
Scientific Programming 20 (2012) 197–219 197

DOI 10.3233/SPR-2012-0350

IOS Press

Automating embedded analysis capabilities

and managing software complexity in

multiphysics simulation, Part I:

Template-based generic programming

Roger P. Pawlowski, Eric T. Phipps ∗ and Andrew G. Salinger

Sandia National Laboratories ∗∗, Albuquerque, NM, USA

Abstract. An approach for incorporating embedded simulation and analysis capabilities in complex simulation codes through

template-based generic programming is presented. This approach relies on templating and operator overloading within the C++

language to transform a given calculation into one that can compute a variety of additional quantities that are necessary for many

state-of-the-art simulation and analysis algorithms. An approach for incorporating these ideas into complex simulation codes

through general graph-based assembly is also presented. These ideas have been implemented within a set of packages in the

Trilinos framework and are demonstrated on a simple problem from chemical engineering.

Keywords: Generic programming, templating, operator overloading, automatic differentiation, uncertainty quantification

1. Introduction

As computational algorithms, hardware, and pro-

gramming languages have advanced over time, com-

putational modeling and simulation is being leveraged

to understand, analyze, predict and design increas-

ingly complex physical, biological and engineered sys-

tems. Because of this complexity, significant invest-

ments must be made, both in terms of manpower and

programming environments, to develop simulation ca-

pabilities capable of accurately representing the sys-

tem at hand. At the same time, modern analysis ap-

proaches such as stability analysis, sensitivity analysis,

optimization and uncertainty quantification require in-

creasingly sophisticated capabilities of those complex

simulation tools. Often simulation frameworks are not

designed with these kinds of analysis requirements in

*Corresponding author: Eric T. Phipps, Department of Optimiza-

tion and Uncertainty Quantification, Sandia National Laboratories,

P.O. Box 5800 MS-1318, Albuquerque, NM 87185, USA. Tel.: +1

505 284 9268; Fax: +1 505 8457442; E-mail: etphipp@sandia.gov.
**Sandia National Laboratories is a multi-program laboratory

managed and operated by Sandia Corporation, a wholly owned sub-

sidiary of Lockheed Martin Corporation, for the US Department of

Energy’s National Nuclear Security Administration under contract

DE-AC04-94AL85000.

mind, which limits the efficiency, robustness, and ac-

curacy of the resulting analysis. For example, sensitiv-

ity analysis, stability analysis, and optimization often

need accurate estimates of derivatives of output quan-

tities of interest with respect to simulation input data.

These derivatives can be estimated in a “black-box”

fashion using some form of finite-differencing, how-

ever this is often both very inefficient and inaccurate.

This then limits the choice of algorithms that can be ap-

plied and reduces the number of quantities that can be

analyzed. It is more efficient and accurate to compute

these derivatives analytically by embedding the calcu-

lation within the simulation code itself. However be-

cause of the significant investments and complexity in

these codes, it is often not practical to add the capabili-

ties required by state-of-the-art analysis approaches af-

ter the fact. Instead it is generally more attractive to de-

sign the programming environments with these kinds

of capabilities in mind from the beginning.

Unfortunately this idea is very difficult to implement

in practice. The reality is the people who develop the

simulation code capabilities are often different from

those who develop the algorithmic analysis capabil-

ities. Each group often has very detailed, in-depth

knowledge of their specific domain (e.g., complex

physics simulation versus state-of-the-art uncertainty

1058-9244/12/$27.50 2012 – IOS Press and the authors. All rights reserved

198 R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming

quantification algorithms), and it is usually impossi-

ble to be an expert in all of these domains. Further-

more, the requirement to provide the extra information

needed by these analysis algorithms (e.g., derivatives)

often impedes the development of the simulation code,

particularly early in the software development cycle

(and thus there is often significant resistance to incor-

porate these capabilities early). Finally, because of the

long term investments in these codes, the analysis re-

quirements can change over the life-cycle of the code

and thus it may be impossible to incorporate from the

beginning requirements that may arise later.

In this work, we describe an approach for building

simulation code capabilities that natively support many

types of analysis algorithms. This approach leverages

compile-time polymorphism and generic programming

through C++ templates to insulate the code developer

from the need to worry about the requirements of ad-

vanced analysis, yet provides hooks within the sim-

ulation code so that these analysis techniques can be

added later. The ideas presented here build on oper-

ator overloading-based automatic differentiation tech-

niques to transform a simulation code into one that is

capable of providing analytic derivatives. However we

extend these ideas to compute quantities that are not

derivatives such as polynomial chaos expansions, float-

ing point counts, and extended precision calculations.

In general any calculation that can be implemented in

an operation-by-operation fashion can be supported,

and the use of templates significantly simplifies the in-

corporation of many types of overloaded operators. In

addition to the template-based generic programming,

we also present an approach for integrating these cal-

culations into higher-level data structures appropriate

for large-scale scientific computing based on a seed-

compute-extract paradigm. Finally we discuss a graph-

based assembly approach for organizing the terms in

the equations defining a complex multiphysics simu-

lation and how to support generic programming and

the seed–compute–extract paradigm. Numerous chal-

lenges beyond those described here arise when apply-

ing these techniques to large-scale problems such as

discretizations of multi-dimensional partial differential

equations. Our approach for applying template-based

generic programming to these types of problems is the

subject of a subsequent paper [40].

While the concepts presented here are general and

can be applied with a variety of software libraries,

we base our discussion on a set of tools available

within Trilinos [27] that implement these ideas. In par-

ticular we describe an automatic differentiation pack-

age called Sacado [43,44] that provides the foundation
for our template-based operator overloading approach.
Additionally we discuss a package called Stokhos
[42] that generalizes the differentiation-based operator
overloading in Sacado to a specific class of forward
uncertainty quantification approaches reviewed in the
next section. We also present a library called Phalanx
[35,38] that implements the graph-based multiphysics
assembly idea supporting template-based generic pro-
gramming in complex physics simulation codes.

Embedded analysis can be implemented using al-
ternate techniques. A successful approach used in the
FEniCS [32,33], Life/FEEL++ [37,45] and Sundance
[34] projects is to parse a symbolic representation of
the problem written in a domain specific language
(DSL) to generate the embedded quantities of interest.
The FEniCS project requires the problem description
to be specified in the unified form language [3] and
produces sensitivities through low level code genera-
tion. The Life/FEEL++ project implements the sym-
bolic front end using C++ expression templates and
template metaprogramming techniques. The Sundance
project implements the symbolic front end using C++

expression objects (dynamic polymorphism) and tra-
verses the resulting expression tree to perform in-place
differentiation. While DSL approaches are quite suc-
cessful, we feel that our approach provides some ad-
vantages in certain contexts. When working in legacy
code environments, the template-based approach al-
lows for easy integration with the legacy components
since the data interfaces are directly exposed to the ap-
plications. In contrast, almost all DSL codes (except
Sundance) constrain applications to implement the en-
tire problem in the DSL, thus ruling out any complex
operation that cannot be described by the DSL (e.g.,
nonlinear elimination by a third party library [58]).
A second advantage is that extensibility to new analy-
sis types is easily supported. Adding a new unexpected
analysis capability such as polynomial chaos expan-
sions to the back end parser in the symbolic approach
can take considerable effort and expertise whereas with
the template-based approach, the scalar type opera-
tions are overloaded regardless of the analysis capabil-
ity. The primary drawback to TBGP is that the flexi-
bility provided by TBGP requires more effort to setup
the initial machinery. The DSL-based codes, on the
other hand, typically have strong vertical integration
and have a much lower barrier for adoption. A more
detailed comparison of our assembly engine technol-
ogy and DSLs can be found in [35].

This paper is organized as follows. We first provide
a brief overview of several common simulation and

R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming 199

analysis algorithms that are employed within modern
scientific computing environments in Section 2. These
algorithms motivate several derivative-based and non-
derivative-based quantities that need to be computed
within complex simulation codes. We then review au-
tomatic differentiation techniques which provide the
foundation for our work in Section 3, focusing in par-
ticular on operator overloading approaches in C++. In
Section 4 we generalize operator overloading for dif-
ferentiation to compute more general quantities nec-
essary in some forms of analysis which motivates
the general template-based generic programming ideas
presented in Section 5. Then in Section 6 we describe a
seed–compute–extract paradigm that separates phases
of the template-based generic programming approach
into those that are specific to the kind of analysis cho-
sen and those that are specific to the physical prob-
lem at hand. In Section 7 we then discuss the generic
graph-based assembly approach and how it incorpo-
rates template-based generic programming. The ap-
proach is illustrated through a simple physical prob-
lem arising from chemical engineering where C++

code for portions of the problem are provided. Finally
in Section 8 we provide a small example demonstrat-
ing these ideas for simulating and analyzing the chem-
ical engineering problem from the previous section.
To perform these numerical calculations, several other
Trilinos packages are leveraged including NOX [39]
(nonlinear solver), LOCA [47,49] (stability and bifur-
cation analysis), Stokhos [42] (uncertainty quantifica-
tion) and Rythmos [12] (time integration), all four of
which are wrapped in a common interface through Piro
[48] (analysis tools). We then close with brief conclud-
ing remarks.

2. Common solution and embedded analysis

algorithms

Before discussing our programming approach in de-
tail, we first motivate the approach by presenting sev-
eral common solution and analysis algorithms that of-
ten require significantly advanced simulation code ca-
pabilities. As a model problem we will consider the
general finite-dimensional differential-algebraic equa-
tion

f (ẋ, x, p) = 0, ẋ, x ∈ R
n, p ∈ R

m,

f : R
2n+m → R

n. (1)

Here x is the unknown solution vector, ẋ its time
derivative, p is a set of model parameters, and f is the
set of residual equations defining the model.

2.1. Steady-state nonlinear solves

Given a set of parameter values p, Newton-type
methods are often employed to solve the steady-state
version of Eq. (1) where ẋ = 0, due to its quadratic
convergence rate. Given an initial guess x0, the stan-
dard Newton’s method involves solving the linear sys-
tems

J(xk, p)∆xk = −f (xk, p) (2)

for the update ∆xk where for notational compactness
we have dropped the dependence on ẋ = 0. Here
xk+1 = xk + ∆xk, k = 0, 1, . . . , and J = ∂f/∂x
is the Jacobian of f . Thus the basic Newton’s method
requires evaluating the residual f and Jacobian J at
an arbitrary point (x, p). There are many modifications
of this algorithm to provide better global convergence
properties (e.g., damping, line searches, and trust re-
gions) as well as approaches that attempt to eliminate
the need to compute the Jacobian directly (e.g., Broy-
den methods). However we note the convergence and
robustness of most of these methods are often signif-
icantly improved with accurate approximations of the
Jacobian.

2.2. Steady-state sensitivity analysis and optimization

Once a steady-state solution x∗ has been computed
via some nonlinear solver strategy, the sensitivity of the
solution to the parameters p can be computed directly
through the implicit function theorem:

∂f

∂x
(x∗, p)

dx∗

dp
+

∂f

∂p
(x∗, p) = 0

=⇒
dx∗

dp
= −J −1(x∗, p)

∂f

∂p
(x∗, p). (3)

Often one is only interested in the sensitivity of a set
of response functions s∗ = g(x∗, p), g : Rn+m → R

q ,
which can be computed by

ds∗

dp
=

∂g

∂x
(x∗, p)

dx∗

dp
+

∂g

∂p
(x∗, p)

= −
∂g

∂x
(x∗, p)

(

J −1(x∗, p)
∂f

∂p
(x∗, p)

)

+
∂g

∂p
(x∗, p). (4)

Thus the sensitivities ds∗/dp can be computed via m
linear solves of the Jacobian J with each right-hand

200 R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming

side given by ∂f/∂pi. If all partial derivatives are com-

puted analytically then the only error arising in the sen-

sitivities comes from the error in solving these equa-

tions, which can often be controlled to some degree by

the user through the choice of the linear solver algo-

rithm. This is to be contrasted with a finite differencing

approach around the nonlinear solver, which entails m
nonlinear solves and introduces difficult to control fi-

nite difference truncation error. Thus this approach is

significantly more efficient, and often more robust. It

requires analytic evaluation of not only f and J , but

also ∂f/∂p, ∂g/∂p, and (∂g/∂x)V for a given ma-

trix V .

If the number of parameters m is large but the num-

ber of response functions q is small, then a better ap-

proach is to compute adjoint sensitivities, which are

given by transposing Eq. (4):

(

ds∗

dp

)T

= −

(

∂f

∂p
(x∗, p)

)T

×

(

J −T (x∗, p)

(

∂g

∂x
(x∗, p)

)T)

+

(

∂g

∂p
(x∗, p)

)T

. (5)

This involves q solves of JT where each right-hand

side is given by ∂gi/∂x. It requires analytic evaluation

of f , J , ∂g/∂x, ∂g/∂p and (∂f/∂p)TW for an arbi-

trary matrix W .

With either the forward (4) or adjoint sensitivi-

ties (5), a variety of gradient-based optimization al-

gorithms can be applied for efficiently optimizing the

quantity of interest g.

2.3. Stability and bifurcation analysis

After a steady-state solution x∗ has been found, the

transient stability of the solution can be investigated

through linear stability analysis. By considering in-

finitesimal perturbations away from the steady-state,

simple analysis shows that the asymptotic stability

can be understood through the generalized eigenvalue

problem

λMz + Jz = 0, (6)

where M =
∂f
∂ẋ (0, x∗, p) and J =

∂f
∂x (0, x∗, p). If all

of the eigenvalues λ have a negative real part, then

the solution is stable in a neighborhood of the solu-

tion. If any eigenvalue has a positive real part, the so-
lution is unstable and if any has zero real part, higher-
order analysis is needed. Thus in addition to the Jaco-
bian J , derivatives with respect to the transient terms
are needed. Moreover, for an accurate determination of
stability, it is critical to have exact analytic derivatives
J and M .

The location of the steady-state and its stability can
be tracked as a function of the parameters p through
techniques such as pseudo-arclength continuation [30].
Moreover parameter values at which a change in stabil-
ity occurs, i.e. a bifurcation, can be solved for directly.
For example, a stable and unstable steady-state may
collide as a parameter is increased yielding no steady-
state for parameter values larger than where the bifur-
cation occurs, commonly called a saddle-node, fold,
or turning-point bifurcation. In this case one can show
that Eq. (6) has at least one solution with a zero eigen-
value λ, and thus J has a non-trivial null-space [23].
Such a point can be computed directly by solving the
following augmented system of equations [19]:

f (x, p) = 0, σ(x, p) = 0, (7)

where

σ = −uTJv,

[

J a

bT 0

] [

v

s1

]

=

[

0

1

]

,

(8)
[

JT b

aT 0

] [

u

s1

]

=

[

0

1

]

,

and a and b are given vectors. This system has a
unique solution at a saddle-node bifurcation for al-
most all choices of a and b, under suitable condi-
tions [19]. Applying a Newton-type nonlinear solver to
Eq. (7) requires calculation of the derivatives ∂σ/∂x
and ∂σ/∂p. From Eq. (8) it can be shown that

∂σ

∂x
= −uT ∂

∂x
(Jv),

(9)
∂σ

∂p
= −uT ∂

∂p
(Jv).

Thus this method requires calculation of various sec-
ond derivatives. As with stability analysis, it is critical
to have an accurate approximation of the Jacobian J
since it appears directly in the equations defining the
bifurcation. It is less critical to accurately evaluate the
second derivatives appearing in Eq. (9) since they are
only used in the Newton solver method, but as dis-
cussed above, robustness and convergence are often
improved if these derivatives are computed accurately.

R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming 201

2.4. Transient analysis

There are a variety of explicit and implicit time in-

tegration strategies for computing numerical solutions

to the transient problem (1) with suitable initial condi-

tions. For stiff or differential-algebraic problems, im-

plicit backward differentiation formulas (BDF) [24,

25] are often applied. These methods approximate ẋ
through the multistep formula

hnẋn =

q
∑

i=0

αixn−i, (10)

where q is the order of the method, hn is the time step

size at time step n, and xj , ẋj represent the solution

and its time derivative respectively at time step j. Sub-

stituting Eq. (10) in Eq. (1) we obtain the following

nonlinear system to solve for xn:

f

(

1

hn

q
∑

i=0

αixn−i, xn, p

)

= 0. (11)

Solving this system for xn with a Newton-type method

requires solving linear systems of the form

(

α0

hn

∂f

∂ẋ
+

∂f

∂x

)

∆xn = −f. (12)

Thus derivatives similar to the eigensystem Eq. (6)

must be computed.

2.5. Uncertainty quantification

The last form of analysis we will consider is one

where the parameters p appearing in Eq. (1) have un-

certainty associated with them. Typically this uncer-

tainty manifests through lack of knowledge as to what

the values of the parameters in the system model (1)

should be (so-called epistemic uncertainty), or rep-

resents some variability in realizations of those pa-

rameters (so-called aleatory uncertainty). For analy-

sis purposes, the uncertainty must be represented in

some mathematical fashion, such as bounds or inter-

vals in the first case, or random variables with pre-

scribed probability distributions in the second. Then

the uncertainty quantification problem is to estimate a

representation of the uncertainty of the corresponding

solution x to Eq. (1) (either steady or transient). There

are a variety of computational approaches for this in

the literature, but recently response surface methods

have become popular. These methods compute a re-

sponse surface approximating the mapping x(p), which

can then be used to approximate the uncertainty in x.

For example, x(p) can be sampled to compute bounds

on x for epistemic analysis or probabilities and statis-

tics in an aleatory analysis.

One response surface approximation method in par-

ticular that has seen significant attention in the lit-

erature is one based on approximating x(p) in terms

of orthogonal polynomials, often called polynomial

chaos [17,18,56,57]. For simplicity, consider the

steady-state version of Eq. (1) where to represent the

uncertainty in the parameters p we replace them with

random variables ξ with a known probability mea-

sure µ and density function ρ. More precisely, assume

(Ω, B, P) is a given probability space, with sample

space Ω, σ-algebra B representing admissible events,

and probability measure P : B → [0, 1], then ξ : Ω →
R

m, µ = P ◦ ξ−1 is the measure of ξ, and ρ = dµ/dλ
where λ is Lebesgue measure on R

m. Then formally

x(ξ) can be written as the following sum:

x(ξ) =

∞
∑

i=0

xiψi(ξ), (13)

where {ψi: i = 0, 1, 2, . . .} is a family of polynomials

orthogonal with respect to the measure P :

∫

Ω

ψi(ξ(ω))ψj(ξ(ω)) dP

=

∫

Rm

ψi(ξ)ψj(ξ) dµ

=

∫

Rm

ψi(y)ψj(y)ρ(y) dy = 〈ψ2
i 〉δij (14)

and where 〈 · 〉 =
∫

·ρ dy. The convergence of this sum

is in the L2
P (Ω) sense. The coefficients xi are gener-

alized Fourier coefficients, and thus Eq. (13) is often

called a spectral representation of x(ξ).

For computational purposes, the sum (13) must be

truncated at some finite order N and the coefficients

xi must be approximated. Owing to the orthogonality

relation (14), we have

xi =
1

〈ψ2
i 〉

∫

Rm

x(y)ψi(y)ρ(y) dy (15)

which can be approximated by a multi-dimensional

202 R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming

quadrature rule {(wk, yk): k = 0, . . . , Q} defined

by ρ:

xi ≈
1

〈ψ2
i 〉

Q
∑

k=0

wkx(yk)ψi(y
k). (16)

For each k, xk = x(yk) is computed by solving

f (xk, yk) = 0. This is the so-called non-intrusive spec-

tral projection (NISP) [46] method. In high dimensions

m, an efficient quadrature rule is difficult to find for

a general random vector ξ. When the components are

independent, sparse-grid quadrature rules [36] are the

most effective. Thus a sequence of Q + 1 steady-state

solves are necessary for each quadrature point realiza-

tion yk of the random parameters ξ.

Another approach for approximating the coefficients

xi, the so-called stochastic Galerkin approach [17,18],

is to solve the equations

Fi ≡
1

〈ψ2
i 〉

∫

Rm

f (x̂(y), y)ψi(y)ρ(y) dy

= 0, i = 0, . . . , N , (17)

where x̂(y) =
∑N

i=0 xiψi(y). This generates a new,

fully-coupled set of nonlinear equations for all of the

xi:

F (X) = 0,

X = [x0, . . . , xN]T, F = [F0, . . . , FN]T. (18)

To solve these equations with Newton’s method, cal-

culation of the Jacobian matrix ∂F/∂X is necessary.

From Eq. (17) one can show

∂Fi

∂xj
=

1

〈ψ2
i 〉

∫

Rm

∂f

∂x
(x̂(y), y)ψi(y)ψj(y)ρ(y) dy

≈
N

∑

k=0

Jk
〈ψiψjψk 〉

〈ψ2
i 〉

, (19)

where

Jk =
1

〈ψ2
k 〉

∫

Rm

∂f

∂x
(x̂(y), y)ψk(y)ρ(y) dy (20)

are the polynomial chaos coefficients of the Jacobian

operator ∂f/∂x. Unlike the NISP method above, this

method is intrusive as it requires the formulation and

solution of this new nonlinear system F (X) = 0, and

thus requires significant software infrastructure to im-

plement. In particular the simulation code must imple-

ment a method for computing the stochastic Galerkin

residuals Fi and Jacobians Jk. The primary reason for

doing so is that typically the number N of unknown

coefficients xi is significantly smaller than the number

Q of quadrature points yk, which can lead to computa-

tional savings in some cases [15].

3. Automatic differentiation through operator

overloading

As we have seen above, advanced simulation and

analysis algorithms require accurate and efficient eval-

uation of a variety of first and higher derivatives, as

well as evaluation of other quantities such as polyno-

mial chaos expansions. For the reasons discussed in

the Introduction, it is not practical to expect a simula-

tion code implementing the evaluation of f in Eq. (1)

to provide implementations of all of these calculations.

Thus techniques for automatically generating this in-

formation are necessary. The conceptual foundation

for our approach to automating these calculations lies

with automatic differentiation techniques, specifically

through operator overloading.

3.1. Introduction to automatic differentiation

Automatic differentiation (AD) is a well-known set

of techniques for transforming a given computation

implemented in a programming language, into one

that computes derivatives of that computation. For an

in-depth introduction to AD techniques we refer the

reader to [21] and the references contained within.

Briefly, automatic differentiation works by recognizing

that any computation implemented in a programming

language must be a composition of simple arithmetic

operations (addition, subtraction, multiplication, and

division) and standard mathematical functions (sine,

exponential, etc.). All of these have known formu-

las for computing their derivatives, and thus computer

code for evaluating the derivative of the computation

can be generated by combining these formulas with the

chain rule of basic differential calculus. Automatic dif-

ferentiation is just a method for automating this pro-

cess, and the end result is computer code that com-

putes the derivative of the calculation at a given set

of inputs. Most realistic computations also involve

branches, e.g., conditionals and loops, which can be

handled by a variety of mechanisms. The simplest is

R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming 203

to only compute the derivative of the branch that was

evaluated at the given set of inputs upon which the

original calculation was based (this means the choice

of branches within the derivative code is only based on

the values of the original calculation and not its deriva-

tives). For more detail on approaches for dealing with

branches, discontinuities, and iteration, see [21].

There are different modes of automatic differenti-

ation that accumulate derivatives in different orders,

namely the forward and reverse modes, as well as

modes to compute higher order derivatives (e.g., mul-

tivariate tensors and univariate Taylor series). For ex-

ample, if the calculation to be differentiated is repre-

sented mathematically as y = f (x) where x ∈ R
n and

y ∈ R
m, then given a point x0 ∈ R

n and an arbitrary

matrix V ∈ R
n×p, the forward mode of AD computes

the derivative (see the discussion below on seed matri-

ces as to why this form is chosen)

dy

dx
V =

df

dx
(x0)V =

d

dz
f (x0 + V z)

∣

∣

∣

∣

z=0

. (21)

Forward AD implements this calculation by computing

derivatives with respect to z at each stage of the cal-

culation using rules such as those from Table 1, propa-

gated forward starting from the initialization dx/dz =

V . Owing to the directional derivative nature of for-

mula (21), this method is often called tangent propaga-

tion. One can then easily show [21] that the cost of the

resulting derivative calculation is bounded by

cost

(

dy

dx
V

)

∼ (1 + 1.5p) cost(f), (22)

where cost(f) is the cost to evaluate the function f .

Since all of the columns of V are usually propagated

Table 1

Forward AD differentiation rules for several

scalar intermediate operations

Operation Forward AD rule

c = a ± b ċ = ȧ ± ḃ

c = ab ċ = aḃ + ȧb

c = a/b ċ = (ȧ − cḃ)/b

c = ar ċ = rar−1ȧ

c = sin(a) ċ = cos(a)ȧ

c = cos(a) ċ = − sin(a)ȧ

c = exp(a) ċ = cȧ

c = log(a) ċ = ȧ/a

Note: Overdots denote differentiation with

respect to a single independent variable z.

simultaneously, the cost of forward mode AD seen in

practice is often significantly less [8].

Similarly, given an arbitrary matrix W ∈ R
m×q ,

reverse AD computes

W T dy

dx
= W T df

dx
(x0) =

d

dx
(W Tf (x))

∣

∣

∣

∣

x=x0

(23)

by computing derivatives of z = W Ty with respect

to each intermediate quantity using rules such as those

from Table 2, propagated backward starting from the

initialization dz/dy = W T. This mode is often re-

ferred to as adjoint or gradient propagation. One can

show the cost is given by

cost

(

W T dy

dx

)

∼ 4q cost(f). (24)

Thus for a scalar valued calculation (m = 1), its gradi-

ent (q = 1) can be computed in the cost of about four

function evaluations, regardless of the number of inde-

pendent variables. Note that since reverse AD requires

propagating derivatives backwards through the calcu-

lation, some facility for reversing the code evaluation is

necessary. Typically this is accomplished by building

a data structure storing the computational graph of the

calculation generated through a forward pass. This data

structure stores the values of all of the intermediate op-

erations, some mechanism for computing the deriva-

tive of each operation (either encoding some functional

representation of the operation or a partial derivative

computed in the forward pass), and connectivity rep-

resenting the arguments of each operation. This data

structure can then be traversed in reverse order to accu-

Table 2

Reverse AD rules for several scalar intermediate operations

Operation Reverse AD rule

c = a + b ā = c̄ b̄ = c̄

c = a − b ā = c̄ b̄ = −c̄

c = ab ā = c̄b b̄ = c̄a

c = a/b ā = c̄/b b̄ = −c̄c/b

c = ar ā = c̄rar−1

c = sin(a) ā = c̄ cos(a)

c = cos(a) ā = −c̄ sin(a)

c = exp(a) ā = c̄c

c = log(a) ā = c̄/a

Notes: Overbars over each intermediate variable denote differentia-

tion of a single dependent variable z with respect to that intermediate

variable, e.g., ā = dz/da. For examples putting these rules together

to differentiate a function, we refer the reader to [21].

204 R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming

mulate the derivatives. However because of the over-

head associated with traversing this data structure, of-

ten the cost of reverse mode AD is somewhat higher

than the bound (24) above [8].

The matrices V and W are referred to as seed matri-

ces, and the user is allow to choose them to suit their

purposes. For example if the whole Jacobian matrix

dy/dx is desired, forward or reverse mode can be used

with the corresponding seed matrix set to the identity.

Similarly, the seed matrix can be set to a single vec-

tor to compute Jacobian-vector or Jacobian-transpose-

vector products with significantly less cost than com-

puting the whole matrix. Finally, the forward and re-

verse modes can be applied recursively to compute a

variety of higher derivatives.

3.2. Automatic differentiation software tools

There are a number of software tools available that

implement the various modes of automatic differen-

tiation discussed above in a variety of programming

languages. Most tools can be put into two categories:

those based on source transformation and those based

on operator overloading. Source transformation tools

operate by reading the source code to be differenti-

ated, parsing it, building an internal representation of

the calculation, applying the AD rules discussed above,

generating derivative code and writing this code out

to disk. The derivative code can then be compiled

and linked into an application using standard compiler

tools. It is up to the user to write additional code that

calls the differentiated routines and incorporates the

derivatives in whatever way necessary. This approach

has been most successful for languages such as Fortran

through tools such as ADIFOR [10], Tapenade [26],

and OpenAD [51], but has also been used for C (e.g.,

ADIC [11]) and recently some C++ (e.g., OpenAD

and TAC++ [55]). This approach is ideal in the sense

that it provides the automatic differentiation tool a

global view of the code to be differentiated, allowing

optimization of the resulting derivative calculation.

However the source transformation approach has

seen less use with the C++ language, primarily due

to the complexity of parsing and supporting all of the

features of ANSI C++. Instead the simpler approach

of leveraging the native classing, operator overload-

ing, and templating language features of C++ is more

popular. This approach is library based, whereby new

data types are created to store both function values and

derivative values, and overloaded versions of the arith-

metic and math functions are provided that implement

the derivatives of those operations operating on these

new data types using rules such as those from Tables 1

and 2. Then the floating point data type in a given cal-

culation (e.g., float or double) is replaced by the

corresponding AD data type. The compiler then ap-

plies its operator overloading resolution rules to re-

place the original function calls with the differentiated

versions. Templating can be used (although is not re-

quired) to automate the necessary type replacement. As

with source transformation, the user must provide ad-

ditional code to call the differentiated calculation, as

well as code to initialize the AD data types and extract

the resulting derivatives.

There are numerous tools available implementing

this approach, including ADOL-C [22], FAD [4,5],

FADBAD [9] and Sacado [43]. All of the automatic

differentiation modes can be implemented this way,

and it can be applied to any language that supports de-

rived types and operator overloading (including Python

and Matlab). However the disadvantage of this ap-

proach is that the resulting derivative calculation can be

less efficient than the one resulting from source trans-

formation. This is partly due to the fact that operator

overloading-based tools can only manipulate individ-

ual operations and thus do not have an opportunity to

optimize the whole derivative calculation, but is mainly

due to the extra overhead operator overloading intro-

duces. In essence, each operation in the original calcu-

lation is replaced by a function call, which adds over-

head. Moreover, C++ requires that the overloaded op-

erators return copies of the object created within them

representing the result of the differentiated operation,

which is then copied into the object to store the result

in the calling code. This again adds overhead. Some of

this overhead can be automatically eliminated by the

compiler through aggressive function inlining and opti-

mization. However more recent AD tools such as FAD

and Sacado employ expression templates to trick the

compiler into eliminating virtually all of this overhead.

3.3. Expression templates

Expression templates are a general set of techniques

that make operator overloading more efficient [53]. Ex-

pression templates have been used in numerous con-

texts such as the Blitz++ vector library [54], the

LLANO [31] and Blaze [29] dense linear algebra li-

braries, and the Playa sparse linear algebra package

[28], however for concreteness we will describe them

in the context of AD. Essentially they work by creating

a new data type for each expression in the calculation.

R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming 205

This data type is a tree that encodes the structure of the

expression, the types of operations in the expression,

and their arguments. Instead of differentiating each in-

dividual operation directly, each overloaded operator

appearing in an expression adds a node to the tree to

represent the operation by combining the expression

trees for its arguments. Thus the arguments and return

type of the operator are expressions instead of AD data

types. An overload of the assignment operator must

then be provided for the AD data type with an arbi-

trary expression as the right-hand side which then re-

cursively differentiates the entire expression. The type

of each operation in the expression can be specified by

a template parameter, and each node in the tree must

only store a reference to the expressions representing

its arguments. Thus the creation of the expression tem-

plate involves no runtime calculation, and the entire ex-

pression object can usually be eliminated through ag-

gressive compiler optimizations. This eliminates much

of the overhead of operator overloading by eliminat-

ing the creation and copying of temporary objects and

fusing the differentiation of all of the operations within

an expression. This latter optimization allows a single

loop to be created iterating over all of the components

of the derivative array, instead of having separate loops

for each operation. Moreover, if the length of this array

(i.e., the number of independent variables) is known at

runtime, this loop can be unrolled by the compiler.

FAD [4,5] was the first AD library we are aware

of that implemented expression templates, and these

ideas were later incorporated into the Sacado [43] AD

library in Trilinos. Sacado provides further refinements

of the expression template ideas in FAD to make them

more efficient [41]. In particular, Sacado implements

an expression level reverse mode where each opera-

tion is differentiated by the reverse mode AD approach.

This reduces the number of floating point operations

by recognizing that an expression often has many in-

puts, but only one output. The expression-level reverse

mode computes the gradient of this output with re-

spect to the expression inputs, and then applies the

chain rule to obtain the derivatives with respect to

the independent variables. Furthermore, Sacado can

cache the value of each operation in the expression

tree for use in the subsequent derivative evaluation.

This trades a small amount of data storage required

of the expression for a reduction in the number of

floating point operations. This is particularly important

when nesting AD types for higher derivatives or for

other kinds of non-derivative analysis (such as polyno-

mial chaos expansions) discussed below. These opti-

mizations together with modern optimizing compilers

significantly improve the performance of the forward

AD tools [41], virtually eliminating the overhead typi-

cally associated with operator overloading (see Fig. 1).

In addition to forward mode AD, Sacado also pro-

vides reverse-mode AD tools called RAD [8,16]. Both

the forward and reverse mode AD data types can be

combined to compute a variety of higher derivatives

through a general template mechanism discussed be-

low.

4. Generalized operator overloading for

embedded analysis

The operator overloading approaches discussed

above provide a relatively simple mechanism for gen-

erating analytic derivatives of arbitrarily complex cal-

culations. This idea can be extended in a rather straight

forward manner to compute other kinds of quantities

that are not derivatives. For example, several packages

are available that compute floating point operations in

higher than double precision (e.g., [20]). In C++ these

packages work by implementing a new data type that

stores the floating point value for each operation, and

overloads all of the same operations discussed above to

compute these operations in extended precision. Sim-

ilarly, Sacado (and likely other AD packages) pro-

vides a simple floating point operation counting class

that, along with its overloaded operators, can count the

number of floating point operations (as well as other

operations such as copies and assignments) in a given

calculation.

Finally, operator overloading can be used to gen-

erate information needed for the uncertainty quantifi-

cation methods discussed in Section 2.5. For exam-

ple, the stochastic Galerkin method requires the evalu-

ation of the stochastic Galerkin residual equations (17).

This calculation can be implemented by creating a data

type storing the polynomial chaos coefficients for a

given intermediate quantity used in the evaluation of

the residual function f . Then overloaded operators can

be written that compute these coefficients for each type

of intermediate operation. For example, assume a and b
are two intermediate quantities in the calculation for f
and assume by way of induction that their polynomial

chaos expansions

a(ξ) =

N
∑

i=0

aiψ(ξ), b(ξ) =

N
∑

i=0

biψi(ξ) (25)

206 R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming

Fig. 1. Comparison of Jacobian evaluation times for a simple vector PDE using several approaches: the original Sacado FAD AD tools in Sacado

based on the original FAD library, the new Sacado FAD tools incorporating expression-level reverse mode and caching, source transformation

with ADIC [11] and a hand-coded, optimized Jacobian evaluation. Times are relative to the hand-coded approach and all cases were implemented

using recent GNU C/C++ compilers (4.6.3) with standard –O3 optimization flags. In all cases the Jacobian values agree to machine precision.

The comparison to source transformation demonstrates that for a sufficiently large number of independent variables, the overhead traditionally

associated with operator overloading can be eliminated by the new expression template implementations. (Colors are visible in the online version

of the article; http://dx.doi.org/10.3233/SPR-2012-0350.)

have already been computed. We wish to compute the

chaos expansion

c(ξ) =

N
∑

i=0

ciψ(ξ), (26)

where c = ϕ(a, b) is given by a standard elementary

operation of a and b. If c = a ± b then clearly ci =

ai ± bi, i = 0, . . . , N . If c = ab, then by orthogonality

of the basis polynomials we have

ck =

N
∑

i,j=0

aibj
〈ψiψjψk 〉

〈ψ2
k 〉

, k = 0, . . . , N. (27)

Similarly if c = a/b, then we obtain the following lin-

ear system of equations to solve for the coefficients ci:

N
∑

i,j=0

cibj
〈ψiψjψk 〉

〈ψ2
k 〉

= ak, k = 0, . . . , N. (28)

Computing stochastic Galerkin projections of tran-

scendental operations is more challenging, and several

approaches have been investigated [14]. A relatively

simple and robust approach is quadrature inspired by

non-intrusive spectral projection:

ck ≈
1

〈ψ2
k 〉

Q
∑

j=0

wkϕ(a(yk), b(yk))ψk(yk),

k = 0, . . . , N. (29)

Sacado, together with the stochastic Galerkin pack-

age Stokhos [42] implement these approaches to pro-

vide an operator overloading mechanism for generat-

ing stochastic Galerkin residual values.

5. Template-based generic programming and

compile-time polymorphism

As we have seen, a myriad of analysis capabili-

ties can be incorporated into complex simulation codes

through the creation of specialized types, which we

will call scalar types, and corresponding overloaded

operators. Applying each of these to the code requires

replacing the basic floating point type with a new scalar

type. Since this conversion must happen for many dif-

ferent types, we advocate a templating approach where

the scalar type is replaced by a template parameter.

When this template code is instantiated on the origi-

R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming 207

nal floating point type, the original code is obtained

(and thus no performance is lost in the original calcu-

lation), and when it is instantiated on each new scalar

type, the corresponding overloaded evaluation is ob-

tained. This simplifies extending the AD library to sup-

port new modes since only a new scalar data type and

corresponding overloaded operators must be provided

and the template code can be easily instantiated on this

new type. Furthermore the code developer only needs

to develop, test, and maintain one templated code base.

Finally the implementation of the Sacado scalar data

types and overloaded operators are themselves tem-

plated on the scalar type to allow nesting of types. For

example, by replacing the floating point type in a for-

ward mode AD evaluation with the forward mode AD

data type, a second derivative of the form

d

dx

(

df

dx
V1

)

V2 (30)

is obtained. Similarly, by nesting forward AD inside

reverse AD, one can compute

W T d

dx

(

df

dx
V

)

. (31)

Finally, by nesting the stochastic Galerkin scalar type

inside the forward AD type, one can obtain the poly-

nomial chaos expansion of the Jacobian from Eq. (20).

Once the relevant portions of an application code

have been templated in this manner, a very deep and

powerful interface into the computation is provided

which can be leveraged for the several analysis tasks

discussed above. By providing a template version of

the code, the application developer is essentially cre-

ating a generic version of their calculation that can be

transformed into a new calculation through template

instantiation. Clearly this template instantiation occurs

at compile-time and the corresponding overloaded op-

erators for the chosen scalar type are for the most part

incorporated automatically through the compiler’s nor-

mal template deduction and overload resolution mech-

anisms. Thus this approach introduces compile-time

polymorphism in each of the mathematical operations

invoked in a given calculation through template-based

generic programming.

6. Seed–compute–extract paradigm

As was seen in Section 3, the forward mode of au-

tomatic differentiation requires seeding the AD objects

representing the independent variables to initialize the

AD calculation. Once seeded, the derivative calcula-

tion proceeds by evaluating the calculation with the

scalar type template parameter replaced by the for-

ward AD type, starting from the seeded independent

variables. When the calculation arrives at the depen-

dent variables, the AD objects store the values and

derivatives of the dependent variables with respect to

the seeded independent variables (Eq. (21)). Here the

function values and derivative values must be extracted

and communicated to the analysis algorithm request-

ing them. This general paradigm of seeding the ob-

jects representing the independent variables, evaluat-

ing the code on these objects by instantiating the tem-

plate code on the corresponding types, and extracting

the results is general and applies to all of the analysis

types discussed above.

From a generic programming perspective, the only

difference between all of these different evaluations

is the seeding and extraction phase, and these are the

only points in the calculation where each scalar type

must be explicitly referenced. Moreover, the seeding

and extraction is for the most part independent of the

details of the actual calculation that is being trans-

formed, and only depends on the identification of inde-

pendent and dependent variables (i.e., which quantities

in the program these correspond to and how many of

them there are). We have found it useful to create tem-

plated seeding and extraction classes explicitly special-

ized for each different type (see, for example, [52] for

a discussion on template specialization). For a given

simulation code, these classes only need to be writ-

ten once and will suffice for all of the different prob-

lems that code simulates, and localizes the scalar type-

specific parts of the calculation to one or two classes

(for each scalar type). And since these classes are tem-

plated, they can be incorporated into the general tem-

plated residual evaluation where the compiler will au-

tomatically choose the correct specialization during its

template instantiation process. This structure dramati-

cally simplifies both the addition of new problems or

physics and new scalar types for new types of anal-

ysis. In the first case, only the compute parts of the

evaluation need to be modified or extended and this

will generally be independent of the scalar types. In

the latter case, only new seed/extract classes need to be

provided which is independent of the physics or prob-

lem dependent parts of the evaluation. These seed and

compute classes provide the linkage between the sim-

ulation code evaluation of an analysis quantity (resid-

ual, Jacobian, etc.) and the high-level data structures

208 R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming

needed for the analysis algorithm (e.g., parallel vector

and matrix data structures). Since these classes are ex-

plicitly specialized (and thus are not template code),

these high-level data structures themselves do not need

to be templated.

From a software engineering perspective, the actual

implementation of the seed–compute–extract paradigm

can be rather complex. In Section 7 we will discuss

these issues in greater detail with respect to the Trilinos

tools.

7. Handling complexity

The template-based generic programming concepts

described above allow for a rich analysis environment.

However the software engineering complexity related

to implementing these concepts grows quickly. A Trili-

nos package called Phalanx [38] was implemented to

simplify the use of template-based generic program-

ming. While the main use of this package focuses on

partial differential equation (PDE) assembly, it was

written to support any type of evaluation and is not lim-

ited to cell-based discretizations.

In this section we will address three central com-

plexity issues that arise when evaluating quantities.

The first issue deals with the complexity introduced

when supporting a myriad of analysis algorithms. Each

of the algorithms described in Section 2 requires the

evaluation of specific object types such as residuals, Ja-

cobians, and parameter sensitivities. Providing a flex-

ible and extensible framework for object evaluation is

essential. The second issue is complexity associated

with the algorithm used to construct multiphysics mod-

els. In this case, the ability to robustly switch between

different equation sets and constitutive models is criti-

cal. The final issue is complexity associated with data

management. Control of the allocation and placement

of data on hardware is critical for efficient assembly

routines. A flexible system must be implemented to al-

low “power users” to control data allocation when pos-

sible for specific architectures/hardware.

7.1. Evaluation types

The seed–compute–extract paradigm of Section 6 is

a powerful tool for separation of algorithmic analysis

requirements from the implementation of the physics

models. However templating directly on the scalar type

presents a number of difficulties. Instead, the code base

is templated on an evaluation type. An evaluation type

is a simple C++ struct that corresponds directly to

an object that is required by the analysis algorithms

in Section 2. For example, residual, Jacobian, param-

eter sensitivities, stochastic residual, stochastic Jaco-

bian, and Hessian are all evaluation types.

By templating on the evaluation type, any method

associated with the evaluation process can be special-

ized for the particular evaluation type using template

specialization. This is invaluable when writing the seed

and extract methods. In a previous implementation, the

code was templated on the scalar type and any special-

izations based on the evaluation type were done at run-

time using dynamic polymorphism with abstract base

classes. This added to the complexity of the code by

requiring that a number of objects with pure virtual in-

terfaces be built and passed through the code whenever

a specialization was needed. By moving to static poly-

morphism, the code is much cleaner to read and de-

bug. Additionally the multiplicity is handled at com-

pile time, reducing the overhead of virtual function

lookups if the specialization is nested in a low level

loop in the assembly kernel.

By templating on an evaluation type, a scalar type

can then be used in multiple evaluation types. For ex-

ample, a Jacobian evaluation and a parameter sensi-

tivity evaluation can both use a Sacado forward AD

(FAD) object, Sacado::Fad::DFad<double>.

The difference is that the seed method and extract

method will operate on different objects. In the case

of a Jacobian evaluation, the FAD objects for the de-

grees of freedom will be seeded while for a parameter

sensitivity evaluation, the FAD object for the parame-

ter of interest will be seeded. In the extract phase, a Ja-

cobian sensitivity evaluation will extract FAD deriva-

tive values into a Jacobian matrix, while the parameter

sensitivity evaluation will extract FAD derivative val-

ues into a vector (or multi-vector for multiple parame-

ters). If the code were specialized based on the scalar

type, then we could not differentiate the above calcula-

tion without falling back on runtime polymorphism or

partial specialization.

The definition of evaluation types and all supported

scalar types is handled through a single struct in Pha-

lanx. It is called a “Traits” object but instead of im-

plementing a true traits mechanism (see, for example,

[2]) it is in effect a type glob to simplify implementa-

tion requirements (future work may include transition-

ing this into a true traits mechanism). This class de-

fines each evaluation type and binds a default scalar

type to the evaluation type by declaring a typedef for

ScalarT. The following example defines the scalar

R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming 209

types and evaluation types for implementing a residual,

a Jacobian, a Jacobian-vector product and a Hessian.

struct UserTraits : public PHX::TraitsBase {

// Scalar Types

typedef double RealType;

typedef Sacado::Fad::DFad<RealType> FadType;

typedef Sacado::Fad::DFad<

Sacado::Fad::DFad<RealType> > FadFadType;

// Evaluation Types with default scalar type

struct Residual { typedef RealType ScalarT; };

struct Jacobian { typedef FadType ScalarT; };

struct Tangent { typedef FadType ScalarT; };

struct Hessian { typedef FadFadType ScalarT; };

.

.

.

}

An evaluation is usually associated with one scalar

type, but can use multiple scalar types. For example

a Jacobian calculation normally uses a Sacado FAD

object to compute the derivatives. However if a user

knows that a certain piece of physics is insensitive to

the degree of freedom, then they can attempt to speed

up the code by replacing the FAD data type with a data

type that will not carry out the derivative computations.

The construction of objects required for an evalua-

tion type is simplified by using static polymorphism.

We automate the building of objects by implementing

compile time loops over evaluation types using tem-

plate metaprogramming techniques [1] implemented in

the Sacado and Boost [13] libraries. The user then only

needs to list the evaluation types they would like to

build in the Phalanx Traits struct.

struct UserTraits : public PHX::TraitsBase {

.

.

.

typedef Sacado::mpl::vector<Residual, Jacobian,

Tangent, Hessian> EvalTypes;

.

.

.

}

7.2. Multiphysics complexity

Multiphysics simulation software is plagued by

complexity stemming from the multitude of models

that must be supported in simulating complex physics

systems. Such software environments must support

the ability to flexibly adapt the physics models as a

simulation transitions to different regimes/problems.

This might require the modification/addition/deletion

of equations, constitutive laws and material models.

Supporting a multiplicity in physics models often re-

sults in complex algorithms and rigid software. The

Phalanx library implements a new design approach that

automates the assembly of an evaluation type (e.g.,

residuals and Jacobians) and eliminates the inherent

complexity in physics models. A thorough description

and analysis of the design is beyond the scope of this

paper but can be found in [35]. This section will briefly

summarize the design principles and focus on how the

template-based generic programming concepts are ap-

plied to the framework.

7.2.1. The concept: Data centric assembly

The basic idea is to shift the evaluation of an analysis

quantity from an algorithmic focus (i.e., the properly-

ordered sequence of steps to assemble the quantity of

interest) to the concept of data and their low-level de-

pendencies. In essence, we are decomposing a complex

problem into a number of simpler problems with man-

aged dependencies. By exposing data dependencies, an

algorithm can be constructed automatically from the

simpler pieces.

This concept is best explained by example. Here

we choose a simple Continuous Stirred Tank Reactor

(CSTR) model of a first-order, exothermic, irreversible

chemical reaction A → B in a tank with ideal mix-

ing and an Arrhenius temperature dependence of the

reaction rate [50]. Note that this is a trivial example for

demonstration purposes. In general, balance of either

mass or energy requires

[accumulation] = [in] − [out] + [generation]

− [consumption] (32)

for both the quantity of chemical species A and B, and

the temperature of the fluid. If we consider an inlet flow

of pure A with concentration cAf
and temperature Tf

at a rate λF mixed with a recycle flow with rate of

(1 − λ)F in a reactor of volume V surrounded by a

cooling jacket of temperature Tc this becomes

V
dcA

dt
= [F (λcAf

+ (1 − λ)cA)]

− [FcA] + [0] − [V rA→B],

V ρCp
dT

dt
= [ρCpF (λTf + (1 − λ)T)] (33)

− [ρCpFT] + [V (−∆H)rA→B]

− [hA(T − Tc)],

210 R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming

where cA is the concentration of A, rA→B is the re-

action rate, T is the temperature in the tank, ρ is fluid

density, Cp is the specific heat, ∆H is the heat of re-

action, h is the heat transfer coefficient to the cooling

jacket, and A is the heat transfer area. For a first-order

reaction,

rA→B = kcA, (34)

where k is the reaction rate constant. Typically k is ad-

justed for the temperature of the medium through the

Arrhenius law

k = k0 exp

(

−
E

RT

)

, (35)

where k0 is the pre-exponential factor, E is the activa-

tion energy of the reaction, and R is the universal gas

constant.

The CSTR model, consisting of two nonlinear ordi-

nary differential equations, can now be defined in the

analysis nomenclature of Section 2. The solution vec-

tor, x, is defined as

x =

[

cA

T

]

, (36)

and the residual vector, f , is defined as

f =

[

fA

fT

]

, (37)

where

fA = V
dcA

dt
− F (λcAf

+ (1 − λ)cA)

+ FcA − 0 + V rA→B ,

fT = V ρCp
dT

dt
− ρCpF (λTf + (1 − λ)T) (38)

+ ρCpFT − V (−∆H)rA→B

+ hA(T − Tc).

The next step is to decompose Eq. (33) into a system

of simple pieces. These simple pieces are called “eval-

uators”. In [35], the term “expression” was used in-

stead of evaluator, however in the context of template-

based generic programming, expression templates (an

entirely different concept) are used quite often and so

to avoid confusion between expressions and expression

templates, the term evaluator will be used in this paper

and is used in the Phalanx code base.

An evaluator is an atomic unit templated on an eval-

uation type that contains the following functionality:

(1) Declares both (1) the fields it evaluates, called

evaluated fields and (2) the fields it directly de-

pends on to perform the evaluation, called de-

pendent fields. A field is a quantity of interest

that is computed and stored for use in the as-

sembly process. For example, we might want to

compute and store the reaction rate, rA→B , in

Eq. (33). A discussion of fields can be found in

Section 7.3.

(2) Binds the fields required for the calculation.

When fields are available for read/write, a meth-

od can be called on an evaluator to allow the

evaluator to resolve memory for the fields that it

writes and reads.

(3) Calculates the values for the evaluated fields.

When all dependent fields that an evaluator re-

quires have been evaluated, an evaluator can

compute the values of the evaluated fields using

the values of the dependent fields.

By directly providing the functionality enumerated

above, we can automatically construct algorithms (the

properly-ordered sequence of steps to calculate all re-

quired quantities/expressions). This can be done by

providing a few more abstractions:

(1) A registry where all evaluators that may be re-

quired for the calculation are placed. This reg-

istry allows registration of evaluators and pro-

vides a way to obtain fully constructed fields

via a tag. Tags will be discussed in Section 7.3.

In the Phalanx library, the registry is called

a Field Manager and is implemented in the

PHX::FieldManager object.

(2) A memory allocator used to allocate space to

store field data. This will also be discussed in

Section 7.3.

(3) A mechanism to build the directed acyclic graph

(DAG) representing the dependency among eval-

uators. Once the user defines one or more fields

that are desired, the required evaluators can be

resolved from the registry and form the “root”

nodes in a graph. Each node may then be queried

to determine its dependencies, which are placed

on the out-edges of the node. This process is re-

peated recursively until the “bottom” of the graph

is reached where there are no further out-edges.

(4) A scheduler that traverses the graph to execute it.

The execution graph may be obtained by invert-

ing the dependency graph constructed in step 3.

R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming 211

Fig. 2. Example expression dependency graph for the CSTR system (33).

A node is scheduled for execution once all of its

data-dependents (execution-parents) have com-

pleted. This allows significant flexibility in the

ordering in which nodes are executed, and facil-

itates task-based parallelism (see [35] for more

details).

An example decomposition of Eq. (33) is shown in

Fig. 2. This choice in decomposition follows naturally

from separation of terms in the balance equation (32).

The residuals are defined as

f =

[

fA

fT

]

=

[

fAacc
− fAin

+ fAout
− fAgen

+ fAcons

fTacc
− fTin

+ fTout
− fTgen

+ fTcons

]

,

(39)

where the evaluators for fields are defined as

fAacc
= V

dcA

dt
,

fAin
= F (λcAf

+ (1 − λ)cA),

fAout
= FcA,

fAgen
= 0,

fAcons
= V rA→B ,

(40)

fTacc
= V ρCp

dT

dt
,

fTin
= ρCpF (λTf + (1 − λ)T),

fTout
= ρCpFT ,

fTgen
= V (−∆H)rA→B ,

fTcons
= hA(T − Tc).

Note that while the accumulation terms are discretized

in time using BDF methods as described in Section 2.4,

we recommend this calculation be performed in the

high-level time integration package, not within the

simulation code itself. Thus the time derivative terms

(dcA/dt and dT/dt) are treated as independent vari-

ables in the evaluation of the CSTR residual equations.

Each node in this graph represents an evaluator and

lists the field(s) that it evaluates. Out edges from a node

point to other evaluators that evaluate fields that the

origin node is directly dependent on. Note that the de-

pendency graph nodes are evaluators and not fields.

This is intentional so that evaluators can evaluate mul-

tiple fields. This is done to support the incorporation of

third party libraries that, for efficiency, compute multi-

ple fields (e.g., the source terms for the mass and heat

balances) in a single function call.

Note that the decomposition in Fig. 2 is not unique

but is chosen by the application developers. All equa-

tions could be implemented in a single model evalua-

tor, or can be split across multiple evaluators as shown

here. The advantages and disadvantages of the graph

decomposition process with respect to template based

generic programming are discussed in the next section.

A separate discussion of general advantages irrespec-

tive of template based generic programming can be

found in [35].

7.2.2. Benefits of graph-based assembly

The use of a graph-based approach has a number of

benefits. First, the evaluation of terms will be consis-

tent. If a field is dependent on another field, it will not

be calculated until all of its dependent fields are first

calculated. For a simple problem such as described by

Eq. (33) it is not difficult. The logical order is clear and

can be implemented by visual inspection. However as

a code allows for multiple equations and closure mod-

els to be added, subtracted, or swapped, the complex-

212 R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming

ity makes visual inspection and ordering nearly impos-

sible for all combinations and thus results in fragile

code. This graph-based approach eliminates the logical

complexity.

The use of fields and graph-based evaluation also

provides a mechanism for code reuse. As different

models are inserted into the graph and the dependency

tree changes, the order is automatically updated and

the surrounding nodes can be reused. Changing depen-

dencies on one node does not require a code change in

any of the surrounding nodes. For example, a simpler

model of the reaction constant k can be used that does

not depend on the temperature T . This can easily be

accomplished by using a different evaluator for k with-

out changing any other parts of the code.1 Thus the use

of evaluators isolates model code.

The dependency graph can generate very efficient

code. Due to the complexity of ever changing equa-

tions and closure models, some applications ignore the

complexity and resort to recomputing the same quan-

tities over and over if needed in separate equation sets

and/or operators, resulting in highly inefficient code.

By using the dependency graph, a field is guaranteed to

be computed once and used by all other evaluators that

depend on it. For example, in Fig. 2, rA→B is com-

puted once and is used by both the A-consumption and

T -generation evaluators. Additionally once rA→B is

used by all dependent evaluators, the scheduler could

even recycle the memory for rA→B to be used for

other fields not yet processed in the DAG.

In terms of template-based generic programming,

each evaluator is a separate C++ object templated on

the evaluation type. As such, it not only becomes a

point of variability to switch models, it can also be a

point of variability in evaluation types by using tem-

plate specialization on a single model. The user can

implement different algorithms based on the evalua-

tion type for each model. For example, in some cases

having an exact Jacobian can hinder convergence rates.

The Jacobian evaluation type could be specialized

to drop certain dependencies from the AD scalar types.

The ability to apply template specialization to eval-

uators for a particular evaluation type is critical in the

seed–compute–extract paradigm in Section 6. For each

of the evaluation types, only the seed and extract eval-

1Note however we assume the dependencies of any given evalua-

tor are static throughout the computational simulation. Thus branch-

ing conditions are allowed within the implementation of any given

evaluator as long as they do not change the structure of the graph.

This latter case could be supported by allowing dynamic reconfigur-

ing of the graph, however our current tools do not support this.

uators need be specialized. All other evaluators in the

graph are used in the compute phase and have a single

implementation templated on the scalar type.

7.3. Data structures and memory management

A critical aspect to efficient assembly algorithms is

the management of data. This section is devoted to dis-

cussing a number of issues that impacted the design of

Phalanx.

The allocation of memory for storing field data in the

Phalanx library is completely controlled by the user.

A templated parameter in the Traits class is used to

specify a memory allocator object that can be writ-

ten by the user. Once the dependency graph is con-

structed, the registry contains a list of all fields that

the registry requires memory for. The registry can then

call the allocator to dynamically allocate storage for

the field data. An important aspect is that the alloca-

tor could allocate a single contiguous array for all field

data members (including mixed data types) in an at-

tempt to fit all field data for a complete graph traver-

sal into cache. Phalanx contains two allocator imple-

mentations. A simple allocator that uses the C++ new

command and an advanced allocator that allocates one

single contiguous block of memory for all fields of

all data types. The advanced allocator is templated on

an alignment type so that the arrays can be correctly

aligned for a base scalar type. When a block of the

contiguous array is assigned to a field, a special rein-

terpret cast is called on the block to correctly call the

scalar type constructors. This functionality along with

the reference counting guarantees that the constructors

and destructors of the field scalar type are called cor-

rectly. However for flexibility, users are free to specify

their own allocator. This is useful, for example, when

users have their own mesh database for storing field

data.

The field interface is a simple handle layer. A field

consists of a tag used for identification in the registry

and a reference-counted smart pointer (RCP) [2,7] for

accessing the field data. Two implementations of fields

are available in Phalanx, a simple PHX::Field ob-

ject and the more advanced multidimensional array

PHX::MDField object. While the memory manage-

ment relies on RCPs, in the future the array will option-

ally support out-of-core memory for running on GPG-

PUs using the multidimensional array under develop-

ment in the Kokkos package [6].

The tag on a field is used to provide a unique sig-

nature for identifying fields in the registry. It is con-

R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming 213

structed from a name (a std::string), a scalar

type, and a data layout. The scalar type information

is returned in a std::type_info object to support

runtime comparisons. The data layout object specifies

the data signature for a multidimensional array. It con-

tains the rank of the array, the names of the ordinals

in the array, the sizes of the ordinals in the array, and

an optional name. The unique signature is formed from

a combination of these three objects so fields can be

differentiated by name, scalar type, or data layout.

7.4. An example evaluator

Now that the data structures and algorithms have

been discussed, an example evaluator for the node rep-

resenting the reaction rate rA→B , will be shown. The

header file, excluding the include guards and (optional)

explicit template instantiation declarations, is shown in

Fig. 3.

Three fields are declared. One for the reaction rate

values, rA→B , and two for the dependent fields, k and

cA, required to perform the calculation in Eq. (34).

A set of macros can be used to hide the class decla-

ration boilerplate. This substantially cuts down on the

boilerplate and additionally hides most of the templat-

ing from users. The same header from Fig. 3 is shown

in Fig. 4 using the macros.

The implementation of the three methods for this

evaluator class follows. The constructor, the post reg-

istration setup and the evaluate methods are shown

in Fig. 5 using the macro definitions. The construc-

tor is used to create the tag for each field. This con-

sists of a string name and the associated data lay-

out. The data layout is passed in by the user through

a parameter list. The data layout contains a descrip-

tion of the multidimensional array as described in Sec-

tion 7.3. In the constructor, the evaluator is told how

to advertise its capabilities. It declares what fields it

evaluates and what fields it requires to complete the

evaluation. The post registration setup function is used

for binding the memory allocated for each field. The

field_manager object is the field manager and

contains the registry with pointers for the memory for

each field.

#include "Phalanx_ConfigDefs.hpp"

#include "Phalanx_Evaluator_WithBaseImpl.hpp"

#include "Phalanx_Evaluator_Derived.hpp"

#include "Phalanx_MDField.hpp"

template<typename EvalT, typename Traits>

class FirstOrderReaction : public PHX::EvaluatorWithBaseImpl<Traits>,

public PHX::EvaluatorDerived<EvalT, Traits> {

public:

FirstOrderReaction(const Teuchos::ParameterList& p);

void postRegistrationSetup(typename Traits::SetupData d,

PHX::FieldManager<Traits>& vm);

void evaluateFields(typename Traits::EvalData d);

private:

typedef typename EvalT::ScalarT ScalarT;

PHX::MDField<ScalarT> k; // reaction rate constant

PHX::MDField<ScalarT> c; // concentration

PHX::MDField<ScalarT> r; // total reaction rate

}

Fig. 3. Header file source for implementing the reaction rate rA→B . Note that the include guards and (optional) explicit template instantiation

machinery are not shown for clarity.

214 R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming

#include "Phalanx_ConfigDefs.hpp"

#include "Phalanx_Evaluator_WithBaseImpl.hpp"

#include "Phalanx_Evaluator_Derived.hpp"

#include "Phalanx_MDField.hpp"

PHX_EVALUATOR_CLASS(FirstOrderReaction)

PHX::MDField<ScalarT> k; // reaction rate constant

PHX::MDField<ScalarT> c; // concentration

PHX::MDField<ScalarT> r; // total reaction rate

PHX_EVALUATOR_CLASS_END

Fig. 4. Header file source for implementing the reaction rate rA→B using macro definition for class declaration boilerplate.

PHX_EVALUATOR_CTOR(FirstOrderReaction,params)

{

Teuchos::RCP<PHX::DataLayout> scalar =

params.get<Teuchos::RCP<PHX::DataLayout> >("Scalar Layout");

k = PHX::MDField<ScalarT>("k", scalar);

c = PHX::MDField<ScalarT>("c", scalar);

r = PHX::MDField<ScalarT>("r", scalar);

this->addDependentField(k);

this->addDependentField(c);

this->addEvaluatedField(r);

}

PHX_POST_REGISTRATION_SETUP(FirstOrderReaction,user_data,field_manager)

{

this->utils.setFieldData(k,field_manager);

this->utils.setFieldData(c,field_manager);

this->utils.setFieldData(r,field_manager);

}

PHX_EVALUATE_FIELDS(FirstOrderReaction,user_data)

{

r(0) = k(0) * c(0);

}

Fig. 5. Evaluator implementation.

The evaluate routine is the actual implementation of

the algorithm. While this is a very simple expression,

note that there is no limit on how much work a sin-

gle operator could do. For example, a single evaluator

could implement multiple complete equations instead

of this single term.

R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming 215

The PHX::MDField object is a multidimensional

array that wraps the memory associated with storing

the values of a field. In the case of our simple demon-

stration problem the fields are single scalar values

(i.e., a rank one array of size one). This notation is

slightly clunky for single scalars since one would pre-

fer writing r = k * c instead of r(0) = k(0)

* c(0). However, most use cases require MDFields

that are larger arrays than single scalars (such as for fi-

nite element calculations). In such cases, multidimen-

sional array support is crucial for performance. Note

that one could recover the simple syntax by implement-

ing expression templates for the MDField objects.

8. Numerical examples

We now provide simple numerical examples that

demonstrate the power of this template-based generic

programming approach. While these ideas can be ap-

plied to very complex multiphysics systems, for peda-

gogical purposes we consider the simple CSTR equa-

tions (33). Using the ideas discussed above, Phalanx

evaluators can be written for each of the terms ap-

pearing in Eq. (33), along the lines of those shown in

Figs 3–5. These evaluators, along with seed and extract

evaluators for each evaluation type and interfaces con-

necting these calculations to high-level simulation and

analysis algorithms in Trilinos, provide the software

implementation necessary for the numerical examples

shown below. We present these examples in terms of

the non-dimensional version [50] of Eq. (33):

dx

dt
= −x + D(1 − x) exp

(

y

1 + y/γ

)

,

dy

dt
= −y + BD(1 − x) exp

(

y

1 + y/γ

)

(41)

− β(y − yc).

These equations exhibit a variety of interesting dy-

namical phenomena including multiple stable steady-

states, stable and unstable oscillations, and bifurcations

depending on the values of the parameters D, B, γ, β
and yc. As in [50], we consider the case γ → ∞ and

yc = 0.

We first consider the locus of steady-state solutions

as a function of D for fixed B and β. Such a curve

is shown in Fig. 6(a), which was computed using the

LOCA [49] and NOX [39] packages in Trilinos via

pseudo-arclength continuation. This curve illuminates

values of D where multiple steady-states exist and the

existence of turning-point bifurcations. The parameter

values where these bifurcations occur can be solved

for using the bifurcation equations (7), (8) and tracked

as a function of a second parameter (also through

pseudo-arclength continuation). Such a calculation us-

ing LOCA is displayed in Fig. 6(b). For both of these

calculations, the template-based generic programming

ideas discussed above are leveraged for analytic evalu-

ation of the Jacobian and parameter derivatives needed

by these algorithms as discussed in Section 2.3. Note

that the implementation of these equations is capable

of providing the analytic second derivatives needed by

the turning point algorithm (9), and LOCA is capable

of using them, however the interface used to connect

this problem to LOCA currently does not support them

and thus they were estimated by first-order finite dif-

ferencing of the first derivatives.

For other choices of the model parameters, the sys-

tem exhibits oscillations. An example of this is shown

in Fig. 6(c) using the Rythmos time integration pack-

age [12] in Trilinos. In this case, analytic derivatives

with respect to the transient terms are provided through

the template-based generic programming approach and

the Sacado automatic differentiation package.

As a final example, we consider the case when D,

B and β are uncertain as represented by the following

independent random variables:

D ∼ uniform on [0.03, 0.05],

B ∼ uniform on [7, 8], (42)

β ∼ uniform on [0.05, 1.05].

We then estimate a fourth order polynomial chaos ex-

pansion of the steady-state solution to Eq. (41) using

the intrusive stochastic Galerkin approach from Sec-

tion 2.5. In this case the polynomials ψ are tensor prod-

ucts of one-dimensional Legendre polynomials. The

stochastic Galerkin residual equations (17) and corre-

sponding Jacobians (20) are evaluated using the spe-

cialized overloaded operators discussed above using

the Sacado and Stokhos packages. These are then as-

sembled into the stochastic Galerkin linear systems

needed to solve the equations using Newton’s method

as provided by NOX [39]. Once the solution is com-

puted, it can be employed for a variety of analysis pur-

poses. For example, in Fig. 6(d) and (e) we plot an esti-

mation of the probability density function for x and y,

computed by Monte Carlo sampling of the polynomial

chaos response surface x(ξ), y(ξ).

216 R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming

(a) (b)

(c)

(d) (e)

Fig. 6. Numerical examples of several analysis approaches applied to the CSTR equations. (a) Continuation. (b) Turning-point continuation.

(c) Transient. (d) x density. (e) y density.

R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming 217

The purpose of these calculations is not to demon-

strate any new numerical results or new algorithmic ap-

proaches, rather to demonstrate how a single templated

code base can be leveraged for a variety of analysis al-

gorithms that require advanced capabilities of the sim-

ulation code. While all of these calculations are very

intrusive to the simulation code, the use of template-

based generic programming for the most part makes

these calculations transparent to the code developer

and provides hooks for incorporation of future intru-

sive analysis algorithms.

9. Concluding remarks

In this paper we described a template-based generic

programming approach for incorporating advanced

analysis algorithms into complex simulation codes.

This approach relies on operator overloading tech-

niques in the C++ language inspired by automatic

differentiation to transform a base residual calcula-

tion into one that can compute a variety of derivative

and non-derivative quantities useful for advanced sim-

ulation and analysis. The approach also leverages the

C++ template facilities to automate the conversion

from the base scalar floating point type to the multi-

tude of scalar types needed for operator overloading.

Additionally we described a graph-based assembly ap-

proach for creating complex simulation tools, and how

this approach builds on template-based generic pro-

gramming. While these techniques are general and

could be implemented in a variety of software tools,

we described several tools within the Trilinos soft-

ware framework that implement these ideas, namely

the Sacado automatic differentiation, Stokhos stochas-

tic Galerkin, and Phalanx graph-based assembly pack-

ages. Together with advanced solver and analysis tools

in Trilinos such as NOX, LOCA and Rythmos, as well

as other simulation tools such as geometry specifica-

tion, mesh database and discretization tools also avail-

able in Trilinos, simulation tools for complex physical,

biological and engineered processes can be developed

that support a wide variety of state-of-the-art simu-

lation and analysis algorithms. These tools and tech-

niques have already been applied to more interesting

and challenging problems than the simple example de-

scribed here, which is the subject of a subsequent pa-

per [40]. Together these papers demonstrate the most

compelling aspect of the overarching template-based

generic programming approach: while it is always pos-

sible to develop a customized software tool for a given

kind of simulation or analysis (e.g., transient, stability,

or uncertainty analysis), the approach allows a single

software implementation of the underlying equations

to be leveraged for all of these analyses.

We admit that the approach described here is com-

plex and requires a fair degree of sophistication on the

part of the programmer in terms of familiarity with

templating, polymorphism and operator overloading.

However the beauty of the template-based generic pro-

gramming approach is that it for the most part al-

lows the programmer to ignore, and perhaps not even

be aware of, the embedded analysis that ultimately

might be performed on the simulation or the details of

the specific scalar types and their corresponding over-

loaded operators.

Acknowledgements

This work was funded by the US Department of En-

ergy through the NNSA Advanced Scientific Comput-

ing and Office of Science Advanced Scientific Com-

puting Research programs.

References

[1] D. Abrahams and A. Gurtovoy, C++ Template Metaprogram-

ming: Concepts, Tools, and Techniques from Boost and Be-

yond, Addison-Wesley, Reading, MA, 2004.

[2] A. Alexandrescu, Modern C++ Design: Generic Program-

ming and Design Patterns Applied, C++ In-Depth Series,

Addison-Wesley, Reading, MA, 2001.

[3] M.S. Alnæs, UFL: a finite element form language, in: Auto-

mated Solution of Differential Equations by the Finite Element

Method, A. Logg, K.-A. Mardal, G.N. Wells et al., eds, Lec-

ture Notes in Computational Science and Engineering, Vol. 84,

Springer, 2012, pp. 303–308 (Chapter 17).

[4] P. Aubert and N. Di Césaré, Expression templates and forward

mode automatic differentiation, in: Automatic Differentiation

of Algorithms: From Simulation to Optimization, G. Corliss,

C. Faure, A. Griewank, L. Hascoët and U. Naumann, eds,

Computer and Information Science, Chapter 37, Springer, New

York, NY, 2002, pp. 311–315.

[5] P. Aubert, N. Di Césaré and O. Pironneau, Automatic differen-

tiation in C++ using expression templates and application to a

flow control problem, Comput. Visual. Sci. 3 (2001), 197–208.

[6] C.G. Baker, M.A. Heroux and H.C. Edwards, Core ker-

nels package, 2011, available at: http://trilinos.sandia.gov/

packages/kokkos/.

[7] R.A. Bartlett, Teuchos C++ memory management classes, id-

ioms, and related topics: the complete reference (a compre-

hensive strategy for safe and efficient memory management

in C++ for high performance computing), Technical Report

SAND2010-2234, Sandia National Laboratories, May 2010.

218 R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming

[8] R.A. Bartlett, D.M. Gay and E.T. Phipps, Automatic differ-

entiation of C++ codes for large-scale scientific computing,

in: Computational Science – ICCS’2006, V.N. Alexandrov,

G.D. van Albada, P.M.A. Sloot and J. Dongarra, eds, Lecture

Notes in Computer Science, Vol. 3994, Springer, Heidelberg,

2006, pp. 525–532.

[9] C. Bendtsen and O. Stauning, FADBAD, a flexible C++

package for automatic differentiation, Technical Report IMM–

REP–1996–17, Department of Mathematical Modelling, Tech-

nical Univ. Denmark, Lyngby, 1996.

[10] C.H. Bischof, A. Carle, P. Khademi and A. Mauer, ADIFOR

2.0: automatic differentiation of Fortran 77 programs, IEEE

Comput. Sci. Eng. 3(3) (1996), 18–32.

[11] C.H. Bischof, L. Roh and A. Mauer, ADIC – An extensible au-

tomatic differentiation tool for ANSI-C, Software Pract. Exp.

27(12) (1997), 1427–1456.

[12] T.S. Coffey and R.A. Bartlett, Rythmos time integration pack-

age, 2011, available at: http://trilinos.sandia.gov/packages/

rythmos/.

[13] B. Dawes and D. Abrahams, Boost C++ Libraries, 2011,

available at: http://www.boost.org.

[14] B. Debusschere, H. Najm, P. Pebay, O. Knio, R. Ghanem and

O.L. Maitre, Numerical challenges in the use of polynomial

chaos representations for stochastic processes, SIAM J. Sci.

Comput. 26(2) (2004), 698–719.

[15] H. Elman, C. Miller, E.T. Phipps and R.S. Tuminaro, Assess-

ment of collocation and Galerkin approaches to linear diffu-

sion equations with random data, Int. J. Uncertainty Quant.

1(1) (2011), 19–33.

[16] D.M. Gay, Semiautomatic differentiation for efficient gra-

dient computations, in: Automatic Differentiation: Applica-

tions, Theory, and Tools, H.M. Bücker, G. Corliss, P. Hov-

land, U. Naumann and B. Norris, eds, Lecture Notes in Com-

putational Science and Engineering, Vol. 50, Springer, 2006,

pp. 147–158.

[17] R. Ghanem and P.D. Spanos, Polynomial chaos in stochastic

finite elements, J. Appl. Mech. 57 (1990), 197–202.

[18] R.G. Ghanem and P.D. Spanos, Stochastic Finite Elements:

A Spectral Approach, Springer, New York, 1991.

[19] W.J.F. Govaerts, Numerical Methods for Bifurcations of Dy-

namical Equilibria, SIAM, Philadelphia, PA, 2000.

[20] T. Granlund, GNU multiple precision library, 2011, available

at: http://gmplib.org/.

[21] A. Griewank, Evaluating Derivatives: Principles and Tech-

niques of Algorithmic Differentiation, Frontiers in Appl. Math.,

Vol. 19, SIAM, Philadelphia, PA, 2000.

[22] A. Griewank, D. Juedes and J. Utke, Algorithm 755: ADOL-C:

a package for the automatic differentiation of algorithms writ-

ten in C/C++, ACM Trans. Math. Softw. 22(2) (1996), 131–

167.

[23] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dy-

namical Systems, and Bifurcations of Vector Fields, Applied

Mathematical Sciences, Vol. 42, Springer, New York, 1983.

[24] E. Hairer, S. Nørsett and G. Wanner, Solving Ordinary Differ-

ential Equations I: Nonstiff Problems, Springer Series in Com-

putational Mathematics, Vol. 8, Springer, Berlin, 1991.

[25] E. Hairer and G. Wanner, Solving Ordinary Differential Equa-

tions II: Stiff and Differential-Algebraic Problems, Springer

Series in Computational Mathematics, Vol. 14, Springer,

Berlin, 1991.

[26] L. Hascoët and V. Pascual, TAPENADE 2.1 user’s guide, Rap-

port technique 300, INRIA, Sophia Antipolis, 2004, available

at: http://www.inria.fr/rrrt/rt-0300.html.

[27] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda,

R. Lehoucq, K. Long, R. Pawlowski, E. Phipps, A. Salinger,

H. Thornquist, R. Tuminaro, J. Willenbring, A. Williams and

K. Stanley, An overview of the Trilinos package, ACM Trans.

Math. Softw. 31(3) (2005), 397–423.

[28] V.E. Howle, R.C. Kirby, K.R. Long, B. Brennan and

K. Kennedy, Playa: High-performance programmable linear

algebra, Sci. Program. 20 (2012), 257–273.

[29] K. Iglberger, G. Hager, J. Treibig and U. Rüde, Expression

templates revisited: a performance analysis of current method-

ologies, SIAM J. Sci. Comput. 34(2) (2012), C42–C69.

[30] H. Keller, Constructive methods for bifurcation and nonlinear

eigenvalue problems, in: Computing Methods in Applied Sci-

ences and Engineering, 1977, I, R. Glowinski, J. Lions and

I. Laboria, eds, Lecture Notes in Math., Vol. 704, Springer,

Berlin/Heidelberg, 1979, pp. 241–251.

[31] R.C. Kirby, A new look at expression templates for matrix

computation, Comput. Sci. Eng. 5(3) (2003), 66–70.

[32] A. Logg, Automating the finite element method, Arch. Comput.

Methods Eng. 14(2) (2007), 93–138.

[33] A. Logg, K.-A. Mardal, G.N. Wells et al., Automated Solu-

tion of Differential Equations by the Finite Element Method,

Springer, Berlin, 2012.

[34] K. Long, R. Kirby and B. van Bloemen Waanders, Unified em-

bedded parallel finite element computations via software-based

Frechet differentiation, SIAM J. Sci. Comput. 32(6) (2010),

3323–3351.

[35] P.K. Notz, R.P. Pawlowski and J.C. Sutherland, Graph-based

software design for managing complexity and enabling concur-

rency in multiphysics PDE software, ACM Trans. Math. Softw.

39 (2012), to appear.

[36] E. Novak and K. Ritter, High dimensional integration of

smooth functions over cubes, Num. Math. 75 (1996), 59–97.

[37] C. Prud’homme, Life: overview of a unified C++ implemen-

tation of the finite and spectral element methods in 1D, 2D

and 3D, in: Applied Parallel Computing. State of the Art in

Scientific Computing, B. Kågström, E. Elmroth, J. Dongarra

and J. Wasniewski, eds, Lecture Notes in Computer Science,

Vol. 4699, Springer, Berlin, 2007, pp. 712–721.

[38] R.P. Pawlowski, Phalanx multiphysics assembly pack-

age, 2010, available at: http://trilinos.sandia.gov/packages/

phalanx/.

[39] R.P. Pawlowski and T.G. Kolda, NOX object-oriented nonlin-

ear solver package, 2011, available at: http://trilinos.sandia.

gov/ppackages/nox/.

[40] R.P. Pawlowski, E.T. Phipps, A.G. Salinger, S.J. Owen,

C. Siefert and M.L. Staten, Automating embedded analysis ca-

pabilities and managing software complexity in multiphysics

simulation, Part II: Application to partial differential equations,

Sci. Program. 20 (2012), 327–345.

[41] E. Phipps and R. Pawlowski, Efficient expression templates for

operator overloading-based automatic differentiation, in: Re-

cent Advances in Algorithmic Differentiation, S. Forth, P. Hov-

land, E. Phipps, J. Utke and A. Walther, eds, Lecture Notes

in Computational Science and Engineering, Vol. 87, Springer,

Berlin, 2012, pp. 309–319.

R.P. Pawlowski et al. / Automating embedded analysis, Part I: Template-based generic programming 219

[42] E.T. Phipps, Stokhos stochastic Galerkin uncertainty quantifi-

cation methods, 2011, available at: http://trilinos.sandia.gov/

packages/stokhos/.

[43] E.T. Phipps, R.A. Bartlett, D.M. Gay and R.J. Hoekstra,

Large-scale transient sensitivity analysis of a radiation-

damaged bipolar junction transistor via automatic differentia-

tion, in: Advances in Automatic Differentiation, C.H. Bischof,

H.M. Bücker, P.D. Hovland, U. Naumann and J. Utke, eds,

Springer, 2008, pp. 351–362.

[44] E.T. Phipps and D.M. Gay, Sacado automatic differentia-

tion package, 2011, available at: http://trilinos.sandia.gov/

packages/sacado/.

[45] C. Prud’Homme, A domain specific embedded language in

C++ for automatic differentiation, projection, integration and

variational formulations, Sci. Program. 14(2) (2006), 81–110.

[46] M. Reagan, H. Najm, R. Ghanem and O. Knio, Uncer-

tainty quantification in reacting-flow simulations through non-

intrusive spectral projection, Combust. Flame 132(3) (2003),

545–555.

[47] A. Salinger, E. Burroughs, R. Pawlowski, E. Phipps and

L. Romero, Bifurcation tracking algorithms and software for

large scale applications, Int. J. Bifurcat. Chaos 15(3) (2005),

1015–1032.

[48] A.G. Salinger, E.T. Phipps, R.A. Bartlett, R.P. Pawlowski and

T.S. Coffey, Piro embedded analysis tools package, 2011,

available at: http://trilinos.sandia.gov/packages/piro/.

[49] A.G. Salinger, E.T. Phipps and R.P. Pawlowski, LOCA: library

of continuation algorithms, 2011, available at: http://trilinos.

sandia.gov/packages/nox/.

[50] A. Uppal and W.H. Ray, On the dynamic behavior of continu-

ous stirred tank reactors, Chem. Eng. Sci. 29 (1974), 967–985.

[51] J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. He-

imbach, C. Hill and C. Wunsch, OpenAD/F: a modular, open-

source tool for automatic differentiation of Fortran codes, ACM

Trans. Math. Softw. 34(4) (2008), 18:1–18:36.

[52] D. Vandevoorde and N.M. Josuttis, C++ Templates, The Com-

plete Guide, Addison-Wesley, Reading, MA, 2003.

[53] T. Veldhuizen, Expression templates, C++ Report 7(5)

(1995), 26–31.

[54] T. Veldhuizen, Arrays in blitz++, in: Computing in Object-

Oriented Parallel Environments, D. Caromel, R. Oldehoeft

and M. Tholburn, eds, Lecture Notes in Computer Science,

Vol. 1505, Springer, Berlin, 1998, p. 501.

[55] M. Voßbeck, R. Giering and T. Kaminski, Development and

first applications of TAC++, in: Advances in Automatic

Differentiation, C.H. Bischof, H.M. Bücker, P.D. Hovland,

U. Naumann and J. Utke, eds, Springer, Berlin, 2008, pp. 187–

197.

[56] N. Wiener, The homogeneous chaos, Am. J. Math. 60 (1938),

897–936.

[57] D. Xiu and G. Karniadakis, The Wiener–Askey polynomial

chaos for stochastic differential equations, SIAM J. Sci. Com-

put. 24(2) (2002), 619–644.

[58] D.P. Young, W.P. Huffman, R.G. Melvin, C.L. Hilmes and

F.T. Johnson, Nonlinear elimination in aerodynamic analysis

and design, in: Large-Scale PDE-Constrained Optimization,

L.T. Biegler, O. Ghattas, M. Heinkenschloss and B. van Bloe-

men Waanders, eds, Lecture Notes in Computational Science

and Engineering, Vol. 30, Springer, Berlin, 2003, pp. 17–43.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

