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ABSTRACT 

An automatic analysis method for first-order logic with sets and 
rdations is described. A first-order formula is translated to a quan- 
tifier-free boolean formula, which has a model when the original 
formula has a model within a given scope (that is, involving no 
more than some finite number of atoms). Because the satisfiable 
formulas that occur in practice tend to have small models, a small 
scope usually suffices and the analysis is efficient. 

The paper presents a simple logic and gives a compositional 
translation scheme. It also reports briefly on experience using the 
Alloy Analyzer, a tool that implements the scheme. 
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1. INTRODUCTION 

Relational logic adds to first-order logic the ability to combine 
predicates with special operators. For example, we can write the 
formula Vx, y. S(x)/~R(x,y) ~ TO,) as S.R in T, where S.R denotes 
the image of the set S under the relation R. The logic is more than a 
definitional extension of first-order logic, because it includes tran- 
sitive closure. 

In this paper, we present a fully automatic analysis for such a 
logic. Given a formula and a scope--a bound on the number of 
atoms in the universe--our analysis determines whether there ex- 
ists a model of the formula (that is, an assignment of values to the 
sets and relations that makes the formula true) that uses no more 
atoms than the scope permits, and if so, returns it. 

First-order logic is undeddable, so our analysis cannot be a de- 
cision procedure: if no model is found, the formula may still have a 
model in a larger scope. Nevertheless, the analysis is useful, since 
many formulas that have models have small ones. 

The analysis problem, while made decidable by restriction to a 
finite universe, is still intractable asymptotically. In a scope of k, 
each rdation increases the space of potential models by a factor of 2 
to the k 2. Neverthdess, our analysis can handle a large space; in 
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Section 4, we report on some case studies in which spaces of 2 ~°0 
configurations were analyzed in seconds. And when a model exists, 
it is usually found rapidly, often within seconds, so that when the 
analysis takes a long time, one can reasonably bet that no model 
will be found. 

The analysis was designed for object models, which lie at the 
heart of most object-oriented development methods, but until 
recently have had no support from tools. It has been implemented 
in the Alloy Analyzer [21], a tool that has been publicly available 
since September 1999. The logic described here is used as an inter- 
mediate language into which the source language, Alloy [16] is 
translated. 

The analysis is used in two ways: to check consistency of a for- 
mula (by finding a model), and to check the validity of a theorem 
(by looking for a counterexample, namely a model of the theorem's 
negation). In the context of object modelling, consistency checking 
amounts to simulation--generating states and executions. Validity 
checking has a variety of forms: checking that one constraint fol- 
lows from another, that one operation refines another, that an op- 
eration preserves an invariant, and so on. 

Because of the logic's generality, however, it has a variety of 
other applications, such as: finding bugs in code; checking verifica- 
tion conditions in a specification tool; establishing consistency of 
requirements goals; analyzing architectural style descriptions; and 
generating snapshots from class diagrams. 

To our knowledge, this paper presents the first practical algo- 
rithm for analyzing automatically the logic that underlies Z [34], 
OCL [39] and many other specification languages. Unlike our pre- 
vions algorithm [15], which was limited to quantifier-free rdational 
calculus, this algorithm handles a full logic with quantifiers, into 
which other languages can be easily translated. 

Our paper is structured as follows. First, we present the logic, 
with its syntax, type system and formal semantics. The analysis 
itself is then explained. We report on some case study applications 
of the analysis, and give some performance results. The paper 
doses with a comparison to related work, and a brief discussion of 
other applications and future prospects. 

2. THE LOGIC 

The logic is defined in Figure 1, with an abstract syntax (on the 
left), a type system (in the middle) and a semantics (on the fight). 
Most of its features are standard, so we focus here on its novelties: 
the treatment of scalars as singleton sets, the encoding of sets as 
degenerate relations, and the dot operator used to form 'navigation 
expressions'. The motivation for the design of the logic is explained 
in detail in [15]. 
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problem ::= decl* formula 
decl ::= var: typexpr 
typexpr ::= 

type set 
I type -> type relation 
I tyPe => typexpr function 

formula ::= 
expr in expr subset 
] ! formula negation 
I formula && formula conjunction 
[ formula II formula disjunction 
I all v : type [ formula universal 
I some v:  type I formula existential 

expr ::= 
I expr + expr union 
I expr & expr intersection 
I expr - expr difference 
I expr. expr navigation 
[ ~ expr transpose 
I + expr closure 
I {v: t I formula} comprehension 
IVar 

Var ::= 

I var variable 
I Var [var] application 

E~a:S,  E~-b:S 
E ~ a i n b  

E,v:.T~ f 
E ~-all v : T I f  

a: S--> T, b: S--> T 
a + b:S-->T 

E ~a: S-~T, E~- b :S-> U 
E ~-a.b: U -->T 

E~-a:S--~T 

E~-~a:T->S 

E~-a:T--~T 
E ~- +a:T-->T 

E,v:T~-f 
E ~ {v :T I f } :T  

E P- a : T ~  t, E ~-v:T 
E ~-a[v]:t 

M : formula --) env --> boolean 
X: expr --~ env --~ value 
env = (var + type) --> value 
value = P [atom x atom) + (atom --->value) 

M [a in b] e = X[a] e ~ X[b] • 
M [! F] e = - ~ M  [Fle 
M [F&&G] e=  M [ F ] e ^ M  [G] e 
M [ F I I G ] e = M [ F ] e v M [ G ] e  
M [all v: t I F] e = A {M[F](e(9 v ~ x) I (x, unit) e e(t)} 
M [some v: t ] F] e = V {M[F](eE) v ~-+ x) I (X, unit) E e(t)}, 

X [a + b] e = X[a]e u X[b]e 
X [a & b] e = X[a]e (3 X[b]e 
X [a - b] e = X[a]e \ X[b]e 
X [a.  b] e = {(x,z) ] =ly. (y,z) E X[a]e ^ (y,x) E X[b]e} 
X t -a]  e = {(x,y) I (y,x) e X[a]e} 
X [+a] e = the smallest r such that r; r ¢; r ^ X[a]e ~; r 
X [{v: t I F}] e = {(x, unit) ~ e(t) I M[F] (e~ v ,--, x)} 
X[v] e =e(v) 
X [a[v]] e= (e(a))(e(v)) 

Figure 1: Syntax,  type  rules and  semant ics of  t h e  logic 

2.1 S y n t a x  

The syntax is mostly identical to standard mathematical syntax, but 
we have chosen to use ASCII rather than typographic symbols for 
operators. This makes a stronger connection to our object model- 
ling language, Alloy, which is pure ASCII for ease of use, and also 
helps us distinguish the operators of our syntax (such as &&) from 
the mathematical functions (such as ^) used to define them. 

The logic is strongly typed, and a formula is accompanied by 
declarations of the set and relation variables; we call the combina- 
tion of a formula and its declarations a problem. Each declaration 
associates a type with a variable• There are three kinds of type: 

• the set type T, denoting sets of atoms drawn from T; 
• the relation type S -> T, denoting relations from S to T; 
• the function type T => t, denoting functions from atoms of Tto 

values of type t. 
Types are constructed from basic types that denote disjoint sets of 
atoms. We use upper case names for basic types and lower case 
names for arbitrary types. So in the type T => t, the index type T 
must be a basic type but t may be a set type, relation type or another 
function type. 

Functions correspond to predicates of arity greater than two. 
The predicate Rides (r,j,h) that holds when jockeyj rides horse h in 
race r, for example, might be dedared as a function 

Rides: Race=> Jockey-> Horse 

and, for a given race r, the expression Rides[r] would then denote a 
rdation mapping jockeys to their horses in that race. Functions 
retain the binary flavour of the logic: they fit naturally into dia- 

grams, lead to simpler expression syntax, and can accommodate 
multiplicity markings. In Alloy, the question marks in 

Rides: Race => Jockey?-> Horse? 

indicate that, in each race, a jockey rides at most one horse and vice 
versa. Also, by including functions in the logic, we are able to 
skolemize formulas (Section 3.1). 

There are no scalar types. To declare a scalar variable, we de- 
clare it to be a set 

v : T  

and add a constraint that makes the set a singleton: 

somex: Tlx=v 
This allows navigation expressions to be written uniformly, without 
the need to convert back and forth between scalars and sets, side- 
steps the partial function problem, and simplifies the semantics 
(and its implementation) [16]. 

Formulas have a conventional syntax. There is only one elemen- 
tary formula, stating that one expression is a subset of another; an 
equality of two expressions is short for a pair of inequalities, one in 
each direction. In quantified formulas, the variable is declared to 
have basic type, and is interpreted as being bound to singleton 
subsets of the type. 

Expressions are formed using the standard set operators (union, 
intersection and difference), the unary rdational operators (trans- 
pose and transitive dosure), and the dot operator, used to form 
navigation expressions. The unary operators are prefixes, to make 
parsing easy. 
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Set comprehension has the standard form. Set and relation vari- 
ables are expressions, but function variables, and functions in gen- 
eral, are not. Ensuring that functions can only be applied to vari- 
ables guarantees that an expression involving a function is always 
well defined, since the function's argument will denote a singleton 
set. 

2.2 Type System 
We treat sets semantically as degenerate relations, viewing the set 
{e,, e e ...} as the relation {(eeunit), (e~,unit) . . . .  } where unit is a 
special atom that is the sole member of a special type Unit. Unlike 
our treatment of scalars as singleton sets, this is purely a trick that 
makes the semantics more uniform, and it can be ignored by a user 
of the logic. The type of a variable declared as v: T is thus repre- 
sented as T--> Unit, although we shall write this as Tfor short. 

The typing rules determine which problems are well-formed. 
The judgment E ~- a : t says that in the type environment E, expres- 
sion a has type t;, the judgment E ~- F says that in environment E, 
the formula F is well-typed. We have omitted obvious rules (ego for 
conjunction), and those that are identical to rules given (ego for 
intersection). 

A problem is type checked in an initial environment that binds 
each variable to the type as declared (with set types appropriately 
represented as relations to Unit). The environment is extended in 
the checking of quantified formulas and set comprehensions. For 
example, the rule for universal quantification says that the quanti- 
fied formula is well-typed when its body is well-typed i n the envi- 
ronment extended with the binding of the bound variable to its 
declared type. 

The set operators can be applied to sets or relations; when + is 
applied to sets, for example, the type T will be Unit. Likewise, the 
dot operator can be applied to sets or relations, in any combination 
that the typing allows. Note that the typing rules make dear where 
sets alone are legal: for bound variables, and the arguments of func- 
tion applications. 

2.3 Semantics 
The meaning of the logic is defined by a standard denotational 
semantics. There are two meaning functions: M, which interprets a 
formula as true or false, and X, which interprets an expression as a 
value. Values are either binary relations over atoms, or functions 
from atoms to values. Interpretation is always in the context of an 
environment that binds variables and basic types to values, so each 
meaning function takes both a syntactic object and an environment 
as arguments. 

Each rule defines the meaning of an expression or formula in 
terms of its constituents. For example, the elementary formula a in 
b is true in the environment e when X[a]e, the relation denoted by a 
in e, is a subset of X[b]e, the relation denoted by b in e. The quanti- 
fied formula all v: t I F is true in e when F is true in every environ- 
ment e (9 v ~ x obtained by adding to e a binding of v to x, where x 
is a member of the set denoted by the type t in e. The membership 
condition is written 

(x, uniO ~ e(t) 
since the set e(t) is, like all other sets, encoded as a relation. We 
assume that bound variables have been systematically renamed if 
necessary to avoid shadowing. 

All operators have their standard interpretation, except the dot 
operator. When s is a set and r is a relation, s.r denotes the image of 
s under r. Combining this with the treatment of scalars as singleton 
sets results in a uniform syntax for navigation expressions. For 
example, ifp is a person, p.mother will denote p's mother; p.parents 
will denote the set ofp 's  parents; p.parents.brothers will denote p's 
uncles; etc. 

By treating sets as degenerate relations, and by typing the dot 
operator loosely, we get as an added bonus that q.-p is the compo- 
sition of two relations p and q, and - t . - s  is the cross product of sets 
s and t. Alloy does not currendy exploit this, and always uses the 
dot operator as relational image, but it costs nothing to make the 
logic more general. We can retrieve the simpler definition by not- 
ing that, in the semantic equation for X[a.b], the variable z will be 
unitwhen a is a set, so the result will be a set also. 

The meaning of a problem is the collection of wall-formed envi- 
ronments in which its formula evaluates to true. An environment is 
well-formed if: (1) it assigns values to the variables and basic types 
appearing in the problem's declarations, and (2) it is well-typed-- 
namely that it assigns to each variable an appropriate value given 
the variable's type. For example, if a variable v has type S ---> T in an 
environment e, then e(v), the value assigned to v in e, must be a 
relation from the set denoted by S to the set denoted by T. 

The environments for which the formula is true are the models 
of the formula. To avoid that term's many overloadings, we often 
call them instances or solutions instead. If a formula has at least one 
model, it is said to he consistent; when every well-formed environ- 
ment is a model, the formula is valid. The negation of a valid for- 
mula is inconsistent, so to check an assertion, we look for a model 
to its negation; if one is found, it is a counterexample. 

Since the logic is undecidable, it is impossible to determine 
automatically whether a formula is valid or consistent. We there- 
fore limit our analysis to a finite scope that bounds the sizes of the 
carrier sets of the basic types. We say that a model is within a scope 
ofk  if it assigns to each type a set consisting of no more than k ele- 
ments. Clearly, if we succeed in finding a model to a formula, we 
have demonstrated that it is consistent. Failure to find a model 
within a given scope, however, does not prove that the formula is 
inconsistent (although in practice, for a large enough scope, it often 
strongly suggests it). 

2.4 Example 
As a trivial example, consider checking the theorem that for all 
relations r 

al l  x: X l some y:  Y l x.r = y 

To check this, we would formulate its negation as a problem 

r : X - >  Y 
/ a l l  x: X I some y: Y [ x.r = y 

whose models are those assignments in which r is not a total func- 
tion. The analysis, as explained below, will actually generate a result 
such as 

r = {XO, YO), (XO, YI)} 
x={X1} 

that includes a value for the quantified variable x: this is a Skolem 
constant that acts as a witness to the invalidity of the theorem. Our 
analysis does not guarantee to give the smallest model; which 
model is generated depends on the SAT solver used. In most cases, 
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however, the modal is a small one, and in this case, our tool would 
make r empty. 

3. ANALYSIS 
The analysis involves five steps: 

1 Two simple manipulations--conversion to negation normal 
form and skolemization--are performed on the formula. 

2 The formula is translated, for the chosen scope, into a boo- 
lean formula, along with a mapping between relational vari- 
ables and the boolean variables used to encode them. This 
boolean formula is constructed so that it has a model exactly 
when the relational formula has a model in the given scope. 

3 The boolean formula is converted to conjunctive normal 
form, the preferred input format of most SAT solvers. 

4 The boolean formula is presented to the SAT solver. 
5 If the solver finds a model, a model of the relational formula 

is then reconstructed from it using the mapping produced in 
Step 2. 

We focus here on translation, Step 2. Steps 1 and 3 involve well- 
known manipulations and Step 5 is trivial. Step 4 is delegated to an 
off-the-shdf tool; because Step 2 generates a completely standard 
boolean formula, we can exploit advances in SAT technology with- 
out any change to our tool. Only Step 4 is computationally inten- 
sive, but its cost depends crucially on how the earlier steps are per- 
formed. 

Much of the complexity of the translation arises from the dimi- 
nation of quantifiers. Translating to QBF--quantlfied boolean 
formulas--would be much simpler, but would rule out the most 
powerful and highly tuned SAT solvers that are currently available. 

3.1 Normalization of the Relational Formula 
Before translating the relational formula, we convert it to negation 
normal form (NNF) and skolemize it. In NNF, only elementary 
formulas are negated. To convert to NNF, we simply push nega- 
tions inwards using de Morgan's laws. The problem of Section 2.4 

! a l l  x: X l some y: Y l x.r = y 

for example, becomes 

some x: X [ a l l y :  Y] ! x.r = y 

Skolemization eliminates existentially quantified variables. If a 
variable is existentially quantified in a formula that is enclosed by 
no universal quantifiers, it can be replaced by a scalar. Our formula 
is thus transformed to 

a l l y : Y l l x . r = y  

with the addition of a free variable x: X and a constraint 

s o m e z : X l z = x  

saying that x represents a scalar, resulting in the problem 

r : X - >  g 
x : X  
a l l y :Y l  ! x . r = y  
some z: X i z = x 

It might seem odd to replace one existential quantifier with an- 
other, but even in this trivial example it can be seen that the body of 
the added quantified formula is simpler than the body of the for- 
mula that was skolemized. 

If a variable is existentially quantified in a formula that is en- 
closed by a universal quantifier, it is instead replaced by a function. 
For example, 

al l  x: X l some ~. Y l x.r  = y 

is converted to 

al l  x: X l x.r = y[x] 

by replacingy with the function 

~ . X = > Y  

and adding a constraint that each y[x] is a singleton. This scheme 
generalizes to an arbitrary number of universal quantifiers; we sim- 
ply create a function indexed by as many types as necessary. Not all 
existential quantifiers are diminated, however, since skolemization 
is not applied inside set comprehensions. 

3.2 Overview of Translation 
Given a relational formula, we can construct a boolean formula that 
has a model exactly when the original formula has a model in some 
given scope. Here's why. Once we have fixed the scope, a value of a 
relation from S to T can be represented as a bit matrix with a 1 in 
the ith row andjth column when the ith atom in S is related to the 
j th atom in T, and a 0 otherwise. The collection of possible values 
of a rdation can thus be expressed by a matrix of boolean variables. 
Any constraint on a relation can be expressed as a formula in these 
boolean variables; and a relational formula as a whole can be simi- 
larly expressed by introducing boolean variables for each relational 
variable. 

This was the analysis we presented in our previous work [15]. In 
this paper, we extend the scheme to include quantifiers. The idea is 
intuitively simple, but a little intricate in its details. One way to 
translate a universal formula would be to expand the body, by mak- 
ing a copy for each possible value of the quantified variable, and 
then conjoining these (or disjoining them, depending on the quan- 
tifier). 

This approach is not compositional, though. Instead, for each 
formula, we generate a mapping from environments to boolean 
formulas; for each expression, we generate a mapping to matrices 
of boolean formulas. This mapping parameterizes the formula or 
matr/x by the values of all the variables that will subsequently be 
bound. 

Suppose we have a universal formula whose variable is w, and 
whose body mentions additionally the quantified variables u and v. 
The result of translating the body will be a mapping from environ- 
ments that bind u, v and w to boolean formulas. To translate the 
formula as a whole, we form a new mapping whose environments 
bind only u and v, and which, for a given pair of values u 0 and v 0, 
yields the conjunction of the formulas that the previous mapping 
yielded for environments of the form {u ~ u~, v ~ v 0, w ~ wi} 
for all values w, ofw. 

This approach follows the semantics of the logic: from each syn- 
tactic object, we create a function from environments to meanings. 
In the semantics, however, the environment binds not only quanti- 
fied variables but also set and relation variables. In our translation, 
the values of set and relation variables are encoded as matrices of 
boolean variables, and the environment binds only the quantified 
variables. 
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MT:  formula -4  boo leanFormula  t ree 

XT: expr  -4  value t ree 
a tree = (var x ( index . 4  a tree)) + a 
value = booleanFormulaMatr ix  + ( index -4  value) 

MT [a in b] = merge (MT[a], MT[b], ~,p,q. A~ (P, =~ q~ll 

MT [! f l  = map (MT[fl, ~ )  
MT [ f&& g] = merge (MT[fJ, MT[f], ^ )  
MT [f II g l  = merge (MT[f], MT[f], v)  
MT [all v: t I f ]  = fo ld  (MT[f], A) 
MT [some v: t I f] = fo ld  (MT[f], V) 

XT [a + b] = merge (XT[al, XT[b], ZP,q.IJ.r. r~ = pQ v ck~ 
XT [a & b] = merge (XT[a], XT[b], ~,p,q.IJ.r. r 0 = pn ̂  q,j) 
XT [a - b] = merge (XT[a], XT[b], ;Lp, q.IJ.r, rQ = Pu ̂  -¢1~) 
XT [a.  b] = merge (XT[a], XT[b], ~.p,q.l~r. r u = :lie p~ ̂  q~) 

XT [~a] = map iXT[a], ;Lp.(r I r,j = p~)) 
XT [+a] = map (XT[a], closure) 
XT [[v: t I fJ = fo ld  [MT[f], ~.f. px. r= = f[i)) 
XT [a[v]] = merge (XT[a], XT[v], ;Ls, x. its,. x=) 
XT [v] = (v, ~,i.(lu. r~ = (i =j~)) when  v is quant i f ied 
XT [v] = create iv) otherwise 

merge : a tree, a tree, (a,a -4~) -4/~tree 
merge (x, y, o) = o(x, y) 
merge ((u,t l), (u,t2), o) = (u, ZI. merge(t l( i) , t2(i),o)) 
merge ((u,t l l ,  (v,t2), o) = (u, ~.i. merge(t1 (i),(v,t2),o)) 
merge ((u,tl), (v, t2), o) = (v, ~Li. merge((u,t l) , t2(i),o)) 
merge  ((u,t), y, o) = (u, Zi. mergeit [ i ) ,y,o))  
merge (x, iv, t), o) = (v, ~,i. merge(x,t i i) ,o)) 

map : a tree, [a.4a) -4 a t ree 

map (x, o) = oix) 
map [(u,t), o) = (u, ~,i.map (t(i),o)) 

fo ld  : a tree, (( index.4a)--)  ,8) . 4  ~ tree 
fo ld  ((u,t), o) = o(t) 
fo ld  ((u,t), o) = (u, ;U. fo ld( t  (i),o)) 

create: vat--> value 
create (v) -- (r ] re = a fresh boo lean var iable F(v,i)) 
create (v) = (r ] r~ = a fresh boo lean var iable F(v,i,j~) 
create (v) = (r I r,= create (v~) 

when  u < v 
when  v < u 

when  t(i) e lementary  
o therwise 

for v: S 
for v: S .4T 
for v: S ~ t  

Figure 2: Trans la t ion  rules a n d  t ree  operat ions  

3 . 3  T r e e  M a n i p u l a t i o n s  

Rather than treating the mappings abstractly, we show how they are 
represented and manipulated concretely. Figure 2 defines the trans- 
lation scheme in terms of the translation functions (on the left) and 
some utility functions (on the right). 

There are two kinds of mapping, one for parameterizing formu- 
las and one for parameterizing values (represented as indexed ma- 
trices of boolean formulas). These mappings are represented as 
trees, whose leaf nodes are the formulas or values; the tree manipu- 
lations are independent of the leaf type, and are thus described on a 
polymorphic tree. The internal nodes are labelled with variable 
names, and their outgoing edges are labelled with indices that cor- 
respond to the values of the variables. 

For example, in a scope of 2, a relational formula with two free 
variables u and v would be represented as the tree shown in the top 
left-hand side of Figure 3. To find the formula for the case in which 
u takes on its first value, and v its second value, for example, we 
follow the first outgoing edge o fu  and the second outgoing edge of 
v, and reach the leaf formula x,. 

The translation rules involve applications of various tree opera- 
tions defined in an ML-like notation on the right. These are: merge, 
which merges two trees by combining their leaves pairwise; map, 
which applies an operator to all the leaves; and fold, which collapses 
the lowest levd of a tree by applying a function to all the leaves of 
each smallest subtree. 

To translate a compound formula, we first translate its constitu- 
ent subformulas, and then merge the resulting trees, combining the 
formulas at their leaves. If the two trees have the same variables and 
they appear from root to leaf in the same order, merging is easy." 
leaves aside, the trees are isomorphic, and we simply create a new 
tree with the same structure whose leaves are the pairwise combina- 
tions of the leaves in the original trees. 

Unfortunately, the trees are not generally isomorphic, since dif- 
ferent subformulas mention different variables. We impose an 
ordering on the variables (by numbering them according to their 
quantification depth), and an invariant on the trees that the vari- 
ables appear in this order. Now to merge two trees, we must essen- 
tially interpose an extra level in one tree whenever it omits a vari- 
able appearing in the other (see the lower part of Figure 3). The 
algorithm is given, on the right of Figure 2. The cases are to be in- 
terpreted sequentially, with the first one that matches being ap- 
plied; x andy stand for values, u and v for variables, and t, tl, and t2 
for trees. 

The merge function takes a different operator for translating dif- 
ferent kinds of formula or expression. For example, when transht- 
ing an dementary formula a in b, the operator is 

Xp, q. ̂  ~ {p~ ~ q,j} 

which takes two matrices of boolean formulas, and returns the 
formula that says that, for every i and j ,  the formula in the ith row 
andjth column o fp  implies the formula in the same position in q. 
This embodies the intuition that if the values o f p  and q are repre- 
sented as bit matrices, then for the relation q to represent a superset 
of the relation p, it must have a 1 wherever p does. When there are 
no quantifiers, the trees are all degenerate, and merge reduces to the 
direct application of the operator--exactly as in our previous 
scheme [15]. 

The operator for union expressions 

gp, q.( I.tr. q = p,j v q,) 

uses the definition operator It; the expression Ixx.F denotes the 
value which when assigned to x makes the formula F true. So this 
operator says that the union of/)  and q is a matrix r such that the 
formula in the ith row andjth column of the result r is  the disjunc- 
tion of the corresponding formulas in the matrices o f p  and q. In 
other words, a pair belongs to the union of two relations if it be- 
longs to either relation. 
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Figure 3: Tree operations: fold (above), merge (below) 

The other tree functions used in the translation are simpler than 
merge. Unary operators are translated with a map function that 
creates a new tree in which a corresponding unary translation op- 
erator has been applied to each leaf. The negation of a formula, for 
example, is obtained by negating the boolean formula at each leaf. 
The transpose of an expression is obtained by taking the mirror 
image of the matrix at each leaf. The transitive dosure is obtained 
by applying an operator that computes closure using iterative dou- 
bling, as explained in [15]. 

Quantified formulas are translated using fold. Its second argu- 
ment is an operator that takes a tree of depth 1. Since the variables 
in the tree are ordered by quantification depth, the translation of 
the body of a quantified formula is sure to be a tree in which the 
quantified variable appears last, just above the leaves. To obtain the 
meaning of the formula as a whole, we therefore coUapse the sub- 
trees at the leaves, by disjunction or conjunction depending on the 
quantifier. 

Set comprehensions are handled with fold too. Here, the opera- 
tor creates a vector of boolean formulas, one for each leaf, in order, 
thus forming a set whose ith element is present when the ith value 
of the quantified variable makes the body formula true. 

Finally, quantified variables are translated to trees of unit depth 
in which the ith subtree is the vector whose j ib element is true when 
i = j and false otherwise. Dedared variables are translated into 
values: vectors and matrices of boolean variables for sets and rela- 
tions respectively, and higher-dimensional structures for functions. 
In the definition of the function create, the indices range in the 
obvious way over the scope. 

3.4 Example Translation 
Our example formula 

ally: Y l ! x.r = y 

would be translated, in a scope of 2, as follows. For x, we generate 
the vector [x o x~] and for the rdation r, the matrix [r00 r0~, rt0 r ,] ,  
using 6 boolean variables in total. The variabley is represented as a 
tree whose root is labelledy, with branches to the two vectors [1 0] 
and [0 1 ] that correspond to y taking the first and second value of 
the type Yrespectively. 

Using the fourth M rule, the expression x.r is translated to 

[(XoAroo) v (X,Ario) (XoAro,) V (XlAr, i )  ] 

The formula x.r = y  gives a tree withy at the root, pointing to two 
formulas 

( (x~r=)  v ( x ,A r ,o ) ) ^~  ((X~ro,) v (x,^r,,)) 
-~ ( ( x , ^ r J  v (x,Ar,o))^ ((XoArol) V (x ,^ r . ) )  

that are true when a=r andy are equal for the first and second values 
o f y  respectively. We then map negation over the tree, which ne- 
gates these two formulas, and then obtain the translation of the 
quantified formula by folding conjunction over the tree, obtaining 

-~ (((xc~roo) v (X,Ar,o)) A "-1 ((xoAro,) v (xiArlt))) A 
--. (-~ ((XoAr ~ V (X,Ar,O)) A ((X~ro,) v (X,Ar,,))) 

which is then presented to the SAT solver. Our implementation 
encapsulates boolean formulas in an abstract data type which al- 
lows it to simplify formulas during translation; the resulting for- 
mula would therefore be simpler than this. 

3.5 Conversion to CNF, Solving and Mapping Back 
The result of the translation step is a single boolean formula: that is, 
a formula over propositional variables with and 4,  A and V. No tree 
structure can remain because the only free variables in the rela- 
tional formula are declared sets and relations, which, as explained 
above, are translated into boolean variables and do not appear as 
intermediate nodes in the tree. 

This formula is converted to conjunctive normal form (CNF) 
before being handed to the solver. To avoid exponential blowup 
due to disjunctions, we introduce a temporary boolean variable for 
every subformula [29]. 

The solver, if it finds a solution, returns a model that assigns 
true or false to each boolean variable. From this assignment, we 
reconstruct a model of the relational formula as follows. If the 
scope is k, we create names TO, T1 . . . .  for each of the k atoms in 
each type T. For a relation r : S ->  T, we look up in the assignment 
for each 0 < i, j < k the value of each boolean variable v~ that was 
used to encode the relation r, and insert into r the pair (Si, Tj) if 
this value is true. 
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A solution to the boolean formula of Section 3.4, for example, 
has r00, r0, and x~ true, and all others false, which gives the result 
shown in Section 2.4. 

4. RESULTS 
The analysis described here has been implemented in the Alloy 
Analyzer (AA)[21]. Alloy [16] is an attempt to combine the best 
features of Z [34] and the Object Constraint Language of UML [39] 
in a lightweight notation. It takes UML's emphasis on binary rela- 
tions, and the expression of constraints with sets of objects formed 
by 'navigations', but with Z's much simpler semantics. 

4.1 Implementing the Analysis 
The tool implements the logic presented here as an intermediate 
language for Alloy, although it does not offer functions in their full 
generality. In its current version, Alloy only allows functions from 
basic types to relations (which we call 'indexed relations'), and only 
outermost existentials are skolemized. Otherwise, the analysis is 
implemented as described here. 

The tool is roughly 50,000 lines of code, of which 15,000 imple- 
ment the front end (parsing, type inference, static semantic checks, 
schema calculus, translation to the intermediate language); 5,000 
implement the translation that is the subject of this paper; 10,000 
implement manipulations of the boolean formula (conversion to 
normal form, simplifications, conversion to various solver for- 
mats); 5,000 implement the user interface; and 15,000 implement a 
visualization mechanism. All the code is written in Java, except for 
the boolean formula manipulations, which are written in C. 

4.2 Choice of SAT Solvers 
The tool's backend wraps a collection of off-the-shelf SAT solvers 
[4,31,32,41]. The deterministic solvers SATO [41] and RelSAT [4] 
seem to work best. Early on, we had some success with WalkSAT 
[31], a stochastic solver, but we assiduously avoided introducing 
too many temporary variables when converting to CNF [15]. This 
conversion step became a bottleneck, which was eliminated by 
more aggressive variable introduction. Unfortunately, the redun- 
dancy this adds to the formula foils stochastic solvers, so WalkSAT 
rarely works well. 

We learnt an interesting lesson in our experiments with solvers• 
In our eagerness for platform-independence, we planned initially 
to implement our own solvers in lava. Our prototype tool induded 
a trie-based implementation [42], in lava, of the same Davis- 
Putnam (DP) algorithm [9] that underlies many deterministic 
solvers. Because WalkSAT outperformed it so dramatically [15], 
and because our own Java implementation of WalkSAT came 
within a factor of 3 of the performance of the C implementation, we 
foolishly attributed the failure of our DP implementation to the 
Davis-Putnam method itself. Later, we discovered that a highly 
tuned implementation of Davis Putnam, such as SATO, performed 
orders of magnitude better. This experience made us appreciate the 
importance of a flexible backend, to which we could attach new 
solvers as they became available. 

4.3 New Expressiveness 
The most important consequence of this work has been the ability 
to add quantifiers to our language. Our previous analysis was lira- 

ited to pure relational formulas with no quantifiers. In principle, 
the first-order properties that arise in software specifications can 
always be written without quantifiers [36]. To say "everybody likes 
a winner" we could write 

Winner.~(On ~ likes)= {} 

In this formula, the relational expression following the dot (the 
transpose of the complement of the l i kes  relation) maps persons to 
persons who don't like them; the expression denotes persons who 
don't like some winner; and the formula as a whole says that the set 
of such persons is empty. Needless to say, this style of specification 
did not win many admirers, despite its terseness. We experimented 
with an algorithm of Tarski's [36] for performing the elimination 
automatically, but were not able to generate relational expressions 
of a reasonable size. 

Now, with quantifiers, we can write instead 

all p: Person I all w:. Winner I w in p.likes 

Our experience so far, in six months of using the language and its 
tool, suggests that quantifiers and navigation expressions make a 
big difference. While NP [14,17], the language of our Nitpick 
checker, was usable only by dedicated experts, we have found that 
students with only a modest background in discrete mathematics 
can pick up Alloy in a couple of days. (Gaining proficiency takes 
much longer, of course, but that has more to do with learning how 
to construct focused, abstract models than with details of any lan- 
guage.) 

We have constructed and analyzed a variety of models in Alloy 
that would have been at the very least difficult to express in NP. 
Moreover, since the Alloy Analyzer (AA) is a far more powerful 
solver than Nitpick, we have been able to construct larger models• 
Whereas before we had to craft models carefully to make them 
analyzable, we no longer find it necessary to adjust our models, 
except to fix the (many) errors that the tool exposes. For a scope of 
3, which is usually enough to catch most errors, Nitpick was limited 
to a state of about 5 relations; the new tool can handle 10 relations, 
and sometimes 20 or more, with ease. Examples include: 

• C O M  [22]. We took the Z specification of Sullivan et al [35] and 
translated it into Alloy. The resulting model is about 150 lines 
long, and has 8 relations, 1 indexed relation, and 8 sets. Using 
AA, we were able to generate automatically the counterexam- 
ples that Sullivan and his colleagues had found by hand analysis. 

• In t en t iona l  N a m i n g  [26]. Sarfraz Khurshid constructed a model 
of the design of a name server that allows services to be looked 
up by their properties [1]. The model is 130 lines long, and has 
11 relations, I indexed relation (ie, function from a basic type to 
a relation), and 8 sets. A variety of problems were discovered 
with the design. AA takes no longer than 5 seconds to find any 
of the counterexamples. 

• UML M e t a m o d e l  [38]. We translated the entire core metamodel 
of UML from OCL [39], the constraint language of UML, into 
Alloy. The resulting model, which is about 400 lines long, is 
about half the size of the OCL version. It has 41 relations and 37 
sets. We used AA to show that the metamodel is consistent, by 
generating a sample UML model that satisfies all the constraints 
(with additional constraints that rule out the trivial empty 
model). Finding this model takes 6 seconds. 
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The reader should bear in mind when considering the size of 
these models that a language like Alloy, NP or Z tends to be much 
more succinct than the languages used by model checkers• The 
input to a model checker such as SMV [6] or SPIN [13] is a rather 
low-levd program. A model of Mobile IP that we built in SMV was 
10 times longer than our NP version. 

4.4  Per fo rmance  

As an experiment, we analyzed two groups of models. The first 
group consists of the three models mentioned above, which dem- 
onstrate the capability of the new language and analysis. The sec- 
ond group consists of three models originally written in NP and 
analyzed with our previous SAT-based analysis [ 15]: 

• Finder, a toy model of the Macintosh file system that uses tran- 
sitive closure (which cannot be handled by tools that are re- 
stricted to first-order predicate logic); 

• Style, a model of an aspect of the paragraph style mechanism of 
Microsoft Word that was developed as a class exercise [ 16]; 

• Mobile IF, a model that exposed a flaw in an internet protocol 
for forwarding messages to mobile hosts [ 19]. 

We translated these into Alloy using quantifiers, and analyzed them 
in AA to test whether quantifiers incur a significant cost. 

The results are shown in Tables 1 and 2. For each example, and 
for a variety of scopes, we show the size of the space and some tim- 
ings. The space is given as the number of bits used to encode an 
assignment of values to sets and relations, so 100 bits corresponds 
to roughly 10 ~° configurations. These results are averaged over a few 
problems for each case study, some satisfiable and some unsatisfi- 
able. The analyses in Table 1 involve only invariants, so the number 
of configurations is the number of states; the analyses in Table 2 
involve executions, so a configuration is a pair (or for Style, a triple) 
of states. The number of boolean variables in the generated formula 
is often much larger because of variable introduction. 

All timings are given in seconds, measured on a Pentium II with 
a 233MHz processor and 192MB of memory. Performance can 
often be significantly improved by selecting a different solver, or by 
tweaking solver parameters. All the measurements in the table, 
however, were taken using RelSAT with its default settings. 
Translation (which is included in the timings) takes less than 10 
seconds in every case; the SAT solver is the bottleneck. 

For the first group, two kinds of analysis were performed (Table 
1). The column marked Instance gives the time taken to find a solu- 
tion when one exists: for the UML example, this instance demon- 
strates consistency of the constraint, and for all others it represents 
a counterexample to a theorem (or for Intentional Naming, coun- 
terexamples to several theorems). The column marked Exhaust 
gives the time taken to exhaust the space when no solutions exist. 
The UML example includes constraints that require at least one of 
each model dement; this rules out a solution in a scope of 2. For all 
other cases, the analyses in this column involve checking a variety 
of valid theorems. Because no theorems were checked for the UML 
metamodel, there are no values for exhausting the state space for 
scopes above 2. 

As can be seen, the new method can handle spaces of 100 bits 
(10 ~° configurations) with ease. When the solver has to exhaust the 
space, the timings, and their variances, increase dramatically with 
scope. In fact, almost all the problems for which an instance exists 
have an instance in a small scope (2 for COM, 2 and 3 for Inten- 

Example Scope Space 
COM 2 60 bits 

3 132 
4 240 

Intentional 2 64 
Naming 3 141 

4 256 
UML 2 228 
Metamodel 3 465 

4 784 

Instance Exhaust 
3s 1-4s 
11 s 37-218s 
71 s 240-?s 
ls ls 
3-31s 19-59s 
18-346s ?? 
n/a 6s 
11 s n/a 
17s n/a 

Table 1: Results for new models 

Example Scope Space Old [16] 

Finder 5 160 bits 3s 
6 216 162s 

Style 3 90 1 s 
4 156 2s 
5 250 11 s 

Mobile IP 3 175 Os 
4 280 3s 
5 600 8s 

New 

9s 
13s 
3s 
3s 
6s 
ls 
6s 
29s 

Table 2: Results for old models 

tional Naming, and 3 for UML). The timings for larger scopes are 
thus a bit specious, but they do suggest that it is better to start with 
a small scope and increase it gradually. 

For the second group (Table 2), we considered only cases in 
which a solution is found, since our previous analysis used a sto- 
chastic solver that ran forever when no solution existed. The col- 
umn Old gives the timings from our old paper• These were run on a 
machine that is about two thirds of the speed of the machine on 
which our new experiments were performed, so these timings could 
be reduced• The new method sometimes performs worse than the 
old method, probably because the relational expressions give a 
tighter encoding of the problem• But it scales better: because of a 
translation bottleneck (overcome by our use of standard methods 
[28]) the previous method could not handle specs of the size of 
those in Table 1, even if they were written without quantifiers. 

5. RELATED WORK 

Unlike our previous analysis [15], the analysis described here can 
handle quantifiers, and can handle larger specifications. Both 
analyses dramatically outperform an earlier analysis, based on ex- 
plicit enumeration of set and relation values [18], on which our 
Nitpick checker was based. Recently, Craig Damon has improved 
this earlier analysis with more powerful pruning schemes, but since 
he has not yet incorporated quantifiers, it is not possible to com- 
pare to our new analysis. 

As far as we know, there are no other analyses for a first-order 
logic that handle quantifiers and transitive closure. A variety of 
model finders have been developed for group-theoretic investiga- 
tions [eg, 33]; these work on a logic of uninterpreted functions, and 
do not handle relations or closure. Several animators for Z have 
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been developed using Prolog as an underlying engine [11,12, 
24,43], but these cannot handle large spaces. 

Most other tools for relational notations are less automatic. 
Theorem provers (such as Z/Eves [7] and PVS [28]) can--unlike 
the Alloy Analyzer--prove theorems, but do not generate counter- 
examples, and need help with lemmas and proof strategy. Execu- 
tion engines (such as the IFAD tool [2] for VDM) limit the notation 
to an executable subset and make the user provide test cases• 

Model checkers are designed to handle the complexity of inter- 
leaving, and not complexity in the state structure itself. Their input 
languages do not offer rdations as types, and require relational 
operators to be specified algorithmically at a low level. Explicit 
model checkers (such as SPIN [13]) do not permit declarative 
specification, in which invariants and operations are given by con- 
junction of constraints. 

This and our previous analysis [15] might be described as 'sym- 
bolic', because, as in symbolic model checking [6], there is no ex- 
plicit representation of individual states. Our notion of scope is 
implicit in most applications of model checking, since the modal 
itself usually assumes some fixed number of processors, cache lines, 
etc.  

Boolean satisfaction has been used before in planning [10,25] 
(which is essentially reachability analysis) and more recently in 
linear temporal logic model checking [6], but the encodings are 
rather different from that described here. 

6. FUTURE PROSPECTS 

Relational logic has many applications. Our analysis might be use- 
ful in a variety of tools, beyond the Alloy Analyzer: 

• A CASE tool (such as Rose [30]) might use our analysis to gen- 
erate object diagrams from class diagrams; 

• An architectural style tool might use our analysis to check the 
consistency of style constraints (expressed, for example in AML 
[40] or Darwin [27]) and generate sample architectures; 

• A tool for developing requirements (such as KAOS [37]) might 
use our analysis to check the consistency of goals; 

• A refinement tool (such as the B tool [3]) might use our analysis 
as a ver/fication condition tester, to find counterexamples to 
proof obligations before attempting a proof. 
We have recently developed a strategy for translating code into 

this logic. Using our analysis, we are able to check a variety of code 
properties, such as absence of executions that dereference null 
pointers or create undesirable sharings, and conformance to user- 
defined specifications [23]. 
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