
Automating First-Order Relational Logic
Daniel Jackson

Laboratory for Computer Science
Massachusetts Institute of Technology

200 Technology Square
Cambridge, Mass 02139, USA

dnj@lcs.mit.edu

ABSTRACT

An automatic analysis method for first-order logic with sets and
rdations is described. A first-order formula is translated to a quan-
tifier-free boolean formula, which has a model when the original
formula has a model within a given scope (that is, involving no
more than some finite number of atoms). Because the satisfiable
formulas that occur in practice tend to have small models, a small
scope usually suffices and the analysis is efficient.

The paper presents a simple logic and gives a compositional
translation scheme. It also reports briefly on experience using the
Alloy Analyzer, a tool that implements the scheme.

KE~ORDS

First-order logic; relational logic; Z specification; object models;
automatic analysis; model finding; constraint solvers; SAT solvers.

1. INTRODUCTION

Relational logic adds to first-order logic the ability to combine
predicates with special operators. For example, we can write the
formula Vx, y. S(x)/~R(x,y) ~ TO,) as S.R in T, where S.R denotes
the image of the set S under the relation R. The logic is more than a
definitional extension of first-order logic, because it includes tran-
sitive closure.

In this paper, we present a fully automatic analysis for such a
logic. Given a formula and a scope--a bound on the number of
atoms in the universe--our analysis determines whether there ex-
ists a model of the formula (that is, an assignment of values to the
sets and relations that makes the formula true) that uses no more
atoms than the scope permits, and if so, returns it.

First-order logic is undeddable, so our analysis cannot be a de-
cision procedure: if no model is found, the formula may still have a
model in a larger scope. Nevertheless, the analysis is useful, since
many formulas that have models have small ones.

The analysis problem, while made decidable by restriction to a
finite universe, is still intractable asymptotically. In a scope of k,
each rdation increases the space of potential models by a factor of 2
to the k 2. Neverthdess, our analysis can handle a large space; in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page,
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires pdor specific permission and/or a fee.
SIGSOFT 2000 (FSE-8) 11/00 San Diego. CA, USA
© 2000 ACM ISBN 1-58113-205-0/00/0011 ...$5.00

Section 4, we report on some case studies in which spaces of 2 ~°0
configurations were analyzed in seconds. And when a model exists,
it is usually found rapidly, often within seconds, so that when the
analysis takes a long time, one can reasonably bet that no model
will be found.

The analysis was designed for object models, which lie at the
heart of most object-oriented development methods, but until
recently have had no support from tools. It has been implemented
in the Alloy Analyzer [21], a tool that has been publicly available
since September 1999. The logic described here is used as an inter-
mediate language into which the source language, Alloy [16] is
translated.

The analysis is used in two ways: to check consistency of a for-
mula (by finding a model), and to check the validity of a theorem
(by looking for a counterexample, namely a model of the theorem's
negation). In the context of object modelling, consistency checking
amounts to simulation--generating states and executions. Validity
checking has a variety of forms: checking that one constraint fol-
lows from another, that one operation refines another, that an op-
eration preserves an invariant, and so on.

Because of the logic's generality, however, it has a variety of
other applications, such as: finding bugs in code; checking verifica-
tion conditions in a specification tool; establishing consistency of
requirements goals; analyzing architectural style descriptions; and
generating snapshots from class diagrams.

To our knowledge, this paper presents the first practical algo-
rithm for analyzing automatically the logic that underlies Z [34],
OCL [39] and many other specification languages. Unlike our pre-
vions algorithm [15], which was limited to quantifier-free rdational
calculus, this algorithm handles a full logic with quantifiers, into
which other languages can be easily translated.

Our paper is structured as follows. First, we present the logic,
with its syntax, type system and formal semantics. The analysis
itself is then explained. We report on some case study applications
of the analysis, and give some performance results. The paper
doses with a comparison to related work, and a brief discussion of
other applications and future prospects.

2. THE LOGIC

The logic is defined in Figure 1, with an abstract syntax (on the
left), a type system (in the middle) and a semantics (on the fight).
Most of its features are standard, so we focus here on its novelties:
the treatment of scalars as singleton sets, the encoding of sets as
degenerate relations, and the dot operator used to form 'navigation
expressions'. The motivation for the design of the logic is explained
in detail in [15].

130

problem ::= decl* formula
decl ::= var: typexpr
typexpr ::=

type set
I type -> type relation
I tyPe => typexpr function

formula ::=
expr in expr subset
] ! formula negation
I formula && formula conjunction
[formula II formula disjunction
I all v : type [formula universal
I some v: type I formula existential

expr ::=
I expr + expr union
I expr & expr intersection
I expr - expr difference
I expr. expr navigation
[~ expr transpose
I + expr closure
I {v: t I formula} comprehension
IVar

Var ::=

I var variable
I Var [var] application

E~a:S, E~-b:S
E ~ a i n b

E,v:.T~ f
E ~-all v : T I f

a: S--> T, b: S--> T
a + b:S-->T

E ~a: S-~T, E~- b :S-> U
E ~-a.b: U -->T

E~-a:S--~T

E~-~a:T->S

E~-a:T--~T
E ~- +a:T-->T

E,v:T~-f
E ~ {v :T I f } :T

E P- a : T ~ t, E ~-v:T
E ~-a[v]:t

M : formula --) env --> boolean
X: expr --~ env --~ value
env = (var + type) --> value
value = P [atom x atom) + (atom --->value)

M [a in b] e = X[a] e ~ X[b] •
M [! F] e = - ~ M [Fle
M [F&&G] e= M [F] e ^ M [G] e
M [F I I G] e = M [F] e v M [G] e
M [all v: t I F] e = A {M[F](e(9 v ~ x) I (x, unit) e e(t)}
M [some v: t] F] e = V {M[F](eE) v ~-+ x) I (X, unit) E e(t)},

X [a + b] e = X[a]e u X[b]e
X [a & b] e = X[a]e (3 X[b]e
X [a - b] e = X[a]e \ X[b]e
X [a. b] e = {(x,z)] =ly. (y,z) E X[a]e ^ (y,x) E X[b]e}
X t -a] e = {(x,y) I (y,x) e X[a]e}
X [+a] e = the smallest r such that r; r ¢; r ^ X[a]e ~; r
X [{v: t I F}] e = {(x, unit) ~ e(t) I M[F] (e~ v ,--, x)}
X[v] e =e(v)
X [a[v]] e= (e(a))(e(v))

Figure 1: Syntax, type rules and semant ics of t h e logic

2.1 S y n t a x

The syntax is mostly identical to standard mathematical syntax, but
we have chosen to use ASCII rather than typographic symbols for
operators. This makes a stronger connection to our object model-
ling language, Alloy, which is pure ASCII for ease of use, and also
helps us distinguish the operators of our syntax (such as &&) from
the mathematical functions (such as ^) used to define them.

The logic is strongly typed, and a formula is accompanied by
declarations of the set and relation variables; we call the combina-
tion of a formula and its declarations a problem. Each declaration
associates a type with a variable• There are three kinds of type:

• the set type T, denoting sets of atoms drawn from T;
• the relation type S -> T, denoting relations from S to T;
• the function type T => t, denoting functions from atoms of Tto

values of type t.
Types are constructed from basic types that denote disjoint sets of
atoms. We use upper case names for basic types and lower case
names for arbitrary types. So in the type T => t, the index type T
must be a basic type but t may be a set type, relation type or another
function type.

Functions correspond to predicates of arity greater than two.
The predicate Rides (r,j,h) that holds when jockeyj rides horse h in
race r, for example, might be dedared as a function

Rides: Race=> Jockey-> Horse

and, for a given race r, the expression Rides[r] would then denote a
rdation mapping jockeys to their horses in that race. Functions
retain the binary flavour of the logic: they fit naturally into dia-

grams, lead to simpler expression syntax, and can accommodate
multiplicity markings. In Alloy, the question marks in

Rides: Race => Jockey?-> Horse?

indicate that, in each race, a jockey rides at most one horse and vice
versa. Also, by including functions in the logic, we are able to
skolemize formulas (Section 3.1).

There are no scalar types. To declare a scalar variable, we de-
clare it to be a set

v : T

and add a constraint that makes the set a singleton:

somex: Tlx=v
This allows navigation expressions to be written uniformly, without
the need to convert back and forth between scalars and sets, side-
steps the partial function problem, and simplifies the semantics
(and its implementation) [16].

Formulas have a conventional syntax. There is only one elemen-
tary formula, stating that one expression is a subset of another; an
equality of two expressions is short for a pair of inequalities, one in
each direction. In quantified formulas, the variable is declared to
have basic type, and is interpreted as being bound to singleton
subsets of the type.

Expressions are formed using the standard set operators (union,
intersection and difference), the unary rdational operators (trans-
pose and transitive dosure), and the dot operator, used to form
navigation expressions. The unary operators are prefixes, to make
parsing easy.

131

Set comprehension has the standard form. Set and relation vari-
ables are expressions, but function variables, and functions in gen-
eral, are not. Ensuring that functions can only be applied to vari-
ables guarantees that an expression involving a function is always
well defined, since the function's argument will denote a singleton
set.

2.2 Type System
We treat sets semantically as degenerate relations, viewing the set
{e,, e e ...} as the relation {(eeunit), (e~,unit) } where unit is a
special atom that is the sole member of a special type Unit. Unlike
our treatment of scalars as singleton sets, this is purely a trick that
makes the semantics more uniform, and it can be ignored by a user
of the logic. The type of a variable declared as v: T is thus repre-
sented as T--> Unit, although we shall write this as Tfor short.

The typing rules determine which problems are well-formed.
The judgment E ~- a : t says that in the type environment E, expres-
sion a has type t;, the judgment E ~- F says that in environment E,
the formula F is well-typed. We have omitted obvious rules (ego for
conjunction), and those that are identical to rules given (ego for
intersection).

A problem is type checked in an initial environment that binds
each variable to the type as declared (with set types appropriately
represented as relations to Unit). The environment is extended in
the checking of quantified formulas and set comprehensions. For
example, the rule for universal quantification says that the quanti-
fied formula is well-typed when its body is well-typed i n the envi-
ronment extended with the binding of the bound variable to its
declared type.

The set operators can be applied to sets or relations; when + is
applied to sets, for example, the type T will be Unit. Likewise, the
dot operator can be applied to sets or relations, in any combination
that the typing allows. Note that the typing rules make dear where
sets alone are legal: for bound variables, and the arguments of func-
tion applications.

2.3 Semantics
The meaning of the logic is defined by a standard denotational
semantics. There are two meaning functions: M, which interprets a
formula as true or false, and X, which interprets an expression as a
value. Values are either binary relations over atoms, or functions
from atoms to values. Interpretation is always in the context of an
environment that binds variables and basic types to values, so each
meaning function takes both a syntactic object and an environment
as arguments.

Each rule defines the meaning of an expression or formula in
terms of its constituents. For example, the elementary formula a in
b is true in the environment e when X[a]e, the relation denoted by a
in e, is a subset of X[b]e, the relation denoted by b in e. The quanti-
fied formula all v: t I F is true in e when F is true in every environ-
ment e (9 v ~ x obtained by adding to e a binding of v to x, where x
is a member of the set denoted by the type t in e. The membership
condition is written

(x, uniO ~ e(t)
since the set e(t) is, like all other sets, encoded as a relation. We
assume that bound variables have been systematically renamed if
necessary to avoid shadowing.

All operators have their standard interpretation, except the dot
operator. When s is a set and r is a relation, s.r denotes the image of
s under r. Combining this with the treatment of scalars as singleton
sets results in a uniform syntax for navigation expressions. For
example, ifp is a person, p.mother will denote p's mother; p.parents
will denote the set ofp 's parents; p.parents.brothers will denote p's
uncles; etc.

By treating sets as degenerate relations, and by typing the dot
operator loosely, we get as an added bonus that q.-p is the compo-
sition of two relations p and q, and - t . - s is the cross product of sets
s and t. Alloy does not currendy exploit this, and always uses the
dot operator as relational image, but it costs nothing to make the
logic more general. We can retrieve the simpler definition by not-
ing that, in the semantic equation for X[a.b], the variable z will be
unitwhen a is a set, so the result will be a set also.

The meaning of a problem is the collection of wall-formed envi-
ronments in which its formula evaluates to true. An environment is
well-formed if: (1) it assigns values to the variables and basic types
appearing in the problem's declarations, and (2) it is well-typed--
namely that it assigns to each variable an appropriate value given
the variable's type. For example, if a variable v has type S ---> T in an
environment e, then e(v), the value assigned to v in e, must be a
relation from the set denoted by S to the set denoted by T.

The environments for which the formula is true are the models
of the formula. To avoid that term's many overloadings, we often
call them instances or solutions instead. If a formula has at least one
model, it is said to he consistent; when every well-formed environ-
ment is a model, the formula is valid. The negation of a valid for-
mula is inconsistent, so to check an assertion, we look for a model
to its negation; if one is found, it is a counterexample.

Since the logic is undecidable, it is impossible to determine
automatically whether a formula is valid or consistent. We there-
fore limit our analysis to a finite scope that bounds the sizes of the
carrier sets of the basic types. We say that a model is within a scope
ofk if it assigns to each type a set consisting of no more than k ele-
ments. Clearly, if we succeed in finding a model to a formula, we
have demonstrated that it is consistent. Failure to find a model
within a given scope, however, does not prove that the formula is
inconsistent (although in practice, for a large enough scope, it often
strongly suggests it).

2.4 Example
As a trivial example, consider checking the theorem that for all
relations r

al l x: X l some y: Y l x.r = y

To check this, we would formulate its negation as a problem

r : X - > Y
/ a l l x: X I some y: Y [x.r = y

whose models are those assignments in which r is not a total func-
tion. The analysis, as explained below, will actually generate a result
such as

r = {XO, YO), (XO, YI)}
x={X1}

that includes a value for the quantified variable x: this is a Skolem
constant that acts as a witness to the invalidity of the theorem. Our
analysis does not guarantee to give the smallest model; which
model is generated depends on the SAT solver used. In most cases,

132

however, the modal is a small one, and in this case, our tool would
make r empty.

3. ANALYSIS
The analysis involves five steps:

1 Two simple manipulations--conversion to negation normal
form and skolemization--are performed on the formula.

2 The formula is translated, for the chosen scope, into a boo-
lean formula, along with a mapping between relational vari-
ables and the boolean variables used to encode them. This
boolean formula is constructed so that it has a model exactly
when the relational formula has a model in the given scope.

3 The boolean formula is converted to conjunctive normal
form, the preferred input format of most SAT solvers.

4 The boolean formula is presented to the SAT solver.
5 If the solver finds a model, a model of the relational formula

is then reconstructed from it using the mapping produced in
Step 2.

We focus here on translation, Step 2. Steps 1 and 3 involve well-
known manipulations and Step 5 is trivial. Step 4 is delegated to an
off-the-shdf tool; because Step 2 generates a completely standard
boolean formula, we can exploit advances in SAT technology with-
out any change to our tool. Only Step 4 is computationally inten-
sive, but its cost depends crucially on how the earlier steps are per-
formed.

Much of the complexity of the translation arises from the dimi-
nation of quantifiers. Translating to QBF--quantlfied boolean
formulas--would be much simpler, but would rule out the most
powerful and highly tuned SAT solvers that are currently available.

3.1 Normalization of the Relational Formula
Before translating the relational formula, we convert it to negation
normal form (NNF) and skolemize it. In NNF, only elementary
formulas are negated. To convert to NNF, we simply push nega-
tions inwards using de Morgan's laws. The problem of Section 2.4

! a l l x: X l some y: Y l x.r = y

for example, becomes

some x: X [a l l y : Y] ! x.r = y

Skolemization eliminates existentially quantified variables. If a
variable is existentially quantified in a formula that is enclosed by
no universal quantifiers, it can be replaced by a scalar. Our formula
is thus transformed to

a l l y : Y l l x . r = y

with the addition of a free variable x: X and a constraint

s o m e z : X l z = x

saying that x represents a scalar, resulting in the problem

r : X - > g
x : X
a l l y :Y l ! x . r = y
some z: X i z = x

It might seem odd to replace one existential quantifier with an-
other, but even in this trivial example it can be seen that the body of
the added quantified formula is simpler than the body of the for-
mula that was skolemized.

If a variable is existentially quantified in a formula that is en-
closed by a universal quantifier, it is instead replaced by a function.
For example,

al l x: X l some ~. Y l x.r = y

is converted to

al l x: X l x.r = y[x]

by replacingy with the function

~ . X = > Y

and adding a constraint that each y[x] is a singleton. This scheme
generalizes to an arbitrary number of universal quantifiers; we sim-
ply create a function indexed by as many types as necessary. Not all
existential quantifiers are diminated, however, since skolemization
is not applied inside set comprehensions.

3.2 Overview of Translation
Given a relational formula, we can construct a boolean formula that
has a model exactly when the original formula has a model in some
given scope. Here's why. Once we have fixed the scope, a value of a
relation from S to T can be represented as a bit matrix with a 1 in
the ith row andjth column when the ith atom in S is related to the
j th atom in T, and a 0 otherwise. The collection of possible values
of a rdation can thus be expressed by a matrix of boolean variables.
Any constraint on a relation can be expressed as a formula in these
boolean variables; and a relational formula as a whole can be simi-
larly expressed by introducing boolean variables for each relational
variable.

This was the analysis we presented in our previous work [15]. In
this paper, we extend the scheme to include quantifiers. The idea is
intuitively simple, but a little intricate in its details. One way to
translate a universal formula would be to expand the body, by mak-
ing a copy for each possible value of the quantified variable, and
then conjoining these (or disjoining them, depending on the quan-
tifier).

This approach is not compositional, though. Instead, for each
formula, we generate a mapping from environments to boolean
formulas; for each expression, we generate a mapping to matrices
of boolean formulas. This mapping parameterizes the formula or
matr/x by the values of all the variables that will subsequently be
bound.

Suppose we have a universal formula whose variable is w, and
whose body mentions additionally the quantified variables u and v.
The result of translating the body will be a mapping from environ-
ments that bind u, v and w to boolean formulas. To translate the
formula as a whole, we form a new mapping whose environments
bind only u and v, and which, for a given pair of values u 0 and v 0,
yields the conjunction of the formulas that the previous mapping
yielded for environments of the form {u ~ u~, v ~ v 0, w ~ wi}
for all values w, ofw.

This approach follows the semantics of the logic: from each syn-
tactic object, we create a function from environments to meanings.
In the semantics, however, the environment binds not only quanti-
fied variables but also set and relation variables. In our translation,
the values of set and relation variables are encoded as matrices of
boolean variables, and the environment binds only the quantified
variables.

133

MT: formula -4 boo leanFormula t ree

XT: expr -4 value t ree
a tree = (var x (index . 4 a tree)) + a
value = booleanFormulaMatr ix + (index -4 value)

MT [a in b] = merge (MT[a], MT[b], ~,p,q. A~ (P, =~ q~ll

MT [! f l = map (MT[fl, ~)
MT [f&& g] = merge (MT[fJ, MT[f], ^)
MT [f II g l = merge (MT[f], MT[f], v)
MT [all v: t I f] = fo ld (MT[f], A)
MT [some v: t I f] = fo ld (MT[f], V)

XT [a + b] = merge (XT[al, XT[b], ZP,q.IJ.r. r~ = pQ v ck~
XT [a & b] = merge (XT[a], XT[b], ~,p,q.IJ.r. r 0 = pn ̂ q,j)
XT [a - b] = merge (XT[a], XT[b], ;Lp, q.IJ.r, rQ = Pu ̂ -¢1~)
XT [a. b] = merge (XT[a], XT[b], ~.p,q.l~r. r u = :lie p~ ̂ q~)

XT [~a] = map iXT[a], ;Lp.(r I r,j = p~))
XT [+a] = map (XT[a], closure)
XT [[v: t I fJ = fo ld [MT[f], ~.f. px. r= = f[i))
XT [a[v]] = merge (XT[a], XT[v], ;Ls, x. its,. x=)
XT [v] = (v, ~,i.(lu. r~ = (i =j~)) when v is quant i f ied
XT [v] = create iv) otherwise

merge : a tree, a tree, (a,a -4~) -4/~tree
merge (x, y, o) = o(x, y)
merge ((u,t l), (u,t2), o) = (u, ZI. merge(t l(i) , t2(i),o))
merge ((u,t l l , (v,t2), o) = (u, ~.i. merge(t1 (i),(v,t2),o))
merge ((u,tl), (v, t2), o) = (v, ~Li. merge((u,t l) , t2(i),o))
merge ((u,t), y, o) = (u, Zi. mergeit [i) ,y,o))
merge (x, iv, t), o) = (v, ~,i. merge(x,t i i) ,o))

map : a tree, [a.4a) -4 a t ree

map (x, o) = oix)
map [(u,t), o) = (u, ~,i.map (t(i),o))

fo ld : a tree, ((index.4a)--) ,8) . 4 ~ tree
fo ld ((u,t), o) = o(t)
fo ld ((u,t), o) = (u, ;U. fo ld(t (i),o))

create: vat--> value
create (v) -- (r] re = a fresh boo lean var iable F(v,i))
create (v) = (r] r~ = a fresh boo lean var iable F(v,i,j~)
create (v) = (r I r,= create (v~)

when u < v
when v < u

when t(i) e lementary
o therwise

for v: S
for v: S .4T
for v: S ~ t

Figure 2: Trans la t ion rules a n d t ree operat ions

3 . 3 T r e e M a n i p u l a t i o n s

Rather than treating the mappings abstractly, we show how they are
represented and manipulated concretely. Figure 2 defines the trans-
lation scheme in terms of the translation functions (on the left) and
some utility functions (on the right).

There are two kinds of mapping, one for parameterizing formu-
las and one for parameterizing values (represented as indexed ma-
trices of boolean formulas). These mappings are represented as
trees, whose leaf nodes are the formulas or values; the tree manipu-
lations are independent of the leaf type, and are thus described on a
polymorphic tree. The internal nodes are labelled with variable
names, and their outgoing edges are labelled with indices that cor-
respond to the values of the variables.

For example, in a scope of 2, a relational formula with two free
variables u and v would be represented as the tree shown in the top
left-hand side of Figure 3. To find the formula for the case in which
u takes on its first value, and v its second value, for example, we
follow the first outgoing edge o fu and the second outgoing edge of
v, and reach the leaf formula x,.

The translation rules involve applications of various tree opera-
tions defined in an ML-like notation on the right. These are: merge,
which merges two trees by combining their leaves pairwise; map,
which applies an operator to all the leaves; and fold, which collapses
the lowest levd of a tree by applying a function to all the leaves of
each smallest subtree.

To translate a compound formula, we first translate its constitu-
ent subformulas, and then merge the resulting trees, combining the
formulas at their leaves. If the two trees have the same variables and
they appear from root to leaf in the same order, merging is easy."
leaves aside, the trees are isomorphic, and we simply create a new
tree with the same structure whose leaves are the pairwise combina-
tions of the leaves in the original trees.

Unfortunately, the trees are not generally isomorphic, since dif-
ferent subformulas mention different variables. We impose an
ordering on the variables (by numbering them according to their
quantification depth), and an invariant on the trees that the vari-
ables appear in this order. Now to merge two trees, we must essen-
tially interpose an extra level in one tree whenever it omits a vari-
able appearing in the other (see the lower part of Figure 3). The
algorithm is given, on the right of Figure 2. The cases are to be in-
terpreted sequentially, with the first one that matches being ap-
plied; x andy stand for values, u and v for variables, and t, tl, and t2
for trees.

The merge function takes a different operator for translating dif-
ferent kinds of formula or expression. For example, when transht-
ing an dementary formula a in b, the operator is

Xp, q. ̂ ~ {p~ ~ q,j}

which takes two matrices of boolean formulas, and returns the
formula that says that, for every i and j , the formula in the ith row
andjth column o fp implies the formula in the same position in q.
This embodies the intuition that if the values o f p and q are repre-
sented as bit matrices, then for the relation q to represent a superset
of the relation p, it must have a 1 wherever p does. When there are
no quantifiers, the trees are all degenerate, and merge reduces to the
direct application of the operator--exactly as in our previous
scheme [15].

The operator for union expressions

gp, q.(I.tr. q = p,j v q,)

uses the definition operator It; the expression Ixx.F denotes the
value which when assigned to x makes the formula F true. So this
operator says that the union of/) and q is a matrix r such that the
formula in the ith row andjth column of the result r is the disjunc-
tion of the corresponding formulas in the matrices o f p and q. In
other words, a pair belongs to the union of two relations if it be-
longs to either relation.

134

Figure 3: Tree operations: fold (above), merge (below)

The other tree functions used in the translation are simpler than
merge. Unary operators are translated with a map function that
creates a new tree in which a corresponding unary translation op-
erator has been applied to each leaf. The negation of a formula, for
example, is obtained by negating the boolean formula at each leaf.
The transpose of an expression is obtained by taking the mirror
image of the matrix at each leaf. The transitive dosure is obtained
by applying an operator that computes closure using iterative dou-
bling, as explained in [15].

Quantified formulas are translated using fold. Its second argu-
ment is an operator that takes a tree of depth 1. Since the variables
in the tree are ordered by quantification depth, the translation of
the body of a quantified formula is sure to be a tree in which the
quantified variable appears last, just above the leaves. To obtain the
meaning of the formula as a whole, we therefore coUapse the sub-
trees at the leaves, by disjunction or conjunction depending on the
quantifier.

Set comprehensions are handled with fold too. Here, the opera-
tor creates a vector of boolean formulas, one for each leaf, in order,
thus forming a set whose ith element is present when the ith value
of the quantified variable makes the body formula true.

Finally, quantified variables are translated to trees of unit depth
in which the ith subtree is the vector whose j ib element is true when
i = j and false otherwise. Dedared variables are translated into
values: vectors and matrices of boolean variables for sets and rela-
tions respectively, and higher-dimensional structures for functions.
In the definition of the function create, the indices range in the
obvious way over the scope.

3.4 Example Translation
Our example formula

ally: Y l ! x.r = y

would be translated, in a scope of 2, as follows. For x, we generate
the vector [x o x~] and for the rdation r, the matrix [r00 r0~, rt0 r ,] ,
using 6 boolean variables in total. The variabley is represented as a
tree whose root is labelledy, with branches to the two vectors [1 0]
and [0 1] that correspond to y taking the first and second value of
the type Yrespectively.

Using the fourth M rule, the expression x.r is translated to

[(XoAroo) v (X,Ario) (XoAro,) V (XlAr, i)]

The formula x.r = y gives a tree withy at the root, pointing to two
formulas

((x~r=) v (x ,A r ,o)) ^~ ((X~ro,) v (x,^r,,))
-~ ((x , ^ r J v (x,Ar,o))^ ((XoArol) V (x ,^ r .))

that are true when a=r andy are equal for the first and second values
o f y respectively. We then map negation over the tree, which ne-
gates these two formulas, and then obtain the translation of the
quantified formula by folding conjunction over the tree, obtaining

-~ (((xc~roo) v (X,Ar,o)) A "-1 ((xoAro,) v (xiArlt))) A
--. (-~ ((XoAr ~ V (X,Ar,O)) A ((X~ro,) v (X,Ar,,)))

which is then presented to the SAT solver. Our implementation
encapsulates boolean formulas in an abstract data type which al-
lows it to simplify formulas during translation; the resulting for-
mula would therefore be simpler than this.

3.5 Conversion to CNF, Solving and Mapping Back
The result of the translation step is a single boolean formula: that is,
a formula over propositional variables with and 4, A and V. No tree
structure can remain because the only free variables in the rela-
tional formula are declared sets and relations, which, as explained
above, are translated into boolean variables and do not appear as
intermediate nodes in the tree.

This formula is converted to conjunctive normal form (CNF)
before being handed to the solver. To avoid exponential blowup
due to disjunctions, we introduce a temporary boolean variable for
every subformula [29].

The solver, if it finds a solution, returns a model that assigns
true or false to each boolean variable. From this assignment, we
reconstruct a model of the relational formula as follows. If the
scope is k, we create names TO, T1 for each of the k atoms in
each type T. For a relation r : S -> T, we look up in the assignment
for each 0 < i, j < k the value of each boolean variable v~ that was
used to encode the relation r, and insert into r the pair (Si, Tj) if
this value is true.

135

A solution to the boolean formula of Section 3.4, for example,
has r00, r0, and x~ true, and all others false, which gives the result
shown in Section 2.4.

4. RESULTS
The analysis described here has been implemented in the Alloy
Analyzer (AA)[21]. Alloy [16] is an attempt to combine the best
features of Z [34] and the Object Constraint Language of UML [39]
in a lightweight notation. It takes UML's emphasis on binary rela-
tions, and the expression of constraints with sets of objects formed
by 'navigations', but with Z's much simpler semantics.

4.1 Implementing the Analysis
The tool implements the logic presented here as an intermediate
language for Alloy, although it does not offer functions in their full
generality. In its current version, Alloy only allows functions from
basic types to relations (which we call 'indexed relations'), and only
outermost existentials are skolemized. Otherwise, the analysis is
implemented as described here.

The tool is roughly 50,000 lines of code, of which 15,000 imple-
ment the front end (parsing, type inference, static semantic checks,
schema calculus, translation to the intermediate language); 5,000
implement the translation that is the subject of this paper; 10,000
implement manipulations of the boolean formula (conversion to
normal form, simplifications, conversion to various solver for-
mats); 5,000 implement the user interface; and 15,000 implement a
visualization mechanism. All the code is written in Java, except for
the boolean formula manipulations, which are written in C.

4.2 Choice of SAT Solvers
The tool's backend wraps a collection of off-the-shelf SAT solvers
[4,31,32,41]. The deterministic solvers SATO [41] and RelSAT [4]
seem to work best. Early on, we had some success with WalkSAT
[31], a stochastic solver, but we assiduously avoided introducing
too many temporary variables when converting to CNF [15]. This
conversion step became a bottleneck, which was eliminated by
more aggressive variable introduction. Unfortunately, the redun-
dancy this adds to the formula foils stochastic solvers, so WalkSAT
rarely works well.

We learnt an interesting lesson in our experiments with solvers•
In our eagerness for platform-independence, we planned initially
to implement our own solvers in lava. Our prototype tool induded
a trie-based implementation [42], in lava, of the same Davis-
Putnam (DP) algorithm [9] that underlies many deterministic
solvers. Because WalkSAT outperformed it so dramatically [15],
and because our own Java implementation of WalkSAT came
within a factor of 3 of the performance of the C implementation, we
foolishly attributed the failure of our DP implementation to the
Davis-Putnam method itself. Later, we discovered that a highly
tuned implementation of Davis Putnam, such as SATO, performed
orders of magnitude better. This experience made us appreciate the
importance of a flexible backend, to which we could attach new
solvers as they became available.

4.3 New Expressiveness
The most important consequence of this work has been the ability
to add quantifiers to our language. Our previous analysis was lira-

ited to pure relational formulas with no quantifiers. In principle,
the first-order properties that arise in software specifications can
always be written without quantifiers [36]. To say "everybody likes
a winner" we could write

Winner.~(On ~ likes)= {}

In this formula, the relational expression following the dot (the
transpose of the complement of the l i kes relation) maps persons to
persons who don't like them; the expression denotes persons who
don't like some winner; and the formula as a whole says that the set
of such persons is empty. Needless to say, this style of specification
did not win many admirers, despite its terseness. We experimented
with an algorithm of Tarski's [36] for performing the elimination
automatically, but were not able to generate relational expressions
of a reasonable size.

Now, with quantifiers, we can write instead

all p: Person I all w:. Winner I w in p.likes

Our experience so far, in six months of using the language and its
tool, suggests that quantifiers and navigation expressions make a
big difference. While NP [14,17], the language of our Nitpick
checker, was usable only by dedicated experts, we have found that
students with only a modest background in discrete mathematics
can pick up Alloy in a couple of days. (Gaining proficiency takes
much longer, of course, but that has more to do with learning how
to construct focused, abstract models than with details of any lan-
guage.)

We have constructed and analyzed a variety of models in Alloy
that would have been at the very least difficult to express in NP.
Moreover, since the Alloy Analyzer (AA) is a far more powerful
solver than Nitpick, we have been able to construct larger models•
Whereas before we had to craft models carefully to make them
analyzable, we no longer find it necessary to adjust our models,
except to fix the (many) errors that the tool exposes. For a scope of
3, which is usually enough to catch most errors, Nitpick was limited
to a state of about 5 relations; the new tool can handle 10 relations,
and sometimes 20 or more, with ease. Examples include:

• C O M [22]. We took the Z specification of Sullivan et al [35] and
translated it into Alloy. The resulting model is about 150 lines
long, and has 8 relations, 1 indexed relation, and 8 sets. Using
AA, we were able to generate automatically the counterexam-
ples that Sullivan and his colleagues had found by hand analysis.

• In t en t iona l N a m i n g [26]. Sarfraz Khurshid constructed a model
of the design of a name server that allows services to be looked
up by their properties [1]. The model is 130 lines long, and has
11 relations, I indexed relation (ie, function from a basic type to
a relation), and 8 sets. A variety of problems were discovered
with the design. AA takes no longer than 5 seconds to find any
of the counterexamples.

• UML M e t a m o d e l [38]. We translated the entire core metamodel
of UML from OCL [39], the constraint language of UML, into
Alloy. The resulting model, which is about 400 lines long, is
about half the size of the OCL version. It has 41 relations and 37
sets. We used AA to show that the metamodel is consistent, by
generating a sample UML model that satisfies all the constraints
(with additional constraints that rule out the trivial empty
model). Finding this model takes 6 seconds.

136

The reader should bear in mind when considering the size of
these models that a language like Alloy, NP or Z tends to be much
more succinct than the languages used by model checkers• The
input to a model checker such as SMV [6] or SPIN [13] is a rather
low-levd program. A model of Mobile IP that we built in SMV was
10 times longer than our NP version.

4.4 Per fo rmance

As an experiment, we analyzed two groups of models. The first
group consists of the three models mentioned above, which dem-
onstrate the capability of the new language and analysis. The sec-
ond group consists of three models originally written in NP and
analyzed with our previous SAT-based analysis [15]:

• Finder, a toy model of the Macintosh file system that uses tran-
sitive closure (which cannot be handled by tools that are re-
stricted to first-order predicate logic);

• Style, a model of an aspect of the paragraph style mechanism of
Microsoft Word that was developed as a class exercise [16];

• Mobile IF, a model that exposed a flaw in an internet protocol
for forwarding messages to mobile hosts [19].

We translated these into Alloy using quantifiers, and analyzed them
in AA to test whether quantifiers incur a significant cost.

The results are shown in Tables 1 and 2. For each example, and
for a variety of scopes, we show the size of the space and some tim-
ings. The space is given as the number of bits used to encode an
assignment of values to sets and relations, so 100 bits corresponds
to roughly 10 ~° configurations. These results are averaged over a few
problems for each case study, some satisfiable and some unsatisfi-
able. The analyses in Table 1 involve only invariants, so the number
of configurations is the number of states; the analyses in Table 2
involve executions, so a configuration is a pair (or for Style, a triple)
of states. The number of boolean variables in the generated formula
is often much larger because of variable introduction.

All timings are given in seconds, measured on a Pentium II with
a 233MHz processor and 192MB of memory. Performance can
often be significantly improved by selecting a different solver, or by
tweaking solver parameters. All the measurements in the table,
however, were taken using RelSAT with its default settings.
Translation (which is included in the timings) takes less than 10
seconds in every case; the SAT solver is the bottleneck.

For the first group, two kinds of analysis were performed (Table
1). The column marked Instance gives the time taken to find a solu-
tion when one exists: for the UML example, this instance demon-
strates consistency of the constraint, and for all others it represents
a counterexample to a theorem (or for Intentional Naming, coun-
terexamples to several theorems). The column marked Exhaust
gives the time taken to exhaust the space when no solutions exist.
The UML example includes constraints that require at least one of
each model dement; this rules out a solution in a scope of 2. For all
other cases, the analyses in this column involve checking a variety
of valid theorems. Because no theorems were checked for the UML
metamodel, there are no values for exhausting the state space for
scopes above 2.

As can be seen, the new method can handle spaces of 100 bits
(10 ~° configurations) with ease. When the solver has to exhaust the
space, the timings, and their variances, increase dramatically with
scope. In fact, almost all the problems for which an instance exists
have an instance in a small scope (2 for COM, 2 and 3 for Inten-

Example Scope Space
COM 2 60 bits

3 132
4 240

Intentional 2 64
Naming 3 141

4 256
UML 2 228
Metamodel 3 465

4 784

Instance Exhaust
3s 1-4s
11 s 37-218s
71 s 240-?s
ls ls
3-31s 19-59s
18-346s ??
n/a 6s
11 s n/a
17s n/a

Table 1: Results for new models

Example Scope Space Old [16]

Finder 5 160 bits 3s
6 216 162s

Style 3 90 1 s
4 156 2s
5 250 11 s

Mobile IP 3 175 Os
4 280 3s
5 600 8s

New

9s
13s
3s
3s
6s
ls
6s
29s

Table 2: Results for old models

tional Naming, and 3 for UML). The timings for larger scopes are
thus a bit specious, but they do suggest that it is better to start with
a small scope and increase it gradually.

For the second group (Table 2), we considered only cases in
which a solution is found, since our previous analysis used a sto-
chastic solver that ran forever when no solution existed. The col-
umn Old gives the timings from our old paper• These were run on a
machine that is about two thirds of the speed of the machine on
which our new experiments were performed, so these timings could
be reduced• The new method sometimes performs worse than the
old method, probably because the relational expressions give a
tighter encoding of the problem• But it scales better: because of a
translation bottleneck (overcome by our use of standard methods
[28]) the previous method could not handle specs of the size of
those in Table 1, even if they were written without quantifiers.

5. RELATED WORK

Unlike our previous analysis [15], the analysis described here can
handle quantifiers, and can handle larger specifications. Both
analyses dramatically outperform an earlier analysis, based on ex-
plicit enumeration of set and relation values [18], on which our
Nitpick checker was based. Recently, Craig Damon has improved
this earlier analysis with more powerful pruning schemes, but since
he has not yet incorporated quantifiers, it is not possible to com-
pare to our new analysis.

As far as we know, there are no other analyses for a first-order
logic that handle quantifiers and transitive closure. A variety of
model finders have been developed for group-theoretic investiga-
tions [eg, 33]; these work on a logic of uninterpreted functions, and
do not handle relations or closure. Several animators for Z have

137

been developed using Prolog as an underlying engine [11,12,
24,43], but these cannot handle large spaces.

Most other tools for relational notations are less automatic.
Theorem provers (such as Z/Eves [7] and PVS [28]) can--unlike
the Alloy Analyzer--prove theorems, but do not generate counter-
examples, and need help with lemmas and proof strategy. Execu-
tion engines (such as the IFAD tool [2] for VDM) limit the notation
to an executable subset and make the user provide test cases•

Model checkers are designed to handle the complexity of inter-
leaving, and not complexity in the state structure itself. Their input
languages do not offer rdations as types, and require relational
operators to be specified algorithmically at a low level. Explicit
model checkers (such as SPIN [13]) do not permit declarative
specification, in which invariants and operations are given by con-
junction of constraints.

This and our previous analysis [15] might be described as 'sym-
bolic', because, as in symbolic model checking [6], there is no ex-
plicit representation of individual states. Our notion of scope is
implicit in most applications of model checking, since the modal
itself usually assumes some fixed number of processors, cache lines,
etc.

Boolean satisfaction has been used before in planning [10,25]
(which is essentially reachability analysis) and more recently in
linear temporal logic model checking [6], but the encodings are
rather different from that described here.

6. FUTURE PROSPECTS

Relational logic has many applications. Our analysis might be use-
ful in a variety of tools, beyond the Alloy Analyzer:

• A CASE tool (such as Rose [30]) might use our analysis to gen-
erate object diagrams from class diagrams;

• An architectural style tool might use our analysis to check the
consistency of style constraints (expressed, for example in AML
[40] or Darwin [27]) and generate sample architectures;

• A tool for developing requirements (such as KAOS [37]) might
use our analysis to check the consistency of goals;

• A refinement tool (such as the B tool [3]) might use our analysis
as a ver/fication condition tester, to find counterexamples to
proof obligations before attempting a proof.
We have recently developed a strategy for translating code into

this logic. Using our analysis, we are able to check a variety of code
properties, such as absence of executions that dereference null
pointers or create undesirable sharings, and conformance to user-
defined specifications [23].

ACKNOWLEDGMENTS

fan Schechter and Ilya Shlyakhter contributed to the implementa-
tion. This research was funded by the National Science Foundation
(under grant CCR-9523972), by the MIT Center for Innovation in
Product Development (under NSF Cooperative Agreement Num-
ber EEC-9529140), and by an endowment from Douglas T. Ross.

The Alloy Analyzer may be freely downloaded for a variety of
platforms from http://sdg.lcs.mit.edu/alloy. This paper is available
at http://sdg,lcs.mit.edu/-dnj/publications in a more readable for-
mat.

REFERENCES

[1] William Adjie-Winoto, Elliot Schwartz, Had Balakrishnan
and Jeremy Lille),. The design and implementation of an
intentional naming system. Proceedings of the 17th A CM
Symposium on Operating Systems Principles (SOSP '99),
Kiawah Island, South Carolina, December 1999.

[2] Sten Agerhold and Peter Gorm Larsen. The IFAD VDM
Tools: Lightweight Formal Methods. FM-Trends 1998: 326-
329.

[3] The B-Tool• B-Core(UK) Ltd, Harwell, Oxfordshire,
England. http://www.b-core.com/htool.html.

[4] R.J. Bayardo Jr. and R. C. Schrag. Using CSP look-back
techniques to solve real world SAT instances. Proc. of the
14th National Conf. on Artificial Intelligence, 203-208, 1997.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
Model Checking without BDDs. Too/s and Algorithms for the
Analysis and Construction of Systems (TACAS'99), LNCS
1579, Springer-Verlag, 1999.

[6] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J.
Hwang, Symbolic model checking: 10 ~° states and beyond.
Information and Computation, Vol. 98, No. 2, pp. 142-170,
June 1992.

[7] Dan Craigen, Irwin Meisds and Mark Saaltink. Analysing Z
Specifications with Z/EVES. Industrial-Strength Formal
Methods in Practice, eds. J.p. Bowen and M.G. Hinchey,
September 1999.

[8] Craig A. Damon• Selective Enumeration• Phi) Thesis, School
of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, August 2000.

[9] Martin Davis and Hilary Putnam. A computing procedure
for quantification theory. Journal of the ACM, Vol. 7, pp.
202-215, 1960.
Michael D. Ernst, Todd D. Millstein and Daniel S. Weld.
Automatic SAT-Compilation of Planning Problems. Proc.
15th International Joint Conference on Artificial Intelligence
(IJCAI-97), Nagoya, Aichi, Japan, August 1997, pp. 1169-
1176.
Daniel Hazel, Paul Strooper and Owen Traynor. Possum: An
Animator for the SUM Specification Language. Proceedings
Asia-Pacific Software Engineering Conference and
International Computer Science Conference, pages 42-51,
IEEE Computer Society, December 1997.
M.A. Hewitt, C.M. O'Halloran and C.T. Sennett.
Experiences with PiZA, an animator for Z. lOth
International Conference of Z Users (ZUM'97), Reading,
England, April 1997.
Gerard J. Holzmann. The Modal Checker Spin. IEEE
Transactions on Software Engineering, Special issue on
Formal Methods in Software Practice, Volume 23, Number 5,
May 1997, 279-295.
Daniel Jackson. Nitpick: A Checkable Specification
language. Proc. First ACM SIGSOFT Workshop on Formal
Methods in Software Practice, San Diego, CA, January 1996,
pp. 60-69•
Daniel Jackson. An Intermediate Design Language and its
Analysis. Proc. ACM Conference on Foundations of Software
Engineering, Florida, November 1998.

[10]

[11]

[12]

[13]

[14]

[15]

138

[231

[16] Daniel Jackson. Alloy: A Lightweight Object Modelling
Notation. Technical Report 797, MIT Laboratory for
Computer Science, Cambridge, MA, February 2000.
Available at: http:llsdg.lcs.mit.edul~dnjlpublications.

[17] Daniel Jackson and CraigA. Damon. NitpickReference
Manual. CMU-CS-96-109. School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, January 1996.

[18] Daniel Jackson and Craig A. Damon. Elements of Style:
Analyzing a Software Design Feature with a Counterexample
Detector. IEEE Transactions on Software Engineering, Vol.
22, No. 7, July 1996, pp. 484-495.

[19] Daniel Jackson, Somesh lha and CraigA. Damon.
Isomorph-free Model Enumeration: A New Method for
Checking Relational Specifications. A CM Transactions on
Programming Languages and Systems, Vol. 20, No. 2, March
1998, pp. 302-343.

[20] Daniel Jackson, Yuchung Ng and Jeannette Wing. A Nitpick
Analysis of IPv6. To appear, FormalAspects of Computing.

[21] Daniel Jackson, Ian Schechter and Ilya Shlyakhter. Alcoa: the
Alloy Constraint Analyzer. Proc. International Conference
on Software Engineering, Limerick, Ireland, June 2000.

[22] Daniel Jackson and Kevin Sullivan. COM Revisited: Tool-
Assisted Modelling and Analysis of Software Structures.
Proc. Foundations of Software Engineering (FSE 2000), San
Diego, CA, November 2000.
Daniel Jackson & Mandana Vaziri. Finding Bugs with a
Constraint Solver. Proc. International Conference on
Software Testing and Analysis (ISSTA 2000), Portland, OR,
August 2000.

[24] R.D. Knott and P. I. Krause. The Implementation of Z
Specifications using Program Transformation Systems: The
SuZan Project. The Unified Computation Laboratory, IMA
Conference Series No 35 (Editors: C Rattray, R G Clark),
Clarendon Press, Oxford, 1992, pgs 207-220.

[25] Henry Kautz and Bart Sdman. Pushing the envelope:
planning, propositional logic, and stochastic search. Proc.
5th National Conference on Artificial Intelligence, 1996, pp.
1194-1201.

[26] Sarfraz Khurshid and Daniel Jackson. Exploring the Design
of an Intentional Naming System with an Automatic
Constraint Analyzer. Proc. Automated Software Engineering,
Grenoble, France, September 2000.

[27] J. Magee, N. Dulay, S. Eisenbach and J. Kramer. Specifying
Distributed Software Architectures. Proceedings of Sth
European Software Engineering Conference (ESEC 95),
Sitges, Spain, September 1995

[28] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich
yon Henke. Formal verification for fault-tolerant'
architectures: Prolegomena to the design of PVS. IEEE
Transactions on Software Engineering, 21 (2):107-125,
February 1995.

[29] D. Plaisted and S. Greenbaum. A structure-preserving clause
form translation. Journal of Symbolic Computation, 2, 293-
304, 1986.

[30] Rose Visual Modeling Tool. Rational Software Corporation,
Cupertino, California. Inc.

[31] Bart Selman, Henry Kautz and Brain Cohen. Noise strategies
for improving local search. Proc. AAAI-94, pp. 337-343,
1994.

[32] J.P.M. Silva and K.A. Sakallah. Grasp - A New Search
Algorithm for Satisfiability. IEEE In ternational Conference
on Computer Aided Design, San Jose, CA, November 1996,
pp. 220-227.

[33] John Slaney. Finder: Finite domai n enumerator, system
description. Proc. 12th International Conference on
Automated Deduction. Lecture Notes in Artifical
Intelligence. Springer-Verlag, Berlin, 798-801.

[34] I. Michael Spivey. TheZNotation:A Reference Manual.
Second ed, Prentice Hall, 1992.

[35] K.J. Sullivan, I. Socha and M. Marchukov. Using Formal
Methods to Reason about Architecfural Standards.
Proceedings of the International Conference on Software
Engineering (ICSE97), Boston, Massachusetts, May 1997.

[36] Alfred Tarski and Steven Givant. A Formalization of Set
Theory Without Variables. American Mathematical Society,
Colloquium Publications, Volume 41, 1987.

[37] Axel van Lamsweerde, Robert Darimont and Emmanuel
Letier. Managing Conflicts in Goal-Driven Requirements
Engineering. IEEE Transactions on Software Engineering,
Vol. 24, No. 1 I, November 1998.

[38] Mandana Vaziri and Daniel Jackson. Some Shortcomings of
OCL, the Object Constraint Language of UML. A response to
Object Management Group RFI on UML. December 1999.
Available at: http:llsdg.lcs.mit.edul~dnjlpublications.

[39] los Warmer and Anneke Kleppe. The Object Constraint
Language: Precise Modeling with UML. Addison-Wesley,
1999.

[40] David S. Wile. AML: An Architecture Meta-Language.
Automated Software Engineering, 14th IEEE International
Conference, Cocoa Beach ,Florida, USA, October 1999.

[41] Hantao Zhang. SATO: An Efficient Propositional Prover.
Proc. of International Conference on Automated Deduction
(CADE-97).

[42] Hantao Zhang and Mark E. Stickel. Implementing the Davis-
Putnam Algorithm by Tries. Technical Report 94-12,
Artificial Intelligence Center, SRI International, Menlo Park,
CA. December 1994.

[43] Jia Xiaoping. An Approach to Animating Z Specifications.
Proceedings of the 19th Annual IEEE International Computer
Software and Application Conference (COMPSAC'95).
August 1995, Dallas, TX. pp. 108-113.

139

