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Abstract—The ever increasing size of deep neural network
(DNN) models once implied that they were only limited to
cloud data centers for runtime inference. Nonetheless, the recent
plethora of DNN model compression techniques have successfully
overcome this limit, turning into a reality that DNN-based
inference can be run on numerous resource-constrained edge
devices including mobile phones, drones, robots, medical devices,
wearables, Internet of Things devices, among many others.
Naturally, edge devices are highly heterogeneous in terms of
hardware specification and usage scenarios. On the other hand,
compressed DNN models are so diverse that they exhibit different
tradeoffs in a multi-dimension space, and not a single model
can achieve optimality in terms of all important metrics such as
accuracy, latency and energy consumption. Consequently, how
to automatically select a compressed DNN model for an edge
device to run inference with optimal quality of experience (QoE)
arises as a new challenge. The state-of-the-art approaches either
choose a common model for all/most devices, which is optimal for
a small fraction of edge devices at best, or apply device-specific
DNN model compression, which is not scalable. In this paper, by
leveraging the predictive power of machine learning and keeping
end users in the loop, we envision an automated device-level
DNN model selection engine for QoE-optimal edge inference. To
concretize our vision, we formulate the DNN model selection
problem into a contextual multi-armed bandit framework, where
features of edge devices and DNN models are contexts and pre-
trained DNN models are arms selected online based on the history
of actions and users’ QoE feedback. We develop an efficient
online learning algorithm to balance exploration and exploitation.
Our preliminary simulation results validate our algorithm and
highlight the potential of machine learning for automating DNN
model selection to achieve QoE-optimal edge inference.

I. INTRODUCTION

Machine learning models, especially deep neural networks
(DNNs), have recently enabled unprecedented levels of intelli-

gence on numerous systems and found successful applications

in a broad spectrum of domains, including computing vision,

healthcare, autonomous driving, machine translation, among

many others [1], [2]. To achieve accuracies comparable to

or even exceeding human levels, today’s machine learning

models are becoming increasingly more complex, as evidenced

by DNNs that can contain millions of or even more parameters

[1], [3], [4]. Consequently, model training is typically run in

cloud-scale data centers with vast computational resources.

For a concrete example, at Facebook, DNN training for all
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applications, such as news ranking, content understanding,

object tracking for virtual reality is exclusively run in its

geographically distributed data centers [2].

While data centers remain as the preferred platforms for

training most machine learning models, running machine

learning inference (i.e., applying pre-trained models to new

data) as close to end users as possible has emerged as a

growing trend. In fact, there is a constant push to bring

inference all the way down to end devices at the Internet edge,

such as mobile phones, wearables, drones, medical devices and

robots, which we collectively refer to as edge devices. For

example, Instagram uses deep learning for real-time image

processing upon a image capture on mobile devices, and

a key goal of Facebook is to provide the best inference

experience on its mobile app for more than 2 billion active

users [2]. By running inference on edge devices (a.k.a. edge
inference), users receive improved experiences with reduced

latency and overall inference time, are less dependent on

network connections, and can keep private data locally without

transferring it to the cloud or other edge computing platforms

[2], [5]–[8].

Along with advances in embedded and mobile hardware,

the recent breakthroughs on DNN model compression (e.g.,

network pruning and weight quantization) have significantly

reduced model sizes by orders of magnitude with an acceptable

accuracy loss, successfully turning edge inference into a reality

[4], [6]. Naturally, to run inference on resource-constrained

edge devices with a satisfactory user experience (which we

refer to as quality of experience, or QoE), inference accu-

racy is not the sole metric to optimize [2], [5]; instead, the

employed DNN model architecture must be, in an automated
manner, tailored to specific edge device hardware and strike

an optimal balance among various important metrics such

as accuracy, latency and energy consumption. For example,

when a device has a small battery capacity, reducing energy

consumption may be more important and result in a better QoE

for the user than improving inference latency performance.

Nonetheless, as detailed in Section II-A, optimizing QoE for

edge inference is challenged by the extremely high degree

of heterogeneity in terms of the underlying device hardware,

usage scenarios and DNN models. First, there are thousands

of unique systems on a chip (SoCs) running on more than

ten thousand different types of smart phones and tablets, and

the top 30 SoCs cover only 51% of the whole market in total.

Second, DNN models running on different edge devices can be
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exposed to significantly different usage scenarios, such as very

different locations and illumination conditions, thus resulting

in drastically different distributions of users’ input data sets

and hence also different inference accuracies even on the same

DNN model [3], [8]. Last but not least, even with the same

training data set but given different compression techniques or

optimization parameters, hundreds of or even more different

DNN models can be generated using neural architecture search

techniques [9], [10], among which no single model is a clear

winner in terms of all important metrics such as accuracy,

latency and energy.

Consequently, in view of the extreme heterogeneity of

edge devices, usage scenarios and DNN models, a new chal-

lenge arises: how to automatically select DNN models for
edge inference with optimal user experience? To address this

challenge, research efforts on optimal DNN model selection

for edge inference have been quickly proliferating [3], [6]–

[8], [11]–[14]. A straightforward approach is to benchmark

on a set of edge devices and select a DNN model that is

reasonably accurate and meets constraints for most devices.

Nonetheless, this “one for most” approach can at best cover

only a small set of devices under limited usage scenarios,

thus lacking wide applicability as edge devices and usage

scenarios are extremely diverse. On the other hand, state-

of-the-art AutoML and neural architecture search techniques

have been employed to identify the optimal DNN model for a

specific target edge device [4], [5], [9], [10], [13], [15]–[17].

This “one for one” approach can result in an optimal or near

optimal DNN model for a specific device under given a set of

optimization parameters, but it suffers from poor scalability:

the same procedure needs to be executed, whenever an unseen

new device comes. Furthermore, the way that DNN models

are currently selected for edge inference is typically to apply

optimization based on pre-determined parameters and hence

“open loop”, without incorporating users’ QoE feedback into

a closed loop [4], [5], [13], [16]. As a result, the optimized

metrics may not necessarily translate into improved QoE of

end users.

In this paper, we envision an automated DNN model selec-

tion engine for QoE-optimal edge inference. The key ideas

we exploit are two-fold. First, we leverage the predictive

power of online learning based on history data. Specifically,

the DNN model selection engine needs to serve a huge

number of users and also continuously update its decisions

at runtime. Thus, as time goes on, more knowledge regarding

how good DNN model selection decisions are for given edge

devices is accumulated, which can be exploited to continiously

improve future DNN model selections. Second, it is crucial to

keep users in a closed loop when designing a DNN model

selection engine. Naturally, optimized objective metrics (e.g.,

accuracy, latency, and energy) may not necessarily translate

into improved QoE; instead, it is ultimately users themselves

who decide the actual QoE. Thus, the design of a DNN

model selection engine must incorporate feedback from users

regarding their QoE, forming a closed loop with users in the

middle.

As a preliminary investigation, we demonstrate our vision

by proposing an automated DNN model selection engine

powered by online learning (illustrated in Fig. 2), which

leverages contextual multi-armed bandit (MAB) learning to

automatically select DNN models for QoE-optimal edge in-

ference. Specifically, given features of available DNN models

and device features of each incoming edge device, our engine

employs an online QoE predictor that estimates the resulting

QoE for DNN model selection decisions. Then, based on

predicted QoE, our engine outputs a selected DNN model for

each edge device with the goal of optimizing the user’s QoE

while ensuring adequate exploration to avoid being trapped in

a local optimum. After DNN models are installed and used

for some time, users’ QoE feedback is requested for updating

the online QoE predictor and improving future DNN model

selections, thus forming a closed loop.

More concretely, our online QoE predictor assumes for

simplicity a linear relation between the context information

and the resulting QoE (a.k.a., reward in the MAB literature)

to capture the first-order impacts. To balance exploration and

exploitation at runtime, the model selector in our automated

DNN model selection engine uses an LinUCB-style estimate

of the QoE in each round, building on the linear minimum

mean square error (LMMSE) estimator given by the Bayesian

Gauss-Markov theorem [18], [19]. We run a set of simulations

to validate our solution. Importantly, our DNN model selection

engine addresses the following two practical challenges.

Delayed feedback: Users’ QoE feedback may not be ob-

served immediately since a user will unlikely give feedback

until it has used the deployed DNN model for a while. In

the worse case, a user might not be willing to share its QoE

feedback at all. Thus, the QoE feedback signals are delayed

for the DNN model selection engine.

Noisy feedback: In practice, depending on system statuses

of the edge device (e.g., the number of concurrent processes),

latency for edge inference can vary significantly over time,

which affects a user’s runtime QoE [2]. Thus, even when a

user is honest and willing to share its QoE feedback, its true

long-term QoE can only become more accurate as it uses the

deployed DNN model more times to average out runtime QoE

fluctuations.

The key novelty of our research is to make an early step

towards automated DNN model selection for edge inference

in a scalable manner, incorporating users’ QoE feedback into

a closed-loop design. The core of our automated DNN model

selection engine is to accumulate more refined knowledge

based on history decisions and users’ QoE feedback, while

striking a balance between exploration and exploitation at

runtime. In addition to the considered linear contextual MAB,

our engine can also incorporate other more sophisticated

machine learning techniques such as DNN-based bandits.

The rest of this paper is organized as follows. The chal-

lenges of DNN model selection for edge inference and limi-

tations of state-of-the-art solutions are presented in Section II.

Section III shows the framework of our proposed DNN model

selection engine, along with the design principles and technical
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Fig. 1: Device statistics for Facebook mobile users [2]. (a) The

most common mobile CPUs were designed more than 6 years

ago, and only 25% smartphones have CPUs designed in 2013

or later. (b) There exist no standard or typical mobile SoCs: the

top 50 SoCs account for only 65% of the smartphone market.

challenges. In Section IV, we present a concrete design based

on contextual MAB, including its problem formulation, online

learning algorithm, and simulation results. Finally, related

works are reviewed in Section V and our conclusion is

provided in Section VI.

II. CHALLENGES AND LIMITATIONS OF STATE OF THE ART

In this section, we first present the key challenges for

automating DNN model selection to achieve QoE-optimal

edge inference, and then highlight the key limitations of state-

of-the-art DNN model selection approaches.

A. Challenges for QoE-optimal Edge Inference

Automating DNN model selection for QoE-optimal edge

inference is challenged by the extremely high degree of

heterogeneity for edge inference in terms of the underlying

device hardware, usage scenarios and DNN models.

1) Edge device heterogeneity: Take edge inference on

mobile platforms alone as an example. Mobile devices have

extremely diverse computing and memory capabilities: some

high-end devices have state-of-the-art CPUs along with dedi-

cated graphic processing units (GPUs) and even purpose-built

accelerators to speed up inference, while many others are

powered by CPUs of several years old [2], [12]. As illustrated

in Fig. 1, Facebook’s 2018 statistics show that nearly 75%

of smart phones have CPUs designed more than 6 years ago.

Further, mobile SoC vendors typically design their own cus-

tomized components with blocks licensed from third parties,

further contributing to device heterogeneity especially on the

open-source Android platform. In fact, there are thousands

of unique SoCs running on more than ten thousand different

types of smart phones and tablets. Only 30 SoCs can each

account for more than 1% of the market share, and these

top 30 SoCs cover only 51% of the whole market in total.

Consequently, assuming a universal availability of uniform

(high-end) hardware for all edge devices is problematic, and

the edge device heterogeneity results in a huge variability

in QoE: e.g., even with fine-tuned DNN models, inference

latency varies by a factor of 10+ among Facebook mobile

users [2].

2) Usage scenario heterogeneity: DNN models run on

different edge devices can be exposed to significantly dif-

ferent usage scenarios: very different locations, illumination

conditions, temperature, etc. These all account to drastically

different distributions of users’ input data sets, which can

thus result in very different inference accuracies even on

the same DNN model [3], [8]. Moreover, inference latency

differs significantly across even the same generation of devices

with the same software configuration, because of runtime

environment factors and internal systems statuses (e.g., num-

ber of concurrent processes running, battery conditions, etc).

Last but not least, users have different preferences towards

different metrics, further complicating the scenario: some users

are more energy-sensitive due to limited battery capacities,

whereas others like to trade energy consumption for latency.

Therefore, for different usage scenarios, even the same DNN

model on the same type of device may not result in the same

QoE.

3) DNN model heterogeneity: The recent studies have

proposed various DNN model compression techniques, such

as network pruning, weight quantization, low-rank matrix

approximation, and knowledge distillation [4], [11], [14], [20]–

[26]. As a consequence, even with the same training data set

but given different compression techniques or optimization

parameters, hundreds of or even more different DNN models

can be generated using neural architecture search techniques

[9], [10]. While many of the resulting lightweight DNN

models can be deployed on a target edge device, they can

exhibit very different tradeoffs in a multi-dimension space of

important metrics (e.g., accuracy vs. latency vs. energy), and

no single model can achieve optimality in all the dimensions

[4], [5], [7], [13]. Thus, along with the large set of diverse

compressed DNN models comes the model selection difficulty

for QoE-optimal edge inference.

B. Limitations of State of the Art

To achieve efficient edge inference, research efforts on

optimal DNN model selection for edge devices have been

quickly proliferating [3], [6]–[8], [11]–[14]. Nonetheless, they

exhibit one or more of the following limitations.

1) Lack of wide applicability: A common approach used

by the industry is to benchmark on a set of edge devices (e.g.,

in pilot test or lab settings) and conservatively select a fine-

tuned DNN model that is small, computationally cheaper, and

meets performance objective for most devices. Nonetheless,

even for large companies like Facebook, this “one for most”

approach can at best cover only a small set of devices under

limited usage scenarios, thus lacking wide applicability as

edge devices and usage scenarios are extremely diverse. For

example, inference latencies for Facebook mobile app users

can vary by a factor of 10+, raising serious QoE issues [2].

2) Poor scalability: Many research studies have leveraged

AutoML and neural architecture search techniques to identify

the optimal DNN model for a specific target edge device

[4], [5], [9], [10], [13], [15]–[17]. While this “one for one”

approach can result in an optimal or near optimal DNN
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Fig. 2: Overview of our proposed automated DNN model selection engine. For each edge device that requests a DNN model,

the selection engine takes as inputs the device features and DNN model features, and outputs a selected DNN model.

model for a specific device under a given set of optimization

parameters, it suffers from poor scalability: the same and

sometimes lengthy procedure needs to be executed, whenever

an unseen new device comes. In parallel, some recent studies

have proposed “once for all” training such that one pre-trained

DNN model can be converted into many different lightweight

versions without re-training, but they can only coarsely select

a model for a given application scenario (say, mobile vs. smart

home) [14]; in other words, given a particular scenario, how

to automatically select a DNN model for an edge device out

of the many possibilities in a scalable manner still remains

unknown.
3) Without QoE awareness: While commonly-used metrics,

such as accuracy, latency and energy, are all important factors,

it is ultimately users themselves who decide the actual QoE.

Users often have different and possibly dynamic preferences

towards different metrics depending on the usage scenario

(e.g., energy is not a major concern when devices have large

battery capacities and/or are plugged into external power

sources). Nonetheless, the way that DNN models are selected

for edge inference today is typically “open loop” and assuming

a set of pre-determined optimization parameters, such as

weights of latency vs. accuracy [4], [5], [13], [16], without

incorporating user feedback into a closed loop. Consequently,

the optimized metrics may not necessarily translate into im-

proved QoE.

III. AUTOMATED DNN MODEL SELECTION ENGINE

The goal of this paper is to envision a new research

direction on exploiting machine learning techniques to au-

tomatically select pre-trained DNN models for QoE-optimal

edge inference in a scalable manner, incorporating actual user

experience into a closed loop. Next, we show an overview of

our proposed DNN model selection engine, outline the key

design principles, and present a few key technical challenges.

A. Overview

The overview of our cloud-hosted automated DNN model

selection engine is shown in Fig. 2. Given a large set of

DNN models pre-trained in the cloud using state-of-the-art

AutoML and neural architecture search techniques [9], [10],

[13], [15], our DNN model selection engine constructs a QoE

model based on users’ QoE feedback and selects appropriate

DNN models for edge devices, balancing exploration and

exploitation. Specifically, for each incoming edge device,1 our

engine takes as inputs the device features and DNN model

features, and outputs a selected DNN model with the goal of

optimizing the user’s QoE. After DNN models are installed

and used for some time, users’ QoE feedback is requested

for improving future DNN model selections, thus forming a

closed loop. In practice, QoE feedback can be obtained by

asking users to provide ratings on their experience with our

selected DNN models, which is commonly used by many of

today’s mobile apps.

Note that our research focuses on how to select pre-trained

DNN models for edge inference, and hence model training

is orthogonal. In practice, the DNN models can be trained

offline based on a selected set of testing edge devices such

that they are more likely to result in better QoE when initially

deployed on target edge devices. Moreover, given users’ QoE

feedback history, new DNN models may need to be trained

and added to expand the model pool, if a new type of edge

devices emerge and/or no DNN models in the existing pool

can offer a satisfactory QoE.

B. Design Principles

An efficient automated DNN model selection engine cannot

be accomplished without the following key design principles.

1) Leveraging predictive power of online learning: The

DNN model selection engine needs to serve a huge number

of users (e.g., Facebook needs to select DNN models for

billions of its mobile app users) [2] and also be continuously

updated, thus generating a large amount of history data.

Nonetheless, the poor scalability of existing “one for one”

1An edge device that requests DNN model updating is considered as a new
device, although the previous DNN model selected for this device can be
exploited as prior information by our engine.
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approaches (i.e., optimize DNN model selection for a specific

target device) [4], [5], [9], [10], [13], [16], [17] stems from

the fact that they disregard the similarities between previous

model selections and new ones without exploiting the history

data. Intuitively, if certain DNN models have been deployed

on certain edge devices with a good QoE, then the same

DNN models may also likely fit well into new but similar

edge devices with similar usage scenarios (which is similar

in spirit to the core idea of recommendation system design

based on collaborative filtering [27]). Inspired by this fact, we

propose an automated DNN model selection engine based on

online learning: as time goes on, more knowledge regarding

how good DNN model selection decisions are for given edge

devices is being accumulated, thus gradually facilitating future

DNN model selections. Note that the “one for most” approach

(i.e., selecting a single DNN model for most edge devices)

[2] essentially assumes that the optimal mapping of a single

DNN model into many edge devices is known through offline

profiling in advance, but this is not possible given the vast

heterogeneity of edge devices, let alone the even more diverse

usage scenarios and user preferences. In sharp contrast, our

engine gradually improves DNN model selection by learning

the optimal decisions online at runtime.

While our proposed online learning-based approach may

not outperform the “one for one” approaches in terms of

specific objective metrics [4], [5], [9], [10], [13], [15]–[17], our

approach is more scalable to a huge number of heterogeneous

edge devices. More importantly, we aim at improving users’

QoE, whereas the “one for one” approaches focus solely on

optimization of objective metrics such as accuracy and latency.

2) Keeping users in a closed loop: We envision that it

is crucial to keep users in a closed loop when designing an

automated DNN model selection engine. Naturally, optimized

objective metrics (e.g., accuracy, latency, and energy) may

not necessarily translate into improved QoE; instead, it is

ultimately users themselves who decide the actual QoE. In

practice, users can have different and possibly even dynamic

preferences towards different metrics depending on the usage

scenario (e.g., energy is not a major concern when devices

have large battery capacities and/or are plugged into external

power sources). There, as illustrated in Fig. 2, based on

feedback from users regarding their actual QoE, our DNN

model selection engine continuously updates the online QoE

predictor as well as the model selector, forming a closed loop

with users in the middle.

C. Technical Challenges

To design an automated DNN model selection engine for

QoE-optimal edge inference, we outline a few major chal-

lenges as follows.

• First, there are many factors that may affect various

important metrics for edge inference and affect the users’ QoE.

For example, factors such as hyperparameters and architecture

of the selected DNN model, edge device’s hardware configu-

ration, software library, background application on the same

device, and environmental contexts (e.g., location, ambient

temperature, illumination condition, etc.) can all affect the

accuracy, latency, and energy consumption. While taking more

factors into account can potentially improve the modeling

accuracy of users’ QoE, it also complicates the QoE model

learning at runtime with likely increased learning time. More-

over, some of these factors, like runtime location and ambient

temperature, are not exposed to our DNN model selection

engine prior to actual model deployment. Thus, our DNN

model selection engine must carefully select a minimum set

of key features that are yet representative enough to capture

the users’ QoE.

• Second, unlike standard recommendation systems where

feedback signals are often quickly available (e.g., clicking

on a news article indicates the user’s interest in the content)

[27], the online QoE prediction module in our DNN model

selection engine must deal with delayed, even missing, and

noisy feedback regarding users’ actual QoE. Specifically, users

may not provide their accurate QoE feedback right after they

install our selected DNN models. Moreover, in view of a

possibly large set of pre-trained DNN models, the online

learning module needs to strike a balance between exploitation

and exploration, in order to gain high QoE while avoiding

being trapped in a local optimum.

• Last but not least, the DNN model selection decision may

be combinatorial: multiple DNN models need to be selected

out of a large pre-trained model sets in order to enhance

inference robustness at runtime [8]. Nonetheless, compared to

the single DNN model case, selecting multiple DNN models

can exponentially increase the complexity of online learning,

which thus mandates more efficient online learning techniques

in practice.

IV. CONTEXTUAL MAB FOR DNN MODEL SELECTION

In this section, we present a concrete design of our proposed

automated DNN model selection engine based on contextual

MAB, including its problem formulation, online learning algo-

rithm, and evaluation. For simplicity, the online QoE predictor

in our DNN model selection engine assumes a linear relation

between the context information and the reward (i.e., user’s

QoE in our work) to capture the first-order impacts. Then,

to balance exploration and exploitation, the model selector

in our engine uses an LinUCB-style estimate of the QoE in

each round, taking into consideration users’ delayed and noisy

QoE feedback. Finally, we validate our design by conducting

a simulation study, highlighting the potential of machine

learning for automated DNN model selection to achieve QoE-

optimal edge inference.

A. Problem Formulation

We formulate the problem of automated DNN model selec-

tion into the contextual MAB framework.

1) Contextual MAB: Our automated DNN model selection

engine chooses proper DNN models from a set of pre-trained

models for incoming edge devices to achieve QoE-optimal

edge inference. Thus, by viewing each DNN model as an arm,

our problem can be modeled as a contextual MAB problem
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that sequentially chooses arms out of a candidate arm set for

maximizing some cumulative rewards.

Consider DNN model selection for edge devices over a time

horizon of T rounds. Denote the set of pre-trained candidate

DNN models to be selected for an edge device at round t by

At = A, with |A| = A where | · | denotes cardinality. Note

that our analysis can be extended to the case where the set of

DNN models are volatile, since the set of candidate models At

can change over time t (e.g., only certain DNN models can be

installed on an edge device due to the hardware constraints).

For each candidate DNN model a ∈ At, an associated context

vector xt,a ∈ R
d is observed at round t, where d is the

dimension of context vector xt,a. The context vector xt,a

captures all the available side information, including selected

features of both the DNN model a and the incoming edge

device such as the DNN model size, architecture, device’s

CPU, and RAM capacity. Let rt,a be the reward (i.e., QoE

in our study) of the DNN model a selected at round t.
Since rt,a is a random variable relying on context xt,a, we

model it as

rt,a = f(xt,a) + ηt (1)

where f(xt,a) is a deterministic function in terms of xt,a and

ηt ∼ N (0, λη) is the independent and identically distributed

(i.i.d.) model mismatch noise. Thus, f(xt,a) actually models

the expected QoE for a DNN model selection decision on an

edge device. For simplicity, we assume that the expected QoE

follows a linear model as follows

E [rt,a] = f(xt,a) = xT
t,aθ (2)

where θ ∈ R
d, ‖θ‖ ≤ 1, is an unknown weight vector

representing the QoE model parameter to be learnt online.

Albeit simple, such linear models have been applied in other

real applications (e.g., news article recommendation) with

satisfactory outcomes [18]. Nonetheless, more complicated

relationships between the expected QoE and available contex-

tual information can also be considered by our DNN model

selection engine and will be part of our future research.

As in a standard contextual MAB setting, the goal of our

DNN model selection engine is to minimize the cumulative

regret defined as

RT = E

[
T∑

t=1

(
rt,a∗

t
− rt,at

)]
(3)

where a∗t = argmaxa∈At
E [rt,a] is the optimal DNN model

with respect to the expected QoE and at is the DNN model

actually selected by our engine at round t.
2) Delayed and Noisy Feedback: Unlike standard recom-

mendation systems where feedback signals are often quickly

available [27], there is a delay for a user’s QoE feedback to be

obtained by our DNN model selection engine for updating the

online QoE predictor and improving future decisions. More-

over, because of DNN model latency variations at runtime [2],

users may not provide their accurate QoE feedback right after

they install our selected DNN models. Here, assume that the

user’s QoE feedback for the DNN model selected at round t

TABLE I: Notations

Notation Description
At Set of candidate DNN models at round t
T Total number of rounds played
xt,a d-dimensional context vector of DNN model a ob-

served at round t
dt Delay of the QoE feedback to DNN model selected

at round t
tc Longest delay for user’s QoE feedback
yt+dt,a Delayed QoE feedback for DNN model selected at

round t
ηt Model mismatch noise at round t
λη Variance of ηt
vt User’s QoE observation noise for DNN model se-

lected at round t
λv
dt

Time-varying variance of vt
Tt Set of time rounds for which delayed QoE feedback

is received by round t
Xt Horizontal concatenation of context vectors xs,as

for s ∈ Tt and as being the corresponding DNN
model selected at round s

yt |Tt|-dimensional vector, with i-th element being the
delayed QoE feedback of DNN model associated
with i-th column in Xt

Cn,t Covariance matrix of λt for all t ∈ Tt
Cε,t Covariance of estimation error of θ̂t
pt,a UCB of estimated QoE for selecting DNN model a

in round t

is received after dt rounds. Then, our engine receives the QoE

feedback at t+ dt, which is denoted as

yt+dt,at
= rt,at

+ vdt
= xT

t,aθ + ηt + vdt
(4)

where vdt ∼ N
(
0, λv

dt

)
is the independent observation noise

due to users’ runtime QoE variations. In general, the longer

time a user uses a selected DNN model, the more accurate

QoE it has about the DNN model. Thus, we assume that the

variance of the observation noise vdt
decreases monotonically

with delay dt. Note that ηt is the error between our linear ex-

pected QoE model and the true QoE, and hence is independent

of vdt
. Thus, ηt+vdt

∼ N (0, λt) where λt = λη +λv
dt

is the

total variance.

For the readers’ understanding, the mathematical notations

we use in this paper are listed in Table I.

B. Online Learning Algorithm

Based on history actions and users’ QoE feedback, we can

build an online QoE predictor to estimate the expected QoE

for a given DNN model selection decision on an edge device.

Then, one may want to simply make a decision to maximize

the expected QoE. Without sufficient exploration, however,

this exploitation-based strategy can result in an arbitrarily

bad outcome [28], [29]: our DNN model selection engine

can be trapped in a local optimum and continuously select

sub-optimal DNN models without exploring better solutions.

Therefore, the DNN model selector must carefully balance

exploration and exploitation, which is a crucial part of online

learning and addressed as follows.

Specifically, we design a learning algorithm to make online

DNN model selection decisions with the goal of achieving

189

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on September 29,2020 at 08:34:45 UTC from IEEE Xplore.  Restrictions apply. 



a sub-linear regret compared to an oracle benchmark that

knows the expected QoE perfectly. In our algorithm, a QoE

predictor exploiting the delayed feedback is designed and

the idea of Upper Confidence Bound (UCB) [18], [30], [31]

is employed to balance the exploitation and exploration for

online decisions.

The prediction of expected QoE relies on an accurate

estimation of the unknown coefficient θ in Eqn. 2. The QoE

feedback delay and noise should both be considered in the

estimation method. Denote the set of time rounds whose

delayed QoE is received by round t as Tt. Namely, for each

s ∈ Tt, the QoE feedback of action made at round s is received

at round s+ds that satisfies s+ds ≤ t. Define a matrix Xt of

size d×|Tt|, with each column being the context vector xs,as

for s ∈ Tt. Then, we define a |Tt|-dimensional vector yt, with

each element being the corresponding observed QoE feedback

ys+ds,as
, for s ∈ Tt. We also define the |Tt|-dimensional

noise vector nt with each element being the corresponding

combined noise ηs + vds , for s ∈ Tt. As explained in

Section IV-A2, the variance of ηs + vds
is λs = λη + λv

ds
,

which decreases monotonically with ds. Now, the received

rewards at round t can be expressed as

yt = XT
t θ + nt, (5)

where nt ∼ N (0,Cn,t) and Cn,t, which is a diagonal matrix

with diagonal elements as λs, for s ∈ Tt, is the covariance

matrix of nt.

We use an LMMSE estimator to estimate θ based on the

received QoE feedback. Specifically, by applying the Bayesian

Gauss-Markov Theorem [19], the estimated coefficient θ̂t at

round t can be derived as

θ̂t = (δId×d +XtC
−1
n,tX

T
t )
−1XtC

−1
n,tyt, (6)

where Id×d is an identity matrix of size d × d and δ, which

relies on the distribution of θ, is a tunable parameter. The

covariance of the estimation error above is

Cε,t = (δId×d +XtC
−1
n,tX

T
t )
−1. (7)

With the estimated coefficient θ̂t, the predicted QoE for

selecting DNN model a is thus r̂a,t = xT
t,aθ̂t and its esti-

mation variance is xT
t,aCε,txt,a. Accordingly, the UCB of the

estimated QoE for selecting DNN model a at round t can be

computed as

pt,a = xT
t,aθ̂t + α

√
xT
t,aCε,txt,a, (8)

where α is a hyperparameter to balance exploration and

exploitation: the larger α, the more emphasis on exploration,

and vice versa. Then, the DNN model selection rule at round

t can be written as

at = arg max
a∈At

pt,a. (9)

Finally, we describe the flow of our online learning for DNN

model selection in Algorithm 1.

Algorithm 1 Online Learning for DNN Model Selection with

Delayed and Noisy Feedback

1: Initialize T0 = ∅, Xt,yt = [ ];
2: for a ∈ A0 do
3: Initialize pt,a = 0;

4: end for
5: for t = 1, 2, ..., T do
6: if No QoE feedback has been received yet then
7: Randomly choose a DNN model at;
8: Continue;

9: else
10: Observe if any new QoE feedback is received at

round t;
11: if new QoE feedback received then
12: Update Tt,Xt,yt,Cn,t;

13: Compute θ̂t and Cε,t according to Eqns. (6)

and (7), respectively;

14: else
15: θ̂t = θ̂t−1, Cε,t = Cε,t−1;

16: end if
17: for a ∈ At do
18: Compute pt,a = xT

t,aθ̂t + α
√

xT
t,aCε,txt,a;

19: end for
20: Select DNN model at according to at =

arg max
a∈At

pt,a;

21: end if
22: end for

C. Simulation Study

We run simulations using a synthetic dataset to preliminarily

validate our proposed online learning algorithm, demonstrating

its potential for automating DNN model selection to achieve

QoE-optimal edge inference. Note that a more rigorous evalu-

ation of our engine, both theoretically and empirically, is left

as our future work.

1) Settings: We utilize a synthetic dataset to simulate

online learning for automated DNN model selection. The key

parameters in our simulation are summarized in Table II.

QoE model. The expected QoE in Eqn. 2 is modeled as a

linear function paratermized by θ in terms of contextual infor-

mation, which is available side information to capture features

of both DNN models and edge devices. In our simulation, for

each DNN model and edge device, the contextual information

is four-dimensional (i.e., d = 4), including the numbers of

nodes Nnode and layers Nlayer of the DNN model and the

edge device’s CPU capacity and RAM capacity. Additional

features, such as the device’s battery capacity, can also be

incorporated if available.

A user’s QoE of edge inference can be affected by

multiple metrics, which in our simulation are the accu-

racy, latency and energy consumption for edge inference.

For simplicity, we assume a linear function for the DNN

model accuracy accuracy = g1(Nnode, Nlayer), although

other features such as the DNN model architecture can
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TABLE II: Simulation Setup

Parameter Value
T 2000
A 10
d 4
tc 40
dt [1, 40]
α 1.5
δ 0.1
λη 0.4

λv
dt

5
t2

θ [-0.5, 0.37, -0.36, 0.69]

also be factored in. Additionally, inference latency and en-

ergy consumption is affected by the CPU and RAM ca-

pacity of an edge device. We denote these two metrics as

latency = g2(Nnode, Nlayer, CPU,RAM) and energy =
g3(Nnode, Nlayer, CPU,RAM), which are also assumed to

be linear functions to capture first-order effects. While users’

preferences towards these metrics can vary significantly, we

assume that the expected QoE is a linear function of these

three metrics. Thus, combined altogether, the expected QoE

can be modeled as a linear function in terms of Nnode, Nlayer,

CPU and RAM , with an unknown parameter θ to be learnt

online.

Dataset and parameters. The key parameters in our sim-

ulations are listed in Table II. We simulate the DNN model

selection process for T = 2000 rounds, which we will show is

enough for our online learning algorithm to learn the optimal

DNN model selection. During each round, there is an edge

device that requests a DNN model from our DNN model

selection engine. In practice, there can be quite a few DNN

models in the pool, but not all of them are suitable for edge

devices. Here, we set the number of pre-trained candidate

DNN models as A = 10, which can be a set of models that

are most likely to be suitable for target edge devices based on

offline profiling/testing. We generate a uniformly distributed

vector X of size T × A × d to represent the available time-

varying contexts. For each context vector xt,a of DNN model a
at round t, we normalize it to [0, 1]d without loss of generality.

We also generate a d-dimensional vector θ, with ‖θ‖ = 1, as

the ground-truth QoE model parameter to be learnt by our

DNN model selection engine. Then, the product of X and θ
is the ground-truth expected QoE, based on which our engine

will receive delayed and noisy QoE feedback corresponding

to its DNN model selection.

The model mismatch noise ηt and user’s observation noise

vdt are both generated subject to Gaussian distribution with

zero means. For the ground truth, the maximum expected QoE

in our synthetic dataset is 0.76. Thus, we set the variance of

the model mismatch noise ηt as 0.4, which is almost 50% of

the maximum expected QoE. As for the time-varying variance

of user’s observation noise vdt
, we set it as 5

t2 to model the

fact that the longer a DNN model is used by a user, the more

accurate QoE the user observes and hence the smaller variance.

In practice, the delay of a user’s QoE feedback is uncertain

and may be long. Here, we set the cut-off time tc as 40
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Fig. 3: Normalized time-average QoE vs. number of rounds

played. Our online learning algorithm quickly approaches

the optimal oracle and significantly outperforms the static

selection strategy in terms of time-average QoE.

(rounds), and uniformly generate a delay dt between 1 and

40 for the DNN model selected at round t. Thus, the ratio

of the maximum delay to the total simulated rounds is 2%:

if scaled up, for each learning period of 100 days, we give a

2-day window for a user to provide QoE feedback, which is

reasonable in practice.

Baselines. We compare our proposed DNN model selection

based on online learning against two baselines: Static and

Oracle. As a common practice used by the industry [2], Static
is “one for all” and chooses a single DNN model for all

the edge devices to maximize the total expected QoE in T
rounds. On the other hands, Oracle represents a “one for one”

approach (similar to those proposed by recent studies [4], [5],

[9], [10], [13], [15]–[17]) and chooses the best DNN model for

each individual edge device to maximize the expected QoE,

under the assumption that the parameter θ in the QoE model

is perfectly known a priori. In practice, this is not possible

unless large-scale user trials are conducted in advance, and

thus we propose to learn the parameter θ online to gradually

improve DNN model selection.

2) Results: We show the simulation results in terms of time-

average QoE in Fig. 3. The values are normalized by setting

the Oracle’s QoE as 1 and minimum as 0. It can be seen that

Static yields the lowest QoE, because it does not adapt its

DNN model selection to an incoming edge device’s contextual

information that can significantly vary over time. While Oracle
expectedly achieves the highest QoE, our proposed online

learning algorithm can quickly approach Oracle in terms of

the time-average QoE, with a small gap. The reason is that by

exploiting the history DNN model selections and users’ QoE

feedback (albeit delayed and noisy), our engine can learn the

QoE model parameter θ with improved accuracy over time,

which is helpful for future DNN model selection. For example,

at the end of our simulation, the parameter learnt by our engine

is θ̂ = [-0.45, 0.36, -0.31, 0.67], which is very close to the

actual ground true of θ shown in Table II.
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To sum up, our preliminary evaluation demonstrates that our

proposed online learning algorithm can effectively learn the

QoE model parameter online even in the presence of delayed

and noisy QoE feedback, thus gradually improving the future

DNN model selection and approaching the oracle solution in

terms of the resulting QoE.

V. RELATED WORK

To enable DNN deployment for inference on resource-

constraint edge devices, various model compression methods

have been proposed, including network and weight pruning

[20], [22], [32], [33], weight quantization [34], [35], low-

rank matrix approximation [36], [37], knowledge distillation

[21], and/or a combination of basic compression techniques

[38]–[40]. To achieve structured pruning, a common approach

is channel pruning [22]–[26]. A layer-wise compensate filer

pruning algorithm is proposed in [41], and some works are

pruning certain structures in DNN [42], [43]. These studies

result in different compressed DNN models for the same

application, but not a single DNN model can outperform

all the others in terms of all performance metrics that are

important for users’ QoE, thus rasing a follow-up challenge:

how to match these DNN models with edge devices for QoE

optimization in an automated manner?

Another line of research is running DNN-based inference

on edge computing servers/platforms [44]–[47]; conversely,

DNNs have been applied to optimize system performances of

edge platforms [48]–[50]. Being orthogonal to these studies,

our proposed DNN model selection engine focuses on the

emerging edge inference that can improve inference perfor-

mance, is less dependent on network connections, and protect

users’ privacy without transferring sensitive data to offsite

clouds or edge servers.

The existing research on DNN model selection for edge

inference typically focuses on a specific target device and

optimizes the DNN model based on a set of pre-determined

parameters [4], [5], [9], [10], [13], [15]–[17], thus lacking

scalability, especially in large systems (e.g., DNN selection

for Facebook’s mobile users). Conversely, another approach

is to fine tune a single DNN model for all or most the edge

devices, but this can result significant performance variations

on different devices [2]. Most importantly, the existing ap-

proaches are “open loop” and optimize for objective metrics

such as accuracy and latency, which does not keep users in a

closed loop and hence may not lead to the optimal QoE. By

contrast, our research makes an early step towards automated

DNN model selection for edge inference in a scalable manner,

incorporating users’ QoE feedback into a closed-loop design.

VI. CONCLUSION

Motivated by the surging demand for DNN-based edge

inference, we study and call for attention to the crucial

problem of automated DNN model selection to achieve QoE-

optimal inference on heterogenous edge devices. We discuss

the challenges of edge inference as well as the limitations of

state of the art. Then, we present our vision of exploiting the

predictive power of machine learning for automating DNN

model selection to achieve QoE-optimal edge inference with

users in the loop. We provide an overview of our proposed

DNN model selection engine, its design principles as well

as research challenges. We also provide a concrete design

by formulating the DNN model selection problem into the

contextual MAB framework, and propose an online learn-

ing algorithm to balance exploitation and exploration in the

presence of delayed and noise QoE feedback from users.

Finally, we run simulation studies based on synthetic datasets

to validate our online learning algorithm. While our current

research is preliminary and more sophisticated learning can

be leveraged by our engine, the key goal of this paper is to

highlight the under-explored potential of machine learning for

automating DNN model selection, laying a stepping stone for

QoE-optimal edge inference in the future.
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