
Automatically Verified Mechanized Proof of
One-Encryption Key Exchange

Bruno Blanchet
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Abstract—We present a mechanized proof of the password-
based protocol One-Encryption Key Exchange (OEKE) using
the computationally-sound protocol prover CryptoVerif. OEKE
is a non-trivial protocol, and thus mechanizing its proof
provides additional confidence that it is correct. This case
study was also an opportunity to implement several important
extensions of CryptoVerif, useful for proving many other
protocols. We have indeed extended CryptoVerif to support the
computational Diffie-Hellman assumption. We have also added
support for proofs that rely on Shoup’s lemma and additional
game transformations. In particular, it is now possible to insert
case distinctions manually and to merge cases that no longer
need to be distinguished. Eventually, some improvements have
been added on the computation of the probability bounds for
attacks, providing better reductions. In particular, we improve
over the standard computation of probabilities when Shoup’s
lemma is used, which allows us to improve the bound given
in a previous manual proof of OEKE, and to show that the
adversary can test at most one password per session of the
protocol. In this paper, we present these extensions, with their
application to the proof of OEKE. All steps of the proof, both
automatic and manually guided, are verified by CryptoVerif.

Keywords-Automatic proofs, Formal methods, Provable se-
curity, Protocols, Password-based authentication

I. INTRODUCTION

Since the beginning of public-key cryptography, more
and more complex security notions have been defined,
with protocols getting also more intricate. Initially, a long
time without attack was a good argument in favor of the
security of a scheme. But some schemes took a long time
before being broken. A famous example is the Chor-Rivest
cryptosystem [1], [2], which took more than 10 years to be
totally broken [3]. Nowadays, the lack of attacks is no longer
considered as a security validation, and provable security is
a requirement for any new proposal.

The basic idea of provable security consists in reducing a
well-known hard problem to an attack, in the complexity
theory framework. Such a reduction guarantees that an
efficient adversary against the cryptosystem could be con-
verted into an efficient algorithm against the hard problem.
First security proofs were essentially theoretical, providing
polynomial reductions only. But “exact security” [4] or
“concrete security” [5] asked for more efficient reductions.

Unfortunately, a security result should be considered with
care. As explained above, it consists of a theorem which
states that under a precise intractability assumption a spe-
cific security model (goals and means of the adversary) is
satisfied. The reduction constitutes the proof of the theorem.
Weaknesses can appear at several steps: the intractability
assumption can be too strong, or even wrong; the security
model might not correspond to the expected security level;
the reduction may not be tight; and the proof can be erro-
neous. Because of more and more complex security models
and proofs, most of them are never (double)-checked.

A famous example is the OAEP construction [6] that
has been proven to achieve chosen-ciphertext security. But
because of ambiguous security models in the early 90s, there
was no real difference between the so-called IND-CCA1 and
IND-CCA2 security levels. As a consequence, the proof was
believed to achieve the IND-CCA2 level, until Shoup [7]
exhibited a counter-example. Fortunately, a complete proof
for IND-CCA2 has quickly been provided [8]. A machine-
checked proof has later been provided [9].

As suggested by Halevi [10], computers could help
in verifying proofs. This paper follows this path, with
computationally-sound computer-aided proof and verifica-
tion of cryptographic protocols.

Related Work: Various methods have been proposed for
reaching Halevi’s goal. Following the seminal paper by
Abadi and Rogaway [11], many results show the soundness
of the Dolev-Yao model with respect to the computational
model, which makes it possible to use Dolev-Yao provers
in order to prove protocols in the computational model
(see, e.g., [12], [13], [14], [15], [16] and the survey [17]).
However, these results have limitations, in particular in
terms of allowed cryptographic primitives (they must satisfy
strong security properties so that they correspond to Dolev-
Yao style primitives), and they require some restrictions on
protocols (such as the absence of key cycles). A tool [18]
was developed based on [12] to obtain computational proofs
using the formal verifier AVISPA, for protocols that rely on
public-key encryption and signatures.

Several frameworks exist for formalizing proofs of pro-
tocols in the computational model. Backes, Pfitzmann ,and
Waidner [19], [20] designed an abstract cryptographic library



and showed its soundness with respect to computational
primitives, under arbitrary active attacks. This framework
has been used for a computationally-sound machine-checked
proof of the Needham-Schroeder-Lowe protocol [21], [22].
Canetti [23] introduced the notion of universal composabil-
ity. With Herzog [24], they show how a Dolev-Yao-style
symbolic analysis can be used to prove security properties
of protocols within the framework of universal compos-
ability, for a restricted class of protocols using public-
key encryption as only cryptographic primitive. Then, they
use the automatic Dolev-Yao verification tool ProVerif [25]
for verifying protocols in this framework. Process calculi
have been designed for representing cryptographic games,
such as the probabilistic polynomial-time calculus of [26]
and the cryptographic lambda-calculus of [27]. Logics have
also been designed for proving security protocols in the
computational model, such as the computational variant
of PCL (Protocol Composition Logic) [28], [29] and CIL
(Computational Indistinguishability Logic) [30]. Canetti et
al. [31] use the framework of time-bounded task-PIOAs
(Probabilistic Input/Output Automata) to prove security pro-
tocols in the computational model. This framework makes
it possible to combine probabilistic and non-deterministic
behaviors. These frameworks can be used to prove security
properties of protocols in the computational sense, but except
for [24] which relies on a Dolev-Yao prover, they have not
been automated up to now, as far as we know.

Several techniques have been used for directly mechaniz-
ing proofs in the computational model. Type systems [32],
[33], [34], [35] provide computational security guarantees.
For instance, [32] handles shared-key and public-key en-
cryption, with an unbounded number of sessions, by relying
on the Backes-Pfitzmann-Waidner library. A type inference
algorithm is given in [36]. In another line of research, a spe-
cialized Hoare logic was designed for proving asymmetric
encryption schemes in the random oracle model [37], [38].

The tool CertiCrypt [39], [40], [41], [42], [9] enables
the machine-checked construction and verification of cryp-
tographic proofs by sequences of games [43], [44]. It relies
on the general-purpose proof assistant Coq, which is widely
believed to be correct. EasyCrypt [45] generates CertiCrypt
proofs from proof sketches that formally represent the se-
quence of games and hints, which makes the tool easier to
use. Nowak et al. [46], [47], [48] follow a similar idea by
providing Coq proofs for several cryptographic primitives.

Independently, we have built the tool CryptoVerif [49]
to help cryptographers, not only for the verification, but
also by generating the proofs by sequences of games [43],
[44], automatically or with little user interaction. The games
are formalized in a probabilistic polynomial-time process
calculus. CryptoVerif provides a generic method for speci-
fying security properties of many cryptographic primitives. It
proves secrecy and authentication properties. It also provides
a bound on the probability of success of an attack. It has

already been used to prove several cryptographic protocols,
and also primitives [50]. This tool extends considerably
early work by Laud [51], [52] which was limited either to
passive adversaries or to a single session of the protocol.
More recently, Tšahhirov and Laud [53], [54] developed a
tool similar to CryptoVerif but that represents games by
dependency graphs. It handles public-key and shared-key
encryption and proves secrecy properties; it does not provide
bounds on the probability of success of an attack.

Contributions: In this paper, we use the tool CryptoVerif
in order to prove the password-based key exchange protocol
One-Encryption Key-Exchange (OEKE) [55], a variant of
Encrypted Key Exchange (EKE) [56]. This is a non-trivial
case study, since EKE was not proved correct before 2003,
10 years after its publication. This mechanized proof pro-
vides additional confidence that the protocol OEKE is se-
cure. More precisely, we have shown that OEKE guarantees
the secrecy of the session key and the authentication of the
client to the server. The proof combines manually-guided
and automatic steps, as detailed in Section IV. With the
manual proof indications included in the CryptoVerif input
file, the runtime of CryptoVerif version 1.14 for this proof
was 3 s on an Intel Core i5 2.67 GHz (4 cores).

This case study was also an opportunity for implementing
several extensions of CryptoVerif, useful for proving many
other protocols. Here are these extensions:
• CryptoVerif’s specification mechanism for assumptions

on primitives did not support the computational Diffie-
Hellman (CDH) assumption, needed for proving OEKE
and many important protocols. We have extended it
to support CDH (Section III-D). This extension also
allowed us to prove a signed Diffie-Hellman protocol,
in a fully automatic way.

• We have extended CryptoVerif to be able to apply
Shoup’s lemma [43], by introducing events and later
bounding their probability. We improve over the stan-
dard computation of probabilities, for applications of
Shoup’s lemma, by avoiding to count several times
probabilities that in fact correspond to the same runs.
This allows us to obtain better probability bounds
than [55] and to show that the adversary can test at most
one password per session of the client or the server,
which is the optimal result. This improvement applies
both to CryptoVerif proofs and to manual proofs, and
it is not specific to the OEKE protocol (Section IV-A).

• Additional game transformations were also needed for
manually introducing case distinctions or for merg-
ing cases. We have implemented these transformations
(Sections IV-A and IV-C).

• Password-based protocols require a careful computation
of the probability of an attack, since one aims to
compute how many passwords the adversary can test
by interacting with the protocol. We have improved
CryptoVerif in this respect (Section IV-D).



Outline: We recall the protocol OEKE in the next section.
Section III presents the CryptoVerif model of the protocol,
and Section IV presents its proof. We conclude in Section V.
The long version of the paper [57], the tool CryptoVerif,
and the input and output files can be found at http://www.
cryptoverif.ens.fr/OEKE/.

Notations: |S| denotes the cardinal of the set S. #O
denotes the number of calls to oracle O.

II. THE OEKE PROTOCOL

Password-authenticated key exchange protocols allow two
parties that share a low-entropy common secret (a password)
to agree on a common high-entropy secret key thereafter
used with symmetric primitives, such as symmetric encryp-
tion for privacy and message authentication codes for au-
thentication. The goal of such a protocol is to guarantee the
secrecy of the resulting common key between the two partic-
ipating players. Furthermore, the protocol should succeed if
and only if the two players actually share the same password,
which guarantees the identity of the partner to both of
them. Because of the low-entropy, an active adversary will
succeed in impersonating a party to the other one with non-
negligible probability by successive password guesses. Such
an on-line dictionary attack is unavoidable. However, one
should guarantee that this is the best attack: one active attack
allows the adversary to test and thus eliminate at most one
password, and not more. Namely, passive attacks should not
(computationally) leak any information about the password.
One definitely wants to prevent off-line dictionary attacks,
where after a few active attacks and possibly many passive
ones the collected information is enough to eliminate many
passwords, and thus accelerate impersonation from the on-
line dictionary attack.

The first password-authenticated key exchange protocol
has been proposed by Bellovin and Merritt [56], the En-
crypted Key Exchange (EKE). This is basically a Diffie-
Hellman key exchange where the two flows are encrypted
with a symmetric encryption scheme, using the password as
secret key. Several variants have thereafter been proposed,
such as AuthA [58]. The One-Encryption Key Exchange
protocol (OEKE) studied in [55] is the particular variant
where the second flow only is encrypted under the password,
and the first player proves his knowledge of the password
with an additional key confirmation flow. Figure 1 provides
a description of this OEKE protocol, which guarantees client
authentication and key secrecy, under the assumptions that
H0 andH1 are random oracles, that E and D are respectively
the encryption and decryption of an ideal cipher, and that
G is a finite group of prime order q, with generator g, in
which the computational Diffie-Hellman problem is hard
(see the definition in Section III-D), as proven in [55].
If the password pw is chosen among a finite dictionary
passwd of size N equipped with the uniform distribution,
their proof shows that the probability for any adversary,

Client U Server S
pw pw

accept← false accept← false
terminate← false terminate← false

x
R← [1, q − 1] y

R← [1, q − 1]

X ← gx
U,X−−−−−→ Y ← gy

Y ← Dpw (Y
?)

S, Y ?←−−−−− Y ? ← Epw (Y )

KU ← Y x KS ← Xy

MU ← U‖S‖X‖Y ‖KU

Auth← H1(MU )
skU ← H0(MU )

accept← true
Auth−−−−−→ MS ← U‖S‖X‖Y ‖KS

Auth ?
= H1(MS)

if true, accept← true
skS ← H0(MS)

terminate← true terminate← true

Figure 1. An execution of OEKE, run by client U and server S. The
session key is sk = H0(U‖S‖X‖Y ‖Y x) = H0(U‖S‖X‖Y ‖Xy).

within time t, and with less than NU sessions with a
client, NS sessions with a server (active attacks) and NP
passive eavesdroppings (passive attacks), and, asking qh
hash-queries and qe encryption/decryption queries, to make
a server instance accept with no terminating client partner
is bounded by

NU + 2NS
N

+ 3qh × SucccdhG (t′) + pcoll

with pcoll =
(2qe + 2NU + 3NS + 3NP )

2

2(q − 1)
+
q2h + 4Ns
2`1+1

where `1 is the length of the output ofH1 and t′ ≤ t+(NU+
Ns+NP +qe+1) ·τexp, with τexp denoting the computation
time for an exponentiation in G.1 Furthermore, SucccdhG (t)
denotes the maximal success probability an adversary can
gain within time t against the computational Diffie-Hellman
problem in G. Similarly, no adversary can distinguish the
session key from a random key with advantage greater than

2NU + 4NS
N

+ 8qh × SucccdhG (t′) + 2pcoll .

The proofs basically show that the unique way for the ad-
versary to gain something (against both client authentication
and secrecy of the session key) is to correctly guess the
password, by either sending a Y ? that is really an encryption
under the correct password, or using the correct password to

1In [55], they use as parameter the number qs of interactions with the
parties, instead of the numbers of sessions NU and NS . It is straightforward
to recompute the probabilities to use NS and NU instead, and this yields
a more precise evaluation.



decrypt Y ? and compute the authenticator Auth. One could
hope to prove that the former event, denoted Encrypt, is
bounded by NU /N and the latter event, denoted Auth, is
bounded by NS/N . But, because of the way probabilities
are computed when one uses Shoup’s lemma [43], some
factor appears to the (NU +NS )/N main term.

III. MODELING OEKE IN CRYPTOVERIF

In this section, we present the model of the protocol given
as input to CryptoVerif. We first recall some basic ideas
behind CryptoVerif, and then present the model itself: the
security assumptions on the primitives, the model of the
protocol, and the security properties that we want to prove.
The complete CryptoVerif model, and the reusable library
that provides the definitions of cryptographic primitives, can
be found at http://www.cryptoverif.ens.fr/OEKE/.

A. Review of CryptoVerif

CryptoVerif builds proofs by sequences of games [43],
[44]. It starts from the initial game given as input, which
represents the protocol to prove in interaction with an
adversary. Then, it transforms this game step by step using a
set of predefined game transformations, such that each game
is indistinguishable from the previous one.

More formally, a game G interacts with an adversary
represented by a context C, and we denote by C[G] the
combination of C and G. During execution, C[G] may
execute events, collected in a sequence E , and finally returns
a result a, either a bitstring or the special value abort when
the game has been aborted. These events and result can be
used to distinguish games, so we introduce an additional
algorithm, a distinguisher D that takes as input the sequence
of events E and the result a, and returns true or false. An
example of distinguisher is De defined by De(E , a) = true
if and only if e ∈ E : this distinguisher detects the execution
of event e. We will denote the distinguisher De simply by e.
More generally, distinguishers can detect various properties
of the sequence of events E executed by the game and of
its result a. We denote by D ∨ D′, D ∧ D′, and ¬D the
distinguishers such that (D∨D′)(E , a) = D(E , a)∨D′(E , a),
(D ∧ D′)(E , a) = D(E , a) ∧ D′(E , a), and (¬D)(E , a) =
¬D(E , a), where ∨ is the logical disjunction, ∧ the logical
conjunction, and ¬ the logical negation. We denote by
Pr[C[G] : D] the probability that C[G] executes a sequence
of events E and returns a result a, such that D(E , a) = true.

A context C is acceptable for G with public variables V
when it can read directly the variables of G that are in V ,
and it makes no other access to variables of G. We define
indistinguishability as an equivalence G ≈Vp G′:

Definition 1 (Indistinguishability) We write G ≈Vp G′

when, for all contexts C acceptable for G and G′ with public
variables V and all distinguishers D that run in time at most
tD, |Pr[C[G] : D]− Pr[C[G′] : D]| ≤ p(C, tD).

This definition formalizes that the probability that algorithms
C and D distinguish the games G and G′ is at most
p(C, tD). The probability p typically depends on the runtime
of C and D, but may also depend on other parameters, such
as the number of queries to each oracle made by C. That
is why p takes as arguments the whole algorithm C and
the runtime of D. When V is empty, we write G ≈p G′.
Therefore, we obtain a sequence of indistinguishable games
G0 ≈Vp1 G1 ≈Vp2 G2 . . . Gn−1 ≈Vpn Gn, which implies
G0 ≈Vp1+...+pn Gn. In the last game Gn, the desired security
property is proved by direct inspection of the game, without
using any computational assumption. For example, to bound
the probability that an event e is executed, event e does
not occur at all in the last game, so Pr[C[Gn] : e] = 0,
hence the probability of executing e in the initial game is
Pr[C[G0] : e] ≤ (p1 + · · ·+ pn)(C, e).

The game transformations used by CryptoVerif can be
split into two categories:
• syntactic transformations, which are used by Cryp-

toVerif to simplify games and to prepare cryptographic
transformations. These transformations do not rely on
any security assumption on primitives.

• cryptographic transformations, which rely on a security
assumption on a primitive. These security assumptions
are themselves formalized as indistinguishability prop-
erties L ≈p R, which are given as input to CryptoVerif
and need to be proved manually. They are proved
once for each primitive and can then be reused in
many protocols. We present such equivalences for the
primitives used in OEKE below.
CryptoVerif uses these equivalences to perform proofs
by reduction automatically. It detects that a game G can
be written as a context C that calls the oracles of L,
that is, G ≈V0 C[L] by purely syntactic transformations,
and builds a game G′ such that C[R] ≈V0 G′ by purely
syntactic transformations. C is the simulator usually
defined for reductions. From L ≈p R, we can infer that
C[L] ≈Vp′ C[R] where V is a subset of the variables of
C and p′(C ′, tD) = p(C ′[C[ ]], tD). Indeed, if C ′ is
the adversary against C[L] ≈Vp′ C[R], the adversary
against L ≈p R is C ′[C[ ]]. Therefore, G ≈Vp′ G′ and
CryptoVerif can transform G into G′.

B. The Random Oracle Model

The random oracle model was introduced in [59] to
model hash functions. It was encoded in CryptoVerif
in [50]. We improve this model by using the equivalence
L1 ≈#Oeq/|hashoutput| R1 where L1 and R1 are defined in
Figure 2. This model is not specific to OEKE. The hash
function hash takes as input a key of type key and the
bitstring to hash of type hashinput and returns a result of
type hashoutput . The key models the choice of the hash
function. The key must be chosen once and for all at the
beginning of the game for each hash function, and the game



L1 = foreach ih ≤ nh do k R← key ;
(foreach i ≤ n do
OH(x : hashinput) := return(hash(k, x)) |

foreach ieq ≤ neq do
Oeq(x′ : hashinput , r′ : hashoutput) :=

return(r′ = hash(k, x′)))

R1 = foreach ih ≤ nh do
(foreach i ≤ n do OH(x : hashinput) :=

find[unique] u ≤ n suchthat
defined(x[u], r[u]) ∧ x = x[u]

then return(r[u])
else r R← hashoutput ; return(r) |

foreach ieq ≤ neq do
Oeq(x′ : hashinput , r′ : hashoutput) :=

find[unique] u ≤ n suchthat
defined(x[u], r[u]) ∧ x′ = x[u]

then return(r′ = r[u])
else return(false))

Figure 2. Random oracle model

must include a hash oracle, which allows the adversary to
compute hashes. For each hash function indexed by ih ≤ nh ,
the games L1 and R1 define two oracles, OH and Oeq:
• In L1, OH(x) returns the image of x by hash(k, ·).

This oracle can be called at most n times for each
hash function, and its calls are indexed by i ∈ [1,n], as
defined by foreach i ≤ n do. We can replace this oracle
with a random oracle, that is, an oracle that returns
a fresh random number when it is called with a new
argument, and the previously returned result when it
is called with the same argument as in a previous call.
Such a random oracle is implemented in R1 as follows.
Like all variables defined under foreach i ≤ n , x is in
fact an array indexed by i , so that x[u] represents the
value of x in the u-th call to OH. The find construct
looks for an index u such that x[u] and r[u] are defined,
and x = x[u], that is, the current argument of OH is the
same as the argument in the u-th call, and if we find
one, then we return the result of the u-th call, r[u].
Otherwise, we return a fresh random number r.

• The oracle Oeq aims to optimize the treatment of
comparisons with the result of the hash function, an
operation that appears frequently. In L1, the oracle
Oeq(x′, r′) compares r′ with hash(k, x′). In R1, this
comparison is replaced with a lookup in previous
calls to the hash function. If x′ was already given
as argument to hash(k, ·), in the u-th call (x′ =
x[u]), then hash(k, x′) is r[u], so we compare r′ with
r[u]. Otherwise, x′ was never given as argument to
hash(k, ·), so hash(k, x′) is a fresh random number,
and it is equal to r′ with probability 1/|hashoutput |.

We eliminate this case in R1, so the result of the
comparison r′ = hash(k, x′) is replaced with false
and the probability of distinguishing L1 from R1 is
at most #Oeq/|hashoutput |, where #Oeq denotes the
total number of calls to Oeq.

We can notice that there exists at most one u that can satisfy
the condition of find in OH in R1. Indeed, suppose that
u1 6= u2 are such that x[u1], r[u1], x[u2], r[u2] are defined
and x = x[u1] = x[u2]. Suppose that the query OH with
i = u1 is called before OH with i = u2. (The other case
is symmetric.) Thus, when executing the query OH with
i = u2, x[u1] and r[u1] are defined and x[u2] = x[u1],
so the find succeeds with u = u1, so r[u2] will not be
defined (since r is defined only in the else branch of the
find). Contradiction. Therefore, u is unique. Following a
similar reasoning, u is also unique in Oeq in R1. That is
why the finds in R1 are marked [unique]. Formally, the
modifier [unique] means that, in case several choices satisfy
the condition of find, an event NonUnique occurs and the
game is aborted. As we have shown, the event NonUnique
never occurs in R1, so the modifier [unique] does not alter
the equivalence L1 ≈#Oeq/|hashoutput| R1. The modifier
[unique] allows additional transformations of find, which
are correct only when there never exist several choices that
make the condition of the find succeed.

The novelties with respect to [50] are the use of keyed
hash functions, the oracle Oeq, and the modifier [unique].
We believe that using keyed hash functions leads to a better
modeling of random oracles, for several reasons:

• In the random oracle model, the adversary cannot
evaluate the hash function by himself, without calling
the random oracle. With the key, this is natural, since
the adversary does not have the key, whereas in the
absence of key, this is counterintuitive: the adversary
should be able to reproduce the algorithm of h.

• In the absence of key, the transformation of L1 into R1

above replaces a deterministic function h with a prob-
abilistic one, since the results are chosen randomly in
the right-hand side. The key removes this discrepancy:
with the key, the hash oracle is also probabilistic in the
left-hand side thanks to the choice of the key.

• The transformation of L1 into R1 above is correct only
when it is applied to all occurrences of h simultane-
ously. In the absence of key, this has to be enforced by
an additional constraint on the transformation. With the
key, this is naturally enforced, since all occurrences of
the key need to be encoded as calls to the oracles of
L1 for the transformation to be performed.

• Finally, keyed hash functions are used in the mod-
eling of other assumptions on hash functions, such
as collision resistance. By always using keyed hash
functions, we can easily change the assumption on the
hash function without changing its interface.



L2 = foreach ick ≤ nck do ck
R← cipherkey ;

(foreach ie ≤ ne do Oenc(me : blocksize, ke : key) := return(enc(ck ,me, ke)) |
foreach id ≤ nd do Odec(md : blocksize, kd : key) := return(dec(ck ,md , kd)))

R2 = foreach ick ≤ nck do
(foreach ie ≤ ne do Oenc(me : blocksize, ke : key) :=

find[unique] j ≤ ne suchthat defined(me[j], ke[j], re[j]) ∧me = me[j] ∧ ke = ke[j] then return(re[j])
⊕ k ≤ ne suchthat defined(rd [k],md [k], kd [k]) ∧me = rd [k] ∧ ke = kd [k] then return(md [k])

else re
R← blocksize; return(re) |

foreach id ≤ nd do Odec(md : blocksize, kd : key) :=
find[unique] j ≤ ne suchthat defined(me[j], ke[j], re[j]) ∧md = re[j] ∧ kd = ke[j] then return(me[j])
⊕ k ≤ nd suchthat defined(rd [k],md [k], kd [k]) ∧md = md [k] ∧ kd = kd [k] then return(rd [k])
else rd

R← blocksize; return(rd))

Figure 3. Ideal cipher model

Designing CryptoVerif specifications of primitives requires
some expertise. That is why the specifications for most
common cryptographic primitives are grouped in a reusable
library. Therefore, CryptoVerif users generally do not have
to design such specifications.

C. The Ideal Cipher Model
The ideal cipher model [60] models block ciphers by

saying that encryption and decryption are two random
permutations, inverse of each other. This can be encoded
in CryptoVerif similarly to the random oracle model: we
replace encryption and decryption with lookups in previous
encryption/decryption queries; if a previous query matches,
we return the previous result; otherwise, we return a fresh
random number. This is modeled by the equivalence L2 ≈p2
R2 where L2 and R2 are defined in Figure 3 and p2 =
(#Oenc+#Odec)(#Oenc+#Odec− 1)/|blocksize|. The
encryption and decryption functions map bitstrings of type
blocksize to bitstrings of type blocksize; they take two keys
as additional arguments: the standard encryption/decryption
key of type key , but also a key of type cipherkey that models
the choice of the scheme itself (like the key of the hash
function in Section III-B). The games L2 and R2 define
two oracles Oenc and Odec, respectively the encryption
and decryption oracles. In L2, they call the encryption and
decryption functions. In R2, they are replaced with lookups
in previous encryption/decryption queries. For instance, for
oracle Oenc, we look for a previous encryption query of
the same cleartext (me = me[j]) under the same key
(ke = ke[j]) and, if we find one, we return the same
ciphertext re[j]. We also look for a previous decryption
query that has returned as cleartext the cleartext to encrypt
(me = rd [k]) using the same key (ke = kd[k]) and, if
we find one, we return the corresponding ciphertext md [k].
Otherwise, we return a fresh random ciphertext re. This
definition does not yield random permutations, because the
random choices of re and rd may collide with each other

and with previous values of me and md . Let us consider
a game R′2 obtained from R2 by excluding such collisions.
By adapting the reasoning used for the random oracle model
in Section III-B, we can show that, in R′2, there never exist
several choices of j/k that satisfy the conditions of the finds
in Oenc and Odec, so these finds can be marked [unique]
without modifying their behavior. The game L2 is perfectly
indistinguishable from R′2, and R′2 can be distinguished
from R2 with probability at most p2 (the probability of the
collisions excluded in R′2), so the adversary can distinguish
L2 from R2 with probability at most p2.

D. The Computational Diffie-Hellman Assumption

A classical intractability assumption in asymmetric cryp-
tography is the hardness of the Diffie-Hellman problem: let
us be given a group G of prime order q, with a generator
g, and two random elements A = ga and B = gb

with a, b ∈ [1, q − 1], compute CDHg(A,B) = gab. The
Computational Diffie-Hellman (CDH) assumption claims
that for any polynomial-time adversary A, SucccdhG (A) =
Pr[A(G, g, A,B) = CDHg(A,B)] is negligible. More gen-
erally, we note SucccdhG (t) the maximal success probability
for any adversary A within time t.

This assumption can be written in CryptoVerif as follows:

foreach i ≤ n do a R← Z; b
R← Z;

(OA() := exp(g, a) | OB() := exp(g, b) |
foreach i′ ≤ n′ do ODDH(z : G) :=
z = exp(g,mult(a, b)))

≈#ODDH×SucccdhG (t+(n+#ODDH)τexp)

foreach i ≤ n do a R← Z; b
R← Z;

(OA() := exp(g, a) | OB() := exp(g, b) |
foreach i′ ≤ n′ do ODDH(z : G) := false)

The type Z represents [1, q− 1], that is, the group Z∗q ; mult
is the product in that group; G represents the group G
without its neutral element; and exp is the exponentiation



L3 = foreach ia ≤ na do a R← Z ; (
OA() := return(exp(g, a)) |
Oa() := return(a) |
foreach iaDDH ≤ naDDH do
ODDHa(m : G , j ≤ nb) :=

return(m = exp(g,mult(b[j], a)))) |
foreach ib ≤ nb do b R← Z ; (
OB() := return(exp(g, b)) |
Ob() := return(b) |
foreach ibDDH ≤ nbDDH do
ODDHb(m : G , j ≤ na) :=

return(m = exp(g,mult(a[j], b))))

R3 = foreach ia ≤ na do a R← Z ; (
OA() := return(exp(g, a)) |
Oa() := let ka : bitstring = mark in return(a) |
foreach iaDDH ≤ naDDH do
ODDHa(m : G , j ≤ nb) :=

find u ≤ nb suchthat defined(kb[u], b[u])
∧ b[j] = b[u] then

return(m = exp(g,mult(b[j], a)))
else if defined(ka) then

return(m = exp(g,mult(b[j], a)))
else return(false)) |

foreach ib ≤ nb do b R← Z ; (
OB() := return(exp(g, b)) |
Ob() := let kb : bitstring = mark in return(b) |
foreach ibDDH ≤ nbDDH do
ODDHb(m : G , j ≤ na) :=

(symmetric of ODDHa)

Figure 4. Computational Diffie-Hellman assumption

G × Z → G . These two games define three oracles: OA
and OB return the exponentials ga and gb respectively, and
the oracle ODDH checks whether its argument z is equal
to gab in the left-hand side while it always returns false in
the right-hand side. The adversary can distinguish these two
games if and only if it can provide a z such that z = gab, that
is, it breaks the CDH assumption. However, in CryptoVerif,
this model requires that a and b be chosen one after the
other under the same foreach: while this is true in some
cryptographic schemes such as ElGamal, this is not true for
most protocols: as in OEKE, a and b are chosen by different
protocol participants that can each execute several sessions.

Therefore, we need a more general model, which is given
by the indistinguishability between the two games presented
in Figure 4. In these two games, one generates na exponents
a, nb exponents b and the adversary (any context) has access
to various oracles: OA and OB that return the group elements
associated to a, resp. b; Oa and Ob that return the exponents
a and b themselves; and Diffie-Hellman decisions oracles

ODDHa and ODDHb that check whether the adversary
correctly solved a Diffie-Hellman problem with the above
generated elements. Basically, the difference between the
two games is in the answers of the decision oracles: in
the first game they answer correctly, while in the second
game, they answer false if the adversary did not ask for
any of the two exponents. Unless the adversary can break
the Diffie-Hellman problem, and then ask correct Diffie-
Hellman decision queries, the two executions are perfectly
indistinguishable. In more detail, in R3, the variable ka
is defined if and only if the oracle Oa has been called
and thus the exponent a has been asked by the adversary.
All variables and oracles defined under foreach ia ≤ na
are implicitly indexed by ia , so that ka[ia] is defined if
and only if a[ia] has been asked by the adversary. The
variable kb plays the same role for b. The oracle ODDHa
computes the equality test m = ga[ia]b[j] when b[j] has
been asked by the adversary, i.e., kb[j] is defined, or a[ia]
has been asked by the adversary, i.e. ka[ia] (abbreviated
ka) is defined. Otherwise, it returns false. The condition
“kb[j] is defined” is encoded as “kb[u] is defined for some
u such that b[u] = b[j]” (defined(kb[u], b[u]) ∧ b[j] = b[u]),
because CryptoVerif allows to reference a variable x[ũ] in
defined conditions in the right-hand side of an equivalence
only when its indices ũ are a prefix of the indices looked
up by find, so a reference to kb[j] would not be allowed.
We can refer to b[j] without including it in a defined
condition because it also occurs in the left-hand side of the
equivalence, so CryptoVerif knows that it must be defined.
That is why the condition defined(kb[u], b[u]) ∧ b[j] = b[u]
is accepted by CryptoVerif.

In [57, Appendix B-A], we formally prove that L3 ≈p3
R3, that is, no adversary can distinguish the two games L3

and R3, within time t, with advantage greater than

p3 = (#ODDHa+#ODDHb)

×max(1, 7.4#Oa)×max(1, 7.4#Ob)

× SucccdhG (t+ (na + nb +#ODDHa+#ODDHb)τexp).

The proof technique consists in guessing the two elements a
and b that will be involved in the critical decisional Diffie-
Hellman query (but with Coron’s improvement [61]), and
then to guess the critical query, hence the factor #ODDHa+
#ODDHb.

For this equivalence to be supported by CryptoVerif, we
had to implement two extensions:
• Oracles ODDHa and ODDHb take as argument an array

index j, which was not supported.
• In typical usages of the CDH assumption in proto-

cols, gab is often an argument of a hash function
in the random oracle model. The transformation that
comes from the random oracle model, presented in
Section III-B, transforms hash(. . . gab . . .) into lookups
that compare gab with previous arguments of hash.



These comparisons m = gab, which occur in conditions
of find, are themselves transformed into find using the
CDH assumption. We therefore end up with a find
inside the condition of a find, which was not supported.

In addition to the modeling of the CDH assumption itself,
our model of Diffie-Hellman key agreements includes further
properties, such as commutativity and injectivity of several
functions. They are formally defined in [57, Appendix B-
B]. We stress that our above modeling is not specific to
the OEKE protocol. We have also used it to prove a signed
Diffie-Hellman key exchange, and we believe that it can be
used for proving many other protocols.

E. The Protocol Itself

If we consider a general configuration with several clients
and servers, each client-server pair shares a different pass-
word, and there is no other secret shared initially. Therefore,
different client-server pairs have no common secret, so we
can encode a single client U and a single server S that wish
to talk to each other; the other clients and servers, which
may be corrupted, and the interactions of U and S with
other clients and servers are included in the adversary. This
model supports static corruptions; dynamic corruptions and
forward secrecy properties are left for future work.

The protocol model first chooses random keys hk0 and
hk1 to model the choice of the hash functions h0 (i.e. H0)
and h1 (i.e. H1) respectively and a key ck to model the
choice of the ideal cipher scheme. It also randomly chooses
a password pw in the type passwd . Then, it makes available
hash oracles for h0 and h1, encryption and decryption
oracles, as well as oracles that represent the client and the
server. As an example, we detail the code for the client:

foreach iU ≤ NU do
OC1() := x

R← Z ;X ← exp(g, x); return(U, X);
OC2(= S,Ystar u : G) := Y u ← dec(ck ,Ystar u, pw);
K u ← exp(Y u, x);
auth u ← h1(hk1 , concat(U,S, X,Y u,K u));
sk u : hash0 ← h0(hk0 , concat(U,S, X,Y u,K u));
return(auth u)

This code models NU sessions of the client, indexed by
iU . Each session defines two oracles OC1 and OC2. OC1
takes no argument and returns the first message of the
protocol U, X computed as specified in Figure 1. OC2
takes as argument the second message of the protocol
S,Ystar u received by the client and returns the third
one auth u . It also computes the shared key sk u . In
this code, concat(U,S, X,Y u,K u) is the concatenation
U‖S‖X‖Y u‖K u . These oracles are implicitly indexed by
iU , so that they can be written OC1[iU ], OC2[iU ]. (This
index is omitted in CryptoVerif code for readability.) The
adversary can call the oracles with any index it likes in the
order it likes, except that, obviously, OC2[iU ] can be called

only if OC1[iU ] has been called before with the same iU .
This gives the adversary full control over the network.

We represent NS sessions of the server in a similar way.
The NU sessions of the client and the NS sessions of
the server model active attacks. Additionally, we represent
NP sessions of the protocol in which the adversary just
eavesdrops messages without altering them. In order to
represent such sessions, we simply compute and output their
transcript. They model passive attacks. Since we are con-
sidering dictionary attacks against a password-authenticated
key exchange protocol, it is important to distinguish passive
sessions/attacks from active ones against the honest players.

F. Security Properties
Our goal is to prove that OEKE is a secure key exchange

that provides unilateral (explicit) authentication. (OEKE
guarantees client authentication but not server authentica-
tion.) To do that, we follow the ideas of [62, Section 7.2]:
instead of proving semantic security of the key and au-
thentication, we prove secrecy of the key on the client
side and a slightly stronger authentication property. This
technique avoids the burden of considering partnering when
proving secrecy of the key and still implies authenticated
key exchange [62, Proposition 4]: intuitively, authentication
guarantees that a key of the server is also a key of a client.
Authentication is modeled by correspondence properties [63]
of the form “if some event occurs, then some other event oc-
curred”. There are still two differences with respect to [62]:
• [62] considers mutual authentication, while we consider

unilateral authentication, so we remove the correspon-
dence that guaranteed authentication of the server.

• In [62], each protocol participant may interact with hon-
est participants (U and S here) but also with dishonest
participants, and in the latter situation, the exchanged
key is published when the participant accepts. As
mentioned in Section III-E, in OEKE, we need not code
explicitly for U and S interacting with other clients and
servers, so the output of the exchanged key disappears.

Taking into account these points, we add events to record
that the participants accept or terminate:
• event acceptU(U,X ,S,Ystar u, auth u, sk u) when

the client accepts (line “accept ← true” of the client
in Figure 1, that is, before the last line in the code of
Section III-E).

• event termS(U,X s,S,Ystar , auth s, sk s) when
the server terminates (line “terminate ← true” of the
server in Figure 1).

and we prove that the resulting process preserves the secrecy
of sk u and satisfies the correspondences

inj-event(termS(U,X, S,Ystar , a, k))⇒
inj-event(acceptU(U,X, S,Ystar , a, k))

(1)

event(termS(U,X, S,Ystar , a, k)) ∧
event(acceptU(U,X, S,Ystar , a, k′))⇒ k = k′

(2)



with public variables {sk u}. A variant of [62, Proposi-
tion 4] allows us to conclude one-way authenticated key
exchange. Next, we define secrecy and correspondences.

Intuitively, the secrecy of sk u means that the keys
sk u of all sessions of the client are indistinguishable from
independent random keys. Formally, secrecy is defined as
follows:

Definition 2 (Secrecy) Assume that the variable x of type
T is defined in G under a single foreach i ≤ n. The game G
preserves the secrecy of x up to probability p when, for all
contexts C acceptable for G | Rx without public variables
that do not contain S and S, Pr[C[G | Rx] : S]− Pr[C[G |
Rx] : S] ≤ p(C) where

Rx = O0() := b
R← bool; return;

(foreach i′ ≤ n′ do O(u : [1, n]) :=
if defined(x[u]) then

if b then return(x[u]) else
find u′ ≤ n′ suchthat defined(y[u′], u[u′]) ∧
u[u′] = u then return(y[u′]) else

y
R← T ; return(y)

| O′(b′ : bool) := if b = b′ then event S; abort
else event S; abort)

O0, O,O
′, b, b′, u, u′, y, S, and S do not occur in G.

We define the secrecy of x with the Real-or-Random model
of [64]: in Rx, we choose a random bit b, and provide the
oracle O that the adversary can use to perform several test
queries on x[u]: if b = 1, the test query returns x[u]; if b = 0,
it returns a random value y (the same value if the same query
x[u] is asked twice). Finally, the adversary should guess the
bit b: it calls oracle O′ with its guess b′ and, if the guess
is correct, then event S is executed, and otherwise, event S
is executed. The probability of getting some information on
the secret is the difference between the probability of S and
the probability of S. (When the game always runs oracle
O′, we have Pr[C[G | Rx] : S] = 1 − Pr[C[G | Rx] : S],
so the advantage of the adversary is Pr[C[G | Rx] : S] −
Pr[C[G | Rx] : S] = 2Pr[C[G | Rx] : S] − 1, which is
a more standard formula.) As shown in [64], the Real-or-
Random model is stronger than the Find-Then-Guess model
used in [55], which allows a single test query and several
reveal queries. (Reveal queries always return the real x[u].)

The correspondence (1) means that each execution of
event termS(U,X, S,Ystar , a, k) corresponds to a dis-
tinct execution of event acceptU(U,X, S,Ystar , a, k); in
other words, each session of the server that accepts with
transcript U,X, S,Ystar , a and shared key k corresponds
to a distinct session of the client that accepts with the
same transcript and same key. It corresponds to the au-
thentication of the client. The keyword inj-event is used
in CryptoVerif to require injective correspondences, that
is, acceptU has been executed at least as many times

as termS, and not only once. The correspondence (2)
means that when events termS(U,X, S,Ystar , a, k) and
acceptU(U,X, S,Ystar , a, k′) have been executed, k = k′,
that is, if a client and a server have the same transcript,
then they share the same key. These correspondences are
proved “with public variables {sk u}”, that is, they hold
even when the adversary is allowed to access sk u directly.
Formally, we write E ` ψ ⇒ ϕ when the sequence of events
E satisfies the correspondence ψ ⇒ ϕ. (This is formally
defined in [62].) For instance, E ` inj-event(termS(U,X, S,
Ystar , a, k))⇒ inj-event(acceptU(U,X, S,Ystar , a, k)) if
and only if, for each event acceptU(. . .) in E , there is a
distinct event termS(. . .) in E with the same arguments as
the event acceptU(. . .).

Definition 3 (Correspondence) The game G satisfies the
correspondence ψ ⇒ ϕ with public variables V up to
probability p if and only if, for all contexts C acceptable
for G with public variables V that do not contain events,
Pr[C[Q] : D] ≤ p(C), where D(E , a) = (E 6` ψ ⇒ ϕ).

IV. PROVING OEKE IN CRYPTOVERIF

In the previous section, we have presented the formal-
ization of the protocol given as input to CryptoVerif. In
this section, we explain how CryptoVerif proceeds with the
proof. Additional details can be found in [57, Appendix F].
Some parts of the proof are automatic, some are guided
by the user. The commands for guiding CryptoVerif can
be given interactively, which allows one to see the current
game and understand what should be done next, or in a
proof {. . .} declaration in the CryptoVerif input file, so
that CryptoVerif can then run on its own. The input file pre-
sented at http://www.cryptoverif.ens.fr/OEKE/ includes such
a declaration. We stress that, even with manual guidance, all
game transformations are verified by CryptoVerif, so that
one cannot perform an incorrect proof.

A. Applying Shoup’s Lemma

The first step of the proof is to introduce the events
Auth and Encrypt, which correspond to cases in which the
adversary succeeds in testing a password and were also used
in the manual proof of [55].

By Shoup’s lemma [43], if G′ is obtained from G by
inserting an event e and modifying the code executed after
e, the probability of distinguishing G′ from G is bounded by
the probability of executing e: for all contexts C acceptable
for G and G′ (with any public variables) and all distinguish-
ers D, |Pr[C[G] : D] − Pr[C[G′] : D]| ≤ Pr[C[G′] : e].
Hence, Pr[C[G] : D] ≤ Pr[C[G′] : e] + Pr[C[G′] : D]. We
improve over this computation of probabilities by consider-
ing e and D simultaneously instead of making the sum of
the two probabilities: Pr[C[G] : D] ≤ Pr[C[G′] : D ∨ e].



Lemma 1 Let C be a context acceptable for G and G′ with
public variables V .

1) If G′ differs from G only when G′ executes event e,
then Pr[C[G] : D] ≤ Pr[C[G′] : D ∨ e].

2) If G differs from G′ only when G executes event
NonUnique and D = (D0∧¬NonUnique)∨e1∨. . .∨en
where we abort just after executing events e1, . . . , en,
then Pr[C[G] : D] ≤ Pr[C[G′] : D].

3) If G ≈Vp G′, then Pr[C[G] : D] ≤ p(C, tD) +
Pr[C[G′] : D].

4) Pr[C[G] : D ∨D′] ≤ Pr[C[G] : D] + Pr[C[G] : D′].

This lemma, and Lemma 2 below, are proved in [57,
Appendix C]. In order to bound the probability that a
distinguisher D0 returns true for some game G0, we consider
any context C acceptable for G0 with public variables V
and that does not contain events, and bound Pr[C[G0] :
D0 ∧ ¬NonUnique] which is equal to Pr[C[G0] : D0]
because no find[unique] occurs in the initial game. For
each game transformation, we assume that the introduced
variables are fresh, so that C remains acceptable for all
games of the sequence. We can then apply Lemma 1
for each game transformation. Points 1, 2, and 3 of this
lemma allow us to handle several events simultaneously,
as long as the proof uses the same sequence of games
to bound their probabilities. Point 2 is useful for trans-
formations that rely on the uniqueness of the values that
satisfy the conditions of find: these transformations preserve
the behavior of the game when G does not execute event
NonUnique. The distinguisher D is always of the desired
form (D0∧¬NonUnique)∨e1∨. . .∨en because we start from
D0 ∧ ¬NonUnique and add events introduced by Shoup’s
lemma using point 1; we abort immediately after these
events. When the proof uses different sequences of games
to bound the probabilities of events, we use point 4 of the
lemma to bound each probability separately and compute the
sum. The standard computation of probabilities corresponds
to always applying point 4.

For example, suppose that we want to bound the proba-
bility of event e0 in G0, G1 differs from G0 only when G1

executes event e, G1 ≈p G2, and G2 executes neither e0 nor
e. Suppose for simplicity that no find[unique] occurs, so that
NonUnique never occurs. Lemma 1 yields Pr[C[G0] : e0] ≤
Pr[C[G1] : e0 ∨ e] ≤ p(C, te0∨e) + Pr[C[G2] : e0 ∨ e] =
p(C, te0∨e). The standard computation of probabilities yields
Pr[C[G0] : e0] ≤ Pr[C[G1] : e0] + Pr[C[G1] : e] ≤
p(C, te0)+ p(C, te). The runtime tD of D is approximately
the same for e0, e, and e0∨e, so Pr[C[G0] : e0] ≤ p(C, tD)
by Lemma 1, while Pr[C[G0] : e0] ≤ 2p(C, tD) by the
standard computation, so we have gained a factor 2.

For secrecy, the advantage Pr[C[G | Rx] : S]− Pr[C[G |
Rx] : S] introduces a factor 2 in the probability: if G ≈{x}p

G′, then Pr[C[G | Rx] : S]−Pr[C[G | Rx] : S] ≤ 2p(C[[ ] |
Rx], tS) + (Pr[C[G′ | Rx] : S]− Pr[C[G′ | Rx] : S]), since

tS = tS. The next lemma avoids this factor 2 for probabilities
of events:

Lemma 2 Let C be a context acceptable for G and G′

with public variables V . Let the distinguishers D,D′ be
disjunctions of events e1 ∨ . . . ∨ en such that we abort just
after executing each ei. Let AdvSecrecyG (C,D) = Pr[C[G |
Rx] : S ∨D]− Pr[C[G | Rx] : S ∨ NonUnique].

1) If G′ differs from G only when G′ executes
event e and we abort just after executing e, then
AdvSecrecyG (C,D) ≤ AdvSecrecyG′ (C,D ∨ e).

2) If G differs from G′ only when G executes NonUnique,
then AdvSecrecyG (C,D) ≤ AdvSecrecyG′ (C,D).

3) If G ≈Vp G′, then AdvSecrecyG (C,D) ≤ 2p(C[[ ] |
Rx], t) + AdvSecrecyG′ (C,D) where t = max(tS∨D,
tS∨NonUnique).

4) AdvSecrecyG (C,D∨D′) ≤ AdvSecrecyG (C,D)+Pr[C[G |
Rx] : D

′].
5) If CryptoVerif proves the secrecy of x in game G,

then Pr[C[G | Rx] : S] = Pr[C[G | Rx] : S], so
AdvSecrecyG (C,D) ≤ Pr[C[G | Rx] : D].

In order to prove secrecy of x in the initial game G0,
we bound Pr[C[G0 | Rx] : S] − Pr[C[G0 | Rx] :
S] = AdvSecrecyG0

(C, false), by applying Lemma 2 for each
game transformation. When we apply points 4 and 5 of
this lemma, we use bounds on the probabilities of events,
Pr[C[G | Rx] : D′] and Pr[C[G | Rx] : D] respectively,
which can be established using Lemma 1. (They can be
written Pr[C[G | Rx] : (false ∧ ¬NonUnique) ∨D], so they
are of the form required by point 2 of Lemma 1.) These
probabilities are not multiplied by 2, so we improve over
the standard computation of probabilities for secrecy.

These improvements are implemented in CryptoVerif but
also apply to manual proofs. For instance, by applying this
result to the manual proof of OEKE [55], we obtain that
the probability for any adversary to make a server instance
accept with no terminating client partner is bounded by

NU +NS
N

+ qhSucc
cdh
G (t′) + p′coll

with p′coll =
(2qe + 2NU + 3NS + 3NP )

2

2(q − 1)
+
q2h + 2NS
2l1+1

and that no adversary can distinguish the session key from
a random key with advantage greater than

NU +NS
N

+ qhSucc
cdh
G (t′) + 2p′coll

with the notations of Section II. For both properties, the first
term of the probability NU+NS

N shows that the adversary
can test at most one password for each interaction with the
client or the server, which is the optimal result, while the
standard evaluation of probabilities given in Section II yields
NU+2NS

N for the first property and 2NU+4NS

N for the second



one. Similar improvements could also be obtained for the
AuthA protocol [55, Section 4.1] and for the forward secrecy
property [55, Appendix D].

1) Inserting events: In order to introduce events, we have
implemented a new game transformation in CryptoVerif:
insert event e o inserts event e; abort at program point o.
The program point o is an integer, which can be determined
using the command show game occ: this command displays
the current game with the corresponding label {o} at each
program point. The command show game occ also allows
one to inspect the game, for instance to know the names
of fresh variables created by CryptoVerif during previous
transformations. Program points and variable names may
depend on the version of CryptoVerif; this paper uses
CryptoVerif 1.14. CryptoVerif cannot guess where events
should be introduced, so the command insert event must
be manually given to the tool.

We have also defined a command insert o ins which
adds instruction ins at the program point o. The instruction
ins can for instance be a test, in which case all branches
of the test will be copies of the code that follows program
point o (so that the semantics of the game is unchanged). It
can also be an assignment or a random generation of a fresh
variable. In all cases, CryptoVerif checks that this instruction
preserves the semantics of the game, and rejects it with an
error message if it does not.

2) Transformations for h1: At the beginning of the proof,
we transform the game using the random oracle assumption
for h1. This transformation helps us make a program point
appear at which we will next insert an event. Before actually
performing this transformation, we first introduce a case
distinction that leads to a simpler game after applying the
random oracle assumption:
• By command insert 261 “let concat(x1 , x2 , x3 , x4 ,

x5 ) = h1x in”, we introduce a let in the hash oracle for
h1. As the result, this hash oracle becomes OH1(h1x :
bitstring) := let concat(x1 , x2 , x3 , x4 , x5 ) = h1x in
return(h1(hk1 , h1x )) else return(h1(hk1 , h1x )): the
meaning of this let construct is that, if h1x is of the
form concat(x1 , x2 , x3 , x4 , x5 ), then the in branch
is taken with x1 , x2 , x3 , x4 , x5 bound to their value
(which is uniquely determined because the length of the
fields of the concatenation is fixed); otherwise, the else
branch is taken. Thus, we distinguish cases depending
on whether h1x is of the form concat(. . .) or not.
In the next transformation, which applies the random
oracle assumption to h1, we are going to replace calls
to h1 with lookups in the previous queries to h1. All
queries to h1 in the protocol have an argument of the
form concat(x1 ′, x2 ′, x3 ′, x4 ′, x5 ′). When comparing
this query to a query in the hash oracle, the compari-
son h1x = concat(x1 ′, x2 ′, x3 ′, x4 ′, x5 ′) can then be
simplified as follows:

– If h1(h1x ) was computed in the in branch

of the introduced let, the comparison becomes
concat(x1 , x2 , x3 , x4 , x5 ) = concat(x1 ′, x2 ′,
x3 ′, x4 ′, x5 ′), that is, x1 = x1 ′ ∧ . . . ∧ x5 = x5 ′.

– If h1(h1x ) was computed in the else branch of this
let, the comparison becomes false, because h1x
cannot be of the form concat(. . .), since the in
branch would have been taken in that case.

• crypto rom(h1) applies the equivalence L1 ≈p1 R1 of
Figure 2, designated by rom for Random Oracle Model,
to the hash function h1: it transforms calls to h1 into
lookups in the previous queries to h1, as outlined in
Section III-B.

3) Event Auth: Next, we introduce event Auth: This
event corresponds to the case in which the group element
X received by the server (denoted X s) does not come
from the client, the authenticator Auth received by the server
(denoted auth s) comes from a hash query by the adversary,
and authentication still succeeds. To be able to introduce this
event, we first make the program point appear, at which this
event will be inserted:
• insert 179 “find j ≤ NU suchthat defined(X[j]) ∧
X[j] = X s then” inserts a test after receiving the
authenticator in the server, to distinguish the case in
which X s comes from the client (X s = X[j] for
some j).

• insert 341 “find jh ≤ qH1 suchthat defined(x1 [jh],
x2 [jh], x3 [jh], x4 [jh], hash1[jh])∧(U = x1 [jh])∧(S =
x2 [jh])∧ (X s = x3 [jh])∧ (Y = x4 [jh])∧ (auth s =
hash1[jh]) then” inserts a test, in the else branch of the
previous one, to detect when authentication succeeds
with an authenticator auth s that comes from a hash
query made by the adversary. The result of that hash
query2 is hash1[jh] and its arguments are x1 [jh], . . . ,
x5 [jh]. We purposely do not test that the 5-th argument
of the hash query is the expected one. This avoids
computing an exponentiation exp(X s, y) where X s
comes from the adversary and y is a secret exponent,
thus removing a query to Ob in the CDH equivalence.

• insert event Auth 384 inserts the event itself in the
then branch of the previous test.

• Finally, simplify cleans up the obtained game. The
else branch of the find jh inserted above is removed: in
that branch, authentication always fails so the protocol
executes nothing.

4) Event Encrypt: Next, we introduce the event Encrypt:
This event corresponds to the case in which the value
Y ? received by the client (denoted Ystar u) comes from
an encryption query of the adversary under the correct
password. As above, we have to prepare this insertion:
• crypto icm(enc) applies the equivalence that repre-

sents the Ideal Cipher Model, designated by icm, to

2In CryptoVerif 1.14, the variable hash1 is in fact named @11 r 134 .
We have renamed it to hash1 for readability.



the encryption scheme enc: it replaces calls to encryp-
tion/decryption with lookups in previous queries, as
outlined in Section III-C.

• insert event Encrypt 633 inserts the event Encrypt
when the lookup in previous encryption/decryption
queries that comes from the decryption of Ystar u
succeeds with an encryption query of the adversary.

5) Transformations for h0: We proceed for h0 similarly
to what we did for h1 at the beginning of the proof:
• insert 1251 “let concat(x01 , x02 , x03 , x04 , x05 ) =

h0x in” distinguishes cases depending on whether the
argument h0x of the hash oracle for h0 is of the form
concat(. . .) or not.

• crypto rom(h0) applies the random oracle assumption
to h0 (Section III-B).

B. Automatic Steps

After distinguishing cases for h0 and h1 and introducing
events, we can use the automatic proof strategy of Cryp-
toVerif, by command auto. Basically, this strategy consists
in applying all possible cryptographic transformations (com-
ing from equivalences L ≈p R) and simplifying the game
after each such transformation. When the transformations
fail, they advise syntactic transformations that could make
them succeed; these transformations are executed and the
cryptographic transformation is then retried [49, Section 5].

More precisely, in our case, CryptoVerif renames several
variables and simplifies terms, in order to be able to apply
the CDH assumption (Section III-D). After these transforma-
tions, no automatic step can be performed, so the automatic
proof stops.

C. Reorganizing Random Number Generations

We end up in a situation in which random values for Y are
generated, but are used only in comparisons with previous
queries. We would like to delay or remove these random
number generations. This situation occurs at three places:
• When Y u (the value of Y in the client) is a fresh

random group element, auth u and K u are also fresh
random values, independently of the value of Y u ,
so Y u is used only in comparisons with previous
encryption/decryption queries.

• The value of Y in the passive eavesdroppings, Yp,
is a fresh random group element; the encryption Y ?

of Y is thus also a fresh random group element by
the ideal cipher model, and the hash queries return a
random value independently of the value of Yp, so
Yp is also used only in comparisons with previous
encryption/decryption queries.

• The value of Y in the server is also a fresh random
group element; it is used in the test that decides whether
to execute event Auth and in comparisons with previous
encryption/decryption queries.

We have implemented new game transformations in Cryp-
toVerif, detailed in [57, Appendix E], to handle this situation:
• move arrayX delays the generation of a random value
X until the point at which it is first used.

• merge arrays x11 . . . x1n, . . . , xm1 . . . xmn merges
the variables xj1, . . . , xjn into a single variable xj1 for
each j ≤ m. Each variable xjk must have a single
definition. For each j ≤ n, the variables xj1, . . . ,
xjn must have the same type and indices of the same
type. They must not be defined for the same value of
their indices (that is, xjk and xjk′ must be defined in
different branches of if or find when k 6= k′), so that
they can be merged into a single array.

• merge branches merges branches of if and find when
they execute the same code.

Using these transformations, we can eliminate the random
number generations for Y as outlined at the beginning of
this section. We consider the three generations of Y in turn.
For each of these generations, we first apply move array

to the corresponding variable, to delay its generation. For
OEKE, this has the effect of generating it in the decryption
oracle available to the adversary. So, in this oracle, we end
up with two possibilities of generating a fresh result, the one
that comes from the delayed generation of Y , say Y ′, and
the one that corresponds to the situation in which the query
is really a fresh decryption query, say Yd. We would like
to merge these two cases by merge branches. However,
merge branches does not succeed directly: we first need to
merge the two variables Yd and Y ′ into a single variable by
merge arrays Yd Y

′, then we can apply merge branches.
In the case of the value of Y in the server, we additionally
need to rewrite the condition that triggers the event Auth for
merge branches to succeed. This is done by a few manual
commands, checked correct by CryptoVerif. In this process,
the event Auth is renamed into Auth2.

D. The Final Computation of Probabilities

In the obtained game, the events Auth2 and Encrypt are
guarded by the following conditions (variables have been
renamed for readability):

(foreach iU ≤ NU do . . .
find[unique] je ≤ qE suchthat defined(re[je], ke[je]) ∧
Ystar u = re[je] ∧ pw = ke[je] then event Encrypt . . .)

| (foreach iS ≤ NS do . . .
find jh ′ ≤ qH1 , jd ≤ qD suchthat defined(x1 [jh ′],
x2 [jh ′], x3 [jh ′], x4 [jh ′], hash1[jh

′],m[jd ], kd [jd ],
rd [jd ]) ∧m[jd ] = Y star ∧ U = x1 [jh ′] ∧
S = x2 [jh ′] ∧X s = x3 [jh ′] ∧ rd [jd ] = x4 [jh ′] ∧
auth s = hash1[jh

′] ∧ kd [jd ] = pw then
event Auth2 . . .) | . . .

So, in order to bound the probabilities of these events, we
just have to eliminate collisions between the password pw
and the encryption and decryption keys, ke[je] and kd [jd ].



This is done by the command simplify coll elim pw .
The collisions on pw are not eliminated automatically by
CryptoVerif because the type passwd of pw is declared
with annotation password. This annotation allows manual
elimination of collisions but prevents automatic elimination
of collisions. For passwords, whose set is not very large, the
automatic elimination of collisions would yield a too large
probability bound.

We have to evaluate the probability of these collisions. A
naive evaluation considers that one makes at most NU ×qE
comparisons pw = ke[je] (there are NU sessions of the
client and the condition of find is evaluated at most qE
times) and similarly at most NS × qH1 × qD comparisons
kd [jd ] = pw , which yields the probability (NU × qE +
NS × qH1 × qD)/|passwd |. A slightly more clever way is
to notice that pw = ke[je] contains as only index je ≤ qE ,
so at most qE distinct comparisons are performed (there
are at most qE distinct encryption keys), and similarly at
most qD distinct comparisons kd [jd ] = pw , which yields
the probability (qE+qD)/|passwd |. This is not satisfactory
yet, because the encryption and decryption queries can be
performed by the adversary without interacting with the
protocol, so qE and qD can be large. So we have extended
CryptoVerif to improve this probability bound. We start from
the most naive evaluation NU × qE and try to eliminate
each factor. We can eliminate NU as shown above, but
we can also eliminate qE : for each session of the client,
Ystar u is fixed; since Ystar u = re[je], re[je] is also
fixed. By eliminating collisions on re, there is a unique je
that can make the comparison Ystar u = re[je] succeed,
so a unique je for which the comparison pw = ke[je]
is performed. Similarly, the comparison kd [jd ] = pw is
performed at most once for each session of the server.
Thus we obtain the probability (NU + NS )/|passwd |. To
know which factors we should preferably eliminate, we
annotate qE and qD with noninteractive, which means
that the adversary can perform the corresponding queries
without interacting with the protocol, so qE and qD will
typically be larger than other bounds. Therefore, the bound
(NU + NS )/|passwd | is better than (qE + qD)/|passwd |,
so CryptoVerif returns the former.

CryptoVerif then concludes that the events Encrypt and
Auth2 can be executed with probability at most (NU +
NS )/|passwd | in the last game. Finally, CryptoVerif shows
that OEKE preserves the secrecy of sk u up to probability

NS +NU

|passwd |
+ (2qH0 + 3qH1 )SucccdhG (t′) + 2p′′coll

and satisfies the correspondences (1) and (2) with public
variables {sk u} up to probability

NS +NU

|passwd |
+ (4qH0 + 6qH1 )SucccdhG (t′) + p′′coll

where t′ = t+(2qH0+3qH1+qD+2NU+2NP+NS )τexp
and the terms in p′′coll come from elimination of collisions

between hashes and between group elements: p′′coll ≤ (NS+
NU + qH1 ×NU + qH1 2)/|hash1 |+ (qD ×NU ×NP +
NU 2×NP+qD×NU ×NS +NU 2×NS +2qH1 ×NP+
4qE ×NP+4qE ×NS +4NP2+3NS 2+2.5qD2+9NP×
NU + 9NU × NS + 7NS × qD + 6NP × qD + 10NS ×
NP +12.5NU 2+2qD × qE + qH1 ×NU +2qH0 ×NU +
4NU ×qD+3NU ×qE+1.5qE 2+6NS+10NU )/|G |. The
main term in this probability is (NS + NU )/|passwd |: the
adversary can test at most one password per session with the
client or the server (active attack), which is the best bound
we can hope. In contrast, [55] yields a bound of at most 4
passwords per session. In Section IV-A, by applying our im-
provement of the computation of probabilities to the manual
proof of [55], we obtained the same first term as CryptoVerif,
and even better second and third terms. CryptoVerif obtains
a second term larger than in Section IV-A because it counts
several Diffie-Hellman queries, which in fact correspond to
the same query, and because the CDH assumption does not
benefit from the improvement of Lemma 2, points 4 and 5:
the probability of breaking CDH is taken into account using
Lemma 2, point 3, so it is multiplied by 2.

V. CONCLUSION

We have proved the security of OEKE using the tool
CryptoVerif. This proof provides additional confidence that
the protocol is correct. Moreover, we have improved the
probability bound given in [55]: we have shown that the
adversary can test at most one password per session with
the client or with the server, which is the optimal result.
OEKE is a non-trivial case study, which is interesting on
its own. It was also an opportunity to implement many
extensions to CryptoVerif, which will be useful for proving
many other protocols. We have already used the model of
CDH to prove a signed Diffie-Hellman protocol. We plan to
apply these extensions to other protocols, such as IKEv2 or
SSH, which also rely on Diffie-Hellman. Our improvement
of the computation of probabilities is also of general interest,
and applies to manual proofs as well as CryptoVerif proofs.
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