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Abstract

Background: Automation of the parts of systematic review process, specifically the data extraction step, may be an

important strategy to reduce the time necessary to complete a systematic review. However, the state of the science

of automatically extracting data elements from full texts has not been well described. This paper performs a

systematic review of published and unpublished methods to automate data extraction for systematic reviews.

Methods: We systematically searched PubMed, IEEEXplore, and ACM Digital Library to identify potentially relevant

articles. We included reports that met the following criteria: 1) methods or results section described what entities

were or need to be extracted, and 2) at least one entity was automatically extracted with evaluation results that

were presented for that entity. We also reviewed the citations from included reports.

Results: Out of a total of 1190 unique citations that met our search criteria, we found 26 published reports

describing automatic extraction of at least one of more than 52 potential data elements used in systematic reviews.

For 25 (48 %) of the data elements used in systematic reviews, there were attempts from various researchers to

extract information automatically from the publication text. Out of these, 14 (27 %) data elements were completely

extracted, but the highest number of data elements extracted automatically by a single study was 7. Most of the

data elements were extracted with F-scores (a mean of sensitivity and positive predictive value) of over 70 %.

Conclusions: We found no unified information extraction framework tailored to the systematic review process, and

published reports focused on a limited (1–7) number of data elements. Biomedical natural language processing

techniques have not been fully utilized to fully or even partially automate the data extraction step of systematic reviews.

Background

Systematic reviews identify, assess, synthesize, and inter-

pret published and unpublished evidence, which improves

decision-making for clinicians, patients, policymakers, and

other stakeholders [1]. Systematic reviews also identify

research gaps to develop new research ideas. The steps to

conduct a systematic review [1–3] are:

1. Define the review question and develop criteria

for including studies

2. Search for studies addressing the review question

3. Select studies that meet criteria for inclusion in

the review

4. Extract data from included studies

5. Assess the risk of bias in the included studies,

by appraising them critically

6. Where appropriate, analyze the included data

by undertaking meta-analyses

7. Address reporting biases

Despite their widely acknowledged usefulness [4], the

process of systematic review, specifically the data extraction

step (step 4), can be time-consuming. In fact, it typically

takes 2.5–6.5 years for a primary study publication to be

included and published in a new systematic review [5]. Fur-

ther, within 2 years of the publication of systematic reviews,

23 % are out of date because they have not incorporated

new evidence that might change the systematic review’s

primary results [6].

Natural language processing (NLP), including text

mining, involves information extraction, which is the

discovery by computer of new, previously unfound infor-

mation by automatically extracting information from
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different written resources [7]. Information extraction

primarily constitutes concept extraction, also known as

named entity recognition, and relation extraction, also

known as association extraction. NLP handles written

text at level of documents, words, grammar, meaning,

and context. NLP techniques have been used to auto-

mate extraction of genomic and clinical information

from biomedical literature. Similarly, automation of the

data extraction step of the systematic review process

through NLP may be one strategy to reduce the time ne-

cessary to complete and update a systematic review. The

data extraction step is one of the most time-consuming

steps of a systematic review. Automating or even semi-

automating this step could substantially decrease the

time taken to complete systematic reviews and thus de-

crease the time lag for research evidence to be translated

into clinical practice. Despite these potential gains from

NLP, the state of the science of automating data extrac-

tion has not been well described.

To date, there is limited knowledge and methods on

how to automate the data extraction phase of the

systematic reviews, despite being one of the most time-

consuming steps. To address this gap in knowledge, we

sought to perform a systematic review of methods to

automate the data extraction component of the system-

atic review process.

Methods

Our methodology was based on the Standards for

Systematic Reviews set by the Institute of Medicine [8].

We conducted our study procedures as detailed below

with input from the Cochrane Heart Group US Satellite.

Eligibility criteria

We included a report that met the following criteria: 1)

the methods or results section describes what entities

were or needed to be extracted, and 2) at least one entity

was automatically extracted with evaluation results that

were presented for that entity.

We excluded a report that met any of the following

criteria: 1) the methods were not applied to the data

extraction step of a systematic review; 2) the report was

an editorial, commentary, or other non-original research

report; or 3) there was no evaluation component.

Information sources and searches

For collecting the initial set of articles for our review, we

developed search strategies with the help of the Cochrane

Heart Group US Satellite, which includes systematic

reviewers and a medical librarian. We refined these

strategies using relevant citations from related papers. We

searched three datasets: PubMed, IEEExplore, and ACM

digital library, and our searches were limited between

January 1, 2000 and January 6, 2015 (see Appendix 1). We

restricted our search to these dates because biomedical in-

formation extraction algorithms prior to 2000 are unlikely

to be accurate enough to be used for systematic reviews.

We retrieved articles that dealt with the extraction of

various data elements, defined as categories of data that

pertained to any information about or deriving from a

study, including details of methods, participants, setting,

context, interventions, outcomes, results, publications,

and investigators [1] from included study reports. After

we retrieved the initial set of reports from the search

results, we then evaluated reports included in the refer-

ences of these reports. We also sought expert opinion

for additional relevant citations.

Study selection

We first de-duplicated the retrieve citations. For calibra-

tion and refinement of the inclusion and exclusion criteria,

100 citations were randomly selected and independently

reviewed by a two authors (SRJ and PG). Disagreements

were resolved by consensus with a third author (MH). In a

second round, another set of 100 randomly selected ab-

stracts was independently reviewed by two study authors

(SRJ and PG), whereby we achieved a strong level of agree-

ment (kappa = 0.97). Given the high level of agreement,

the remaining studies were reviewed only by one author

(PG). In this phase, we identified reports as “not relevant”

or “potentially relevant”.

Two authors (PG and SRJ) independently reviewed the

full text of all citations (N = 74) that were identified as

“potentially relevant”. We classified included reports into

various categories based on the particular data element

that they attempted to extract from the original, scientific

articles. Example of these data elements might be overall

evidence, specific interventions, among others (Table 1).

We resolved disagreements between the two reviewers

through consensus with a third author (MDH).

Data collection process

Two authors (PG and SRJ) independently reviewed the

included articles to extract data, such as the particular

entity automatically extracted by the study, algorithm or

technique used, and evaluation results into a data

abstraction spreadsheet. We resolved disagreements

through consensus with a third author (MDH).

Data items

We reviewed the Cochrane Handbook for Systematic

Reviews [1], the CONsolidated Standards Of Reporting

Trials (CONSORT) [9] statement, the Standards for

Reporting of Diagnostic Accuracy (STARD) initiative [10],

and PICO [11], PECODR [12], and PIBOSO [13] frame-

works to obtain the data elements to be considered. PICO

stands for Population, Intervention, Comparison, Out-

comes; PECODR stands for Patient-Population-Problem,

Jonnalagadda et al. Systematic Reviews  (2015) 4:78 Page 2 of 16



Table 1 Data elements, category, sources and existing automation work

Data element Category Included in standards Published method to extract?

Total number of participants Participants Cochrane, PICO, PECODR, PIBOSO, STARD Yes [12, 13, 16–20, 23, 24, 28–30, 32, 39]

Settings Participants Cochrane, CONSORT, STARD No

Diagnostic criteria Participants Cochrane, STARD No

Age Participants Cochrane, STARD Yes [24, 29, 39, 41]

Sex Participants Cochrane, STARD Yes [24, 29, 41]

Country Participants Cochrane Yes [24, 39]

Co-morbidity Participants Cochrane, STARD Yes [21]

Socio-demographics Participants Cochrane, STARD No

Spectrum of presenting symptoms,
current treatments, recruitment centers

Participants STARD Yes [21, 24, 28, 29, 32, 41]

Ethnicity Participants Cochrane Yes [41]

Date of study Participants Cochrane Yes [39]

Date of recruitment and follow-up Participants CONSORT, STARD No

Participant sampling Participants STARD No

Total number of intervention groups Intervention Cochrane Yes [34, 35]

Specific intervention Intervention Cochrane, PICO, PIBOSO, PECODR Yes [12, 13, 16–20, 22, 24, 28, 34, 39, 40]

Intervention details (sufficient for replication,
if feasible)

Intervention Cochrane, CONSORT Yes [36]

Integrity of intervention Intervention Cochrane No

Outcomes and time points (i) collected;
(ii) reported

Outcomes Cochrane, CONSORT, PICO, PECODR,
PIBOSO

Yes [12, 13, 16–20, 24, 25, 28, 34–36, 40]

Outcome definition (with diagnostic criteria
if relevant)

Outcomes Cochrane No

Unit of measurement (if relevant) Outcomes Cochrane No

For scales: upper and lower limits, and
whether high or low score is good

Outcomes Cochrane No

Comparison Comparisons PICO, PECODR Yes [12, 16, 22, 23]

Sample size Results Cochrane, CONSORT Yes [36, 40]

Missing participants Results Cochrane No

Summary data for each intervention group
(e.g. 2 × 2 table for dichotomous data; means
and SDs for continuous data)

Results Cochrane, PECODR, STARD No

Estimate of effect with confidence interval;
P value

Results Cochrane No

Subgroup analyses Results Cochrane No

Adverse events and side effects for each
study group

Results CONSORT, STARD No

Overall evidence Interpretation CONSORT Yes [26, 42]

Generalizability: external validity of trial
findings

Interpretation CONSORT Yes [25]

Research questions and hypotheses Objectives CONSORT, PECODR, PIBOSO, STARD Yes [24, 25]

Reference standard and its rationale Method STARD No

Technical specifications of material and
methods involved including how and
when measurements were taken,
and/or cite references for index tests
and reference standard

Method STARD No

Study design Method Cochrane, PIBOSO Yes [13, 18, 20, 24]

Total study duration Method Cochrane, PECODR Yes [12, 29, 40]
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Exposure-Intervention, Comparison, Outcome, Duration

and Results; and PIBOSO stands for Population, Interven-

tion, Background, Outcome, Study Design, Other.

Data synthesis and analysis

Because of the large variation in study methods and mea-

surements, a meta-analysis of methodological features and

contextual factors associated with the frequency of data

extraction methods was not possible. We therefore

present a narrative synthesis of our findings. We did not

thoroughly assess risk of bias, including reporting bias, for

these reports because the study designs did not match

domains evaluated in commonly used instruments such as

the Cochrane Risk of Bias tool [1] or QUADAS-2 instru-

ment used for systematic reviews of randomized trials and

diagnostic test accuracy studies, respectively [14].

Results

Study selection

Of 1190 unique citations retrieved, we selected 75 reports

for full-text screening, and we included 26 articles that

met our inclusion criteria (Fig. 1). Agreement on abstract

and full-text screening was 0.97 and 1.00.

Study characteristics

Table 1 provides a list of items to be considered in the

data extraction process based on the Cochrane Handbook

(Appendix 2) [1], CONSORT statement [9], STARD initia-

tive [10], and PICO [11], PECODR [12], and PIBOSO [13]

frameworks. We provide the major group for each field

and report which standard focused on that field. Finally,

we report whether there was a published method to ex-

tract that field. Table 1 also identifies the data elements

relevant to systematic review process categorized by their

domain and the standard from which the element was

adopted and was associated with existing automation

methods, where present.

Results of individual studies

Table 2 summarizes the existing information extraction

studies. For each study, the table provides the citation to

the study (study: column 1), data elements that the study

focused on (extracted elements: column 2), dataset used

by the study (dataset: column 3), algorithm and methods

used for extraction (method: column 4), whether the

study extracted only the sentence containing the data

elements, full concept or neither of these (sentence/

Table 1 Data elements, category, sources and existing automation work (Continued)

Sequence generation Method Cochrane Yes [27]

Allocation sequence concealment Method Cochrane Yes [27]

Blinding Method Cochrane, CONSORT, STARD Yes [27]

Methods used to generate random
allocation sequence, implementation

Method CONSORT, STARD Yes [25]

Other concerns about bias Method Cochrane No

Methods used to compare groups for primary
outcomes and for additional analyses

Method CONSORT, STARD No

Methods for calculating test reproducibility Method STARD No

Definition and rationale for the units, cutoffs
and/or categories of the results of the index
tests and reference standard

Method STARD No

Number, training, and expertise of the persons
executing and reading the index tests and
the reference standard

Method STARD No

Participant flow: flow of participants through
each stage: randomly assigned, received
intended treatment, completed study,
analyzed for primary outcome, inclusion
and exclusion criteria

Method CONSORT Yes [36, 37, 40]

Funding source Miscellaneous Cochrane No

Key conclusions of the study authors Miscellaneous Cochrane Yes [26]

Clinical applicability of the study findings Miscellaneous STARD No

Miscellaneous comments from the
study authors

Miscellaneous Cochrane No

References to other relevant studies Miscellaneous Cochrane No

Correspondence required Miscellaneous Cochrane No

Miscellaneous comments by the review
authors

Miscellaneous Cochrane No
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concept/neither: column 5), whether the extraction was

done from full-text or abstracts (full text/abstract: col-

umn 6) and the main accuracy results reported by the

system (results: column 7). The studies are arranged by

increasing complexity by ordering studies that classified

sentences before those that extracted the concepts and

ordering studies that extracted data from abstracts

before those that extracted data from full-text reports.

The accuracy of most (N = 18, 69 %) studies was

measured using a standard text mining metric known as

F-score, which is the harmonic mean of precision (posi-

tive predictive value) and recall (sensitivity). Some

studies (N = 5, 19 %) reported only the precision of their

method, while some reported the accuracy values (N = 2,

8 %). One study (4 %) reported P5 precision, which

indicates the fraction of positive predictions among the

top 5 results returned by the system.

Studies that did not implement a data extraction system

Dawes et al. [12] identified 20 evidence-based medicine

journal synopses with 759 extracts in the corresponding

PubMed abstracts. Annotators agreed with the identifi-

cation of an element 85 and 87 % for the evidence-based

medicine synopses and PubMed abstracts, respectively.

After consensus among the annotators, agreement rose

to 97 and 98 %, respectively. The authors proposed vari-

ous lexical patterns and developed rules to discover each

PECODR element from the PubMed abstracts and the

corresponding evidence-based medicine journal synop-

ses that might make it possible to partially or fully auto-

mate the data extraction process.

Studies that identified sentences but did not extract data

elements from abstracts only

Kim et al. [13] used conditional random fields (CRF)

[15] for the task of classifying sentences in one of the

PICO categories. The features were based on lexical,

syntactic, structural, and sequential information in the

data. The authors found that unigrams, section head-

ings, and sequential information from preceding sen-

tences were useful features for the classification task.

They used 1000 medical abstracts from PIBOSO corpus

and achieved micro-averaged F-scores of 91 and 67 %

over datasets of structured and unstructured abstracts,

respectively.

Fig. 1 Process of screening the articles to be included for this systematic review
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Table 2 A summary of included extraction methods and their evaluation

Study Extracted elements Dataset Method Sentence/Concept/Neither Full text (F)/Abstract (A) Results

Dawes et al.
(2007) [12]

PECODR 20 evidence-based
medicine journal
synopses (759
extracts from the
corresponding
PubMed abstracts)

Proposed potential lexical
patterns and assessed
using NVIvo software

Neither Abstract Agreement among the annotators was
86.6 and 85 %, which rose up to 98.4
and 96.9 % after consensus. No
automated system.

Kim et al.
(2011) [13]

PIBOSO 1000 medical abstracts
(PIBOSO corpus)

Conditional random fields
with various features
based on lexical,
semantic, structural and
sequential information

Sentence Abstract Micro-averaged F-scores on structured
and unstructured: 80.9 and 66.9 %,
63.1 % on an external dataset

Boudin et al.
(2010) [16]

PICO (I and C were
combined together)

26,000 abstracts from PubMed,
first sentences from the
structured abstract

Combination of multiple
supervised classification
algorithms: random
forests (RF), naive Bayes
(NB), support vector
machines (SVM), and
multi-layer perceptron
(MLP)

Sentence Abstract F-score of 86.3 % for P, 67 % for I
(and C), and 56.3 % for O

Huang et al.
(2011) [17]

PICO (except C) 23,472 sentences from the
structured abstracts

naïve Bayes Sentence Abstract F-measure of 0.91 for patient/problem,
0.75 for intervention, and 0.88 for
outcome

Verbeke et al.
(2012) [18]

PIBOSO PIBOSO corpus Statistical relational
learning with kernels,
kLog

Sentence Abstract Micro-averaged F of 84.29 % on
structured abstracts and 67.14 % on
unstructured abstracts

Huang et al.
(2013) [19]

PICO (except C) 19,854 structured abstracts of
randomized controlled trials

First sentence of the
section or all sentences in
the section, NB classifier

Sentence Abstract First sentence of the section: F-scores
for P: 0.74, I: 0.66, and O: 0.73

All sentences in the section: F-scores
for P: 0.73, I: 0.73, and O: 0.74

Hassanzadeh
et al. (2014)
[20]

PIBOSO (Population-
Intervention-Background-
Outcome-Study
Design-Other)

PIBOSO corpus, 1000
structured and unstructured
abstracts

CRF with discriminate set
of features

Sentence Abstract Micro-averaged F-score: 91

Robinson
(2012) [21]

Patient-oriented evidence:
morbidity, morality,
symptom severity,
quality of life

1356 PubMed abstracts SVM, NB, multinomial NB,
logistic regression

Sentence Abstract Best results achieved via SVM:
F-measure of 0.86

Chung (2009)
[22]

Intervention, comparisons 203 RCT abstracts for training
and 124 for testing

Coordinating constructs
are identified using a full
parser, which are further
classified as positive or
not using CRF

Sentence Abstract F-score: 0.76

Hara and
Matsumoto
(2007) [23]

Patient population,
comparison

200 abstracts labeled as
‘Neoplasms’ and ‘Clinical Trial,
Phase III’

Categorizing noun
phrases (NPs) into classes
such as ‘Disease’,

Sentence Abstract F-measure of 0.91 for the task of noun
phrase classification. Results of sentence
classification: F-,measure of 0.8 for
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Table 2 A summary of included extraction methods and their evaluation (Continued)

‘Treatment’ etc. using CRF
and use regular
expressions on the
sentence with classified
Noun Phrases

patient population and 0.81 for
comparisons

Davis-
Desmond and
Molla (2012)
[42]

Detecting statistical
evidence

194 randomized controlled trial
abstracts from PubMed

Rule-based classifier using
negation expressions

Sentence Abstract Accuracy: between 88 and 98 % at
95 % CI

Zhao et al.
(2012) [24]

Patient, result,
Intervention, Study
Design, Research Goal

19,893 medical abstracts and
full text articles from 17 journal
websites

Conditional random fields Sentence Full text F-scores for sentence classification:
patient: 0.75, intervention: 0.61, result:
0.91, study design: 0.79, research goal:
0.76

Hsu et al.
(2012) [25]

Hypothesis, statistical
method, outcomes and
generalizability

42 full-text papers Regular expressions Sentence Full text For classification task, F-score of 0.86 for
hypothesis, 0.84 for statistical method,
0.9 for outcomes, and 0.59 for
generalizability

Song et al.
(2013) [26]

Analysis (statistical facts),
general (generally
accepted facts),
recommend
(recommendations about
interventions), rule
(guidelines)

346 sentences from three
clinical guideline document

Maximum entropy
(MaxEnt), SVM, MLP, radial
basis function network
(RBFN), NB as classifiers
and information gain (IG),
genetic algorithm (GA) for
feature selection

Sentence Full text F-score of 0.98 for classifying sentences

Demner-
Fushman and
Lin (2007) [28]

PICO (I and C were
combined)

275 manually annotated
abstracts

Rule-based approach to
identify sentence
containing PICO and
supervised classifier for
Outcomes

Concept Abstract Precision of 0.8 for population, 0.86 for
problem, 0.80 for intervention, 0.64–
0.95 for outcome

Kelly and Yang
(2013) [29]

Age of subjects, duration
of study, ethnicity of
subjects, gender of
subjects, health status of
subjects, number of
subjects

386 abstracts from
PubMed obtained
with the query
‘soy and cancer’

Regular expressions,
gazetteer

Concept Abstract F-scores for age of subjects: 1.0,
duration of study: 0.911, ethnicity of
subjects: 0.949, gender of subjects: 1.0,
health status of subjects: 0.874, number
of subjects: 0.963

Hansen et al.
(2008) [30]

Number of trial
participants

233 abstracts from PubMed Support vector machines Concept Abstract F-measure: 0.86

Xu et al.
(2007) [32]

Subject demographics
such as subject
descriptors, number of
participants and diseases/
symptoms and their
descriptors

250 randomized controlled trial
abstracts

Text classification
augmented with hidden
Markov models was used
to identify sentences;
rules over parse tree to
extract relevant
information

Sentence, concept Abstract Precision for subject descriptors: 0.83 %,
number of trial participants: 0.923,
diseases/symptoms: 51.0 %, descriptors
of diseases/symptoms: 92.0 %

Summerscales
et al. (2009)
[34]

Treatments, groups and
outcomes

100 abstracts
from BMJ

Conditional random fields Concept Abstract F-scores for treatments: 0.49, groups:
0.82, outcomes: 0.54
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Table 2 A summary of included extraction methods and their evaluation (Continued)

Summerscales
et al. (2011)
[35]

Groups, outcomes, group
sizes, outcome numbers

263 abstracts from BMJ

between 2005 and 2009
CRF, MaxEnt, template
filling

Concept Abstract F-scores for groups: 0.76, outcomes:
0.42, group sizes: 0.80, outcome
numbers: 0.71

Kiritchenko
et al. (2010)
[36]

Eligibility criteria, sample
size, drug dosage,
primary outcomes

50 full-text journal
articles with 1050
test instances

SVM classifier to recover
relevant sentences,
extraction rules for correct
solutions

Concept Full text P5 precision for the classifier: 0.88,
precision and recall of the extraction
rules: 93 and 91 %, respectively

Lin et al.
(2010) [39]

Intervention, age group
of the patients,
geographical area,
number of patients, time
duration of the study

93 open access
full-text literature documenting
oncological and cardio-vascular
studies from 2005
to 2008

Linear chain, conditional
random fields

Concept Full text Precision of 0.4 for intervention, 0.63 for
age group, 0.44 for geographical area,
0.43 for number of patients and 0.83
for time period

Restificar et al.
(2012) [37]

Eligibility criteria 44,203 full-text articles with
clinical trials

Latent Dirichlet allocation
along with logistic
regression

Concept Full text 75 and 70 % accuracy based on
similarity for inclusion and exclusion
criteria, respectively.

De Bruijn et al.
(2008) [40]

Eligibility criteria, sample
size, treatment duration,
intervention, primary and
secondary outcomes

88 randomized
controlled trials
full-text articles from
five medical journals

SVM classifier to identify
the most promising
sentences; manually
crafted weak extraction
rules for the information
elements

Sentence, concept Full text Precision for eligibility criteria: 0.69,
sample size: 0.62, treatment duration:
0.94, intervention: 0.67, primary
outcome: 1.00, secondary outcome:
0.67

Zhu et al.
(2012) [41]

Subject demographics:
patient age, gender,
disease and ethnicity

50 randomized
controlled trials
full-text articles

Manually crafted rules for
extraction from the parse
tree

Concept Full text Disease extraction: for exact matching,
the F-score was 0.64. For partially
matched, it was 0.85.

Marshall et al.
(2014) [27]

Risk of bias concerning
sequence generation,
allocation concealment
and blinding

2200 clinical trial reports Soft-margin SVM for a
joint model of risk of bias
prediction and supporting
sentence extraction

Sentence Full text For sentence identification: F-score of
0.56, 0.48, 0.35 and 0.38 for random
sequence generation, allocation
concealment, blinding of participants
and personnel, and blinding of
outcome assessment
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Boudin et al. [16] utilized a combination of multiple su-

pervised classification techniques for detecting PICO ele-

ments in the medical abstracts. They utilized features such

as MeSH semantic types, word overlap with title, number

of punctuation marks on random forests (RF), naive Bayes

(NB), support vector machines (SVM), and multi-layer

perceptron (MLP) classifiers. Using 26,000 abstracts from

PubMed, the authors took the first sentence in the struc-

tured abstracts and assigned a label automatically to build

a large training data. They obtained an F-score of 86 % for

identifying participants (P), 67 % for interventions (I) and

controls (C), and 56 % for outcomes (O).

Huang et al. [17] used a naive Bayes classifier for the

PICO classification task. The training data were generated

automatically from the structured abstracts. For instance,

all sentences in the section of the structured abstract that

started with the term “PATIENT” were used to identify

participants (P). In this way, the authors could generate a

dataset of 23,472 sentences. Using 23,472 sentences from

the structured abstracts, they obtained an F-score of 91 %

for identifying participants (P), 75 % for interventions (I),

and 88 % for outcomes (O).

Verbeke et al. [18] used a statistical relational learning-

based approach (kLog) that utilized relational features for

classifying sentences. The authors also used the PIBOSO

corpus for evaluation and achieved micro-averaged F-

score of 84 % on structured abstracts and 67 % on un-

structured abstracts, which was a better performance than

Kim et al. [13].

Huang et al. [19] used 19,854 structured extracts and

trained two classifiers: one by taking the first sentences of

each section (termed CF by the authors) and the other by

taking all the sentences in each section (termed CA by the

authors). The authors used the naive Bayes classifier and

achieved F-scores of 74, 66, and 73 % for identifying

participants (P), interventions (I), and outcomes (O),

Table 3 Checklist of items to consider in data collection or data

extraction from Cochrane Handbook [1]

Source

• Study ID (created by review author)

• Report ID (created by review author)

• Review author ID (created by review author)

• Citation and contact details

Eligibility

• Confirm eligibility for review

• Reason for exclusion

Methods

• Study design

• Total study duration

• Sequence generationa

• Allocation sequence concealmenta

• Blindinga

• Other concerns about biasa

Participants

• Total number

• Setting

• Diagnostic criteria

• Age

• Sex

• Country

• [Co-morbidity]

• [Socio-demographics]

• [Ethnicity]

• [Date of study]

Interventions

• Total number of intervention groups.

For each intervention and comparison group of interest:

• Specific intervention

• Intervention details (sufficient for replication, if feasible)

• [Integrity of intervention]

Outcomes

• Outcomes and time points (i) collected; (ii) reporteda

For each outcome of interest:

• Outcome definition (with diagnostic criteria if relevant)

• Unit of measurement (if relevant)

• For scales: upper and lower limits, and whether high
or low score is good

Results

• Number of participants allocated to each intervention group.

For each outcome of interest:

• Sample size

• Missing participantsa

Table 3 Checklist of items to consider in data collection or

data extraction from Cochrane Handbook [1] (Continued)

• Summary data for each intervention group (e.g. 2 × 2 table for
dichotomous data; means and SDs for continuous data)

• [Estimate of effect with confidence interval; P value]

• [Subgroup analyses]

Miscellaneous

• Funding source

• Key conclusions of the study authors

• Miscellaneous comments from the study authors

• References to other relevant studies

• Correspondence required

• Miscellaneous comments by the review authors

Items without parentheses should normally be collected in all reviews; items

in square brackets may be relevant to some reviews and not to others
aFull description required for standard items in the ‘Risk of bias’ tool
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respectively, by the CF classifier. The CA classifier gave F-

scores of 73, 73, and 74 % for identifying participants (P),

interventions (I), and outcomes (O), respectively.

Hassanzadeh et al. [20] used the PIBOSO corpus for the

identification of sentences with PIBOSO elements. Using

conditional random fields (CRF) with discriminative set of

features, they achieved micro-averaged F-score of 91 %.

Robinson [21] used four machine learning models, 1)

support vector machines, 2) naive Bayes, 3) naive Bayes

multinomial, and 4) logistic regression to identify medical

abstracts that contained patient-oriented evidence or not.

These data included morbidity, mortality, symptom sever-

ity, and health-related quality of life. On a dataset of 1356

PubMed abstracts, the authors achieved the highest accur-

acy using a support vector machines learning model and

achieved an F-measure of 86 %.

Chung [22] utilized a full sentence parser to identify

the descriptions of the assignment of treatment arms in

clinical trials. The authors used predicate-argument struc-

ture along with other linguistic features with a maximum

entropy classifier. They utilized 203 abstracts from ran-

domized trials for training and 124 abstracts for testing

and achieved an F-score of 76 %.

Hara and Matsumoto [23] dealt with the problem of

extracting “patient population” and “compared treat-

ments” from medical abstracts. Given a sentence from the

abstract, the authors first performed base noun-phrase

chunking and then categorized the base noun-phrase into

one of the five classes: “disease”, “treatment”, “patient”,

“study”, and “others” using support vector machine and

conditional random field models. After categorization, the

authors used regular expression to extract the target

words for patient population and comparison. The au-

thors used 200 abstracts including terms such as “neo-

plasms” and “clinical trial, phase III” and obtained 91 %

accuracy for the task of noun phrase classification. For

sentence classification, the authors obtained a precision of

80 % for patient population and 82 % for comparisons.

Studies that identified only sentences but did not extract

data elements from full-text reports

Zhao et al. [24] used two classification tasks to extract

study data including patient details, including one at the

sentence level and another at the keyword level. The au-

thors first used a five-class scheme including 1) patient, 2)

result, 3) intervention, 4) study design, and 5) research

goal and tried to classify sentences into one of these five

classes. They further used six classes for keywords such as

sex (e.g., male, female), age (e.g., 54-year-old), race (e.g.,

Chinese), condition (e.g., asthma), intervention, and study

design (e.g., randomized trial). They utilized conditional

random fields for the classification task. Using 19,893

medical abstracts and full-text articles from 17 journal

websites, they achieved F-scores of 75 % for identifying

patients, 61 % for intervention, 91 % for results, 79 % for

study design, and 76 % for research goal.

Hsu et al. [25] attempted to classify whether a sentence

contains the “hypothesis”, “statistical method”, “outcomes”,

or “generalizability” of the study and then extracted the

values. Using 42 full-text papers, the authors obtained

F-scores of 86 % for identifying hypothesis, 84 % for

statistical method, 90 % for outcomes, and 59 % for

generalizability.

Song et al. [26] used machine learning-based classifiers

such as maximum entropy classifier (MaxEnt), support

vector machines (SVM), multi-layer perceptron (MLP),

naive Bayes (NB), and radial basis function network

(RBFN) to classify the sentences into categories such as

analysis (statistical facts found by clinical experiment),

general (generally accepted scientific facts, process, and

methodology), recommendation (recommendations about

interventions), and rule (guidelines). They utilized the

principle of information gain (IG) as well as genetic algo-

rithm (GA) for feature selection. They used 346 sentences

from the clinical guideline document and obtained an F-

score of 98 % for classifying sentences.

Marshall et al. [27] used soft-margin support vector ma-

chines in a joint model for risk of bias assessment along

with supporting sentences for random sequence gener-

ation, allocation concealment, blinding of participants and

personnel, and blinding of outcome assessment, among

others. They utilized presence of unigrams in the support-

ing sentences as features in their model. Working with full

text of 2200 clinical trials, the joint model achieved F-

scores of 56, 48, 35, and 38 % for identifying sentences

corresponding to random sequence generation, allocation

concealment, blinding of participants and personnel, and

blinding of outcome assessment, respectively.

Studies that identified data elements only from abstracts

but not from full texts

Demner-Fushman and Lin [28] used a rule-based ap-

proach to identify sentences containing PICO. Using 275

manually annotated abstracts, the authors achieved an ac-

curacy of 80 % for population extraction and 86 % for

problem extraction. They also utilized a supervised classi-

fier for outcome extraction and achieved accuracy from

64 to 95 % across various experiments.

Kelly and Yang [29] used regular expressions and gaz-

etteer to extract the number of participants, participant

age, gender, ethnicity, and study characteristics. The au-

thors utilized 386 abstracts from PubMed obtained with

the query “soy and cancer” and achieved F-scores of

96 % for identifying the number of participants, 100 %

for age of participants, 100 % for gender of participants,

95 % for ethnicity of participants, 91 % for duration of

study, and 87 % for health status of participants.
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Hansen et al. [30] used support vector machines [31]

to extract number of trial participants from abstracts of

the randomized control trials. The authors utilized fea-

tures such as part-of-speech tag of the previous and next

words and whether the sentence is grammatically

complete (contained a verb). Using 233 abstracts from

PubMed, they achieved an F-score of 86 % for identify-

ing participants.

Xu et al. [32] utilized text classifications augmented

with hidden Markov models [33] to identify sentences

about subject demographics. These sentences were then

parsed to extract information regarding participant de-

scriptors (e.g., men, healthy, elderly), number of trial

participants, disease/symptom name, and disease/symp-

tom descriptors. After testing over 250 RCT abstracts,

the authors obtained an accuracy of 83 % for participant

descriptors: 83 %, 93 % for number of trial participants,

51 % for diseases/symptoms, and 92 % for descriptors of

diseases/symptoms.

Summerscales et al. [34] used a conditional random

field-based approach to identify various named entities

such as treatments (drug names or complex phrases)

and outcomes. The authors extracted 100 abstracts of

randomized trials from the BMJ and achieved F-scores

of 49 % for identifying treatment, 82 % for groups, and

54 % for outcomes.

Summerscales et al. [35] also proposed a method for

automatic summarization of results from the clinical trials.

The authors first identified the sentences that contained at

least one integer (group size, outcome numbers, etc.).

They then used the conditional random field classifier to

find the entity mentions corresponding to treatment

groups or outcomes. The treatment groups, outcomes,

etc. were then treated as various “events.” To identify all

the relevant information for these events, the authors uti-

lized templates with slots. The slots were then filled using

a maximum entropy classifier. They utilized 263 abstracts

from the BMJ and achieved F-scores of 76 % for identify-

ing groups, 42 % for outcomes, 80 % for group sizes, and

71 % for outcome numbers.

Studies that identified data elements from full-text

reports

Kiritchenko et al. [36] developed ExaCT, a tool that assists

users with locating and extracting key trial characteristics

such as eligibility criteria, sample size, drug dosage, and

primary outcomes from full-text journal articles. The au-

thors utilized a text classifier in the first stage to recover

the relevant sentences. In the next stage, they utilized ex-

traction rules to find the correct solutions. The authors

evaluated their system using 50 full-text articles describing

randomized trials with 1050 test instances and achieved a

P5 precision of 88 % for identifying the classifier. Precision

and recall of their extraction rules was found to be 93 and

91 %, respectively.

Restificar et al. [37] utilized latent Dirichlet allocation

[38] to infer the latent topics in the sample documents

and then used logistic regression to compute the probabil-

ity that a given candidate criterion belongs to a particular

topic. Using 44,203 full-text reports of randomized trials,

the authors achieved accuracies of 75 and 70 % for inclu-

sion and exclusion criteria, respectively.

Lin et al. [39] used linear-chain conditional random field

for extracting various metadata elements such as number

of patients, age group of the patients, geographical area,

intervention, and time duration of the study. Using 93

full-text articles, the authors achieved a threefold cross

validation precision of 43 % for identifying number of

patients, 63 % for age group, 44 % for geographical area,

40 % for intervention, and 83 % for time period.

De Bruijn et al. [40] used support vector machine classi-

fier to first identify sentences describing information

elements such as eligibility criteria, sample size, etc. The

authors then used manually crafted weak extraction rules

to extract various information elements. Testing this two-

stage architecture on 88 randomized trial reports, they ob-

tained a precision of 69 % for identifying eligibility criteria,

62 % for sample size, 94 % for treatment duration, 67 %

for intervention, 100 % for primary outcome estimates,

and 67 % for secondary outcomes.

Zhu et al. [41] also used manually crafted rules to

extract various subject demographics such as disease,

age, gender, and ethnicity. The authors tested their

method on 50 articles and for disease extraction ob-

tained an F-score of 64 and 85 % for exactly matched

and partially matched cases, respectively.

Risk of bias across studies

In general, many studies have a high risk of selection

bias because the gold standards used in the respective

studies were not randomly selected. The risk of perform-

ance bias is also likely to be high because the investigators

were not blinded. For the systems that used rule-based ap-

proaches, it was unclear whether the gold standard was

used to train the rules or if there were a separate training

set. The risk of attrition bias is unclear based on the study

design of these non-randomized studies evaluating the per-

formance of NLP methods. Lastly, the risk of reporting bias

is unclear because of the lack of protocols in the develop-

ment, implementation, and evaluation of NLP methods.

Discussion

Summary of evidence

Extracting the data elements

a. Participants—Sixteen studies explored the extraction

of the number of participants [12, 13, 16–20, 23, 24,
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28–30, 32, 39], their age [24, 29, 39, 41], sex [24,

39], ethnicity [41], country [24, 39], comorbidities

[21], spectrum of presenting symptoms, current

treatments, and recruiting centers [21, 24, 28, 29, 32,

41], and date of study [39]. Among them, only six

studies [28–30, 32, 39, 41] extracted data elements

as opposed to highlighting the sentence containing

the data element. Unfortunately, each of these

studies used a different corpus of reports, which

makes direct comparisons impossible. For example,

Kelly and Yang [29] achieved high F-scores of 100 %

for age of participants, 91 % for duration of study,

95 % for ethnicity of participants, 100 % for gender

of subjects, 87 % for health status of participants,

and 96 % for number of participants on a dataset of

386 abstracts.

b. Intervention—Thirteen studies explored the

extraction of interventions [12, 13, 16–20, 22, 24, 28,

34, 39, 40], intervention groups [34, 35], and

intervention details (for replication if feasible) [36].

Of these, only six studies [28, 34–36, 39, 40]

extracted intervention elements. Unfortunately

again, each of these studies used a different corpus.

For example, Kiritchenko et al. [36] achieved an

F-score of 75–86 % for intervention data elements

on a dataset of 50 full-text journal articles.

c. Outcomes and comparisons—Fourteen studies also

explored the extraction of outcomes and time points

of collection and reporting [12, 13, 16–20, 24, 25,

28, 34–36, 40] and extraction of comparisons [12,

16, 22, 23]. Of these, only six studies [28, 34–36, 40]

extracted the actual data elements. For example, De

Bruijn et al. [40] obtained an F-score of 100 % for

extracting primary outcome and 67 % for secondary

outcome from 88 full-text articles. Summerscales

[35] utilized 263 abstracts from the BMJ and

achieved an F-score of 42 % for extracting outcomes.

d. Results—Two studies [36, 40] extracted sample size

data element from full text on two different data

sets. De Bruijn et al. [40] obtained an accuracy of

67 %, and Kiritchenko et al. [36] achieved an

F-score of 88 %.

e. Interpretation—Three studies explored extraction of

overall evidence [26, 42] and external validity of trial

findings [25]. However, all these studies only

highlighted sentences containing the data

elements relevant to interpretation.

f. Objectives—Two studies [24, 25] explored the

extraction of research questions and hypotheses.

However, both these studies only highlighted

sentences containing the data elements relevant

to interpretation.

g. Methods—Twelve studies explored the extraction of

the study design [13, 18, 20, 24], study duration

[12, 29, 40], randomization method [25], participant

flow [36, 37, 40], and risk of bias assessment [27]. Of

these, only four studies [29, 36, 37, 40] extracted the

corresponding data elements from text using

different sets of corpora. For example, Restificar

et al. [37] utilized 44,203 full-text clinical trial

articles and achieved accuracies of 75 and 70 %

for inclusion and exclusion criteria, respectively.

h. Miscellaneous—One study [26] explored extraction

of key conclusion sentence and achieved a high

F-score of 98 %.

Related reviews and studies

Previous reviews on the automation of systematic review

processes describe technologies for automating the over-

all process or other steps. Tsafnat et al. [43] surveyed the

informatics systems that automate some of the tasks of

systematic review and report systems for each stage of

systematic review. Here, we focus on data extraction.

None of the existing reviews [43–47] focus on the data

extraction step. For example, Tsafnat et al. [43] pre-

sented a review of techniques to automate various as-

pects of systematic reviews, and while data extraction

has been described as a task in their review, they only

highlighted three studies as an acknowledgement of the

ongoing work. In comparison, we identified 26 studies

and critically examined their contribution in relation to

all the data elements that need to be extracted to fully

support the data extraction step.

Thomas et al. [44] described the application of text

mining technologies such as automatic term recognition,

document clustering, classification, and summarization

to support the identification of relevant studies in

systematic reviews. The authors also pointed out the

potential of these technologies to assist at various

stages of the systematic review. Slaughter et al. [45] dis-

cussed necessary next steps towards developing “living

systematic reviews” rather than a static publication,

where the systematic reviews can be continuously

updated with the latest knowledge available. The

authors mentioned the need for development of new

tools for reporting on and searching for structured data

from clinical trials.

Tsafnat et al. [46] described four main tasks in system-

atic review: identifying the relevant studies, evaluating

risk of bias in selected trials, synthesis of the evidence,

and publishing the systematic reviews by generating

human-readable text from trial reports. They mentioned

text extraction algorithms for evaluating risk of bias and

evidence synthesis but remain limited to one particular

method for extraction of PICO elements.

Most natural language processing research has

focused on reducing the workload for the screening

step of systematic reviews (Step 3). Wallace et al. [48,
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49] and Miwa et al. [50] proposed an active learning

framework to reduce the workload in citation screening

for inclusion in the systematic reviews. Jonnalagadda

et al. [51] designed a distributional semantics-based

relevance feedback model to semi-automatically screen ci-

tations. Cohen et al. [52] proposed a module for grouping

studies that are closely related and an automated system

to rank publications according to the likelihood for meet-

ing the inclusion criteria of a systematic review. Choong

et al. [53] proposed an automated method for automatic

citation snowballing to recursively pursue relevant litera-

ture for helping in evidence retrieval for systematic re-

views. Cohen et al. [54] constructed a voting perceptron-

based automated citation classification system to classify

each article as to whether it contains high-quality, drug-

specific evidence. Adeva et al. [55] also proposed a classifi-

cation system for screening articles for systematic review.

Shemilt et al. [56] also discussed the use of text mining to

reduce screening workload in systematic reviews.

Research implications

No standard gold standards or dataset

Among the 26 studies included in this systematic review,

only three of them use a common corpus, namely 1000

medical abstracts from the PIBOSO corpus. Unfortu-

nately, even that corpus facilitates only classification of

sentences into whether they contain one of the data ele-

ments corresponding to the PIBOSO categories. No two

other studies shared the same gold standard or dataset

for evaluation. This limitation made it impossible for us

to compare and assess the relative significance of the

reported accuracy measures.

Separate systems for each data element

Few data elements, which are also relatively straightfor-

ward to extract automatically, such as the total number

of participants (14 overall and 5 for extracting the actual

data elements), have a relatively higher number of stud-

ies aiming towards extracting the same data element.

This is not the case with other data elements. There are

27 out of 52 potential data elements that have not been

explored for automated extraction, even if for highlight-

ing the sentences containing them; seven more data ele-

ments were explored just by one study. There are 38 out

of 52 potential data elements (>70 %) that have not been

explored for automated extraction of the actual data ele-

ments; three more data elements were explored just by

one study. The highest number of data elements

extracted by a single study is only seven (14 %). This

finding means that not only are more studies needed to

explore the remaining 70 % data elements, but that there

is an urgent need for a unified framework or system to

extract all necessary data elements. The current state of

informatics research for data extraction is exploratory,

and multiple studies need to be conducted using the

same gold standard and on the extraction of the same

data elements for effective comparison.

Limitations

Our study has limitations. First, there is a possibility that

data extraction algorithms were not published in journals

or that our search might have missed them. We sought to

minimize this limitation by searching in multiple biblio-

graphic databases, including PubMed, IEEExplore, and

ACM Digital Library. However, investigators may have

also failed to publish algorithms that had lower F-scores

than were previously reported, which we would not have

captured. Second, we did not publish a protocol a priori,

and our initial findings may have influenced our methods.

However, we performed key steps, including screening,

full-text review, and data extraction in duplicate to

minimize potential bias in our systematic review.

Future work

“On demand” access to summarized evidence and best

practices has been considered a sound strategy to satisfy

clinicians’ information needs and enhance decision-

making [57–65]. A systematic review of 26 studies con-

cluded that information-retrieval technology produces

positive impact on physicians in terms of decision en-

hancement, learning, recall, reassurance, and confirmation

[62]. Slaughter et al. [45] discussed necessary next steps

towards developing “living systematic reviews” rather than

a static publication, where the systematic reviews can be

continuously updated with the latest knowledge available.

The authors mention the need for development of new

tools for reporting on and searching for structured data

from published literature. Automated information extrac-

tion framework that extract data elements have the poten-

tial to assist the systematic reviewers and to eventually

automate the screening and data extraction steps.

Medical science is currently witnessing a rapid pace at

which medical knowledge is being created—75 clinical

trials a day [66]. Evidence-based medicine [67] requires

clinicians to keep up with published scientific studies

and use them at the point of care. However, it has been

shown that it is practically impossible to do that even

within a narrow specialty [68]. A critical barrier is that

finding relevant information, which may be located in

several documents, takes an amount of time and cogni-

tive effort that is incompatible with the busy clinical

workflow [69, 70]. Rapid systematic reviews using auto-

mation technologies will enable clinicians with up-to-

date and systematic summaries of the latest evidence.

Conclusions

Our systematic review describes previously reported

methods to identify sentences containing some of the data
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elements for systematic reviews and only a few studies

that have reported methods to extract these data elements.

However, most of the data elements that would need to be

considered for systematic reviews have been insufficiently

explored to date, which identifies a major scope for future

work. We hope that these automated extraction approaches

might first act as checks for manual data extraction cur-

rently performed in duplicate; then serve to validate manual

data extraction done by a single reviewer; then become the

primary source for data element extraction that would be

validated by a human; and eventually completely automate

data extraction to enable living systematic reviews.

Appendix 1

Search strategies

Below, we provide the search strategies used in PubMed,

ACM Digital Library, and IEEExplore. The search was

conducted on January 6, 2015.

PubMed

(“identification” [Title] OR “extraction” [Title] OR

“extracting” [Title] OR “detection” [Title] OR “identifying”

[Title] OR “summarization” [Title] OR “learning ap-

proach” [Title] OR “automatically” [Title] OR

“summarization” [Title] OR “identify sections” [Title] OR

“learning algorithms” [Title] OR “Interpreting” [Title] OR

“Inferring” [Title] OR “Finding” [Title] OR “classification”

[Title]) AND (“medical evidence”[Title] OR “PICO”[Title]

OR “PECODR” [Title] OR “intervention arms” [Title] OR

“experimental methods” [Title] OR “study design parame-

ters” [Title] OR “Patient oriented Evidence” [Title] OR

“eligibility criteria” [Title] OR “clinical trial characteristics”

[Title] OR “evidence based medicine” [Title] OR “clinically

important elements” [Title] OR “evidence based practice”

[Title] “results from clinical trials” [Title] OR “statistical

analyses” [Title] OR “research results” [Title] OR “clinical

evidence” [Title] OR “Meta Analysis” [Title] OR “Clinical

Research” [Title] OR “medical abstracts” [Title] OR “clin-

ical trial literature” [Title] OR ”clinical trial characteristics”

[Title] OR “clinical trial protocols” [Title] OR “clinical

practice guidelines” [Title]).

IEEE

We performed this search only in the metadata.

(“identification” OR “extraction” OR “extracting” OR “de-

tection” OR “Identifying” OR “summarization” OR “learn-

ing approach” OR “automatically” OR “summarization” OR

“identify sections” OR “learning algorithms” OR “Interpret-

ing” OR “Inferring” OR “Finding” OR “classification”) AND

(“medical evidence” OR “PICO” OR “intervention arms”

OR “experimental methods” OR “eligibility criteria” OR

“clinical trial characteristics” OR “evidence based medicine”

OR “clinically important elements” OR “results from clin-

ical trials” OR “statistical analyses” OR “clinical evidence”

OR “Meta Analysis” OR “clinical research” OR “medical ab-

stracts” OR “clinical trial literature” OR “clinical trial

protocols”).

ACM digital library

((Title: “identification” or Title: “extraction” or Title:

“extracting” or Title: “detection” or Title: “Identifying” or

Title: “summarization” or Title: “learning approach” or

Title: “automatically” or Title: “summarization “or Title:

“identify sections” or Title: “learning algorithms” or Title:

“scientific artefacts” or Title: “Interpreting” or Title: “Infer-

ring” or Title: “Finding” or Title: “classification” or “statis-

tical techniques”) and (Title: “medical evidence” or

Abstract: “medical evidence” or Title: “PICO” or Abstract:

“PICO” or Title: “intervention arms” or Title: “experimen-

tal methods” or Title: “study design parameters” or Title:

“Patient oriented Evidence” or Abstract: “Patient oriented

Evidence” or Title: “eligibility criteria” or Abstract: “eligi-

bility criteria” or Title: “clinical trial characteristics” or

Abstract: “clinical trial characteristics” or Title: “evidence

based medicine” or Abstract: “evidence based medicine”

or Title: “clinically important elements” or Title: “evidence

based practice” or Title: “treatments” or Title: “groups” or

Title: “outcomes” or Title: “results from clinical trials” or

Title: “statistical analyses” or Abstract: “statistical analyses”

or Title: “research results” or Title: “clinical evidence” or

Abstract: “clinical evidence” or Title: “Meta Analysis” or

Abstract:“Meta Analysis” or Title:“Clinical Research” or

Title: “medical abstracts” or Title: “clinical trial literature”

or Title: “Clinical Practice” or Title: “clinical trial proto-

cols” or Abstract: “clinical trial protocols” or Title: “clinical

questions” or Title: “clinical trial design”)).
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