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Figure 1: Drone in flight, visualization of wireless signal strength (dBm)

ABSTRACT

Wireless signals and networks are ubiquitous in today’s world.
Though more reliable than ever, wireless networks still strug-
gle with weak coverage, blind spots, and interference. Hav-
ing a strong understanding of wireless signal propagation is
essential for increasing coverage, optimizing performance,
and minimizing interference for wireless networks. Exten-
sive studies have been done on the propagation of wireless
signals, and many theoretical models have been made to sim-
ulate wireless signal propagation. Unfortunately, models of
signal propagation are often not accurate in reality, and real-
world signal measurements are required for validation.

Existing methods for collecting wireless measurements
involve human researchers walking to each location of inter-
est and manually collecting measurements, which requires
large amounts of time and effort, or placing sensors at each
location of interest, which is costly. We propose Drone-
Sense: a system for measuring wireless signals using au-
tonomous drones. DroneSense reduces the time and effort
required for measurement collection, and is affordable and
accessible to all users. This is significant in the field of wire-
less networking as it provides researchers with an efficient
method to quickly analyze wireless coverage and test their
wireless propagation models.

1. INTRODUCTION

Wireless signals and networks are ubiquitous today,
and accurate control of wireless signal propagation and
the resulting wireless network coverage is of great im-
portance in residential and commercial environments.

Though more reliable than ever, wireless networks still
struggle from problems such as weak signal, blind spots,
and interference. Key to solving these problems is the
understanding of wireless signal propagation. Studies
on wireless signal propagation often rely on theoretical
models. Although these models have improved our un-
derstanding of wireless signal propagation, they are still
limited in accuracy. Because signal propagation models
may not necessarily be accurate in reality, we rely on
actual signal strength measurements to validate such
models.

Existing Methods: One method for collecting highly
granular wireless measurements is what we will refer to
as walk sensing. Researchers must collect measurements
at every point of interest by walking to each location.
Walk sensing is extremely time consuming, because it
requires constant human interaction. This makes it dif-
ficult to collect data over a large number of locations
(e.g., in a large building), and to collect data multi-
ple times over the same locations (e.g., each time after
modifying the signal).

Another method for collecting wireless measurements
is to place sensors at every point of interest, and then re-
peatedly read measurements from those sensors. How-
ever, this method is costly because it requires purchas-
ing multiple sensors, which presents a barrier if the
number of collection points need to be large.

DroneSense: In this thesis, we propose DroneSense,
a system for automatically collecting wireless signal mea-
surements using drones. To meet our objective, we pro-



gram a drone to fly along a preset trajectory and collect
measurements along its path. The user inputs a list of
coordinates of where to collect measurements, and all
drone navigation and signal measurement is handled by
the program.

Challenges: The primary technical challenges of a
wireless measurement system using drones are accurate
navigation and efficient flight. First, for accurate navi-
gation, it is difficult to track the position of the drone
because GPS does not operate at this resolution. With-
out an accurate navigation system, it is impossible to
determine the drone’s current position and reach the
target position for collecting measurements. Second,
for efficient flight, because the drone has limited battery
capacity, it is imperative that the drone’s trajectory to
the target is as efficient as possible. If inefficient control
commands are sent to the drone, the drone will spend
a lot of time adjusting its position before reaching the
target location, wasting time and energy.

Methods: DroneSense utilizes a combination of meth-
ods to precisely navigate and control the drone. These
methods include using an Extended Kalman Filter to
estimate the drone’s position at all times, using com-
puter vision techniques to detect reference points in the
drone’s environment to correct the position estimate,
and using a Proportional-Integral-Derivative Controller
to dynamically control the drone’s trajectory to have
an efficient flight.

Implementation: DroneSense is accessible to a wide
variety of users. We used the Parrot AR Drone 2.0 [18]
for our work, as the Parrot AR Drone 2.0 is cheap and
can be easily operated. We chose this drone for its low
cost, abundance of open-source APIs, and durability
while flying indoors. Our code is written in JavaScript,
on the Node.js platform, which is compatible with all
operating systems. Our software seeks to be as user-
friendly as possible, because one of the key advantages
we hope to provide with our system is usability. We
present the user an easy way to set the drone’s trajec-
tory, various options for collecting signal measurements,
and a suite of tools for automation and calibration.

Benefits: The primary benefits of this system is
that it provides a fully autonomous process for collect-
ing wireless measurements. This reduces the amount
of human effort required, and makes the measurement
process more efficient. The system is easily scalable to a
large number of collection points, and is easily repeated
multiple times. Furthermore, it allows for collecting
signal strength measurements in 3D space, adding ad-
ditional data granularity. Our system is also easily ac-
cessible to all users because it uses an affordable off-the-
shelf drone and a program that is compatible with all
platforms.

Key Results: Our system can ensure an accuracy of
20 centimeters from the target location. At this error
tolerance, drone flight is efficient, with distance to the
target monotonically decreasing with no overshoot or
adjustment. Furthermore, measurement at each loca-
tion for three seconds is sufficient for accurate results.

In the rest of this thesis, we discuss in detail the tech-
nical challenges of creating this system, DroneSense’s
design, the methods we utilize, the evaluation of our re-
sults, summarize DroneSense’s effectiveness compared
to related works, and discuss its impact and how our
work can be extended.

2. CHALLENGES

In creating an automated system for drones to collect
wireless measurements, we faced challenges in develop-
ing precise control over the drone’s movement. Two
notable challenges are accurate navigation and efficient
flight. Accurate navigation means accurately deter-
mining the drone’s current location relative to the tar-
get’s location in order to accurately navigate to the tar-
get. Efficient flight means reaching the target location
quickly without having to make many large adjustments
in flight trajectory.

These challenges arise because of the characteristics
of the drone control API. When communicating with
the drone, control commands are sent to the drone as
a pair of direction and magnitude, such as “left 1.0”
or “up 0.5”. The greater the magnitude, the faster the
drone will move in that direction. The magnitude is
most analogous to motor speed, but does not map di-
rectly any physical unit of movement such as velocity or
acceleration. This is similar to pressing the gas pedal on
a car - the pedal pressure is proportional to the speed of
the car but not directly translatable, and to tell its ef-
fect without a speedometer iis by observing how the car
moves. Since the command magnitude does not trans-
late directly to speed of the drone, we must control the
drone precisely by relying on feedback from the envi-
ronment. Below we explain the implications of these
challenges, and briefly discuss our solutions to them.

2.1 Navigation Accuracy

Navigating the drone accurately to the target is one
of the challenges we faced. Since GPS does not work
well at the resolution of our environment, we must find
an alternative way to track the drone’s position.

We need to track the drone’s position because it is
not possible to move the drone an exact distance in
an exact direction, so must navigate to the target by
making adjustments to its trajectory when the drone
goes off course.

Initially, we took a simple approach approach to po-
sition tracking, that we will call the naive approach:
by calibrating the drone to understand how the com-



mand magnitude translates into speed. First test con-
trol commands for each direction with various magni-
tudes, and measure the average time it took the drone
to travel 1 meter with those commands. Then, when we
want the drone to travel a certain distance, we use the
values we calibrated as the magnitude command, and
hold that command for an amount of time tgistance =
distance * t1peter before sending the stop command.
This way, we can reach any position by determining the
distance the drone needs to travel in each direction, and
then applying that command for the calculated amount
of time.

This method had several shortcomings. First, cali-
bration for one meter does not translate well to other
distances. The drone needs to accelerate from station-
ary and decelerate when we send the stop command, so
there is a fixed acceleration/deceleration period during
the drone’s flight that does not get multiplied for dif-
ferent distances. Second, it is impossible to get precise
calibration, so errors will accumulate over time. Third,
the drone does not move perfectly in the direction we
specify. For example, when we tell the drone to move to
the right, it may actually move to the right and also a
little forward. We cannot prevent these errors with this
naive method. When we used this method, we were
unable to accurately navigate to even the first target
location.

Next, we tried using the velocity and rotation sensor
data provided by the drone. Over each short period
of time, we compute the change in position based on
the average velocity and rotation during that period
of time. This method worked better than the naive
method, allowing us to reach a few targets. However,
because the sensor data is noisy and inaccurate, errors
still accumulated over time.

This motivates us to find a better solution. In order
to successfully navigate the drone, we cannot simply
rely on the commands we send it and assume it was
followed perfectly. We also cannot rely completely on
sensor data, as it may be noisy and inaccurate. Instead,
we need to receive feedback from the drone to learn
about its position at all times, and account for noise
from our sensor readings. Our solution to this challenge
is using Reference Point Detection and an Extended
Kalman Filter, discussed in sections 4 and 5.

2.2 Flight Efficiency

The other main challenge was ensuring the drone flew
in an efficient path. The impact of this problem is not
just that the drone will take an indirect path to the
target, but more importantly when the drone is near
its target, its position will fluctuate wildly as it tries to
adjust itself into the exact target position. Since the
drone has a limited battery life, it is important to make
flights as efficient as possible so that more flight time

can be achieved. The efficiency of the flight depends
on the magnitude of the control commands we send to
the drone, which will determine how quickly the drone
reaches its target.

Initially, we used the previously described naive ap-
proach to set control command magnitudes. We used
a single small magnitude, such as 0.2, and varied the
time for which we applied that command. So when the
drone is far from the target, we apply the command for
a long time, and when it is close to the target, we apply
it for a short time, calculated with the equation in the
last section.

However, this method had several shortcomings. First,
it takes a long time to reach far distances because the
magnitude is so low. Because we only use one value for
the magnitude, there are instances where a higher mag-
nitude would allow us to reach the target much quicker.
Second, our timing is not accurate, which forces us to
make many course adjustments. So the drone will con-
stantly undershoot or overshoot the target, and require
another adjustment.

Next, we tried keeping the time interval constant but
varying the magnitude of the control command. We
chose magnitudes proportional to the distance to the
target. So when the drone is far from the target, we
apply a high magnitude, and when it is close to the
target, we apply a low magnitude m = a * distance.
This solved the first problem of taking a long time to
reach the target. However, this resulted in more fre-
quent overshoot, as the drone was unable to stop right
over the target because the proportional commands in
the latter part of the flight were too high. If we lower
the coefficient «, then the drone flies to slowly during
the earlier part of the flight. So clearly, a non-linear
equation for determining the magnitude is optimal.

The problem of efficient flight arises because we do
not have an effective method to determine the magni-
tude of the command to send to the drone. Using the
naive method from above, we typically stick to a small
finite set of magnitudes such as 1.0, 0.5, 0.3, 0.1, 0.05,
etc. that we arbitrarily chose. And if we use magnitudes
proportional to the error, the drone does not decelerate
fast enough when it is close to the target, unless the
values are very small and the drone moves very slowly.
To make the drone’s flight more efficient, we must re-
ceive feedback about what is the effect of the magni-
tude we used, and adjust the magnitude on a continuous
and non-linear scale in order to find the optimal magni-
tude. Our solution to this challenge is the Proportional-
Integral-Derivative Controller, discussed in section 6.

3. SYSTEM OVERVIEW

DroneSense takes as input a flight path, which is a
list of locations to collect measurements. The user also
specifies options for collecting measurements, such as



the number of measurements to make at each point and
how long to wait between measurements.

DroneSense is divided into two modules: Navigation
and Measurement. The Navigation Module is responsi-
ble for moving the drone to the desired locations. The
Measurement module is responsible for collecting mea-
surements at each desired location.

The Navigation Module is the core of the system, and
contains our approach to address each of the challenges
listed above. Specifically, to address the problem of
navigation accuracy, we use Reference Point Detection
and an Extended Kalman Filter; to address the prob-
lem of flight efficiency, we use a Proportional-Integral-
Derivative Controller. These components of the Naviga-
tion Module will be discussed in detail in the following
sections.

4. REFERENCE POINT DETECTION

We use reference point detection to help address the
challenge of navigation accuracy, by providing position
calibrations for the drone. When the drone detects a
reference with its camera, we can calculate the reference
point’s relative position and orientation to the drone in
3D space. We can also predefine each reference point’s
true position in 3D space so that the program knows the
the true position of the detected reference point. Thus,
when a marker is detected, we can use the its true po-
sition and its relative position and orientation to the
drone to calculate the drone’s own position and orien-
tation. We place multiple reference points into the en-
vironment to so the drone can constantly have a source
of position calibration.

The drone has the capability to detect certain types
of markers, including the Oriented Roundel marker that
we use. Figure 2(a) shows the Oriented Roundel marker,
and we see that it is not only very easy to recognize,
but also we can easily determine its orientation. Once
a marker is detected, we perform calculations to trans-
form its position in the camera image to its position
in the drone’s coordinate system, and also find its real
position. Although the drone has built-in capability to
detect these markers, we found that ability lacking, and
created our own computer vision marker detection sys-
tem.

Computer Vision: In order to detect a marker,
we use computer vision algorithms [17] to analyze the
image detected by the drone’s camera. First, we con-
vert the image to grayscale. Next, we run the OpenCV
Canny Edge Detection algorithm to produce an image
where only the edges pixels are turned on. Next, we
dilate the image to increase the size of the edges. Next,
we use the OpenCV Contour algorithm and find circles
and rounded rectangles in the image based on number of
sides for each detected contour. Finally, we process de-
tected shapes to determine if a marker is present in the

image. If there exists simultaneously a rounded rectan-
gle whose long side length is equal to the side length of
a large circle’s bounding rectangle, there is a marker in
the image. After a marker is detected, we set the center
of the circle as the location of the marker. We draw a
line between the center of the circle and the center of the
rounded rectangle, and the angle between that line and
the X axis is the angle of orientation. We then send the
coordinates and the orientation to be converted to 3D
coordinates. Figure 2 shows what the computer vision
system sees when it is detecting reference points.

Back Projection: The camera has a frame of 640x360
pixels. We need to translate the location of the detected
marker from these 640x360 coordinates to 3D coordi-
nates. In other words, we need to translate the marker’s
2D position relative to the center of the drone’s camera
(in pixel units) to the marker’s 3D position relative to
the center of the drone itself (in meter units). We do
so by using the back projection matrix P that has been
calibrated for the drone’s bottom camera [4], shown in
Equations 1 and 2.

686.99 0  329.32
P=| 0 68819 159.32 (1)
0 0 1

% =P~ ! % [z %640/1000,y * 360/1000, 11" «h  (2)
Finally, simple trigonometry allows us to determine

the orientation of the marker, shown in Equation 3.

0 = tanfl( Ycircle — Yrectangle ) (3)

Tcircle — Lrectangle
Thus, we are able to determine the marker’s 3D coor-
dinates relative to the drone, as well as the orientation
of the drone.

Reference Point Placement: We place markers in
the environment 1 meter apart from each other. Fewer
markers are needed for the drone to sufficiently nav-
igate, but for more accuracy we try to use as many
markers as possible. Because we know that markers are
placed at every meter, when a marker is detected, we
can assume that marker’s true position is the nearest
whole-meter coordinate from the drone’s current posi-
tion. If multiple markers are detected, their true po-
sitions are the nearest whole-meter coordinates sorted
by distance from the drone’s current position. For in-
stance, if the drone’s current position estimate is (1.7,
2.2), the nearest marker from the drone detected by the
camera should have true position (2, 2). We find this
assumption works well because the drone’s position esti-
mate is easily accurately enough on the 0.5 meter scale.
Knowing the marker’s true position and its relative po-
sition and orientation to the drone allows us to calculate
the position and orientation of the drone.



(a) Theoretical Marker

(b) Theoretical Marker Vi-
sion

(c) Real Marker (d) Real Marker Vision

Figure 2: Reference Point Detection

By placing markers at every meter, we make finding
the true position of the marker very easy. It is also easy
for us to visually inspect the accuracy of the drone, since
most collection locations will be a whole-meter intervals
so the drone should hover directly over a marker. If we
would like to use fewer markers, we can space them out
evenly such as one marker every 2 meters, and then
tell the program to round its current coordinate to the
nearest 2 meter when a marker is detected. If we would
like to use irregularly spaced markers, we can indicate
the position of the marker on the marker itself with
some predefined special symbol, and have a lookup table
in the program for the true location of these markers.

S. EXTENDED KALMAN FILTER

We use the Extended Kalman Filter (EKF) [11] to
address the challenge of navigation accuracy, by using
it to estimate the drone’s position at all times. An Ex-
tended Kalman Filter is an algorithm that uses a series
of measurements over time, containing noise and inac-
curacies, and produces estimates of unknown variables
that tend to be more precise than those based on a sin-
gle measurement alone, by using Bayesian inference and
estimating a joint probability distribution over the vari-
ables. Estimations are made using a weighted average,
with more weight given to measurements with greater
certainty. This algorithm has many applications, and is
frequently used for guidance and navigation of vehicles.

The Extended Kalman Filter is extremely suitable for
our problem because we need to estimate the position
of the drone at all times, have many sources of noisy
sensor data, and can sometimes make observations of
the drone’s true position using reference point detec-
tion (see section 4). The EKF uses a two step recursive
process: predict and update. The predict step uses an
position estimate from a previous time as well as sensor
data to estimate the current position. In our case, we
use a physical model with the last estimate position and
the readings from velocity and yaw sensors to estimate
the current position. The update step uses the position
estimate from the predict step as well as an observation
of the position to correct the current position estimate.
In our case, we use an observation of the drone’s true

position when it detects a reference point in the en-
vironment to make a more accurate position estimate.
The EKF’s calculations are based on a weighted aver-
age calculated from a computed covariance matrix, or
uncertainty of the prediction. A basic linear Kalman
Filter uses a linear function for the predict step, while
an Extended Kalman filter can use any differentiable
function. We require the Extended Kalman filter be-
cause our position estimate requires the sine and cosine
functions to account for rotation.

Below, we give a brief description of how the Ex-
tended Kalman Filter works. We explain the equations
and definitions that we used, but do not provide the full
derivation. The equations are separated into two sec-
tions, for the predict step and update step respectively.
Table 1 lists all the variables used.

Variable

Meaning

Position Estimate Vector

Sensor Vector

Measurement Residual

True Observation Vector

Relative Observation Vector
Position Transition Function
Position Transition Vector
Observation Transition Function
Observation Transition Vector
Position Transition Function Jaco-
bian

Observation Transition Function Ja-
cobian

Error Covariance Matrix

Process Noise Covariance Matrix
Observation Noise Covariance Matrix
Residual Covariance Matrix

Optimal Kalman Gain

M| | = | N | [ 2 |50

as

AR =o|T

Table 1: Table of Extended Kalman Filter vari-
ables

The following equations show how we predict and up-
date the position estimate. We denote the sensor read-
ings as sensors, and the camera reference point obser-
vations as the observations. We use the sensors and



past position estimates to estimate the current posi-
tion, in other words perform the predict step. We use
the observations and past position estimates to correct
the model and improve the position estimation, in other
words perform the update step.

Predict Step: The predict step utilizes the last po-
sition estimate, the velocity readings derived from the
accelerometer, the yaw reading derived from the gyro-
scope, and time interval since last estimation to esti-
mate the current position and orientation. Thus, our
position estimate vector X contains the values of x, y,
and yaw, and our sensor vector u contains the values of
x velocity and y velocity, yaw, and time interval, shown
in Equations 4 and 5.

X =[2,9,0] (4)

u = [vg, vy, 0y, di] (5)

Using our model based on the laws of physics, we
know that the current position should be the past po-
sition plus the change in position during the last time
interval due to velocity, with a modification for rota-
tion. We call the equations that model this behavior
our transition functions Our position transition func-
tions f are shown in Equations 6 through 16.

f:[fafafyafa] (6)
fo(Rp, W) = &g, + vg  dit % cos(0) — vy, * dt x sin(f) (7)
Fy R, W) = G + Vg * dt % sin(0) + v, % dt % cos(9) (8)

Jo(Xi,ux) = 0, 9)

The predict step require a calculation of the Jaco-
bian of our position transition functions F, and also
an assumption about the covariance of the predict step
process noise Q, which are shown in Equations 10 and
11.

1 0 —uv, *dt*sin() — v, * dt * cos(f)
F=10 1 wv,xdtx cos(é) — vy * dt % sm(é) (10)
0 0 1
0.0003 0 0
Q=| 0 00003 0 (11)
0 0 0.0001

Finally, having all of these variables and equations
defined, the predicted position X and prediction covari-
ance P can be calculated with Equations 12 and 13.
The first P is simply the identity matrix.

Ripr—1 = F(Rp—1jp-1, Uk) (12)

Pijp—1 =FPr_11FfL +Q (13)

We have now finished the predict step, and success-
fully calculated the a position estimate.

Update Step: The update step utilizes an obser-
vation of the actual position to update, or correct, the
model parameters. In our case, when the drone camera
detects a reference point, it observes the marker’s rela-
tive position and rotation, and it knows the marker’s
true position and rotation. Thus, we can infer the
drone’s true position based on the discrepancy between
the marker’s true and relative position. However, al-
though the position estimate derived directly from the
reference point detection is likely to be quite accurate,
it still may not be perfectly accurate. The update step
combines the position estimated in the predict step and
the position calculated from the observation, balanced
using a weighted average based on uncertainty, to pro-
duce a position estimate likely more accurate than both
individual calculations.

The observed values will be contained by the true and
relative observation vectors t and z shown in Equations
14 and 15.

t = [xt7yt,9t] (14)

z=[2,,9.,0.] (15)

We use the true marker position and current drone
position to calculate what the marker’s true position
should be relative to the drone, or the marker’s theo-
retical relative position. We call the equations for this
calculation our observation transition functions. Our
observation transition functions A are shown in Equa-
tions 16 through 19.

h = [hy, hy, he] (16)
ha (R, ) = (20 — &) % cos() + (y; — §) * sin(B) (17)

hy(Rp, tr) = — (2 — &) % sin(0) + (y; — ) * cos(9) (18)

ho(Xp,tr) = 0; — 0 (19)

Next, we calculate the residual which is the differ-

ence between the two relative positions: the relative

position of the marker calculated from the camera back-

projection, and the theoretical relative position of the
marker’s true position.

Vi =2k — h(Xgjp—1, trpp—1) (20)

The update equations require a calculation of the Ja-
cobian of our observation transition functions, and also
an assumption about the covariance of the observation

noise, which we calculate and define in Equations 21
and 22.



—cos(ﬁ) —szn(@i) (& — ) * sm(é‘:) —(§ —yt) * 005(9:)
H=| sin(d) —cos(0) (& —x¢)*cos(8)+ (§— yt) * sin(6)
0 0 -1
(21)
03 0 0
R=|0 03 0 (22)
0 0 0.3

Finally, having all of these variables and equations
defined, we can calculate the measurement residual co-
variance and optimal Kalman Gain, which in turn al-
lows us to calculate the updated position and the up-
dated covariance shown in Equations 23 through 26.

Sk = HyPy 1 H + R (23)
Ky, =Py H[S;! (24)
Rk = Xpjo—1 + Ki ¥k (25)
Py = (I — KieHg)Ppj—o (26)

We have now finished the update step, and success-
fully updated the predicted position.

6. PROPORTIONAL-INTEGRAL-
DERIVATIVE CONTROLLER

We use a Proportional-Integral-Derivative (PID) Con-
troller to address the problem of flight efficiency, by
calculating appropriate magnitudes for the control com-
mands for the drone. We want to send the drone control
command magnitudes that efficiently move the drone to
the target quickly, with few large adjustments, and min-
imizing overshoot. A PID Controller is suitable for our
problem because it allows us to dynamically adjust the
command magnitude in a non-linear fashion. A PID
controller is a feedback mechanism that continuously
adjusts the value of a control variable, in our case the
control command magnitude, trying to minimize the er-
ror value, in our case the distance between the target
position and the current position. The controller gets
its name because the value of the control variable is a
combination of the present error (proportional), total
past error (integral), and possible future (derivative)
values of the error.

We use a PID Controller for each of the four direc-
tions of motion: front or back, left or right, up or down,
clockwise or counterclockwise. Each PID determines
the magnitude of the control command sent in that di-
rection.

Our PID controller seeks to minimize distance in a
certain direction by setting the control command mag-
nitude u, and uses the feedback to continuously adjust
the control variable until a steady state is reached. The
PID equation is shown in Equation 27.

de(t)
dt

u(t) = Ke(t) + K /O e(r)dr + K4 (27)

where

u = control variable

e = error from feedback

K, = proportional coefficient
K, = integral coefficient

K4 = derivative coefficient

In this model, the proportional term accounts for the
present error. When the current error is larger, the
proportional term will take on a larger value, which
increases magnitude of the control command, and the
drone will move faster. In the short-run, the propor-
tional term suffers from overshoot. This is because
when the error is very large and the magnitude is set at
very high, because we are working with discrete time,
if the controller is not updated quickly enough, it will
update the error too late and not set it to a lower value
in time. In the long-term, the proportional term suffers
from steady-state error, which means the equilibrium
position is different from the desired position. This is
because as the error gets very small, the proportional
term will be insufficient to move the error to zero.

The integral term accounts for the total accumulated
values of the error. The integral term accelerates the
process to the desired level, and eliminates steady state
error. Once the error is low, the proportional term will
stop being effective at reducing the error. However,
the integral term will become larger on each time step
because there is still error remaining, and then the in-
tegral term will increase the magnitude of the control
command and move the drone to the correct location.
The integral term suffers from overshoot, because it will
move the drone in the direction opposite of all its past
errors, even when the current error is zero.

The derivative term accounts for the future values of
the error, based on the rate of change of the error. The
derivative term helps prevent overshoot by modulating
the magnitude. When the drone is approaching the
target faster, the derivative of the error will be a larger
negative value, so the derivative term will become larger
negative value, and the magnitude will become smaller.
By modulating the derivative of the error rather than
the proportional error, the drone can move quickly in
the beginning and decelerate quickly as it approaches
its target.

Table 2 show the effects of the PID coefficients when
they are increased [19]. Speed is how quickly the system
reaches 90% of the desired level. Overshoot is how much
higher the peak level is compared to the desired level.
Settle is how quickly the system reaches its steady state
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Table 2: PID Coefficient Effects
PID K, K; Ky
X 0.5 0.1 0.35
Y 0.5 0.1 0.35
7 0.8 0.2 0.25
Yaw 0.8 0.2 0.25

Table 3: PID Controller Coefficients

level. Error is the difference between the desired level
and the steady state level.

Table 3 lists the coefficients we use for each PID. For
our system, it is imperative that we avoid overshoot-
ing the target, because if the drone somehow moves on
top of the wrong reference point, all future flight will be
wrong. Therefore, we have a slight preference for slower
flight than overshoot. We use medium or large values
for the proportional coefficient, small values for the in-
tegral coefficient, and medium levels for the derivative
coefficient. We need a small integral coefficient to elim-
inate steady state error, and we need a medium deriva-
tive term to reduce overshoot. We use larger values for
the proportional coefficient of Z and yaw because move-
ment in those directions tend are slower (due to their
motor power), so we want to make those adjustments
just as fast as X and Y. We also use smaller derivative
terms for Z and yaw because their movement is slower
and their sensors are more accurate and thus less prone
to overshoot.

7. IMPLEMENTATION

DroneSense is designed to provide a easy-to-use, fast,
and flexible way of automatically measuring 3D wire-
less signals. It is written in JavaScript on the Node.js
platform. We chose this platform for its quick develop-
ment process as well as its numerous existing libraries
for working with the Parrot AR Drone 2.0.

DroneSense is divided into two modules: Navigation
and Measurement. The Navigation module is respon-
sible for moving the drone to the desired locations, es-
timating its position at all times, and correcting errors
in its trajectory. It utilizes an Extended Kalman Filter
and reference point detection to navigate the drone, and
a Proportional-Integral-Derivative Controller to stabi-
lize the drone’s flight.

The Measurement module is responsible for collect-
ing measurements at each desired location, communi-
cating with the drone to tell it when and how to mea-
sure signal. It communicates to the drone’s operating
system via telnet. It waits for the Navigation Module to

broadcast that the drone has reached a target location,
collects the measurement, and informs the Navigation
Module to start moving the drone again.

7.1 Navigation Module

The Navigation module is responsible for guiding the
drone to the desired locations. It parses the provided
flight path for coordinates to visit, and creates a queue
of destinations to visit. Once the system is ready, it
sends the takeoff signal to the drone. It processes in-
formation from the drone such as readings for velocity,
height, and marker detection, and sends control com-
mands to the drone. When it determines the drone has
reached the target, it tells the Measurement module
to begin measuring. We use a JavaScript implementa-
tion of the API for sending commands to and receiv-
ing information from the drone provided by the node-
ar-drone library [15]. The Navigation Module uses an
Reference Point Detection and Extended Kalman Fil-
ter to estimate the coordinates of the drone, and uses a
Proportional-Integral-Derivative Controller to stabilize
the flight.

Flight Plan: The Navigation module takes as an in-
put the user’s desired flight plan. The flight plan can
be a text file where each line is a 3-dimensional coor-
dinate in meters, and the yaw of the drone is assumed
to be 0°. We use a coordinate system with the drone’s
takeoff position as the origin, initially with yaw of 0°.
For Z coordinate simplicity, the user specifies a base
level height and between-layer height in meters, so a Z
coordinate of 0 will correspond to the base level height
and a Z coordinate of 1 will correspond to base level
height 4+ between-layer height. The program can also
handle traversing a 3D grid flight plan without using an
explicit text file, by simply having the user specify the
dimensions of the grid. The program calculates each
step of the flight, and creates a queue of commands for
them while adding hover commands between each step
(where the Measure Module will collect measurement),
takeoff, and land.

Extended Kalman Filter: The drone API contin-
uously streams navigation data including velocity, yaw,
and altitude (about every 50 milliseconds). We sub-
scribe to this stream, and every time new data is pro-
vided, the predict step of the Extended Kalman Filter is
computed. We use a Javascript Extended Kalman Fil-
ter implementation from the ardrone-autonomy library
[2] with modifications for altitude and yaw calculation
and support for multiple reference points.

Reference Point Detection: The drone API con-
tinuously streams images from the bottom camera, which
the Navigation Module subscribes to (about every 100
milliseconds). We use a JavaScript wrapper of OpenCV
[5] [16] to process images frame-by-frame as they are



provided by the stream. When a marker is detected,
we take the drone’s current position estimate, round
that to the nearest whole coordinates, and take that to
be the true position of the reference point. Then, we
run the update step of the Extended Kalman Filter.

PID Controller: Each time after the Navigation
Program estimates its position, it then needs to de-
termine the appropriate control command to send the
drone. We use a JavaScript implementation of a PID
Controller provided by the ardrone-autonomy library
[2], but use our own values for coefficients. Each PID
for each direction is called with the amount of distance
error in that direction, and the PID returns the control
command magnitude in that direction. This control
command is applied until the next navigation data is
provided.

7.2 Measurement Module

The Measurement module is responsible for commu-
nicating with the drone and collecting wireless signal
measurements. When it gets the signal that the drone
has reached a target location to collect measurement, it
sends a message to the drone’s operating system to be-
gin measuring. It receives the response, parses it, and
saves it to a text file.

We first considered collecting measurements using a
separate device attached to the drone. However chose
not to pursue this method because of the additional
complexity of communicating with two devices and also
the potential effects an attached device would have on
the drone’s flight. Therefore, we use the drone’s on-
board wireless radio to collect measurements and work
within the constraints of that system.

AR Drone 2.0 Wireless System: The Parrot AR
Drone 2.0 uses the Atheros AR6000 mobile 802.11bg
chipset for wireless networking. Its computer runs the
BusyBox operating system [6], a lightweight Unix en-
vironment, and has about 10 megabytes of free space.
Because of the system constraints, we could not host the
control software directly on the drone, but instead must
rely on communicating with the drone from the com-
puter program. Directly communicating with the drone
requires connecting to the same network as the drone
and then using telnet. The drone’s wireless driver lacks
some important functionality such as monitor mode and
accurate noise readings. By default, the drone creates
its own access point that computer programs can con-
nect to. However, the drone cannot scan other access
points when it is using its own access point. Thus, both
the drone and computer must connect to the network
we would like to measure, communicate over that net-
work, and collect signals only from its current network.
For the drone to connect to secure networks, we install
WPA2 drivers on the drone via curl. The WPA2 drivers

are from the ardrone-wpa2 library [3].

Measurement Script: We leverage the drone’s on-
board wireless radio to collect wireless signal measure-
ments. We use telnet to access the drone’s command
line interface, and place shell scripts for measuring sig-
nal on the drone’s operating system. The scripts takes
as parameters the number of times to collect, and the
amount of time to wait between collecting. These scripts
use iwconfig to get the current network’s signal strength.
iwconfig uses driver meta information to interpret the
raw value given by /proc/net/wireless, displaying the
result in units of dBm [10]. We use iwconfig because
it can be executed quickly in rapid succession and its
output is easy to parse.

Measurement Program: The Measurement Pro-
gram running on the computer communicates with the
drone and the Navigation module to collect measure-
ments. It allows the user to specify options such as
number of collections to make at each point and amount
of time to wait between collecting, as well as where to
save the log file. It listens to messages from the Nav-
igation module to see when the drone is in the right
position. It creates a telnet connection with the drone
via the node-telnet-client library [20], and then runs one
of the measurement scripts we previously placed on the
drone. We chose to use telnet because it is a simple
way of executing the measurement scripts we have in-
stalled on the drone, and the normal drone control API
does not provide a way to run programs on the drone’s
operating system. We use a single continuous telnet
connection with the drone and error catching mecha-
nisms to restart the connection if it is broken. The pro-
gram listens to the Navigation module to find out when
to measure, gets the current coordinates, runs the ap-
propriate measurement script, and writes the result to
file. It parses the drone’s response, logs it in conjunc-
tion with the current position, and tells the Navigation
module the drone is ready to move to the next location.

8. EVALUATION

We evaluate the accuracy and efficiency of the drone’s
navigation, as well as, the accuracy and speed of the
drone’s measurements. These evaluations can establish
the effectiveness of our solution, and to identify areas
of improvement for future work.

8.1 Navigation Accuracy

Experimental Setup: Our test setup involves a 3x2
grid of reference points one meter apart from each other.
The drone takes off from a corner node and travels to
the other five nodes. A string and weight is attached
to the bottom of the drone, and while the drone is hov-
ering over a collection location, we mark the projection
of the location of the drone on the ground indicated
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Figure 3: Navigation Error CDF

by the string. Afterwards, we measure the distance be-
tween the marked locations and the center of the refer-
ence point. The distance between the two points is the
navigation error. In the software, we set the accuracy
tolerance of the drone to 20 centimeters, which is an
acceptable error tolerance and does not cause the drone
to spend too long to adjust to reach the target position.
We run this experiment 10 times, and find the mean
and standard deviation of the error over these 50 data
points, and plot the cumulative density function of the
results.

Results: The mean error we found was 13 centime-
ters, and the standard deviation was 4.3 centimeters.
Additionally, the error was never more than 20 cen-
timeters, which is important because that is the error
tolerance we set in the software. This shows that the
drone’s navigation is accurate to its specifications. It
also means that stricter navigation accuracy standards
can be applied, at the expense of navigation time, if
greater precision is needed. Figure 3 shows the CDF of
the error values.

8.2 Flight Efficiency

Experimental Setup: To evaluate flight efficiency,
we have the drone takeoff from one reference point and
travel to another reference point 1 meter away, and
hover there before landing. We will now work with the
drone’s estimated coordinates, because it is possible to
get multiple position estimates every second. We plot
the distance between the drone and the target as esti-
mated by the drone during this flight. We compare the
plot of the error when the system uses the current PID
Controller implementation, with the plot of the error
when the system uses a naive controller. For the naive
controller, we a hybrid of the methods we described in
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the flight efficiency challenge in section 2. This con-
troller sets the magnitude proportional to the error and
then rounds the value to the nearest 0.05. This is a rea-
sonable naive implementation, because the magnitude
is proportional to the current error and also drawn from
a finite set of commands.

Results: Figure 4 shows the error plots for the naive
controller and PID Controller. The point where the
drone determines it has reached its target is marked.
We see that the PID controller not only helped the
drone reach the target faster, but stopped the drone
successfully once the target was reached. For the inef-
ficient controller, overshoot is a problem because after
the target is reached, the drone does not quickly stop
itself, overshoots, and has to adjust back to the target.
If all controls commands are decreased in magnitude,
then the overshoot problem is reduced, but then it will
take much longer to reach the target. Therefore, the
PID Controller is a superior controller, and significantly
increases the efficiency of the flight.
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Figure 4: Efficient and inefficient controller com-
parison

8.3 Measurement Accuracy

Experimental Setup: Although the drone attempts
to hover in place when it is collecting measurements, it
nevertheless makes small movements in order to main-
tain its hover. To evaluate how the drone’s measure-
ment accuracy is influenced by its motion, we have
the drone hover for 60 seconds. Then, we plot signal
strength measured and the velocity of the drone. We
then calculate the correlation between the two data sets
to see the influence of the drone movement on the signal
strength measured.

Results: We found that the signal strength measured
by the drone is inversely correlated with the velocity of



the drone. When the velocity of the drone is higher, the
value of the signal strength in negative dBm is higher,
meaning the signal is weaker. Figure 5 shows the sig-
nal strength measured by the drone and the velocity
of the drone. We see that signal strength measured
by the drone in one location can fluctuate as much as
10dBm. This issue is reduced by taking the average of
the measurements over a longer period of time, which
we evaluate in the next subsection.
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Figure 5: Correlation between signal strength

and drone velocity

8.4 Measurement Time

Experimental Setup: In order to determine an ad-
equate amount of time to collect measurements so that
the effect of noise is negligible, we test collecting mea-
surements at two locations for various amounts of time.
These two locations have significantly different signal
strength, and we test collecting measurements for 1, 3,
10, and 30 seconds. Then we calculate the mean and
standard deviation of signal strength collected at each
location for each duration and see at which duration the
results start to converge.

Results: We found that 3 seconds is a sufficient
length of time for the drone to collect measurements
at each location. In Table 4, we list the mean and stan-
dard deviation of measurements with different duration
at multiple locations.

9. RELATED WORK

Indoor Walk Sensing Products: There are many
commercial products that provide all-in-one solutions
to facilitate the indoor wireless measurement process,
such as the Agilent E6474A [1] and the Nemo Walker
Air [14]. These products provide a set of equipment to
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Location Duration Mean Standard
(second) (dBm) Deviation
(dBm)
a 1 -73.00 0.8165
3 -74.33 1.18
10 -74.35 2.34
30 -73.78 2.15
b 1 -52.00 1.49
3 -46.9 1.42
10 -46.64 3.64
30 -47.50 3.50

Table 4: Measurement Duration, Mean, and
Standard Deviation

carry in a backpack while walking around an indoor
space, and are designed for comfort and portability.
They are used to analyze network coverage and eval-
uate network performance, often performing activities
such as web browsing, voice calling, text messaging, and
video streaming while the user walks around. They re-
quire a floor plan to interpolate signal strength between
measurement points, and rely on GPS for position es-
timation. One benefit of these products is being able
to test various real world scenarios rather than simply
measuring signal strength. The key advantage of our
system is that it is automated and does not require hu-
man labor once set up, and does not require GPS.

Propagation Modeling: Studies on propagation
modeling require actual signal collection for validation.
Thus, research on wireless propagation modeling and
our work go hand in hand, because as each model is de-
veloped, it needs to be tested for accuracy. For instance,
a study based on propagation modeling, WiPrint, tries
to shape the wireless coverage in the room [7]. One lim-
itation of propagation models is that they are not fully
accurate, which is why our system is complementary to
these efforts.

Wireless Measurements : There have been exten-
sive crowd sourcing efforts for wireless data. Two ex-
amples are CRAWDAD [12] and the Seattle WiFi Map
Project [13]. These efforts provide valuable resources
for the research community, but serve a slightly differ-
ent purpose. Our system differs in that it is more suit-
able for real-time measurement at the current research
location, rather than past data at the predetermined
locations.

Drone Navigation: There have been extensive ef-
forts in developing reliable navigation systems for drones.
There are expensive drones on the market today that al-

ready include highly advanced navigation systems. Though

these navigation systems may be commoditized in the
future, there is still much value today in studying and
developing drone navigation systems, especially with



low-cost drones accessible to everyone. Researchers at
the Technical University of Munich have published sev-
eral papers on visual navigation of drones [8] [9]. Their
methods rely on visual tracking of objects to determine
the drone’s position and guide the drone to its tar-
get. They have implemented these methods in the open
source project tum_ardrone [21], which is only compati-
ble with Linux. While many of these methods are more
advanced than the Reference Point Detection and Ex-
tended Kalman Filter we use, these researchers were
trying to create a general purpose navigation system,
rather a specific system for collecting wireless measure-
ments. These systems emphasize adaptability to any
environment, and its visual methods try to track the
movement of any object in the environment rather than
predefined reference points. So for our problem, our
solution currently leads to greater accuracy, although
these more complex solutions could be adapted to our
purpose and result in even greater accuracy.

10. CONCLUSION AND FUTURE WORK

This thesis presents DroneSense, a system to auto-
mate collecting 3D wireless signal measurements using
drones. Our system is able to reduce the amount of
effort needed to collect measurements, and can be eas-
ily adapted to a variety of environments. To achieve
this, we address challenges of accurate drone naviga-
tion and efficient flight trajectory, using methods of Ref-
erence Point Detection, Extended Kalman Filter, and
Proportional-Integral-Derivative Controller. Our sys-
tem uses the Parrot AR Drone 2.0 for its hardware,
and JavaScript on the Node.js platform for its software.
Below, we list some possible areas for future work.

Navigation Accuracy: The current system works
well for collecting measurements at whole-meter inter-
vals, with accurate navigation and efficient flight with
an error tolerance of 20 centimeters. We hope to im-
prove the accuracy of the system further to allow for
sub-meter intervals. This can be achieved through im-
proving the drone’s position estimation system, upgrad-
ing the model of the drone to one with more accurate
velocity readings, setting better parameters for the PID
controller, placing additional reference points in the en-
vironment. This will help achieve greater resolutions in
measurement collection and provide additional valuable
data where whole meter intervals is too large.

Measuring Other Signals: The current system pro-
vides a way to measure wireless signal strength. How-
ever, there may be other items of interest that researchers
would like to measure. We hope to adapt the system to
collect these other types of signals. We could explore
using an external attachment on the drone rather than
rely on the drone’s on-board software and hardware.

Reducing or Eliminating Reference Points: One

major limitation of the current system is the need for
placing reference points throughout the environment.
We hope to explore methods to reduce or eliminate the
need for reference points while maintaining accurate po-
sition estimates. One such method could be placing
cameras in the room and using them to determine the
drone’s location at all times.

Handling Obstacles: The current system relies on
the user to input a flight path that does not collide
with any obstacles. Additionally, if the drone flies over a
sizable object with height, it will increase its own height
because it will use the object as the reference point for
the ground. If the drone is able to avoid obstacles,
it may be possible to develop a measurement option
that does not require the user to input a flight plan-the
drone will simply collect measurements everywhere in
an environment.

Multiple Drones: Since our system is automated
and does not require human supervision, there is no
reason why the computer program could not be con-
trolling multiple drones at once. We hope to extend
the functionality of our system to work with multiple
drones in order to speed up the measurement collection
process. One simple approach is to simply run the cur-
rent program simultaneously in multiple separate pro-
cesses and have the drones cover different parts of the
room. A more complicated approach will have the mul-
tiple drones in mind, and coordinate their paths in an
algorithmically efficient way.
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