses that matrix in looping over the rows or columns of the other
input matrix. The present code brings in the matrix A, and loops over the columns of
B; this was an arbitrary choice, and there is no theoretical reason it would be superior to
bringing in B and looping over the rows of A.

There is a common misconception that cache reuse is optimized when both input matri-
ces, or all three matrices, �t into L1 cache. In fact, the only win in �tting all three matrices
into L1 cache is that it is possible, assuming the cache is not write-through, to save the cost
of pushing previously used sections of C back to the L2 cache. Ignoring this cost, maximal
cache reuse for our case is achieved when all of A �ts into cache, with room for at least two

10

columns of B and 1 cache line of C. Only one column of B is actually accessed at a time in
this scenario; having enough storage for two columns assures that the old column will be
the least recently used data when the cache overows, thus making certain that all of A is
kept in place (this obviously assumes the cache replacement policy is least recently used).

While cache reuse can account for a great amount of the overall performance win, it is
obviously not the only factor. For the on-chip matrix multiplication, other relevant factors
are:

� Instruction cache overow

� Floating point instruction ordering

� loop overhead

� Exposure of possible parallelism

� The number of outstanding cache misses the hardware can handle before execution is
blocked

3.3.1 Instruction cache reuse

Instructions are cached, and it is therefore important to �t our on-chip multiply's instruc-
tions into the L1 cache. This means that we will not be able to completely unroll all three
loops, for instance.

3.3.2 Floating point instruction ordering

When we discuss oating point instruction ordering in this paper, it will usually be in
reference to latency hiding.

Most modern architectures possess pipelined oating point units. This means that the
results of an operation will not be available for use until X cycles later, where X is the
number of stages in the oating point pipe (typically 3 or 5). Remember that our on-
chip matrix multiply is of the form C ATB + C; individual statements would then
naturally be some variant of C[X] += A[Y] * B[Z]. If the architecture does not possess
a fused multiply/add unit, this can cause a unnecessary execution stall. The operation
register = A[Y] * B[Z] is issued to the oating point unit, and the add cannot started
until the result of this computation is available, X cycles later, and thus the oating point
pipe is not utilized.

The solution is to remove this dependence by separating the multiply and add, and
issuing unrelated instructions between them. This reordering of operations can be done in
hardware (out-of-order execution) or by the compiler, but this will sometimes generate code
that is not quite as e�cient as doing it explicitly. More importantly, not all platforms have
this capability (for example, gcc on a Pentium), and in this case the performance win can
be large.

11

3.3.3 Reducing loop overhead

The primary method of reducing loop overhead is through loop unrolling. If it is desirable
to reduce loop overhead without changing the order of instructions, one must unroll the
loop over the dimension common to A and B (i.e., unroll the K loop). Unrolling along the
other dimensions (the M and N loops) changes the order of instructions, and the resulting
memory access patterns.

3.3.4 Exposing parallelism

Many modern architectures have multiple oating point units. There are two barriers to
achieving perfect parallel speedup with oating point in such a case. The �rst is a hardware
limitation, and therefore out of our hands: All of the oating point units will need to access
memory, and thus for perfect parallel speedup, the memory fetch will usually also need to
operate in parallel.

The second prerequisite is that the compiler recognize opportunities for parallelization,
and this is amenable to software control. The �x for this is the classical one employed in
such cases, namely unrolling the M and/or N loops.

3.3.5 Finding the correct number of cache misses

Any operand that is not already in a register must be fetched from memory. If that operand
is not in the L1 cache, it must be fetched from further up the memory hierarchy, possibly
resulting in large delays in execution. The number of cache misses which can be issued simul-
taneously without blocking execution varies between architectures. To minimize memory
costs, the maximal number of cache misses should be issued each cycle, until all memory is
in cache or used. In theory, one can permute the matrix multiply to ensure that this is true.
In practice, this �ne a level of control would be di�cult to ensure (there would be problems
with over running the instruction cache, and the generation of such precision instruction
sequence, for instance). So the method we use to control the cache-hit ratio is the more
classical one of M and N loop unrolling.

3.3.6 Putting it all together

It is obvious that with this many interacting e�ects, it would be di�cult, if not impossible
to predict a priori the best blocking factor, loop unrolling etc. Our approach is to provide
a code generator coupled with a timer routine which takes in some initial information, and
then tries di�erent strategies for loop unrolling and latency hiding and chooses the case
which demonstrated the best performance.

The timers are structured so that operations have a large granularity, leading to fairly
repeatable results even on non-dedicated machines. The user may enter the size of the
L1 cache, or have the program attempt to calculate it. This in turn allows the routine to
choose a range of blocking factors to examine. The user may specify the maximum number
of registers to use (or use the default of 6), and thus dictate the maximum amount of M
and/or N loop unrolling to perform.

12

Because it has not caused cache overow anywhere, the present code always completely
unrolls the K loop. This drastically reduces the number of cases the search routine must
test.

The search then tries a number of possible blocking factors with a set amount ofM and
N loop unrolling (at the present, none), from which an initial blocking factor is chosen.
Using this blocking factor, a range of latency hiding factors (presently, 1 through 6) is
tested. If any of the latency factors produce speedup over the case with no latency hiding,
the latency factor showing the maximal performance will be tested for every timing.

With an initial blocking factor and an idea of what latency factor to employ, the search
routine loops over all M and N loop unrollings possible with the given number of registers.

Once an optimal unrolling has been found, we again try all blocking factors, and all
latency factors, and choose the best.

All results are stored in �les, so that subsequent searches will not repeat the same
experiments, allowing searches to build on previously obtained data. This also means that
if a search is interrupted (for instance due to a machine failure), previously run cases will
not need to be re-timed. A typical install takes from 1 to 2 hours for each precision.

3.3.7 Cleanup code

After all of the above operations are done, we have a square on-chip multiply of �xed
dimension NB. Since the input matrices may not be a multiple of NB, there is an obvious
need for a way to handle the remainder.

It is possible to write the cleanup code in one routine, with 3 loops of arbitrary dimension.
Practice shows that on some platforms, this results in unacceptably large performance drops
for matrices with dimensions which are not multiples of NB. Generating the code for all
possible cleanup cases is not di�cult, but is not a usable solution in practice. This would
result in NB

3 routines, which would take an unacceptable amount of compilation time, and
make the user's executable too large.

The key is to note that a majority of the time spent in cleanup code will be the case
where only 1 dimension is not equal to NB. Therefore we generate roughly 4NB routines
for cleanup: 3NB routines for the cases where a given dimension is less than NB. The
remaining routines accept arbitrary M and N , but K is known so that we can unroll the
inner loop (critical for reducing loop overhead). Thus the NB routines generated for the
general case correspond to the di�ering values K is allowed. These routines where more
than one dimension is less than NB will still not be as e�cient as the other routines, but
the time spent in them should be negligible.

3.4 Why Can't the Compiler Do This?

It would be ideal if the compiler where capable of performing the optimization needed
automatically. However, compiler technology is far from mature enough to perform these
optimizations automatically. This is true even for the BLAS on widely marketed machines
which can justify the great expense of compiler development. Adequate compilers for less
widely marketed machines are almost certain not to be developed.

13

3.5 Requirements for Good Performance

The approach we have taken has two requirements necessary for achieving good perfor-
mance:

1. There is a cache from which the oating point unit can fetch operands cheaply (i.e.,
a Level-1 cache)

2. The platform possesses an adequate C compiler.

If either of these requirements is not met, poor performance may result. There are three
systems where we attempted an ATLAS installation, and had unacceptable performance.
The platforms, and the reason for the performance loss is summarized below:

� Cray T3E: inadequate C compiler

� Intel i860: inadequate C compiler

� SGI R8000: No L1 cache accessible by oating point unit

The following sections describe how we drew these conclusions, and give some perfor-
mance numbers so that the user can see the magnitude of the performance loss.

3.5.1 E�ects of poor compilers

It might seem that the compiler would play little role in achieving performance, when the
code generator does so much of the work usually reserved for compilers (eg., loop unrolling,
latency hiding, etc.). The compiler must still be capable of doing a good job of register
management and overall oating point unit control, however. Also, for the code other than
the on-chip multiply, the compiler must do the brunt of optimization (this is a low-order
cost, however).

We have several examples the role a compiler can play in determining performance.
Perhaps the most direct evidence comes from our experiments on the SGI/CRAY T3E.
The nodes of the T3E we had access to are DEC Alpha 21164 RISC processors, running at
450MHz. The DEC AlphaStation 600 (AS600) discussed in this report has the same chip,
running at 266MHz. Cray, however, supplies their own compiler rather than using DEC's,
and here we see a large di�erence in performance. Despite having the same chip (with the
same L1 caches) running at roughly 1.7 times the clock rate, our timing numbers for the
T3E are quite a bit slower than for the AS600. Table 1 shows the ATLAS timing numbers
for the two platforms.

Matrix Order
PLATFORM 100 200 300 400 500 600 700 800 900 1000

AS600 170.8 252.1 264.7 280.2 262.7 256.4 259.8 258.1 257.0 257.3
T3E 171.6 183.1 186.6 189.7 189.3 192.6 193.1 194.4 194.1 193.9

Table 1: ATLAS performance comparison on AS600 and T3E

14

On the Intel i860, we were unable to get better than 12Mop for the on-chip multiply
itself, much less for the general case. We had access to only one compiler for this platform, so
we cannot state for certain that the compiler is at fault. However, the i860 has an L1 cache,
and has no obvious architectural peculiarities that would explain this poor performance.
The system supplied matrix multiply exceeds 40Mop, so we know there is plenty of room
in the achievable peak. Further, the case that got the best performance was with no M
or N loop unrolling, something that happens on no other platform. This anomalous result
may be due to the compiler's inability to handle the increased register use inherit in outer
loop unrolling.

One option when faced with a poor C compiler is to try another language. In the future
we hope to provide the option to generate the on-chip multiply in F77. For some of the
legacy platforms, this might o�er a speed improvement over coding in C.

3.5.2 Performance loss from the lack of an on-chip cache

If a system does not possess an on-chip cache, the blocking we perform will not help per-
formance. The copy into the block format becomes a pure overhead. The only machine we
had access to where this is the case is the SGI R8000 processor, which possesses an on-chip
cache which is not accessible by the oating point unit. The oating point unit has access
only to the o�-chip cache (level 2). Our performance on this architecture is extremely poor.
Table 2 shows the performance of ATLAS versus the vendor supplied BLAS.

It should also be noted that the vendor-supplied BLAS usually achieve a much greater
performance than this (performance in the upper 200's instead of lower), but apparently
the leading dimension we used in our timings was poor, and performance was degraded.
This merely shows that ATLAS cannot compete on this platform even with the system's
poor cases. It should be noted, however, that the Fortran77 BLAS available on netlib run
at roughly 3.6Mop for all problem sizes for the same timing.

Matrix Order
SYSTEM LIB 100 200 300 400 500 600 700 800 900 1000

R8000 SYS 243.9 289.6 207.0 210.4 213.5 213.5 214.1 213.5 213.6 214.5
R8000 ATL 111.8 138.1 146.1 145.9 148.4 149.1 147.3 145.9 146.4 145.4

Table 2: DGEMM performance in MFLOPS for the SGI R8000 processor

3.6 Other BLAS

At this point we consider how the general method outlined in this section can be extended
to other BLAS.

With the exception of the triangular solve, all level 3 BLAS can naturally be expressed
in terms of the previously mentioned on-chip matrix multiply. This means that no more
system-speci�c code must be generated to support these routines, which implies our instal-
lation time should not increase when these additional BLAS are supported. To support
these routines should require only the development of the o�-chip codes. In the meantime,

15

a gemm-based or \poor-man's BLAS" [7] may be utilized in order to generate a wider set
of Level 3 BLAS.

The triangular solve can be written in terms of matrix multiply as well, and further
research will be needed to see if this is a win compared with directly generating an on-
chip solve. It seems likely that optimal performance would demand a mixture of these two
approaches.

The level 1 and 2 BLAS require a di�erent approach. In level 3, the luxury of O(N3)
operations allows us to perform data copies, and thereby concentrate most optimization,
and thus system-speci�c code, in a few routines. When the order of operations to be done
is the same as your data, this is not feasible.

For these routines, it will likely be necessary to generate code for each operation. Thus,
for instance, a separate code would be generated for the transpose cases of GEMV. This
will lead to an explosion of routines to be generated and timed, implying extremely long
installation times.

One promising idea is to create more general scheme which tries mainly to optimize the
memory fetch, which would be generally usable within a level, and perform the complete
generation/timing sequence for only a few select routines of special interest (eg. GEMV).

4 Results

In this section we present single and double precision timings across various platforms.
These timings are di�erent than many BLAS timings in that we ush cache before each
call, and set the leading dimensions of the arrays to greater than the number of rows
of the matrix (all timings in this section set the leading dimension to the maximal size
timed, 1000). This means our performance numbers, even when timing the same routine
(for instance the vendor-supplied DGEMM) are lower than those reported in other papers.
However, these numbers are in general a much better estimate of the performance a user
will see in his application. We devote a brief section to this topic.

Next, we show timings for square matrix multiply on all systems. To demonstrate that
the performance shown in these timings translates to actual applications, we then give LU
timings for various systems. On platforms that support it, we show that these routines
respond well to threading.

Table 3 shows the con�gurations of the various platforms which we have installed and
timed the package on.

Appendix A has several tables providing further details. Table 12 shows the system
BLAS that were used for the timings. We should note that we did not have access to HP's
most optimal BLAS, and so had to compare against their vector library (which describes
itself as optimized for the 9000 series) instead. Tables 13 and 14 show the compiler version
and ags used in compiling the on-chip matrix multiply.

16

Abbr. Full Clock L1 Data L1 Instr L2 Cache
Name Name (MHz) Cache(KB) Cache (KB) (KB/MB)

AS255 DEC AlphaStation 255 300 16 16 1MB
AS600 DEC AlphaStation 600 5/266 266 8 8 96KB & 4MB

HP9K/735 HP 9000/735/125 125 256 256 NONE
HP9K/715 HP 9000/715/50 50 64 Unknown NONE

POWER2 IBM Power2 (thin node) 120 128 32 NONE
POWERPC IBM PowerPC 604 (high node) 112 16 16 1MB

P5 Pentium 166 8 8 256KB
P5MMX Pentium with MMX 150 16 16 256KB
PPRO Pentium Pro 200 8 8 512KB
PII266 Pentium II 266 16 16 512KB
PII300 Pentium II 300 16 16 512KB

R4600 SGI R4600 IP22 100 16 16 NONE
R5000 SGI R5000 IP32 180 32 32 512KB
R10Kip28 SGI R10000 IP28 195 32 32 1MB
R10Kip27 SGI R10000 IP27 195 32 32 4MB

MS70 Sun MicroSPARC II 70 70 8 16 NONE
US140 Sun Ultra1 Model 140 143 16 16 512KB
US2170 Sun Ultra2 Model 2170 167 16 16 512KB
US2200 Sun Ultra2 Model 2200 200 16 16 1MB

Table 3: System Summary

17

4.1 Results with varying timing methods

There are numerous ways to perform timings. Perhaps the most common method is to
generate the matrices A B and C, and then call the appropriate matmul routine. Depending
on the matrix and cache sizes, this can make a large di�erence in the timings. For medium-
sized matrices, a signi�cant portion of the matrices will remain in L2 cache from the matrix
generation, and thus the memory costs of main memory will not be as prevalent in the
timings. For very small matrices, a signi�cant portion of the matrices may remain in L1
cache, and thus the timings will be truly misleading.

Some timers will perform the same operation X times in a row, and report the best
timing obtained. This will result in even more optimistic numbers. Obviously, if all matrices
�t into some level of the cache, the timings will enjoy cache reuse just as above. However, if
only one matrix will �t into cache, there may still be signi�cant cache reuse. For instance,
if the o�-chip multiply has A in the inner loop, and A �ts entirely into some level of cache,
the performance reported will not reect the cost of bringing A into that level of cache.

Finally, many timers set LDA = M ; in other words, they make all of their matrices
contiguous memory. This rules out problems where an ill-chosen leading dimension causes
only part of the cache to be used, for instance. It also insures maximal cache reuse. Unfor-
tunately, in actual applications, it is rarely the case that DGEMM is called with the leading
dimension equal to the size of matrix (usually, DGEMM is called on submatrices of some
larger array).

In all of the timings presented in this paper, a section of memory corresponding to the
size of the L2 cache is written to and read from after the matrix generation, so that the
matrices must be fetched from main memory by the matmul. We set the leading dimension
to the maximal size being timed.

It is readily observed that the method we are using gives a lower bound on performance,
while the more commonly used method gives an upper bound. Why then do we not also
just report the upper bound? The reason is that this upper bound will be achieved only
in very particular applications (ones that repeatedly use the same memory space, without
corrupting the cache between invocations), where the problem size is small or the L2 cache
is very large. In short, most users will never see it, and these timings are therefore not
indicative of true performance.

Use of appropriate timings is much more important when one is basing software decisions
upon it, as our package does. In this case, timing the matmul where things are in cache
causes non-optimal code to be produced.

To give the reader a feeling for the kinds of di�erences the method of timing can cause,
we provide a few examples below. In these tables, method 1 is with LDA = 1000, and
cache ushing before and after the call. Method 2 is setting LDA = M , and running the
problem 5 times, and choosing the best result. Note that we use the system BLAS for these
timings, so that it is clear this is not speci�c to our implementation.

First, for the machines with large L2 caches, table 4 shows the standard sizes we time
in the rest of the paper. As one would expect, as the matrices get larger, caching e�ects
play less and less of a role.

Table 5 shows the same thing for smaller sizes, where the problem is more severe. The
Pentium II timings use ATLAS, since we did not have access to the vender BLAS un-

18

der Linux.

TIMING Matrix Order
SYSTEM METHOD 100 200 300 400 500 600 700 800 900 1000

AS600 1 227.7 264.4 278.0 282.0 288.8 291.8 291.3 290.3 286.0 291.7

AS600 2 341.5 309.3 323.6 302.2 304.9 291.0 296.4 291.5 286.2 295.1

R10Kip27 1 307.7 307.2 316.2 311.6 296.8 317.9 319.5 316.0 313.0 316.8
R10Kip27 2 317.2 331.5 325.6 317.1 320.3 319.8 324.8 318.6 320.0 318.8

Table 4: Cache ushing with large matrices

TIMING Matrix Order
SYSTEM METHOD 50 60 70 80 90 100

AS600 1 128.1 147.5 140.6 209.8 186.7 227.7
AS600 2 256.1 442.6 351.4 349.7 298.8 341.5

PII300 1 87.1 103.1 116.4 123.8 134.0 143.0
PII300 2 164.1 173.6 179.3 182.2 184.0 186.7

R10Kip28 1 151.4 176.0 205.5 223.0 232.8 224.7
R10Kip28 2 299.4 300.4 298.8 301.0 300.8 304.4

US2200 1 126.7 141.6 137.9 150.3 150.7 153.1
US2200 2 152.7 166.9 158.4 162.2 158.0 159.4

Table 5: Cache ushing with small matrices

19

4.2 Square matrix multiply

Table 6 shows the theoretical and observed peaks for matrix multiplication. By observed
peak, we mean the best repeatable timing produced on the platform, for any problem size.
Where the observed peak di�ers from the best timings reported in tables 7 and 8, the
di�erence is usually due to using a multiple of the blocking factor.

Abbr. Clock Theoretical DGEMM (MFLOPS) SGEMM (MFLOPS)
Name Rate (MHz) Peak VENDOR ATLAS VENDOR ATLAS

AS255 300 Unknown 141.5 175.5 199.6 232.9
AS600 266 532 299.7 282.0 381.8 328.6

HP9K/715 50 100 20.0 49.3 23.2 60.3
HP9K/735 125 250 59.3 119.6 61.5 146.9

POWER2 120 480 337.5 444.3 374.0 450.0
POWERPC 112 224 70.1 100.0 106.9 131.6

P5 166 166 { 75.5 { 91.9
P5MMX 150 150 { 74.5 { 87.3
PPRO 200 200 { 145.4 { 164.2
PII266 266 266 { 170.2 { 215.8
PII300 300 300 { 193.7 { 239.1

R4600 100 33.3 18.9 21.0 21.7 22.9
R5000 180 360 78.8 111.2 119.9 219.3
R10Kip28 195 390 238.7 258.3 307.8 304.4
R10Kip27 195 390 328.5 306.2 353.2 322.3

MS70 70 23.33 23.2 22.0 25.0 23.5
US140 143 286 109.8 164.5 130.3 193.0
US2170 167 334 131.6 188.1 151.9 227.6
US2200 200 400 157.6 221.7 186.1 297.8

Table 6: Theoretical and observed peak MFLOPS

Table 7 (8) shows the times for the vendor-supplied dgemm (sgemm) and ATLAS dgemm
(sgemm) across all platforms, with problems sizes ranging from 100 to 1000. In these tables,
the LIB column indicates which library the timings are for:

� SYS: system or vendor-supplied GEMM

� ATL: ATLAS GEMM

20

Matrix Order
SYSTEM LIB 100 200 300 400 500 600 700 800 900 1000

AS255 ATL 157.6 159.2 150.8 167.9 165.5 168.0 169.8 169.8 171.5 170.4
AS255 SYS 120.5 135.5 141.1 138.8 141.1 140.0 141.7 140.4 139.4 140.8
AS600 ATL 170.8 252.2 267.3 282.0 264.6 256.9 259.1 262.5 259.9 259.8
AS600 SYS 227.7 264.4 286.7 288.9 294.4 290.6 292.5 290.7 285.9 290.1

HP9K/735 ATL 100.0 114.3 114.9 112.3 116.8 115.5 116.7 117.8 119.6 119.3
HP9K/735 SYS 50.0 59.3 54.0 43.4 42.6 41.8 41.1 41.5 40.7 41.2
HP9K/715 ATL 40.0 44.4 47.0 46.7 47.6 49.3 47.8 48.7 48.9 48.7
HP9K/715 SYS 20.0 13.6 16.0 9.2 9.4 8.8 9.2 9.2 | |

POWER2 ATL | | 415.4 441.4 423.7 432.0 436.8 428.5 428.8 421.9
POWER2 SYS | | 337.5 304.8 320.5 289.9 300.9 295.1 313.5 294.1
POWERPC ATL 100.0 94.1 98.2 97.7 92.9 93.7 93.5 89.7 89.8 89.4
POWERPC SYS 66.7 66.7 70.1 69.6 70.0 67.7 67.7 68.3 68.1 66.9

P5 ATL 65.7 68.7 73.4 75.5 75.2 72.1 73.1 | | |
P5MMX ATL 66.0 68.7 70.7 72.6 73.4 74.0 74.2 74.5 | |
PPRO ATL 116.8 135.6 136.5 140.8 143.1 142.9 144.4 143.1 142.2 142.1
PII266 ATL 123.8 159.6 160.0 163.6 168.1 170.2 168.9 170.2 169.0 167.6
PII300 ATL 141.5 176.8 182.5 187.5 192.8 193.5 192.8 192.2 191.1 190.9

R4600 ATL 19.2 20.1 20.5 20.6 20.6 20.7 20.8 20.8 20.8 20.9
R4600 SYS 17.7 18.4 18.6 18.7 18.8 18.9 18.9 18.9 18.9 19.0
R5000 ATL 97.3 107.2 107.4 106.7 108.7 109.2 108.7 107.9 109.4 108.9
R5000 SYS 71.8 78.3 76.0 78.8 77.9 77.7 76.3 76.7 75.3 76.4
R10Kip28 ATL 203.8 253.6 256.6 243.9 238.6 242.9 242.2 247.0 246.6 247.7
R10Kip28 SYS 216.7 218.7 238.4 216.6 223.2 235.0 210.0 230.4 220.3 226.6
R10Kip27 ATL 232.8 274.5 292.3 293.4 306.2 304.4 303.6 298.5 296.7 296.7
R10Kip27 SYS 265.4 308.8 319.9 314.1 319.4 327.9 328.3 328.5 328.1 322.1

MS70 ATL 20.0 21.1 21.5 21.6 21.8 21.9 22.0 21.9 22.0 22.0
MS70 SYS 21.9 22.8 22.9 23.1 23.1 23.1 23.1 23.2 22.9 22.5
US140 ATL 128.6 157.2 159.7 160.7 162.5 164.1 161.7 159.8 162.8 161.7
US140 SYS 103.8 109.8 109.1 106.4 108.7 108.1 108.0 103.1 106.3 105.4
US2170 ATL 147.5 179.9 188.1 185.4 179.8 178.4 182.7 184.9 186.4 183.3
US2170 SYS 120.1 126.3 125.4 124.4 123.0 122.3 123.2 122.9 120.2 119.6
US2200 ATL 178.1 210.6 205.5 212.2 214.5 216.7 216.4 216.6 221.7 212.1
US2200 SYS 147.1 157.6 156.6 157.9 155.9 152.0 152.1 154.3 151.2 150.0

Table 7: System and ATLAS DGEMM comparison across platforms

21

Matrix Order
SYSTEM LIB 100 200 300 400 500 600 700 800 900 1000

AS255 ATL 170.8 221.5 228.6 229.7 222.2 226.9 225.4 227.1 226.4 228.8
AS255 SYS 186.3 192.9 194.8 193.7 197.6 197.2 197.0 197.9 196.1 198.7
AS600 ATL 227.7 298.1 304.0 316.8 316.2 318.4 312.2 315.4 312.1 318.6
AS600 SYS 292.7 348.8 352.4 359.3 373.9 371.3 377.5 379.5 372.8 379.4

HP9K/715 ATL 50.0 37.1 55.7 58.2 59.0 59.6 59.6 60.3 60.0 60.2
HP9K/715 SYS 14.3 23.2 18.6 10.7 11.7 11.5 11.2 10.5 10.3 10.1
HP9K/735 ATL | 145.5 142.1 143.8 144.5 145.9 143.2 146.9 145.7 146.4
HP9K/735 SYS 50.0 61.5 56.2 46.5 45.7 45.3 45.2 43.5 43.1 42.8

POWER2 ATL | | 450.0 412.9 431.0 419.4 420.9 424.9 430.1 426.5
POWER2 SYS | | 360.0 365.7 367.6 357.0 363.0 363.1 360.0 363.6
POWERPC ATL 101.2 124.0 130.2 131.0 131.6 131.6 131.4 129.7 129.4 131.0
POWERPC SYS 94.4 102.5 105.3 99.2 106.5 103.5 106.9 97.2 101.7 106.2

P5MMX ATL 77.1 80.9 83.2 84.7 85.7 86.4 86.3 86.6 86.5 85.9
PPRO ATL 137.8 154.7 157.3 159.4 159.8 161.2 160.5 161.7 163.0 162.5
PII266 ATL 153.8 200.1 209.0 210.6 213.8 212.8 214.3 215.4 214.9 215.8
PII300 ATL 167.0 215.1 227.8 231.1 234.4 230.6 237.0 237.6 237.0 238.1

R5000 ATL 176.7 207.8 215.8 215.9 209.0 215.5 213.0 215.8 212.4 214.2
R5000 SYS 105.3 114.9 119.3 115.7 116.6 118.1 116.3 116.7 118.1 117.1
R10Kip28 ATL 220.2 286.5 301.2 288.4 290.7 288.4 286.8 289.9 288.7 290.2
R10Kip28 SGI 269.9 285.5 300.5 279.0 298.3 302.2 300.9 298.9 300.3 300.7
R10Kip27 ATL 284.7 308.9 317.8 323.4 321.6 326.0 326.8 326.7 325.8 323.7
R10Kip27 SYS 321.5 339.4 345.4 347.8 340.4 343.7 340.7 348.5 349.3 349.2

MS70 ATL 21.4 22.9 23.0 23.3 23.3 23.5 23.5 23.6 23.6 23.6
MS70 SYS 23.8 24.6 24.8 25.0 24.9 25.0 24.9 25.0 24.9 25.0
US140 ATL 156.7 171.6 184.6 190.1 191.0 190.6 192.7 193.0 191.8 192.7
US140 SYS 126.1 128.6 132.0 130.1 130.9 130.0 130.7 131.0 128.9 128.8
US2170 ATL 189.3 218.3 227.6 224.3 223.3 223.6 223.2 226.9 225.9 226.2
US2170 SYS 139.6 150.5 151.9 150.6 150.8 150.2 149.7 148.2 147.8 147.7
US2200 ATL 233.2 273.8 280.4 278.4 280.9 285.1 282.7 283.9 287.6 285.1
US2200 SYS 171.9 182.5 187.2 187.7 185.4 183.4 182.7 180.9 178.2 178.8

Table 8: System and ATLAS SGEMM comparison across platforms

22

4.3 LU timings

In order to demonstrate that these routines provide good performance in practice, we timed
LAPACK's LU factorization linking to both the vendor supplied DGEMM, and the one
produced by ATLAS. The other BLAS used by LU were the fastest available, usually the
ones supplied by the vendor.

The blocking factor for the factorization to use was determined by timing all blocking
factors between 1 and 64, and choosing the one that performed best for the LU factorization
of a matrix of order 500. As with previous timings, caches were ushed before the start of
the algorithm.

Table 9 shows the LU performance on several platforms. The LIB column is overloaded
to convey both the DGEMM used (A for ATLAS, S for system), and the blocking factor
chosen (for instance, A(40) in this column indicates a run using ATLAS's DGEMM, using
a blocking factor of 40).

Matrix Order
SYSTEM LIB 100 200 300 400 500 600 700 800 900 1000

AS255 A(44) 49.2 70.0 85.0 94.9 98.6 102.4 105.0 108.2 110.0 111.0
AS255 S(32) 60.6 83.4 97.1 101.7 101.9 103.7 104.4 105.5 105.4 105.2
AS600 A(56) 89.4 126.7 145.9 157.5 167.7 175.0 181.1 178.1 182.0 180.8
AS600 S(32) 108.8 156.1 186.7 198.7 217.8 217.0 231.3 217.2 213.6 204.8

POWERPC A(20) 45.5 52.3 57.1 54.0 53.8 55.2 54.6 55.6 55.2 57.4
POWERPC S(22) 47.8 51.3 50.0 49.6 51.8 52.2 52.2 51.4 53.6 53.7
POWER2 A(60) 170.1 230.6 225.0 213.3 203.3 211.8 211.7 218.8 228.2 233.9
POWER2 S(31) 203.3 224.6 236.8 224.6 213.7 200.0 198.8 191.8 200.0 202.0

R10Kip28 A(64) 110.0 146.0 171.1 166.8 160.7 163.2 159.3 156.3 159.8 160.1
R10Kip28 S(56) 129.4 167.7 190.4 185.7 165.7 167.6 162.3 151.4 166.8 163.4
R10Kip27 A(40) 146.7 181.0 206.1 214.2 226.0 226.4 232.2 227.4 226.9 221.7
R10Kip27 S(38) 156.4 199.4 226.5 236.9 248.6 250.8 256.2 252.7 249.7 243.5

PII A(35) 65.3 92.1 102.5 105.1 109.1 112.7 116.4 119.2 122.1 124.3
US2200 A(36) 103.6 132.5 140.8 147.9 147.5 151.4 155.6 157.9 161.0 160.3
US2200 S(32) 107.4 126.6 133.3 134.2 127.2 130.9 133.6 132.5 132.8 125.7

Table 9: Double precision LU timings on various platforms

The reader may notice that the LU times are not in general as good as the GEMM
timings. The �rst reason is that we have made sure to include the platforms where either
the vendor was faster, or our win was marginal, so we can see any adverse e�ects in detail.
In the similar vein, it can be noted that the LU timings for the platform R10Kip28 are
worse for ATLAS than using the vendor DGEMM, even though ATLAS was faster for large
matrix multiplication. This is due to the fact that LU does not perform DGEMM on the
entire matrix, but rather uses a rank-K update. To get a matrix multiply of size equal
to the square matrix multiply of order 200 (the �rst case where ATLAS beat the vender
supplied BLAS), one must run a 625 size LU. Even then, subsequent DGEMM calls will be
on smaller matrices. This is why we see these discrepancies in DGEMM and LU timings.

In order to demonstrate that matrix size is the primary reason for this di�erence, we

23

show performance for very large LU factorizations on two select platforms in table 10

Matrix Order
SYSTEM LIB 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

POWER2 A(60) 239.2 246.7 252.1 256.6 261.6 261.6 270.2 276.1 276.3 278.5
POWER2 S(31) 204.5 205.9 212.2 208.4 215.1 215.0 213.7 217.3 217.2 221.2

R10Kip28 A(64) 161.2 161.1 162.8 163.2 163.9 162.4 165.9 163.5 167.0 166.9
R10Kip28 S(56) 165.0 161.7 161.7 159.9 164.4 142.9 155.8 157.8 155.7 147.9

Table 10: Asymptotic double precision LU performance

4.4 Threaded GEMM timings

Several of the platforms we have surveyed have multiple processors accessible through
threading. We have implemented a simple parallel matrix multiply using pthreads. Ta-
ble 11 shows the threaded timings for these platforms. Of these architectures, only SUN
provided a vendor-supplied threaded multiply, so we cannot report system numbers for
other platforms. Further, the POWERPC unrepeatably produced incorrect results; this
problem has not been tracked down further.

In the table, the column LIB has been overloaded to provide the number of processors
available. A(2) indicates ATLAS run on two processors; S(8) indicates the system or vendor
supplied DGEMM run on eight processors.

Matrix Order
SYSTEM LIB 100 200 300 400 500 600 700 800 900 1000

POWERPC A(8) 140.1 247.9 307.1 340.6 320.6 343.7 381.9 381.9 414.6 423.9

PPRO A(2) 147.2 190.3 210.4 231.8 240.1 239.3 239.6 245.4 246.8 210.9

PII300 A(2) 165.4 292.3 313.7 319.3 350.4 346.6 349.1 351.4 341.6 348.2

US2200 A(2) 235.4 412.2 421.0 413.6 435.3 404.1 431.5 434.1 415.9 445.4
US2200 S(2) 264.9 306.6 305.9 320.4 303.8 305.7 302.7 298.3 296.4 297.2

Table 11: Threaded DGEMM timings across various platforms

24

5 Comparison to Other Work

There are other e�orts to produce optimal codes through code generation. The closest
parallel to ATLAS is seen in the PHiPAC [3] e�ort. PHiPAC also deals with using a code
generator for BLAS work. Since PhiPAC predates ATLAS by several years, it is natural to
ask what the di�erences between the packages are, and perhaps why the ATLAS project
was begun.

ATLAS was started because we needed an optimized DGEMM for Pentium's running
Linux. The authors of PhiPAC reported disappointing performance for PHiPAC on the
Linux/Intel platform (this is no longer the case). When we examined the issue of creating
an e�cient DGEMM for this platform, it was readily apparent that it would require only a
little more e�ort to make the work portable.

If this answers the question of why ATLAS was begun in the �rst place, it does not tell
how it is di�erent from PHiPAC. The main di�erence is in the complexity of the approach.
ATLAS puts all system-speci�c code in one square on-chip multiply. It then uses the o�-
chip code to coerce all problems to this format. ATLAS further counts on a level 1 cache
being accessible by the oating point unit, in order to be able to make the simplifying step
of writing the on-chip multiply. This means we need generate/time only one routine for
each new platform. This has resulted in a code generator that �nishes in a relatively short
time (generally, 1-2 hours), even though the operations being timed are arti�cially inated
in order to ensure repeatability.

PHiPAC, on the other hand, chose the more comprehensive approach of directly op-
timizing each individual operation. This means di�erent code will be generated for each
transpose combination, for instance. This results in a lengthy installation process (usually,
a matter of days), as multiple cases for every routine must be generated and timed.

Neither of these approaches are \better" than the other. The approach used by PHiPAC
will probably yield better performance for very small problems (since they may avoid any
unnecessary data copies), or on machines with no L1 cache. The same methods of code
generation used in the level 3 BLAS should work pretty much unchanged for level 1 and 2.
However, the cost of this increased generality is seen in the longer installation time, and in
performance which may be more sensitive to various factors such as poorly chosen leading
dimensions (ATLAS is somewhat shielded from such factors by its data copy), etc.

The best way to determine which of these packages a user should use is to time them
with the speci�c application. If the user wishes to compare raw performance as reported
in the publications, it should be mentioned that the PHiPAC timing method is not the
same as used in this paper. Current PHiPAC timings as reported in [3] use timing method
2 discussed in section 4.1. This means that their performance numbers do not in general
include the costs of bringing operands into cache. Section 4.1 can give the reader an idea
of the e�ects of this.

6 Downloading ATLAS

The alpha release of ATLAS can be found at www.netlib.org/utk/projects/atlas. In-
stallation instructions are provided in the supplied README �le.

25

7 Future Work

Currently the code generator in ATLAS works only for matrix-multiplication, which is the
basic operation underlying other BLAS. We will extend this generator to other Level 1, 2
and 3 BLAS. For the other Level 3 BLAS, we will consider using the GEMM-based Level
3 BLAS [7], which implement all the other Level 3 BLAS (solving triangular systems for
many right hand sides, etc.) in terms of matrix-multiplication. The next most important
operation is matrix-vector multiplication. We will develop a version of ATLAS that can
produce a full set of BLAS, run it on a variety of architectures of interest, and make it
publicly available for others to perform their own optimizations on architectures, problem
shapes, sizes and alignments of their choice.

We are planning to study other architectures of interest, including development of cost
models, prototyping hand-written BLAS, and developing algorithmic generators appropriate
to these architectures. Future RISC processors with vector instructions will require loop
lengths that match the optimal vector lengths. SMPs will require load balancing while
avoiding \false sharing" of cache lines by di�erent processors. Di�erent ways of thread
management will also have to be considered.

We are planning to develop and re�ne algorithms that exploit sparse BLAS. Sparse
matrix-vector multiplication is a essential kernel in most iterative algorithms for large matrix
problems. Optimizing its performance requires a number of both architecture and matrix
dependent transformations [8]. We will study how to extend ATLAS to optimize sparse-
matrix vector multiplication, where the optimizations may depend on the sparsity structure.

8 Conclusions

We have demonstrated the ability to produce highly optimized matrix multiply for a wide
range of architectures based on a code generator that probes and searches the system for
an optimum set of parameters. This avoids the tedious task of generating by hand routines
optimized for a speci�c architecture. We believe these ideas can be expanded to cover not
only the Level 3 BLAS, but Level 2 BLAS as well. In addition there is scope for additional
operations beyond the BLAS, such as sparse matrix vector multiplication, and FFTs.

26

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide
(second edition). SIAM, Philadelphia, 1995. 324 pages.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-
PACK Users' Guide. SIAM, Philadelphia, 1997.

[3] J. Bilmes, K. Asanovi�c, C.W. Chin, and J. Demmel. Optimizing matrix multiply using
phipac: a portable, high-performance, ansi c coding methodology. In Proceedings of
the International Conference on Supercomputing, Vienna, Austria, July 1997. ACM
SIGARC.

[4] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A set of Level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1{17, March 1990.

[5] J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. An Extended Set
of FORTRAN Basic Linear Algebra Subroutines. ACM Trans. Math. Soft., 14(1):1{17,
March 1988.

[6] J. Dongarra, P. Mayes, and G. Radicati di Brozolo. The IBM RISC System 6000 and
linear algebra operations. Supercomputer, 8(4):15{30, 1991.

[7] B. K�agstr�om, P. Ling, and C. Van Loan. Portable High Performance GEMM-based Level
3 BLAS. In R. F. Sincovec et al., editor, Parallel Processing for Scienti�c Computing,
pages 339{346, Philadelphia, 1993. SIAM.

[8] S. Toledo. Improving instruction-level parallelism in sparse matrix-vector multiplication
using reordering, blocking, and prefetching. In Proceedings of the 8th SIAM Conference
on Parallel Processing for Scienti�c Computing. SIAM, 1997.

27

A BLAS and compiler details

This section exists to provide further details regarding the compilers and BLAS used in our
timings. Table 12 shows the system BLAS that were used for the timings. Tables 13 and
14 show the compiler version and ags used in compiling the on-chip matrix multiply.

System link version

AS255 -ldxml DXML V3.3a
AS600 -ldxml DXML V3.2

POWER2 -lesslp2 essl 2.2.2.2
POWERPC -lessl essl 2.2.2.2

HP9K/715 -lvec Revision 73.4
HP9K/735 -lvec Revision 73.14

R4600 -lblas Standard Execution Environment (Fortran 77, 4.0.2)
R5000 -lblas Standard Execution Environment (Fortran 77, 7.1)
R10Kip27 -lblas Standard Execution Environment (Fortran 77, 7.1)
R10Kip28 -lblas Standard Execution Environment (Fortran 77, 6.2)
MS70 -xlic lib=sunperf Sun Performance Library 1.2
US140 -xlic lib=sunperf Sun Performance Library 1.2
US2170 -xlic lib=sunperf Sun Performance Library 1.2
US2200 -xlic lib=sunperf Sun Performance Library 1.2

Table 12: BLAS library and version

28

System Compiler version

AS255 cc Digital UNIX Compiler Driver 3.11
DEC C V5.2-033 on Digital UNIX V4.0 (Rev. 564)

AS600 cc Digital UNIX Compiler Driver 3.11
DEC C V5.2-033 on Digital UNIX V4.0 (Rev. 564)

POWER2 xlC.C V3.1.4.0
POWERPC xlC.c V3.1.4.0

HP9K/715 HP92453-01 A.09.75 HP C Compiler (CXREF A.09.75)
HP9K/735

P5 gcc version 2.7.2.1
P5MMX gcc version 2.7.2.1
PPRO gcc version 2.7.2.2.f.2
PII266 gcc version 2.7.2.1.f.1
PII300 gcc version 2.7.2.1
R4600 Base Compiler Development Environment, 5.3
R5000 Base Compiler Development Environment, 7.0
R10Kip27 Compiler Development Environment, 7.1
R10Kip28 Base Compiler Development Environment, 7.0

MS70 cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2
US140 cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2
US2170 cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2
US2200 cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2

Table 13: Compiler and version

29

System Compiler & ags

AS255 cc -arch host -tune host -std -assume aligned_objects -O5

AS600 cc -arch host -tune host -std -assume aligned_objects -O5

POWER2 xlc -qarch=pwr2 -qtune=pwr2 -qmaxmem=-1 -qfloat=hssngl

-qansialias -qfold -O

POWERPC xlc -qarch=ppc -qtune=604 -qmaxmem=-1 -qfloat=hssngl

-qansialias -qfold -O

HP9K/735 -Aa +O2

HP9K/715 -Aa +O2

P5 gcc -fomit-frame-pointer -O

P5MMX gcc -fomit-frame-pointer -O

PPRO gcc -fomit-frame-pointer -O

PII266 gcc -fomit-frame-pointer -O

PII300 gcc -fomit-frame-pointer -O

R4600 cc -O2 -mips2 -Olimit 15000

R5000 cc -n32 -mips4 -r5000 -OPT:Olimit=15000 -TARG:platform=ip32_5k

-TARG:processor=r5000 -LOPT:alias=typed -LNO:blocking=OFF -O2

R10Kip27 cc -64 -mips4 -r10000 -OPT:Olimit=15000 -TARG:platform=ip27

-LOPT:alias=typed -LNO:blocking=OFF -O2

R10Kip28 cc -64 -mips4 -r10000 -OPT:Olimit=15000 -TARG:platform=ip28

-LOPT:alias=typed -LNO:blocking=OFF -O2

MS70 cc -xchip=micro2 -xarch=v8 -dalign -fsingle -fsimple=1 -xsafe=mem

US140 cc -dalign -fsingle -xtarget=ultra1/140 -xO5 -fsimple=1 -xsafe=mem

US2170 cc -dalign -fsingle -xtarget=ultra2/2170 -xO5 -fsimple=1 -xsafe=mem

US2200 cc -native -dalign -fsingle -xO5 -fsimple=1 -xsafe=mem

Table 14: Compiler ags

30

DGEMM SGEMM

System NB MU NU LAT NB MU NU LAT

AS255 44 4 2 0 56 8 1 0

AS600 28 4 2 3 40 4 2 4

POWER2 60 2 6 0 64 10 2 0

POWERPC 20 4 5 0 56 4 4 0

HP9K/715 60 2 2 3 56 2 2 0

HP9K/735 60 2 2 0 56 2 2 0

P5 24 4 1 3

P5MMX 36 2 2 3 56 4 1 3

PPRO 28 1 2 4 44 1 7 0

PII266 40 1 2 0 56 2 2 0

PII300 36 2 2 0 56 7 1 0

R4600 28 2 2 3 40 4 1 3

R5000 36 2 2 4 40 2 2 4

R10Kip27 40 2 2 6 40 2 2 6

R10Kip28 40 2 2 3 40 2 2 6

MS70 28 2 2 0 40 2 2 1

US140 36 2 3 6 40 3 2 6

US2170 36 2 3 5 40 2 3 5

US2200 36 2 3 6 60 2 3 6

Table 15: On-chip multiply details across systems

B On-chip multiply details

Table 15 below shows details of the loop unrollings a blocking factors for the on-chip multiply
on various systems. NB is the blocking factor, MU is the unrolling along the M loop, NU
the unrolling along the N loop, and LAT is the latency factor.

31

