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AUTOMATING KNOWLEDGE ACQUISITION EOR AERIAL IMAGE INTERPRETATION 

A b s t r a c t 

The interpretation of aerial photographs requires a lot of knowledge about the scene 

under consideration. Knowledge about the type of scene: airport, suburban housing 

development, urban city, aids in low-level and intermediate level image analysis, and will 

drive high-level interpretation by constraining search for plausible consistent scene 

models. Collecting and representing large knowledge bases requires specialized tools. In 

this paper we describe the organization of a set of tools for interactive knowledge 

acquisition of scene primitives and spatial constraints for interpretation of aerial imagery. 

These tools include a user interface for interactive knowledge acquisition, the automated 

compilation of that knowledge from a schema-based representation into productions that 

are directly executable by our interpretation system, and a performance analysis tool that 

generates a critique of the final interpretation. Finally, the generality of these tools is 

demonstrated by the generation of rules for a new task, suburban house scenes, and the 

analysis of a set of imagery by our interpretation system. 

1. In t r o d u c t i o n  

In this paper we describe a collection of software tools, ISCAN/RULEGEN/SPATS, for 

interactive acquisition of spatial knowledge, automated compilation of this knowledge into 

a rule-based scene interpretation system, and the production of performance analysis 

statistics to aid in incremental refinement of spatial knowledge. This work is focused on 

knowledge acquisition and performance analysis tools for SPAM, a knowledge-based system 

designed to interpret aerial photographs for mapping and photo interpretation. We have 

reported on SPAM research results in the context of airport scenes ' . 

We address a broad set of topics within the overall framework of knowledge acquisition. 

First and foremost we are interested in automating the process by which an interpretation 

system, such as SPAM, can collect and represent new knowledge to improve performance 

on existing interpretation tasks, or in attempting to begin to become proficient in new 

ones. For the airport task we primarily relied on spatial constraints found in books on 
3 4 5 

airport design ' ' and, to a lesser extent, by observations of relationships found in aerial 

imagery. Other task domains, such as suburban house scenes, do not appear to have 

codified spatial organizations, although they exhibit similar patterns across many 

examples. In lieu of such information the ability to indicate and measure spatial 

relationships in representative imagery becomes more important. ISCAN is our first 

attempt to provide a graphical user interface, appropriate in an image-based domain, 

which has a model of the types of knowledge required by SPAM during the interpretation 

process. Such an interface may also provide individuals such as cartographers, remote 

sensing and photo interpreters, and other non-programmers with a mechanism for adding 

knowledge to SPAM without a detailed understanding of the underlying system. 

A second research goal is to explore the generality of the SPAM architecture for a variety 
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of tasks within the general domain of aerial image interpretation. RULEGEN is a tool that 

compiles spatial and structural knowledge, stored as collections of rule schemata, and 

generates productions that are executed by SPAM. RULEGEN was partly motivated by 

difficulties encountered in extending and generalizing SPAM, which was developed to 

interpret airport scenes, to interpret simple suburban house scenes. Many of these 

difficulties impacted our ability to easily add and delete rules to measure the effect of 

knowledge in various phases of the interpretation process. Changes in the knowledge base 

often generated unforeseen interactions between the control of rule execution within the 

interpretation phases. In a system with over 500 productions the management of such 

changes became a significant burden. As we began to address these issues it became clear 

that the solution was to view SPAM as an interpretation architecture within which we 

could embed specific task knowledge. RULEGEN was developed to automatically generate 

the core task-independent evaluation and control functions that represent the SPAM 

interpretation architecture and to take task-dependent knowledge in the form of rule 

schemata and compile productions whose execution was embedded within this core. 

Therefore, the performance system, SPAM, can be completely generated by RULEGEN when 

it is supplied with appropriate task-dependent knowledge. 

I SCAN RULEGEN SPAM SPATS 

KNOWLEDGE 

ACQUI SI TI ON 4 
MACHI NE 

TRANSLATI ON 

PERFORMANCE 

SYSTEM 

PERFORMANCE 

ANALYSI S 

Figure 1-1: Overview of Knowledge Acquisition For SPAM 

Finally, SPATS was motivated by a need to automate the evaluation of the 

interpretations produced by SPAM within the context of idealized human photo 

interpretation. The goal was to measure the size of the interpretation space explored by 

SPAM, the number of competing hypotheses, and the correctness of those hypotheses 

during each interpretation phase. By varying the image segmentations presented to SPAM 

or by generating SPAM systems with different types of spatial knowledge we can now more 

rigorously evaluate and explore knowledge effects using SPATS. Figure 1-1 is an abstract 

overview of the relationship between these tools. While this particular focus on 

acquisition, compilation, and performance evaluation might appear to be somewhat 

parochial, we believe that these issues will be seen to be central to other researchers in 

computer vision working along similar lines. 

Section 1.1 briefly outlines some related research and describes our views on knowledge 

acquisition for computer vision. Section 1.2 gives the layout of the remainder of the paper. 
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1.1. Knowledge Acquisition For Vision 

Previous efforts to investigate knowledge acquisition v.iihin the context of systems for 

image interpretation have primarily focused on spectral properties of objects in the image 

or viewpoint specific spatial relationships. Early work by Barrow and Popplestone 

addressed the problem of describing relations between picture elements with predicates 

like ADJACENT(x.y) or ABOVE(x,y). Using this methodology "rules" could be formulated 

from these predicates and attached to individual elements of a picture. For example, in 

the context of face recognition, a nose would be defined by the rule: "ABOVE(x,mouth) and 

LEFT-OF(x,right-eye) and RIGIIT-OF(x,left-eye)". These rules were to be embedded into a 

resolution theorem proving paradigm. This work was a basis for the ISIS system which 

added the use of an interactive segmentation system. It allows a user to interactively 

specify representative regions with a particular interpretation, and then invoked an 

intensity classification segmentation process to attempt to extract the remaining parts of 

the scene. 

8 9 

Recently, the VISIONS system 1 has reported similar attempts to make interpretations 

by propagating low-level process output, such as lines or regions, up to an intermediate 

level, which combines the low-level output with computed attributes such as color, 

texture, or orientation. Interpreted objects are defined in terms of these intermediate 

elements. Loosely speaking these classification systems use "knowledge" such as the sky 

has a pixel intensity greater than SO but less that 125 in the blue band. In fact, one must 

resort to density weighting functions much as in statistical pattern recognition for remote 

sensing. This "knowledge" is highly sensor and scene dependent. Other measures such as 

height, size (in pixels), and relative spatial position (e.g. sky is above the house and grass 

is below the house) are also employed. Again, these viewpoint dependent quantities will 

vary, not only from domain to domain, but from image to image. Ultimately sky is blue 

and grass is green allows for a direct mapping between regions and the associated high-

level interpretation. However, this mapping represents a rather shallow use of knowledge 

whose robustness is questionable. For example, consider the effect of averaging the RGB 

components of a color image into a monochromatic image. While the scene geometry 

remains unchanged, without the direct mapping of region spectral properties into a 

semantic interpretation (sky is blue) it is difficult to see how to operationalize much of the 

spatial knowledge. Thus, although there appears to be a spatial component, it is 

predicated on strong mapping between color and interpretation. 

In our work with SPAM we have attempted to identify sources of knowledge that did not 

suffer from these drawbacks, and utilize spatial relationships in such a way that a chain of 

reasoning exists, generated from the application of many constraints across multiple levels 

of interpretation. While spectral knowledge can play a role in certain domains we believe 

that there are many types of spatial knowledge that can be expected to be more effective 

in driving the knowledge-based interpretation of aerial imagery. In terms of acquisition 
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As shown in Figure 2-2 each phase is executed in the order given above. 
SPAM drives 

and utilization, we believe that Figure 1-2 lists 5 types of knowledge that are available and 

appear to us to be effective in aerial image interpretation tasks. 

Type 1: Knowledge for the determination and definition of appropriate scene domain 

primitives. This includes knowledge of the image segmentation process, the image 

analysis tools that can reliably extract these primitives, and the appearance of the 

primitives in the image. 
Type 2: Knowledge of spatial relationships and constraints between the scene domain 

primitives. 

Type 3: Knowledge of model decompositions that determine collections of primitives 

which form "natural" components of the scene. These components can be 

characterized as sub-models that accumulate support for local interpretations and 

provide a context within which global analysis can be performed. 

Type 4: Knowledge of methods for combining these components into complete scene 

interpretations. 

Type 5: Knowledge of how to recognize and evaluate conflicts between competing 

interpretations. 

Figure 1-2: Types Of Knowledge Utilized In SPAM 

1.2. Layout of the Remainder of P a p e r 

In the following section we briefly describe the architecture of SPAM. We discuss the 

kinds of knowledge that SPAM utilizes and therefore needs to be acquired for an 

interpretation task. In Section 3 we describe the ISCAN/RULEGEN/SPATS tools and in 

Section 4 give an example of the schemata produced by ISCAN and used by RULEGEN to 

generate a SPAM interpretation system. Finally, in Section 5 we give an example of 

suburban house scene interpretation by a SPAM system generated using the 

ISCAN/RULEGEN/SPATS tools. We also compare the structure of the original hand 

generated SPAM system with those generated using these knowledge acquisition tools. 

2 . T h e  SPAM Ar c h i t e c t u r e  

SPAM represents four types of interpretation primitives, regions, fragments, functional 

areas, and models. SPAM performs scene interpretation by transforming image regions 

into scene fragment interpretations, aggregating these fragments into consistent and 

compatible collections called functional areas, and selecting sets of functional areas that 

form models of the scene. Loosely speaking there are four phases of interpretation. Each 

of these four phases operationalizes one or more of the five types of domain knowledge. In 

order to build a SPAM system we must be able to acquire knowledge for each interpretation 

phase as described in Figure 2-1. 
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Phase 1: Region-to-fragment 

Assigns the image region data a set of fragment interpretations based solely on local 

properties (2-D shape characteristics, texture, 3-D depth/height, etc.) and 

knowledge about the classes of objects found in the scene. 

Phase 2: Local-consistency-check 

Pair-wise tests are performed on the fragment interpretations that utilize spatial 

knowledge about the scene under consideration. The confidence of those 

interpretations supporting one another are incremented based on the quality of the 

test. 

Phase 3: Functional-area 

Sets of mutually consistent interpretations that share similar functions or are spatial 

decompositions of the scene are grouped into cliques called functional areas. 

Phase 4: Model-generation 

Sets of functional areas are grouped together into scene segments. The segments 

with the largest number of functional areas become distinct scene models. Any 

conflicts encountered when combining functional areas are resolved by a default 

strategy, using the accumulated support for each interpretation, or by specific 

knowledge added by the user. 

Figure 2-1: Interpretation Phases In SPAM 

from, a local, low-level set of interpretations to a high-level, more global, scene 

interpretation. There is a set of hard-wired productions for each phase that control the 

order of rule executions, the forking of processes, and other domain-independent tasks. 

However this "bottom-up" organization does not preclude interactions between phases. 

For example, prediction of a fragment interpretation in functional-area phase will 

automatically cause SPAM to reenter local-consistency phase for that fragment. Other 

forms of top-down activity include stereo verification to disambiguate conflicting 

hypotheses in model-generation phase and linear alignment in region-to-fragment phase. 

Figure 2-3 shows the refinement/consistency/prediction paradigm used in SPAM within 

each interpretation phase. Knowledge is used to check for consistency among hypotheses, 

to predict missing components using context, and to create contexts based on collections of 

consistent hypotheses. Prediction is restrained in SPAM in that hypotheses cannot predict 

missing components at their own representation level. A collection of hypotheses must 

combine to create a context from which a prediction can be made. These contexts are 

refinements or spatial aggregations in the scene. For example, a collection of mutually 

consistent runways and taxiways might combine to generate a runway functional area. 

Rules that encode knowledge that runway functional areas often contain grassy areas or 

tarmac may predict that certain sub-areas within that functional area are good candidates 

for finding such regions. However, an isolated runway or taxiway hypothesis cannot 

directly make these predictions. In SPAM the context determines the prediction. This 

serves to decrease the combinatorics of hypothesis generation and to allow the system to 
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Figure 2 - 2 : Interpretation Phases In SPAM 

focus on those areas with strong support at each level of the interpretation. 

2 . 1 . Knowledge Acquisition In S P A M -

In order to automate knowledge acquisition for SPAM we must be able to identify the 

kind of knowledge required for each of the interpretation phases described in the previous 

section. In this section we describe this with respect to the 5 types of knowledge defined in 

Figure 1-2. 

The type of knowledge required in region-to-fragment phase is the definition of the 

shape and appearance properties of objects in the task domain, organized as coarse classes 

of similar objects with specializations based on finer intra-class distinctions. For example, 
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Figure 2-3: Refinement, Consistency, and Prediction in SPAM 

in a coarse sense, linear features such as roads, runways, taxiways can be grouped in one 

class, while hangars, maintenance buildings, control towers, and terminal buildings would 

be another coarse class in an airport interpretation task. Each of the members of the class 

can be specialized with constraints such as runways are never curved, while roads may be 

curved. Heights, sizes, and specific shape criteria might be used to specialize the building 

class. This type of knowledge is best represented as Type 1 in Figure 1-2. 

During local-consistency-check phase knowledge of the structure or layout of the task 

domain, i.e. airports, suburban housing developments, is used to provide spatial 

constraints for evaluating consistency among fragment hypotheses. Type 2 knowledge is 

required from the user or other sources. For example, 'runways intersect taxiways \ and 

terminal buildings are adjacent to parking apron' are the kinds of knowledge in terms of 

spatial relationships that we would like to capture for an airport interpretation task. It is 

important to assemble a large collection of such consistency knowledge since these tests 

are used to assemble fragment hypotheses found to be mutually consistent as contexts for 

further interpretation. 

There are two types of knowledge necessary to perform functional area phase. The first 

is primarily Type 3 knowledge which defines collections of objects that form spatial 

decompositions within the task domain. For example, knowledge that runways, taxiways, 

and the grassy areas that separate them from the area where planes takeoff and land can 

be used as one partition of the overall airport scene. Within this context Type 5 

knowledge aids in prediction of missing components, selection of competing hypotheses, or 

in defining methods for disambiguating conflicting interpretations. For example, 'if a 

runway functional area has been formed and it contains a terminal building fragment then 

use stereo verification to confirm or refute that fragment hypothesis.' In other cases 

knowledge that simply selecting the competing fragment with the highest confidence 

based upon cumulative application of region-to-fragment and local-consistency-check 

rules may be appropriate. 



AUTOMATING KNOWLEDGE ACQUISITION FOR AERIAL IMAGE INTERPRETATION 8 

Finally, during model generation phase, Type 4 knowledge consisting of how to combine 

spatial decompositions and Type 5 knowledge consisting of how to recognize and evaluate 

conflicts that arise during this aggregation must be acquired. However, much of this is 

simply selecting a strategy, i.e., 'use the functional areas with the highest confidence that 

have no conflicts', or 'find the maximal set of compatibles regardless of confidence'. The 

process for performing these alternative combinations is, in some sense, hardwired in the 

SPAM architecture as a set mutually exclusive methods and only the method is directly 

specified during knowledge acquisition. In the following section we describe the 

restructuring of the SPAM organization necessary in order to represent these kinds of 

knowledge. 

2.2. Schematization of S P A M 

In order to to make SPAM amenable to knowledge acquisition our approach has been to 

reduce the SPAM architecture to a set of generic control productions supported by scene-

specific knowledge that can easily be generated by a program. Experimentation with the 

system architecture is now straightforward since the actual production generation is 

centralized in one program. Each piece of knowledge is encoded as a schema, with 

different schemata used to represent different types of knowledge. Schemas can easily be 

collected (or partitioned) to form new knowledge bases. Since the schemas are simply text 

files, it is trivial to combine different schemata to produce more complete knowledge 

bases. A discussion of this representation can be found in Section 4, a detailed description 

of the internals of schemata is found in Appendix I, and examples of the generation of 

productions from a schema is illustrated in Appendix H. 

This implementation has restructured SPAM such that within any interpretation phase, 

no rule has to know of the existence of any other rule. These intra-phase interactions were 

difficult to identify in the hand generated system, and made it very difficult to perform 

large wholesale changes to the knowledge base. Since there is a uniform interface to all 

rules within a particular phase, it is easier to allow users to specify interphase events such 

as calling consistency-checking within model-generation phase. The functional-area phase 

is an example of one part of the system that required some generalization for use on other 

domains. Originally developed with airports in mind, functional-areas had no shape 

constraints. However we have found cases in our suburban house scene experiment where 

shape constraints in addition to compatibility constraints are required. RULEGEN gives us 

the opportunity to easily propagate these changes to the different systems we have built. 

In the following section we briefly describe the ISCAN/RULEGEN/SPATS system 

organization. 
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3 . To o l s  F o r Kn o w l e d g e  Ac q u i s i t i o n  In  SPAM 

There are several reasons why knowledge acquisition for SPAM appears to be relatively 

straight-forward. First, SPAM uses simple, pairwise tests to represent spatial consistency. 

Second, it is ordinarily easy for humans to characterize situations where special 

knowledge, either derived from further image analysis, or from additional consistency 

testing, can be used to disambiguate conflicting hypotheses. For example, if the two 

hypotheses differ in that one suggests there is an object above the ground plane, e.g.. a 

hangar or building, and the other is at the ground plane, a runway or road, then invoke an 

image analysis tool, stereo verification, to determine the preferred hypothesis. 

The implication of the first observation is that the user is not forced by the architecture 

to conceptualize complex spatial consistency rules encompassing many primitives. For 

example, SPAM represents, runways intersect taxiways that are oriented towards the 

tarmac as two independent tests. One is an geometric intersection test between runway 

and taxiway fragment hypotheses, the other is an orientation test between taxiways and 

tarmac hypotheses. This is done to accommodate errorful image segmentation data which 

may not produce all of the primitives required for a more complex match. Therefore, 

partial matching on pairwise primitives is preferred since at least pairwise consistency can 

be recognized and propagated as necessary. A second, more pragmatic reason, is the desire 

to not require complex matching of productions in our implementation language, 

O P S 5 1 0 , The second observation is a function of the task domain, the available image 

analysis tools, and our design of the SPAM architecture. A small set of several dozen 

geometric tests appear to suffice to represent the spatial relations that human users 

characterize as important for describing relationships between scene domain objects. 

Finally, we believe that it is possible to find images for a class of scenes, say, 20 

commercial airports, which would allow us to acquire a cross-section of spatial 

relationships representative of commercial airports. This approach also lends itself toward 

exploring systems that would automatically synthesize interesting properties and learn the 

importance of various spatial relationships. 

Knowledge acquisition systems range from interactive user dialogue via structure editors 

to acquisition systems that are tightly coupled with a task performance system. The 

degree to which the knowledge acquisition system itself utilizes knowledge may range from 

enforcing a particular knowledge representation, to a system which decides what to ask a 

user and asks for as little information as necessary to remedy specific problems 1 2 , ^ 

ISCAN falls somewhere in this continuum, toward the former method. It primarily enforces 

a particular schema representation for various types of knowledge utilized by SPAM. 

However, it also uses knowledge of the SPAM architecture to recognize conflicts and 

missing or incomplete information. But it performs as an observer and does not elicit or 

suggest remedies. It is also decoupled from the performance system, partly do to the long 

execution times of SPAM 1 , and partly due to what we believe is a complex task domain 
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w h i c h m a k e s c r e d i t a s s i g n m e n t for p a r t i c u l a r a c t i o n s of t h e s y s t e m d i f f i cu l t t o a n a l y z e . 

In t h e r e m a i n d e r of t h i s s e c t i o n w e d e s c r i b e o u r f irst a t t e m p t a t k n o w l e d g e a c q u i s i t i o n 

for aer ia l i m a g e i n t e r p r e t a t i o n u s i n g t h e 1SCAN user i n t e r f a c e , t h e RULEGEN c o m p i l e r , a n d 

t h e SPATS p e r f o r m a n c e a n a l y s i s t o o l . F i g u r e 3 -1 s h o w s a d e t a i l e d o r g a n i z a t i o n of t h e 

k n o w l e d g e a c q u i s i t i o n s y s t e m o v e r v i e w p r e s e n t e d in F i g u r e 1-1 . 
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Figure 8-1: K n o w l e d g e A c q u i s i t i o n F o r SPAM 
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3.1. The I S C A N User Interface 

ISCAN currently supports two methods of knowledge acquisition. The first method is 

that of a structured editor which allows users to add, delete, or modify knowledge 

represented as schemata. The second method is the use of interactive image segmentation 

to generate metric information such as area, perimeter, distance, and shape descriptions. 

This information is then integrated into the schemata as values or ranges of values for 

various constraints. In either case the output of ISCAN session is a file containing the task 

specific schemata necessary to compile a SPAM system. 

As a structured editor ISCAN allows the addition, deletion, and modification of schemata 

for each phase in SPAM. It assists the novice user, asking questions to define the set of 

attributes for each schema and allowing example schemata to be displayed. ISCAN 

accommodates the more experienced user by foregoing the question/answer sessions and 

permitting the attributes to be entered directly. It maintains certain specific meta-

knowledge such as knowing which attributes of a region must be computed and which can 

simply be matched. Much of the bookkeeping specific to the SPAM architecture is 

automated, thereby allowing the novice to concentrate on the task domain and not on 

whether attributes are filled in correctly. For example, some region attributes are 

precomputed, but some are too expensive to precompute for every region. It is really an 

implementation detail to know which attributes must be computed and which are 

precomputed. 

Because the nature of the interpretation task is visual, ISCAN also provides a graphical 

interface for defining spatial relationship and performing measurements directly on an 

image. The user displays a representative image containing classes of objects or a 

particular site such as an airport. Associated with each image is a camera m o d e l
1 0

'
1 0

 that 

allows the graphics interface to generate constraints in terms of metric values rather than 

in image specific coordinates. For example a representative road width constraint can be 

specified as between 10 and 15 meters rather than between 10 and 15 pixels. The actual 

measurement is performed by ISCAN and is reported to the user. ISCAN can gather 

statistics over many examples to allow for a more robust range of constraints. 

Since the measurements are always in terms of ground distances this allows for complete 

independence between the scale of the image under interpretation and the acquired 

knowledge base. This independence is a basic requirement for robust scene interpretation 

systtems. With the scene constraints in mind, the user displays an image with 

characteristics of the general type of scene that is to be interpreted. After making 

measurements on the image directly, the user is questioned about the classes of objects in 

the scene, the shape characteristics of those objects, and their spatial relationships to one 

another. If this is a scene type that has previously been analyzed, it is possible that generic 

knowledge applicable to that scene can be applied. This can be added to the knowledge 
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base being built. An example of this from the airport domain might be that every airport 

has at least one runway. This generic knowledge, if any, is coalesced with the knowledge 

about the scene given by the user. 

ISCAN recognizes potential inconsistencies that may be generated during an interactive 

session or those that exist at the end of the session. It provides limited help in correcting 

such problems, a topic for future work. Some of kinds of inconsistencies recognized 

include: 

• The inconsistent definition of class and subclass fragment interpretation and 

the violation of class hierarchies. 

• The lack of a local-consistency schema for a class or subclass fragment 

interpretation. 

• Multiple local-consistency schemata with identical fragment interpretations 

which potentially can generate inconsistent constraints. 

• The omission of a subclass fragment interpretation from all functional areas. 

• The definition of functional area descriptions and recognition of inconsistent 

combinations of component fragment interpretations. 

• The specification of conflict resolution tests must be unique. 

• The definition of model generation components that do not specify a method 

for selection. 

We feel that the use of representative imagery to acquire general spatial relationships 

greatly increases a users ability to add such constraints to SPAM. This is primarily due to 

the ability to query ISCAN to display existing constraints involving fragment hypotheses 

and to detect conflicts or duplication than in a textual environment. Because the nature of 

our task is inherently visual, and visual tasks are done almost effortlessly by people, it 

appears that an it is easier for a person to give examples than to explain what is being 

extracted. 

However, an area for future research for automating knowledge acquisition beyond user 

interaction is via learning by example. As we have discussed, our current work is focused 

on tools that aid in the translation of a users model of the task constraints into schemata. 

There are other sources of spatial knowledge that are amenable to automated extraction of 

constraints without user involvement. Figure 3-2 shows hand segmentations generated for 

use in performance analysis as ground truth data for Dulles International and Andrews 

AFB. Figure 3-3 illustrates a similar type of ground truth data, but perhaps not as 

detailed as the hand segmentations. It is generally available to aircraft pilots as Flight 

Information Publications, or F L I P c h a r t s 5 , published by the FAA and the Defense Mapping 

Agency. The goal of such research is to uncover spatial constraints by examining a large 

number of examples of airports whose spatial relationships are made explicit in either of 
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these formats. Such a system must not only develop reasonable ranges of values such as 

'airports have at least one runway, but no more than 7' but must develop the subset of 

useful spatial relationships from the set of all possible relationships. We plan to explore 

this approach as a method to expand the scope of knowledge acquisition in ISCAN. 

3-2. The R U L E G E N Compiler 

With the scene knowledge encoded as schemata, we need to put it into a form that can 

be utilized by our interpretation system. RULEGEN is a compiler which performs schema-

to-production translation. This compiler has procedural knowledge of the SPAM control 

structure. Some of the functions the compiler must perform include: 

• Efficiently initializing each rule so that large conflict-sets do not slow down the 

OPS5 conflict resolution process. 

• The automatic generation of error-checking productions to make the system 

more robust, and trace productions for performance analysis. 

• Managing control productions to efficiently match all the desired data in 
working-memory. 

• The generation of interface functions for computations such as image analysis 

and geometric computation performed outside of OPS5 environment. 

• The generation of data-structures representing the boundary values of the 
scene constraints. 

In the SPAM architecture, region interpretations come mostly bottom-up, with top-down 

prediction and verification. With processing going in two directions, the management of 

control in a production system is non-trivial. RULEGEN handles the rule interactions and 

the order of rule firings by generating appropriate control rules to achieve the desired 

results. The data-structures and control productions vary from phase-to-phase because 

the type of processing that occurs in each phase is very different. Appendix II gives some 

detailed examples of the actual expansion of a schema into a collection of productions 

executable by SPAM. 

3.3. S P A T S : Automating Performance Analysis 

An often overlooked component of any interpretation system are tools that aid in 

incremental refinement of knowledge and in the measurement of the effects of various 

types of knowledge within the performance system. As a part of our work in knowledge 

acquisition we have developed a performance analysis program, SPATS, that gives us some 

insight into the overall accuracy of the scene interpretation. SPATS uses a region-based 

hand segmentation with correct interpretation attributes associated with each region as a 

baseline with which to compare the SPAM interpretation. In the case of machine-

segmented data, we compute region overlap with hand-segmented data in order to 

generate a correct interpretation. In some cases, ambiguous results must be resolved 
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Figure 3-3: Flight Information Charts With Airport Layouts 

For Dulles and Andrews AFB 

AIRPORT DIAGRAM OULIES INTERNATIONAL AlfcPC* T ( I AD)  
Al-3100 (FAA)  WASHINGTON OC 

ANDREWS AFB/NAP 

AIRPORT DIAGRAM WASHINGTON DC. 
OUtlES INTERNATIONAL AIRPORT ( I AD)  CAMP SPRI NGS, MARYLAND 

ANDREWS AFB/NAF 
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manually before statistics can be generated. A log file generated by SPAM at each phase of 

interpretation is used to acquire the internal state of the SPAM interpretation. At a gross 

level we need a consistent method to measure the accuracy of scene interpretations 

generated with alternative or refined knowledge. In terms of the 'debugging' of 

knowledge, we require an indication of where one might spend time improving the 

knowledge base to improve scene interpretation. SPATS attempts to summarize the 

important performance statistics in a succinct manner for each phase of processing by 

SPAM. 

For the region-to-fragment and local-consistency phases, we require statistical 

measures that accurately reflect the performance of geometric knowledge in classifying the 

initial image segmentation. Factors such as the number of competing hypotheses, as well 

as the number of correct and incorrect hypotheses, are most useful. SPATS provides this 

information in tabular form (see Appendix III). This information can be compared within, 

as well as across class and subclass boundaries, to give some indication of the effectiveness 

of the geometric constraints. One measure, the correct branching factor, defines how 

many interpretations there were, on the average, for each correct interpretation. This 

branching factor increases from zero (with zero signifying no correct interpretations) as 

the number of competing hypotheses increases. As this number increases, the effectiveness 

of the associated geometric knowledge decreases. To rectify this problem, we would then 

try to isolate which class or subclass constraints were too weak. and attempt to, tighten 

them, or look for new sources of knowledge that would increase our ability to discriminate. 

For the functional-area phase, SPATS checks the integrity of the functional-areas 

generated by SPAM. This involves using the functional area declarative knowledge to 

check that all the fragment interpretations fit the definition of that functional-area type. 

Statistics giving the correctness of each functional-area, the number of compatible and 

incompatible fragment interpretations contained within the boundary of the functional 

area, but not found to be components of the functional area, are generated. This gives us 

a measure of the cohesiveness of the functional area. One would expect small numbers of 

incompatibles to be present, with some compatibles. If a large number of compatible 

fragment interpretations are present questions about why they did not participate as 

members of the functional area can lead to the modification of geometric consistency rules 

or the recognition that knowledge of new relationships should be sought. Finally, these 

mismatches between functional area definitions and geometric consistency can indicate 

whether the user's definition of a functional-area is appropriate. 

For model-generation phase, the constituent functional-areas of the various scene 

models are compared. This is done as a first attempt at quantifying the differences 

between each of the scene models, if more that one consistent model is generated by SPAM. 

Currently a complete analysis involving the accuracies of the included interpretations has 



AUTOMATING KNOWLEDGE ACQUISITION TOR AERIAL IMAGE INTERPRETAT 
17 

not yet been completed in SPATS. 

As a general methodology for the evaluation of a knowledge base we have found that 

running SPAM on hand-segmented ground truth region data is a valuable test of the 

interpretation process. It presents to SPAM a "perfect" low-level segmentation, effectively 

decoupling the low-level image analysis. The results from this type of experiment can be 

used to argue the issue of whether the interpretation problem is fundamentally one of 

dealing with errorful segmentations and should be remedied by working to improve the 

segmentation. Even a 'good' low-level segmentation requires significant high-level 

knowledge in order to generate a scene interpretation. The use of ground truth data also 

makes it easier to avoid a common problem exhibited by computer vision systems of 

unknowingly developing intermediate and high-level vision components which rely on 

machine segmentations that can be characterized as over-segmented or under-segmented. 

In our view, one should at least make explicit these assumptions if they are a factor in the 

interpretation process. 

SPATS is a useful tool for indicating gaps, weaknesses, or inconsistencies in various types 

of knowledge in SPAM. A statistical approach must be used due to the large number of 

segmentations involved in the interpretation process, as well as the inaccuracies in 

assigning interpretations to those segmentations. Future research is being focused in the 

refinement and addition of new measures, particularly in model-generation phase, and 

looking at techniques for making performance analysis a more active component of SPAM. 

In the following Section we give some detailed examples of the schema-based knowledge 

representation generated by ISCAN and used by RULEGEN to compile SPAM systems. 

Section 5 describes the use of ISCAN/RULEGEN to generate a SPAM system for a new 

suburban house scene task. 

4 . A S c h e m a - B a s e d Kn o w l e d g e R e p r e s e n t a t i o n  

Our schema-based knowledge representation is one method for linking knowledge 

acquisition as performed in ISCAN with knowledge utilization in SPAM. The focus of this 

work was to develop an intermediate representation for the domain specific knowledge 

used by SPAM as a target description for knowledge acquisition and as a source description 

for automatic generation of the interpretation system. Therefore, some important 

properties for the representation are as follows: 

• Sufficiently general to represent the kinds of knowledge and spatial 

relationships utilized in each of the SPAM interpretation phases. 

• Could be compiled into our target production system language, OPS5. 

• Easily organized or partitioned into independent knowledge sets. 

• The format is understandable by non-programmers. The knowledge and its 
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purpose should not be obscured by the implementation language. 

The schema-based representation has been conducive to experimentation. It is far easier 

to add and delete knowledge and to measure the effect on system performance, as the rule 

generation is performed automatically; only the control productions that embody the 

SPAM architecture are hand crafted. Improvements in structuring rules are easy to 

propagate. If an improved method is developed, the generating functions in RULEGEN are 

modified appropriately and all generated productions are updated. Since our goal is to 

produce a working system that handles a variety of aerial interpretation tasks it is easier 

to test the generality of the SPAM architecture if we can generate task specific systems. 

Hand generation of SPAM is not an attractive alternative, especially in light of our 

requirement to perform experimentation by adding and removing specific types of domain 

knowledge. In the following examples of schemata for various interpretation phases it 

should be emphasized that users do not directly edit this textual representation. ISCAN 

generates and enforces the schemata syntax, designed to simplify parsing by RULEGEN, 

during user interactions. 

4.1. A House Fragment Rule 

Th e follow ing is an excerpt f r om the RULEGEN schem a file for the region-to-fragment 

phase of SPAM, used to int erpret suburban- housing scenes. Th i s set of at t r ibut e- value 

pairs w il l generate dat a- st ruct ures and product ions allow ing f ragm ent int erpret at ions for 

regions of t ype 'house' to occur. 

'CLASS*  =  ' h ou se ' 

•  REGI ON-DEPENDENCES' =  " 

'FRAG-DEPENDENCES' «  ' o b j e ct - t y p e compact && h ypot h e sis unknow n' 

'SHAPE- CONSTRAI NT' =  ' a r e a && 5 0 .0 0 <=  va lue < - 1 5 0 .0 0 ' 

'SHAPE- CONSTRAI NT' =  ' e l l i p s e - l e n g t h && 1 2 .0 0 <=  va lue <=  1 8 . 0 0 ' 

'SHAPE- CONSTRAI NT' =  ' e l l i p se - w i d t h && 1 0 .0 0 <=  va lue <=  2 0 . 0 0 ' 

'SHAPE- CONSTRAI NT' =  ' e l l i p s e - l i n e a r i t y && 0 .0 0 <=  va lue <=  3 . 5 0 ' 

Ea ch of t he schema at t r ibut es are described below . 

CLASS 

Det ermines the class of object t o w hich this set of const raint s is applicable. I n this 

case, the rule def ined w il l apply to houses. 

REGI ON-DEPENDENCES 

M a k e s sure t ha t a given set of at t r ibut es have been com put ed before any house 

int erpret at ion rules can be fired. I n this case, there are no com put ed at t r ibut es t ha t 

m ust exist before this rule can fire. 

FRAG-DEPENDENCES 

Al low s a const raint rule t o depend on the success of a previous const raint rule. I n 

this case, the const raint rule for the object t ype "com pa ct " m ust have previously 

executed successfully ( e.g. a com pact int erpret at ion created)  in order for this rule to 
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fire. 

SHAPE-CONSTRAI NT 

Defines the actual constraints that comprise the class definition. Any number of 

these constraints can occur here. Currently, 2-D shape characteristics, intensity 

characteristics, depth measures, and texture measures fall into this category. In this 

case, four constraints completely define the class-type house. For example, the first 

constraint limits houses to have areas between approximately 50 and 150 square 

meters. 

The first three attributes generate a small set of control productions that determine if this 

rule applies to a given region. Each SHAPE-CONSTRAI NT generates a single production for 

the particular constraint given. 

When this rule becomes applicable, an initialization production fires and creates a 

subtask which is matched by each of the constraint productions. All of these productions 

are allowed to fire, each determining the "goodness" of the match for a single constraint. 

Finally, a domain-independent production looks at the accumulated scores and decides 

whether a house interpretation should be made. Appendix I gives a detailed description of 

the each schema-type and spatial constraint currently available in ISCAN. Appendix II 

contains the actual productions generated by RULEGEN for each of the schemata in Section 

4.1 and Section 4.2. 

4.2. A House-Road Consistency Rule 

For the second phase of SPAM, local-consistency-check, RULEGEN uses a new set of 

attributes to define a rule. The basic idea, as discussed in Section 2, is to generate pairwise 

tests that exploit the fact that although there may be a large number of errorful fragment 

hypotheses, only small numbers will be mutually consistent. The following is one such 

local consistency test, houses-are-parallel-to-roads, others might include, proximity of 

houses to each other, distance from roads, orientation of a house to a driveway, etc. 

• RULENAME' *  ' h o u se s- a r e - p a r a l l e i - t o - r o a d s ' 

'CONFI DENCE' »  ' 0 . 8 ' 

'HYPOTHESES' -  'house && r oa d ' 

'GEOMETRI CS' =  ' o r i e n t a t i o n ' 

'SUBTYPES' -  ' p a r a l l e l ' 

• BOUNDS' -  ' 0 . 0 0 < *  va lu e <=  0 . 5 0 ' 

RULENAME 

Attaches a unique, human-readable name to the rule, so we know what it does. In 
this case, this rule will determine whether a road is parallel to a house. 

CONFI DENCE 

Assigns a confidence value to this rule, which describes its discrimination ability. It 

is a number between 0 and 1, with a value of 1 implying that the rule can perfectly 
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(uniquely) determine that the participating interpretations are correct. In this case, 

the rule is believed to be a good characterization of one spatial relationship between 

houses and roads in suburban house developments and is given a confidence value of 

0.8. 

HYPOTHESES 

Defines the classes of interpretations to which this rule applies. In this case, the rule 

applies to the relationship between houses and roads. 

GEOMETRI CS 

Translates the high-level spatial relation into a low-level geometric test. In this case, 

"parallel" is translated as "orientation". 

SUBTYPES 

Further defines the translation of the high-level spatial relation. In this case, 

"parallel" implies that the orientation of the interpretations is being tested (see the 

previous description), and that the particular type of orientation test should be 

"parallel". 

BOUNDS 

Completes the definition of the high-level spatial relation by defining the error 

tolerance. In this case, the geometric test has a tolerance of 0.5 radians. 

The first three attributes define the high-level significance of this rule. The last three 

attributes describe, in low-level terms, the high-level intentions. For this example, the rule 

may be read as houses being parallel to roads means for a particular house, a road must be 

oriented parallel to that house, within a tolerance of 0.5 radians. Thus, a house fragment 

hypothesis and a road fragment hypothesis will support each other if this test is successful. 

4.3. A House Functional-Area Definition Rule 

The functional-area phase of SPAM groups individual hypotheses into mutually 

supporting collections of hypotheses that represent meaningful sub-parts of the overall 

scene model. The knowledge in this phase defines these scene sub-parts. 

•  FA-NAME' -  ' h ou se - a r e a *  

'SEED-REGI ON*  =  'house*  

'DEFI N I TI ON' •  ' dr ive w a y && g r a ssy - a r e a ' 

FA-NAME 

Assigns a name to this functional-area definition. 

SEED-REGI ON 

Defines the principle hypothesis of a functional-area. If this type of hypothesis does 

not exist, no functional-area of this type can exist. Here, we designate the 

interpretation type 'house' as our seed region. 

DEFI NI TI ON 

Enumerates the possible constituents of this type of functional-area. The functional-

area 'house-area' can contain only houses, driveways, and grassy-areas. 
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4.4. A Suburban-Scene Model Rule 

For the final phase of processing, model-generation, SPAM combines functional-areas 

together to form models of the entire scene. During this process, conflicting 

interpretations will be identified and must be resolved in order to obtain a final, consistent 

model. Knowledge about the types of conflicts, and ways to disambiguate them, is 

encoded in this phase. 

'CONFLI CT' =  'house && dr ive w a y ' 

'RESOLUTI ON' =  ' f u n ct i o n && st e r e o ' 

CONFLI CT 

This attribute specifies the name of the conflict type that needs special attention in 

order to be disambiguated. In the example at hand, house-driveway conflicts will be 

specifically addressed. 

RESOLUTI ON 

Defines the type of process to use to do the disambiguation. In this case, we know 

that houses have height and driveways do not, therefore invoke a stereo process to 

determine whether or not the region has height. 

Those conflicts not enumerated are handled by a default resolution strategy that takes 

into account the confidences of the individual interpretations, as well as the amount of 

support for each interpretation in the context of the current scene model. 

5 - A N e w  Ta s k D o m a i n  F o r SPAM 

In this section we will give a brief example of one of the interpretation tasks used in our 

experiments to date. We show some results of the interpretation of a suburban house 

scene by SPAM built completely using the ISCAN/RULEGEN system. Figure 5-1 is a 
17 

photograph of three of the suburban house scene images used by Hwang at the 

University of Maryland. Our intent was to replicate this work using the ISCAN/RULEGEN 

system to generate a SPAM with spatial knowledge of suburban house scenes. Figures 5-2 

and 5-3 show a human segmentation and machine segmentation of one of the six suburban 
17 

house scenes used in this experiment. This replicates work performed by Hwang on this 

image set. The goal is to segment and identify the houses, roads, grassy areas, and 

driveways in the aerial image. This is a somewhat simpler task that the original airport 

scene interpretation task performed by SPAM, but it turned out to be of reasonable scale to 

evaluate and refine ISCAN/RULEGEN. 

The SPAM knowledge base for these images were developed with measurements using 

ISCAN on two training images from the set. The knowledge base was refined iteratively, 

first using the hand segmented set of regions, then modified using machine segmentation 

data. Currently, SPAM has been run on using both hand and machine segmentations for 

three of the six images, the two training and one test image. The image in this example is 
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the test image. 

The purpose of the hand segmentation is to provide "ground truth" for our automated 

analysis programs that are used to generate region-by-region interpretation statistics used 

to measure SPAM 's performance in region labeling and overall scene interpretation. We 

have also found it useful to run the hand segmentations through SPAM in early phases of 

rule development in order to completely decouple the low-level image analysis from the 

interpretation system. This noise-free approach allows us to uncover gross omissions or 

unexpected interactions between the local consistency rules. Figure 5-3 is the result of 
18 

running our image segmentation system, MACHINESEG , which uses region-growing and 

shape extraction simultaneously to look for characteristic linear, compact, and blob 

regions. Although the image is relatively uncomplicated several houses are missed, some 

are only partially segmented, and the roads and driveways are oversegmented into 

multiple pieces. However, this is reasonable in the context of current computer vision 

segmentation capability. Figures 5-4 and 5-5 show functional areas generated by SPAM for 

houses and roads, respectively. Figure 5-4 shows the functional area generated from the 

hand segmentation in Figure 5-2 including regions whose fragment interpretation were 

'house' or 'grassy area' Figure 5-5 shows the functional area including 'roads' and 

'driveway' hypotheses for the machine segmentation in Figure 5-3. We feel that the 

functional areas are quite good good in both cases and are similar to results generated by 

Hwang . While direct comparisons of two knowledge-based systems using different 

methodologies are not the subject of this paper, it is important to point out that these 

results were generated by automatic compilation of user-defined knowledge tailored to the 

suburb house scene task within the framework of the SPAM interpretation architecture. 

5.1. Structural Differences In Hand versus Machine Generation 

One goal for RULEGEN was to be able to reproduce the hand crafted version of SPAM 

reported on in ' for airport scenes. This system, which we will call SPAM-1, contained 

over 500 hand-crafted OPS5 productions, and was used to interpret airport scenes of 

National Airport, Los Angeles International and NASA AMES Moffett Field. In contrast 

SPAM-2 was built with the RULEGEN compiler by manually extracting the primitives and 

constraints from SPAM-1 and encoding them as schemata. SPAM-2 was verified on the same 

airports as SPAM-1 giving quite similar results. It has since been used on other airports, not 

tested with SPAM-1, such as Dulles International, Andrews Air Force Base, and San 

Francisco, with mixed results. SPAM-2 is now the basis for future work in airport scene 

analysis. SPAM-3 is the suburban house scene system and was built entirely using ISCAN 

and RULEGEN. 

Figure 5-6 gives a breakdown of productions comprising each of the SPAM interpretation 

phases for each of the three systems. With this data, we will try to characterize some of 

the differences between SPAM-1 and SPAM-2 and characterize the emergence of domain 
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Figure 5-1: Suburban House Scene Imagery 
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Figure 5-2: A Hand segmentation of a suburban 
scene 

Figure 5-3: A Machine segmentation of a suburban 
scene 

Figure 5-4: A House function-area result from hand segmentation 

p e n d e n t W i e d g e as a resuit of the restructuring of the SPAM architecture 
as 
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Figure 5-5: A Road functional-area result from machine segmentation 

Task 

( SPAM-1)  Ai r p o r t 

( SPAM -2) Ai r p o r t 

( SPAM-3)  Suburb 

( Hand)  

( Rulegen)  

( Rulegen)  

Rulegen Domain I ndependent 

RTF LCC FA MG MI SC 

120 304 23 50 16 
54 297 1 6 0 
32 99 1 1 0 

37 7 11 35 7 

RTF 

LCC 

FA 

MG 

MI SC 

region-to-fragment phase 
local-consistency check phase 
functional area phase 
model generation phase 
miscellaneous interphase control 

Figure 5-6: Rules generated by Interpretation Phase 

described in Sections 2 .2 and 4. To do a proper comparison of SPAM-1 to SPAM-2, one must 

add the number of domain-independent productions to the number of generated 

productions for SPAM-2. For example, if we do the comparison for the region-to-fragment 

phase (RTF), we find that there are 1 2 0 productions in the hand-crafted system and 9 1 ( 5 4 

domain + 37 domain independent) productions in the machine generated system. 

The decrease in the number of productions is somewhat due to the experience gained in 

during the hand-coding of S P A M - 1 1 1 applied to RULEGEN. In addition, the desire to 

generalize the SPAM architecture forced us to consider how to gain efficiency as well as 

generality. The decoupling of domain-dependent knowledge from the SPAM control rules 

actually lead to a decrease in the number of OPS5 productions being generated. In the case 

of the last two phases, functional-area and model-generation, it is clear that most of the 

knowledge is now encoded by the domain-independent rules or migrated to procedural 

knowledge. This is due to the more abstract functions provided by these phases, such as 

grouping, merging, and splitting which appear to be task independent and are not 
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AI RPORT SCENE TASK 

Cl a sse s Su bcla sse s 

l i n e a r runw ay, t a x iw a y, road 

compact h a n g a r - b u i l d i n g , t e r m i n a l - b u i l d i n g 

sm a l1 - blob p a r k i n g - a p r on , p a r k i n g - l o t 

l a r g e - b l o b g r a ssy - a r e a , t armac 

Fu n ct i o n a l - Ar e a Types D e f i n i t i o n 

runway 
t a x iw a y, g r a ssy - a r e a , t armac 

road g r a ssy - a r e a 

h a n g a r - b u i l d i n g p a r k i n g - a p r on , t a rm ac, road 

t e r m i n a l - b u i l d i n g p a r k i n g - a p r on , p a r k i n g - l o t . road 

SUBURBAN-HOUSI NG SCENE TASK 

Cl a sse s Su bcla sse s 

l i n e a r dr ivew ay, road 

compact  h o u s e 

blob g r a ssy - a r e a 

Fu n ct i o n a l - Ar e a Types D e f i n i t i o n 

road dr ivew ay 

house dr ivew a y, g r a ssy - a r e a 

Figure 5-7: Class, Subclass, and Functional Area 

Definitions For Both Tasks 

knowledge intensive. Thus the bulk of the domain knowledge appears to be in the 

region-to-fragment and local consistency phases. Once fragment interpretations are 

generated along with associated chains of consistent relationships the aggregation of these 

fragments into functional areas is now mostly procedural. What knowledge remains is the 

definition of the functional area groups, model definitions, and methods to resolve 

conflicts. The net result is a more general system with fewer productions and, though not 

explicit from this data, faster execution times. 

For the suburban-house scene task, the amount of knowledge required appears to be 

significantly less than for the airport task. This is not surprising since the number of 

productions in the region-to-fragment and local-consistency phase is directly related to 

the number of geometric and spatial constraints used to interpret the scene. Figure 5-7 

gives a comparison of the two tasks in terms of the number of interpretation classes, 

subclasses and functional areas. A simpler scene type intuitively implies that fewer scene 

primitives are present and that a smaller number of spatial constraints are available. One 

would expect, therefore, that the amount of knowledge required to interpret the less 
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complex scenes would decrease from that required for the more complex ones. This is 

exactly the case for comparisons of SPAM-2 and SPAM-3. It should be noted that we 

currently have preliminary SPAM systems configured with larger numbers of subclasses, 

primarily to increase the number of types of buildings, taxiways, and roads, in order to 

remedy problems faced in the interpretation of additional airports by SPAM-2. Thus, the 

amount of knowledge required for more general airport interpretation, and the difference 

between tasks, may be significantly larger than is indicated by these comparisons. It is 

unlikely that we will have to make similar increases for other suburban house scenes. 

Even with this disparity in the absolute amount of knowledge, the preponderance of 

knowledge in both tasks, as reflected in the number of productions, appears to be in the 

first two interpretation phases regardless of inherent task complexity. A more precise 

characterization of the amount of knowledge needed to interpret a particular scene type, 

related to a measure of apparent task complexity, would be an interesting result from this 

work. This may become possible as more task domains are implemented within the SPAM 

architecture. 

6 . Co n c l u s i o n  

The SPAM p r o j e c t is a n e x p e r i m e n t in t h e u s e of large a m o u n t s of k n o w l e d g e in aer ia l 

i m a g e i n t e r p r e t a t i o n . To d o s i g n i f i c a n t e x p l o r a t i o n requires t o o l s for k n o w l e d g e 

a c q u i s i t i o n . In t h i s p a p e r , w e h a v e d e s c r i b e d a c o l l e c t i o n of t o o l s for k n o w l e d g e 

a c q u i s i t i o n , a u t o m a t e d c o m p i l a t i o n of k n o w l e d g e , a n d p e r f o r m a n c e a n a l y s i s . Several 

t y p e s of k n o w l e d g e t h a t are required for aer ia l i m a g e i n t e r p r e t a t i o n s y s t e m s are d e s c r i b e d . 

The u s e o f k n o w l e d g e in SPAM a n d i t s r e p r e s e n t a t i o n as s c h e m a t a for k n o w l e d g e 

a c q u i s i t i o n a n d c o m p i l a t i o n is d i s c u s s e d . The r e s u l t s o f a c o m p l e t e l y a u t o m a t e d 

g e n e r a t i o n of a SPAM s y s t e m for a n e w t a s k d o m a i n are d e s c r i b e d a n d s h o w t h e g e n e r a l i t y 

of t h e k n o w l e d g e a c q u i s i t i o n t o o l s . Some p r e l i m i n a r y a n a l y s i s o f t h e e f f ec t s o f d e c o u p l i n g 

d o m a i n - i n d e p e n d e n t k n o w l e d g e f r o m t h e i n t e r p r e t a t i o n s y s t e m are p r e s e n t e d , 

In s u m m a r y , b y f o c u s i n g o n a u t o m a t e d k n o w l e d g e a c q u i s i t i o n a n d c o m p i l a t i o n w e h a v e 

g e n e r a t e d a m o r e m a n a g e a b l e i n t e r p r e t a t i o n s y s t e m for e x p e r i m e n t a t i o n a n d 

m e a s u r e m e n t . This f l ex ib i l i ty g i v e s u s t h e c a p a b i l i t y t o i n v e s t i g a t e t h e a u t o m a t e d 

c o n s t r u c t i o n of k n o w l e d g e - b a s e d i m a g e i n t e r p r e t a t i o n s y s t e m s for a v a r i e t y o f t a s k s . It is 

d i f f i cu l t t o e n v i s i o n h o w SPAM c o u l d h a v e p r o g r e s s e d f r o m i t s in i t ia l h a n d c r a f t e d v e r s i o n 

t o a m o r e g e n e r a l s y s t e m c a p a b l e of p e r f o r m i n g m u l t i p l e t a s k s w i t h o u t t h e d e v e l o p m e n t o f 

t h e s e t o o l s . 

Future r e s e a r c h i n c l u d e s e x p a n d i n g t h e r a n g e o f aer ia l i m a g e i n t e r p r e t a t i o n t a s k s 

p e r f o r m e d u s i n g t h e n e w SPAM a r c h i t e c t u r e . We are a l so i n t e r e s t e d in t h e d e v e l o p m e n t o f 

t e c h n i q u e s for f u r t h e r a u t o m a t i o n of t h e k n o w l e d g e a c q u i s i t i o n p r o c e s s b y u s i n g 

c o l l e c t i o n s o f h a n d - s e g m e n t e d i m a g e r y a n d e x i s t i n g large s c a l e d a t a b a s e s s u c h as t h e 

FLIPcharts d e s c r i b e d in Section 3.1. One g o a l is t o i n v e s t i g a t e t h e u s e of m o r e k n o w l e d g e 
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intensive techniques for knowledge acquisition toward systems capable of automatic 

selection of scene primitives and important spatial relationships. 

7. A c k n o w l e d g m e n t s  

Larry Eshelman and John McDermott provided some not terribly unfair comments on 

an early version of this paper. Tom Mitchell made us finally realize that a reorganization 

of the paper was in order. They did the best they could. 

Lambert Wixson and Brian Yamauchi implemented major portions of SPATS and ISCAN. 

Robert Lai aided with the preparation of this paper. Thanks to Bob Simpson for inviting 

us to present it at the DARPA Image Understanding Workshop. 
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A p p e n d i x l 

A short description of the attributes available for each phase, and their legal values, 

follows. The available geometric and spatial relationships are also given. 

Region- to-Fragment 

For the region-to-fragment phase, knowledge about the expected shape of the classes of 

objects appearing in the scene is encoded. The <region-at tr ibute> is a characteristic 

computed for each of the segmentation regions coming from the segmentation process, 

whether hand or machine. 

'CLASS' - '<hypothesis>' 
*  REGI ON-DEPENDENCES' = '<any s t r ing> ' 
•  FRAG-DEPENDENCES' = '<any s t r ing> ' 
'SHAPE-CONSTRAI NT' = 1 <region-a t t r ibute> && <range>' 

<any number of shape-constraints> 

The following is a sample region-to-fragment schema used by the suburban-house scene 

version of SPAM. RULEGEN uses this schema to produce productions that define, via 

shape-characteristics, the subclass "house" within the SPAM system. 

'CLASS' =  ' house ' 

'REGI ON-DEPENDENCES' =  " 

'FRAG-DEPENDENCES' = 'object- type compact && hypothesis unknown' 
'SHAPE-CONSTRAI NT' = 'area && 5 0 .0 0 <= value <= 1 5 0 .0 0 ' 

'SHAPE-CONSTRAI NT' = ' e l l i p se - l eng th && 1 2 .0 0 <= value <= 1 8 . 0 0 ' 

'SHAPE-CONSTRAI NT'' = »el 1 ipse-wfdth && 1 0 .0 0 <= value <= 2 0 . 0 0 ' 

'SHAPE-CONSTRAI NT' = ' e l l i p s e - l i n e a r i t y && 0 .0 0 <= value <= 3 . 5 0 ' 

The attributes available to characterize the geometric constraints for a single scene 

primitive are summarized below. Most of these attributes are precomputed prior to being 

loaded into the interpretation system. The others are computed as they are needed. For 

example, if texture measures are used only to discriminate between the different subclasses 

of the class called blob, then texture need only be computed for that much smaller subset 

of regions that are interpreted as blob regions. 

< r e g i o n - a t t r i b u t e >  < range>  < st a t us>  

t e x t u r e - l o w [ 0 -  100]  dyn a m ica l l y - com pu t e d 

t e x t u r e - m ode r a t e [ 0 -  100]  dyn a m ica l l y - com pu t e d 

t e x t u r e - h i g h [ 0 -  100]  dyna m ica l ly - com put e d 

l o c a t i o n - l a t [ 0 -  10000000]  precom put ed 

l o ca t i o n - I o n [ 0 -  10000000]  precomput ed 

o r i e n t a t i o n [ 0 -  2 p i ]  precom put ed 

e l l i p se - w i d t h [ 0 -  5 0 0 0 ]  precom put ed 

e l l i p s e - l e n g t h [ 0 -  10000 ]  precom put ed 

m br- w idt h [ 0 -  5000 ]  precomput ed 

m br - l e n gt h [ 0 -  10000]  precom put ed 

dept h- low [ 0 -  100]  dyn a m ica l ly - com pu t e d 

dept h- m oder a t e [ 0 -  100]  dyn a m ica l ly - com pu t e d 

de p t h - h i gh [ 0 -  100 ]  dyn a m ica l ly - com pu t e d 

cu r v a t u r e [ 0 -  1 ]  dyn a m ica l l y - com pu t e d 
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precomput ed 

Local- Consistency 

We now describe the attributes and geometric relations used in defining a local-

consistency rule. The knowledge represented makes explicit ambiguous spatial/relational 

concepts such as "close-to", "oriented-toward", or "far-from". This is done by imposing 

bounds on each spatial relation, and using a confidence function to smooth out the 

discontinuities associated with simply using thresholds. 

1RULENAME*  »  '< any s t r i n g s 

'CONFI DENCE' -  ' [ 0  - 1 ] ' 

'HYPOTHESES' =  ' < h ypot h e sisl>  && < hypot hesis2 >  & & . . . ' 
'GEOMETRI CS' =  ' < sp a t i a l - r e l a t i o n > ' 
'SUBTYPES' =  ' < su b - r e l a t i on > *  

'BOUNDS' =  '< range> ' 

An example local-consistency schema follows, which defines the rule that houses should be 
Darallftl tn  mo^o  parallel to roads. 

' RULENAME' 
•  h o u se s- a r e - p a r a l l e l - t o - r o a d s 1 

'CONFI DENCE' =  ' 0 . 8 

'HYPOTHESES' =  'house && r oa d ' 

'GEOMETRI CS' =  ' o r i e n t a t i o n ' 

'SUBTYPES' =  ' p a r a l l e l ' 

'BOUNDS' =  ' 0 . 0 0 <=  va lue <=  0 .5 0 ' 

f ^ J
6

 t
 P

°
S S l b l e P n m i t l V e S

P
a t l a I are listed below. This small set has been 

found to be expressive enough to describe local-consistency relations for the scenes S P ^ 

has interpreted thus far i.e. the airport and suburban-housing scenes. 

< sp a t i a l - r e l a t i o n s>  < su b - r e l a t i on s>  
< range>  

[ 0 -  10000]  
d i st a n ce ce n t r o i d 

average 

l e a st 

g r e a t e st 
o r i e n t a t i o n t ow ard 

p a r a l l e i 

p e r p e n d i cu l a r 

i n t e r se c t i o n n i l r t  n i l - i 

ov e r l a p n i l ^ J 

[ 0 -  p i ]  

11 

»f 

[ t , n i l *  

[ 0 -  1] " 

Functional-Area 

The knowledge encoded in the functional-area phase is somewhat implicit It I . 

area type. The l o c a t e d objects are iocated in dose, physical proximity to one another 

e l l i p s e - l i n e a r i t y [ 0 -  1000]  precomput ed 

m b r - 1 i n e a r i t y [ 0 -  1000]  precomput ed 

compact ness [ 0 -  1 ]  precomput ed 

f r a c t i o n a l - f i l l [ 0 -  1 ]  precomput ed 

a rea [ 0 -  10000000000]  precomput ed 

pe r i m e t e r [ 0 -  10000000]  
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and have similar functions. Each of the FA-NAME attributes defines a functional-area type 

which will be used as a part of the overall scene model. 

'FA-NAME*  =  '< any st r ings* ' 

'SEED- REGI ON' =  ' < h ypot h e sis> ' 

'DEFI NI TI ON' =  ' < h ypot h e si sl >  && < hypot hesis2 >  && . . . ' 

The following functional-area schema defines the functional-area type terminal as being 

composed of terminal-building, road, parking-lot, and parking-apron hypotheses. 

• FA-NAME' =  ' t e r m i n a l ' 

'SEED- REGI ON' =  ' t e r m i n a l - b u i l d i n g ' 

'DEFI NI TI ON' =  ' p a r k i n g - l o t && pa r k i n g - a pr on && r oa d ' 

The SEED-REGI ON attribute forces the interpretation system to create terminal functional-

areas only if a terminal-building hypothesis exists that is consistent with one or more 

hypotheses of the types occurring in the DEFI NI TI ON attribute. 

Model-Generation 

The knowledge embedded in the model-generation phase has to do with using the context 

in which a particular region is found to determine which of several conflicting 

interpretations are correct. Commonly occurring conflicts can be enumerated, and more 

expensive knowledge-intensive operators can be applied to resolve these conflicts in the 

context of a particular scene model. The general syntax of a model-generation schema 

looks as follows: 

'CONFLI CT' =  ' < h ypot h e si sl >  && < hypot hesis2 > ' 

'RESOLUTI ON' =  '< keyw ord>  [&& < keyw ord- dat a> ] ' 

< any number of r e so l u t i o n s>  

For example, consider the following schema: 

'CONFLI CT' =  ' h a n g a r - b u i l d i n g && p a r k i n g - l o t ' 

• RESOLUTI ON' =  ' f u n ct i o n && st e r e o ' 

This schema will invoke a stereo operator to decide whether or not a region has height, so 

that the interpretation system can decide between the hangar-building or the parking-lot 

hypothesis. 

< keyw ords>  < keyw ord- dat a>  

d e f a u l t none 

f u n ct i o n name of a f u n ct i o n used t o do r e so l u t i o n 

co n cl u si o n name of a f u n ct i o n used t o combine r e su l t s 

If there is more than one resolution specified, then there must be a conclusion resolution 

specified. The conclusion will take the results of all of the resolution strategies and 

determine what the final result will be. 
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Ap p e n d i x II 

Some examples of the productions generated by RULEGEN are now given. Because the 

high-level rule descriptions were given along with the schemata in the previous appendix, 

here we will attempt to describe how the productions actually implement semantics of 

each rule. 

Region-to-Fragment 

Using the example schema for the region-to-fragment phase given in Appendix I, the 

system generated OPS5 productions defining the 'house' subclass. The first production 

finds an uninterpreted region in working-memory, and sets up a subtask which constrains 

OPS5 conflict-resolution to the productions in the given group only. These other 

productions apply the geometric constraints and leave the results of each test in a special 

LISP data-structure. Finally, domain-independent productions finalize this process by 

doing the final test evaluations, deciding whether or not an interpretation should be 

created, and removing the now obsolete subtask. 

( p R T F : : H S : : i n i t i a l i z e - H S - a t t r i b u t e s 

( r t f - t a s k " r e g i on < name>  "da t a < token> )  

( r e g i on "sym bol ic- nam e < name>  "house n i l )  

( f r agm ent "sym bol ic- nam e < name>  

" o b j e ct - t y p e compact 

" h y p ot h e si s unknown)  

- ->  

(make r t f - su b t a sk " r u l e se t H S: : m a t ch - H S- a t t r i b u t e s 

" r e g i o n < name>  "da t a < token>  house)  

( p RTF: : H S: : m a t ch - H S- a r e a 

( r t f - su b t a sk " r u l e se t 

{  < r u le se t >  =  H S: : m a t ch - H S- a t t r i b u t e s }  

" r e g i o n < name>  "da t a { }  < hyp> )  

{  ( r t f - r u l e - c o n s t a n t s " r u l e se t < r u le se t >  

" a t t r i b u t e a r e a )  < const ant s>  }  

( r e g i on "sym bol ic- nam e < name>  "a r e a < value> )  

( b i n d < index>  ( l i t v a l co n st a n t s) )  

( c a l l OPS: : m a t ch - scor e < name>  < hyp>  < value>  

( su b st r < const ant s>  < index>  i n f ) )  

) 

( p RTF: : H S: : m a t ch - H S- e l 1 i p se - l e n g t h 

( r t f - su b t a sk " r u l e se t 

{  < r u le se t >  =  H S: : m a t ch - H S- a t t r i b u t e s }  

" r e g i on < name>  "da t a { }  < hyp> )  

{  ( r t f - r u l e - c o n s t a n t s " r u l e se t < r u le se t >  

" a t t r i b u t e e l l i p s e - l e n g t h )  < const ant s>  }  

( r e g i o n "sym bol ic- nam e < name>  

" e l l i p s e - l e n g t h < value> )  

- ->  
( b i n d < index>  ( l i t v a l co n st a n t s) )  

( c a l l OPS: : m a t ch - scor e < name>  < hyp>  < value>  

( su b st r < const ant s>  < index>  i n f ) )  

) 
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- ->  
( b i n d < index>  ( l i t v a l co n st a n t s) )  

( c a l l OPS: r m a t ch - scor e < name>  < hyp>  < value>  

( su b st r < const ant s>  < index>  i n f ) )  

) 

( p RTF: : H S: : m a t e h - H S- e l l i p s e - 1 i n e a r i t y 

( r t f - su b t a sk " r u l e se t 

{  < r u le se t >  =  H S: : m a t ch - H S- a t t r i b u t e s }  

" r e g i o n < name>  " d a t a { }  < hyp> )  

{  ( r t f - r u l e - c o n s t a n t s " r u l e se t < r u le se t >  

" a t t r i b u t e e l l i p s e - l i n e a r i t y )  < const ant s>  }  

( r e g i o n "sym bol ic- nam e < name>  

" e l l i p s e - 1 i n e a r i t y < value> )  

- ->  
( b i n d < index>  ( l i t v a l co n st a n t s) )  

( c a l l OPS: : m a t ch - scor e < name>  < hyp>  < value>  

( su b st r < const ant s>  < index>  i n f ) )  

) 

Local-consistency 

Another, example schema from Appendix I, for the local-consistency phase of SPAM, 

produces a set of productions defining the spatial relationship constraining houses to be 

parallel to roads. The first two productions, cal l and in i t , establish a subtask which, 

again, constrains the conflict-resolution process to the current production group. The next 

two productions, invalid-type and no-ru le-cons t ra in ts , do error checking. The next 

production, exi t , removes the current subtask so that the remaining local-consistency 

rules can fire. The next two productions, choose-RD and stop-choosing, implement a 

loop in 0PS5, so that all the computations can be performed at one time. At this point, 

domain-independent control productions take over and coordinate the spawning of sub-

processes to do the low-level spatial calculations. When these processes have completed, 

the results are placed into working memory and control is allowed to pass back to this 

production group. Finally, the last two productions, sa t i s f i ed and unsat isf ied, will 

match this result data and create subtasks that will be used by domain-independent 

productions to update confidences appropriately. 
( p L CC: : h o u se s - a r e - p a r a l l e l - t o - r o a d s : : * c a l l *  

( co n si st e n cy - t a sk 

" h y p ot h e si s house "f r agm ent < id>  

" r e g i o n < name>  "m isc < con> )  

- ->  
(make l e c- su b t a sk 

"rulenam e H S: : h o u se s- a r e - p a r a l l e l - t o - r o a d s 

" h y p ot h e si s house "f r a gm ent < id>  

" r e g i o n < name>  "m isc < con> )  

( p RTF: : H S: : m a t ch - M S- e l 1 i p se - w i d t h 

( r t f - su b t a sk " r u l e se t 

{  < r u le se t >  =  H S: : m a t ch - H S- a t t r i b u t e s }  

" r e g i on < name>  "d a t a { }  < hyp> )  

{  ( r t f - r u l e - c o n s t a n t s " r u l e se t < r u le se t >  

" a t t r i b u t e e l l i p se - w i d t h )  < const ant s>  }  

( r e g i o n "sym bol ic- na m e < name>  

" e l l i p se - w i d t h < value> )  
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( p LCC: : h o u se s- a r e - p a r a l 1 e l - t o - r o a d s : : * i n i t *  

{  ( l cc - su b t a sk 

"rulenam e 

{  < rulename>  s H S: : h o u se s- a r e - p a r a l 1 e l - t o - r o a d s }  

" h y p ot h e si s house "f ragm ent < id>  " r e g i on < name>  

"m isc < con> )  < subt ask>  }  

( I cc - r u l e - co n st a n t s "rulenam e < rulename> )  

( c a l l OPS: :dum pst a t e )  

( remove < subt ask> )  

(make l c c - r u l e - s e t "rulenam e < rulename>  

" h y p ot h e si s house "f ragm ent < id>  

" r e g i o n < name>  "m isc < con> )  

(make l cc - ch a i n "ru lenam e < rulename>  

"t askname st a r t - ch oose - m ode )  

) 

( p LCC: : h o u se s- a r e - p a r a l l e i - t o - r o a d s: : * i n v a l i d - t y p e *  
{  ( l cc - su b t a sk 

"rulenam e 

{  < rulename>  =  H S: : h o u se s- a r e - p a r a l 1 e l - t o - r o a d s }  

" h y p ot h e si s {  < hyptype>  <>  house } )  < subt ask>  }  

( remove < subt ask> )  

( w r i t e ( c r l f )  ( t a b t o 9)  

< rulename>  — I n v a l i d h ypot h e si s 

< hyptype>  f o r t h i s r u l e se t . 

( c r l f ) )  

)  . 

( p LCC: : h o u se s- a r e - p a r a l l e i - t o - r o a d s: : * n o - r u l e - co n st a n t s*  
{  ( l cc - su b t a sk 

"ru lenam e 

{  < rulename>  =  H S: : h o u se s- a r e - p a r a l 1 e l - t o - r o a d s }  
" h y p ot h e si s house)  < subtask>  }  

-  ( I cc - r u l e - co n st a n t s "rulenam e < rulename> )  
- - >  

( remove < subt ask> )  

( w r i t e ( c r l f )  ( t a b t o 9)  

< rulename>  - -  No r u l e con st a n t s 
f o r t h i s r u l e se t . 

( c r l f ) )  

) 

( p LCC: : h o u se s- a r e - p a r a l l e l - t o - r o a d s: : * e x i t *  
{  ( l c c - r u l e - s e t 

"ru lenam e H S: : h o u se s- a r e - p a r a l l e l - t o - r o a d s)  
< r u le se t >  }  

-  ( geom et ry)  

-  ( queue)  

- - >  

( remove < r u le se t > )  

) 

( p LCC: : h o u se s- a r e - p a r a l l e l - t o - r o a d s: : * ch o o se - R D *  
( l c c - c h a i n "rulenam e 

{  < rulename>  =  H S: : h o u se s- a r e - p a r a l l e l - t o - r o a d s }  
"t askname st a r t - ch oose - m ode )  
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( 1 c c - r u l e - s e t "rulenam e < rulename>  " r e g i on < nameO>  

"f ragm ent < idO>  "m isc < confO> )  

( f r agm ent " l c c - p a r t i c i p a n t yes "h y p ot h e si s r oad 

"sym bol ic- nam e {  < namel>  <>  < nameO>  }  

" f r a gm e nt - t ok e n < idl>  " con f i d e n ce < conf l> )  

( 1 cc - r u l e - co n st a n t s "rulenam e < rulename>  

" con st a n t s < t hr eshO- l>  { } )  

- ->  
( c a l l OPS: :que ue - t a sk o r i e n t a t i o n p a r a l l e l < nameO>  

< namel>  < t hr eshO- l>  < idO>  < confO>  < idl>  < conf l> )  

) 

( p LCC: : h o u se s- a r e - p a r a l l e l - t o - r o a d s: : * s t o p - ch o o si n g *  

{  ( l c c - c h a i n "rulenam e 

{  < rulename>  =  H S: : h o u se s- a r e - p a r a l l e l - t o - r o a d s }  

"t askname st a r t - ch oose - m ode )  < chain>  }  

( l c c - r u l e - s e t "rulenam e < rulename> )  

- - >  

( remove < chain> )  

) 
( p L CC: : h o u se s - a r e - p a r a l l e l - t o - r o a d s : : * sa t i s f i e d *  

( 1 c c - r u l e - s e t 

"rulenam e 

{  < rulename>  =  H S: : h o u se s- a r e - p a r a l l e l - t o - r o a d s }  

"f ragm ent < idO> )  

( 1 cc - r u l e - co n st a n t s "rulenam e < rulename>  

" con st a n t s < min>  < max> )  

{  ( geomet ry " t ype o r i e n t a t i o n "su bt ype p a r a l l e l 

" f r a g l < idT>  " co n l < cT>  " f r a g 2 < id>  "con2 < c>  

"v a l u e s {  < value>  >=  < min>  <=  < max>  } )  

< geometry>  }  

( f r agm ent " f r a gm e n t - t ok e n < idO> )  

- - >  

( remove < geometry> )  

( b i n d < score>  

( OPS: : g e om e t r i c- scor e 0 .0 < t hr eshold>  < va lue> ) )  

( b i n d < e l t l e n >  3 )  

(make l e c- u p d a t e s "rulenam e < rulename>  

" e l t - l e n < e l t l e n >  "f r a gm e nt < idT>  

"da t a < id>  < c>  < score> )  

(make l cc- u p d a t e s "rulenam e < rulename>  

" e l t - l e n < e l t l e n >  "f r a gm e nt < id>  

"da t a < idT>  < cT>  < score> )  

) 

( p LCC: : h o u se s- a r e - p a r a l l e l - t o - r o a d s: : * u n sa t i s f i e d *  

( l c c - r u l e - s e t 

"rulenam e 

{  < rulename>  =  HS: : h o u se s- a r e - p a r a l l e i - t o - r o a d s } )  

( l c c - r u l e - c o n st a n t s "rulenam e < rulename>  

" con st a n t s < t hreshold> )  

{  ( f r a gm ent " f r a gm e n t - t ok e n < idT>  " t e st - co u n t < count> )  

< fragment>  }  

{  ( geom et ry " t ype o r i e n t a t i o n "subt ype p a r a l l e l 

" f r a g l < idT> )  < geometry>  }  

- ->  
( m odi f y < fragment>  

" t e st - co u n t ( compute < count>  +  1) )  

( remove < geometry> )  
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Ap p e n d i x III 

Figure 1 is an example of the output generated by SPATS for the region-to-fragment 

phase of SPAM. The explanations are generated as part of the final output for easy 

reference. 

I d : M o f f e t t l 

Column 

Cl a ss/ Su b cl a ss 

GndTt h: 

WMEs: 

CorrWMEs: 

I ncorrW MEs: 

Ex p l a n a t i on 

Cor r BF: 

I n cor r BF: 

Cl a ss/ Su b cl a ss t o be a n a l yz e d 

#  of occu r r e n ce s of t he c l a ss/ su b cl a ss in gnd t r u t h t a b l e . 

Each c l a ss e n t r y i s t he sum of i t s su b cl a ss e n t r i e s . 

#  of r e g i on WMEs whose sym bol ic names match t he su b cl a sse s 

gnd t r u t h I Ds and t h a t have su b cl a ss or c l a ss i n t e r p s . 

NOTE: The d i f f e r e n ce betw een t he c l a ss e n t r y and t he sum 

of i t s su b cl a ss e n t r i e s i s t he #  of r e g ion WMEs w i t h on ly 

c l a ss i n t e r p s . 

#  of t he a f or e m e nt ione d WMEs w hich con t a i n e d t he 

co r r e c t su b cl a ss or c l a ss i n t e r p r e t a t i o n . 

#  of t he a f or e m e nt ione d WMEs w hich d id not co n t a i n 

t he co r r e c t su bcla ss or c l a ss i n t e r p r e t a t i o n . 

NOTE: The sum of the CorrWMEs and I ncorrWMEs e n t r i e s f o r 

each c l a ss or su b cl a ss should add up t o i t s WMEs e n t r y . 

The b r a n ch i n g f a ct o r f o r t he co r r e ct i n t e r p r e t a t i o n s 

of t he su b cl a ss or c l a ss . The BF shows how many 

i n t e r p r e t a t i o n s , t he r e w ere, on t he a ve r a ge , f o r each co r r e ct 

i n t e r p r e t a t i o n . I f a c l a ss/ su b cl a ss has a Cor rBF of 0 , t hen 

i t had no co r r e c t i n t e r p r e t a t i o n s . 

The b r a n ch i n g f a ct o r f o r t he i n co r r e c t i n t e r p r e t a t i o n s 

of t he su b cl a ss or c l a s s . 

Cl a ss/ su b cl a ss 

1 i n e a r 

runw ay 

t a x iw a y 

road 

compact 

h a n g a r - b u i l d i n g 

t e r m i n a l - b u i 1 d in g 

sm a l l - b l o b 

p a r k i n g - a p r on 

p a r k i n g - l o t 

1 a r g e - b l ob 

g r a ssy - a r e a 

t armac 

Fi n a l S t a t s : 

GndTt h WMEs CorrWMEs 

40 40 40 

2 2 2 

36 36 36 

2 2 2 

9 9 5 

9 9 5 

0 0 0 

6 6 4 

3 3 1 

3 3 3 

12 12 12 

11 11 11 

1 1 1 

67 67 61 

I ncorrWMEs 

0 

0 

0 

0 

4 

4 

0 

2 

2 

0 

0 

0 

0 

6 

CorrBF 

.6 5 

.00 

6 .8 9 

6 .0 0 

7 .0 0 

7 .0 0 

0 .0 0 

8 .5 0 

7 .0 0 

9 .0 0 

5 .9 2 

6 .0 9 

4 .0 0 

6 .6 6 

6 . 

3. 

I ncor r BF 

0 .0 0 

0 .0 0 

0 .0 0 

0 .0 0 

6 .0 0 

6 .0 0 

0 .0 0 

4 .0 0 

4 .0 0 

0 .0 0 

0 .0 0 

0 .0 0 

0 .0 0 

5 .3 3 

Figure 1: Example SPATS output for region-to-fragment phase. 

From these statistics, one can see that the system was able to correctly interpret the linear 

and large-blob classes without any any misinterpretations at all. For the compact class, 

notice that the number of hangar-building interpretations is identical to the number of 

compact interpretations. This shows us that the geometric constraints for the subclass 

hangar-building are not discriminatory enough. This shows up in the correct branching 

factor as well. 
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An example of the output for the functional-area phase is given in figure 2. This 

summarizes all the correct and incorrect hypotheses participating in the created 

functional-areas. We can use this information to determine the status of the high-level 

groupings generated by SPAM. If it is recognized that many incorrect interpretations are 

being used to support correct interpretations (or visa-versa) when creating a functional-

area, then the local-consistency knowledge is at fault, as it is not properly characterizing 

the spatial layout of the scene. 

I d : M o f f e t t l 

Fu n ct i o n a l Area Type: A l l f u n ct i o n a l a r ea s 

Fu n ct i o n a l Ar e a I D: A l l f u n ct i o n a l a r e a s 

Tot a l #  of f u n c t i o n a l - a r e a s : 83 

To t a l #  of f r agm ent s ( f r om FA. co n si st e n t - f r a g m e n t s, 

and i n co n si st e n t - f r a g m e n t s l i s t s ) : 60 

To t a l #  of t he above f r a gm ent s found in ground t r u t h f i l e : 60 

Fragment s composing FA( s) : 

§ of co r r e c t f r a gm ent h ypot h e se s: 60 

#  of i n co r r e c t f r agm ent h ypot h e se s: 17 

Co n si st e n t - Fr a g m e n t s: 

#  of co r r e c t f ragm ent h ypot h e se s: 1 

#  of i n co r r e c t f r agm ent h ypot h e se s: 4 

I n co n si st e n t - Fr a g m e n t s: 

#  of co r r e ct f ragm ent h ypot h e se s: 1 

§ of i n co r r e c t f ragm ent h ypot h e se s: 15 

Co r r e ct f ragm ent hypot heses t a b l e : 

Ground Tr u t h Types 

RW TW RD HG TB PA PL GA TM 

RW 2 0 0 0 0 0 0 0 0 

TW 0 38 0 0 0 0 0 0 0 

RD 0 0 23 0 0 0 0 0 0 

H6 0 0 0 3 0 0 0 0 0 

TB 0 0 0 0 0 0 0 0 0 

PA 0 0 0 0 0 6 0 0 0 

PL 0 0 0 0 0 0 13 0 0 

GA 0 0 0 0 0 0 0 27 0 

TM 0 0 0 0 0 0 0 0 0 

I n co r r e ct f ragm ent hypot heses t a b l e : 

Ground Tr u t h Types 

RW TW RD HG TB PA PL GA TM 

RW 0 4 1 0 0 0 2 0 1 

TW 0 0 0 0 0 0 1 0 0 

RD 0 86 0 5 0 0 5 0 

C
M

 

HG 0 19 0 0 0 0 1 0 0 

TB 0 73 5 12 0 0 1 0 6 

PA 0 13 0 11 0 0 3 38 9 

PL 0 86 0 39 0 9 0 63 2 

GA 0 14 0 11 0 3 6 0 1 

TM 0 0 0 4 0 1 1 6 0 

Figure 2: Example SPATS output for functional-area phase. 


