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ABSTRACT
This paper presents a new approach to automate the mul-
tidimensional design of Data Warehouses. In our approach
we propose a semi-automatable method aimed to find the
business multidimensional concepts from a domain ontology
representing different and potentially heterogeneous data
sources of our business domain.

In short, our method identifies business multidimensional
concepts from heterogeneous data sources having nothing in
common but that they are all described by an ontology.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Types of
Systems—Decision support; H.2.1 [Database Management]:
Logical Design

General Terms
Algorithms, Design, Theory

Keywords
OLAP, Multidimensional Design, Ontologies

1. INTRODUCTION
Many methodologies and approaches have been presented

to design multidimensional DWs in the literature. However,
these approaches are typically carried out manually by DW
experts over the organization data sources to identify rele-
vant multidimensional knowledge contained in the sources.

In the last years, a few research efforts have tried to au-
tomate the design of multidimensional databases in order to
free this task of being (completely) performed by an expert,
and ease the whole process. To do so, these approaches start
from a detailed analysis of the data sources to determine the
multidimensional concepts in a reengineering process. How-
ever, all of them carry out this reengineering process from
relational OLTP (On-Line Transaction Processing) systems,
overlooking other data sources.
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This paper presents a new approach to automate the mul-
tidimensional design of DWs. In our approach we propose
a semi-automatable method aimed to find the business mul-
tidimensional concepts from an ontology representing our
business domain. As shown in figure 1, our input ontol-
ogy may represent different and potentially heterogeneous
data sources. Thus, this method will point out our busi-
ness multidimensional concepts (i.e., giving rise to concep-
tual schemas) contained in data sources of our domain hav-
ing nothing in common but that they are all described by
the same domain ontology.

Figure 1: Our method main idea

This work extends a short version [14] by thoroughly an-
alyzing the whole process and justifying the method feasi-
bility. To our knowledge, this is the first method addressing
this issue from ontologies and in general, automating the
process from non-relational data sources. Hence, we do be-
lieve this work opens new interesting perspectives. For in-
stance, we can extend the DW and OLAP concepts to other
areas like the Semantic Web research area [16], where ontolo-
gies play a key role to provide a common vocabulary. One
consequence would be that despite the DW design has been
typically guided by data available within the organization,
we would be able to integrate external data from the web
into our DW to provide additional up-to-date information
about our business domain.

This approach raises new challenges with regard to cur-
rent automated modeling. We cannot assume anymore that
data sources are implemented over relational databases as
current methods do, and we need to focus on the input on-
tology representing our data sources. Ontologies are seman-
tically richer than relational schemas metadata, and despite,
in some cases, we will need to extract missing knowledge by
means of data samples, our design process will be guided
by knowledge contained in the input ontology, avoiding to
perform exhaustive pattern searches over data.

Section 2 discusses the related work underlining automat-
able approaches. Section 3 sets the foundations of our method
that is presented in section 4.
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2. RELATED WORK
According to Winter et al. [18], existing approaches to de-

sign multidimensional DWs can be classified within a supply-
driven or demand-driven framework. Supply-driven approaches
start from a detailed analysis of the data sources to de-
termine the multidimensional concepts in a reengineering
process. Most of the methodologies presented in the liter-
ature follow this paradigm. For instance, [9, 7, 10] among
others. Oppositely, demand-driven approaches focus on de-
termining the user multidimensional requirements (as typi-
cally performed in other information systems) to later map
them onto data sources as, for instance, [18, 6].

In the literature, partially automatized approaches [7] and
those fully automatizing the DW design process [10, 13,
15] always start from a thorough analysis of the relational
sources, within a supply-driven framework. These approaches
share three main general restrictions [6] not suiting them for
multidimensional design over ontologies (and not allowing us
to smoothly compare them to our proposal): (1) they exclu-
sively work over relational sources, (2) the complexity of the
source schemas must not be high and (3) they mainly work
with a table granularity. That is, each table in the relational
sources is considered as a whole and it is assigned either a
fact or a dimension role and therefore, the role of each table
attribute is overlooked. However, as already discussed [5],
a table, a relationship or even an attribute may be playing
a fact/dimension role. Thus, these methods need a certain
degree of normalization in the relational schema to work
properly. Otherwise, they do not help much in the design
process. Nevertheless, this is the case not only of many or-
ganizations but also of those applications/areas not using
the relational technology.

[10] thoroughly analyzes the data sources, assuming that
the database does not contain composite keys, deriving valu-
able metadata such as functional and inclusion dependencies
and key or cardinality information, in order to point out
potential snowflake schemas [11]. To infer this metadata,
they access the instances and perform data mining tech-
niques, hardly extensible to our proposal. Moreover, since
they are looking for snowflake schemas, they completely rely
on “foreign keys” - “candidate keys” relationships to identify
functional and inclusion dependencies. Thus, this method
demands a good degree of normalization and, for instance,
it cannot face degenerated dimensions [11]. Finally, this ap-
proach can present problems in terms of complexity due to
the high number of permutations computed when looking
for inclusion dependencies.

[13] proposes a supply-driven method to be validated by
means of a demand-driven process. In this approach, they
automatically propose some potential multidimensional sche-
mas that are validated by end-user requirements expressed
in terms of MDX queries. We also presented a supply/de-
mand-driven method [15] to point out potential multidi-
mensional schemas from end-user requirements expressed in
terms of SQL queries over relational sources. In fact, the
method presented in this article is an extension of this pre-
vious one from a wider perspective; i.e., without needing to
provide end-user requirements beforehand.

Finally, [17] proposes a semi-automated method to design
multidimensional DWs from XML schemas. Despite it fol-
lows a supply-driven framework, this work was, unlike pre-
vious approaches, completely oriented to design Web Ware-
houses [4]. However, from our point of view, data sources

from the web should complement the business data already
available in the organization and be integrated, altogether,
in a single and detailed view of our business domain. More-
over, our approach goes one step beyond since ontologies are
more expressive and powerful than XML schemas, providing
us with detailed knowledge of the data sources domain and
powerful reasoning services easing the process.

3. METHOD FOUNDATIONS
Since our goal is to generate multidimensional schemas

in an automated way, this section aims to concisely define
and point out those criteria our proposal will be based on;
that is, those criteria allowing us to identify multidimen-
sional concepts. Multidimensionality pays attention to two
main aspects; placement of data in a multidimensional space
and correct summarizability of data. Therefore, our method
looks for meaningful conceptual schemas with orthogonal
Dimensions fully functionally determining Facts and free
of summarizability problems. The following criteria are ad-
dressed to guarantee those schemas proposed by our method
accomplish these premises:

• [C1] The Multidimensional Model: Multidimen-
sionality is based on the fact/dimension dichotomy.
We consider a Dimension to contain a hierarchy of
Levels representing different granularities (or levels of
detail) to study data, and a Level to contain Descrip-
tors. On the other hand, a Fact contains Measures.
One Fact and several Dimensions to analyze it give
rise to a multidimensional schema. These are those
concepts we will try to identify along our process.

• [C2] The multidimensional space arrangement
constraint: Dimensions of analysis arrange the mul-
tidimensional space where the Fact of study is de-
picted. Each instance of data is identified (i.e., placed
in the multidimensional space) by a point in each of its
analysis Dimensions. Conceptually, it embraces that
a Fact must be related to each analysis Dimension
by a many-to-one relationship. That is, every instance
of data is related to, at least and at most, one instance
of an analysis Dimension, and every Dimension in-
stance may be related to many instances of data.

• [C3] The Base integrity constraint: We denote
by Base a minimal set of Levels functionally deter-
mining a Fact. That is, two different instances of data
cannot be spotted in the same point of the multidimen-
sional space. Moreover, Dimensions giving rise to a
Base must be orthogonal (i.e., functionally indepen-
dent) [1]. Otherwise, we would use more Dimensions
than strictly needed to represent data, and it would
generate empty meaningless zones in the space. The
concept of Base would result in a “primary key” in a
relational implementation of an OLAP tool.

• [C4] The summarization integrity constraint:
Data summarization performed must be correct, and
we warrant this by means of the three necessary con-
ditions (intuitively also sufficient) [12]: (1) Disjoint-
ness (the sets of objects to be aggregated must be
disjoint), (2) Completeness (the union of subsets
must constitute the entire set), and (3) Compati-
bility of the Dimension, kind of measure being ag-
gregated and the aggregation function. Compatibility
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Figure 2: Method Overview

must be satisfied since certain functions are incompati-
ble with some Dimensions and kind of measures. For
instance, we cannot aggregate Stock over Time Di-
mension by means of sum, as some repeated values
would be counted. However, compatibility will not be
automatically checked in our method unless additional
metadata was provided.

Finally, bearing in mind that our method input would be
an ontology, we also assume the following premise:

• The ontology is expressed in an ontology language pro-
viding basic reasoning tools such as subsumption, al-
lowing us to work with taxonomies of concepts. Hence,
we do not ask to state all possible relationships be-
tween concepts in the ontology, since our method will
be able to infer them through reasoning. For instance,
OWL (Web Ontology Language), a W3C recommen-
dation, fits properly for our purposes.

4. OUR METHOD
This section presents a detailed view of our method and

how it applies the criteria exposed in section 3. Figure 2
depicts a schematic overview of our method: along three
well-differentiated tasks, it points out those concepts pre-
sented in [C1] to give rise to multidimensional schemas.

As a previous remark, notice this is a fully supply-driven
method. In each step our approach automatically looks for
a specific multidimensional concept. At the end of each step
it asks for the end-user multidimensional requirements (the
only part not being automatable) in order to restrict results
got and guide next steps:

• The first task looks for potential subjects of analysis
(i.e., Facts). Those concepts with most potential Di-
mensions and Measures are good candidates. At
the end of this task, we ask the user to choose his/her
subjects of interest among those concepts proposed by
the method as potential Facts. The rest of the tasks
will be carried out once for each Fact identified (i.e.,
each Fact will give rise to a multidimensional schema).

• The second task points out sets of concepts likely to be
used as Base for each Fact identified. Bases are com-
pound of concepts labeled as potential Dimensions.

In short, we look for concepts being able to univocally
identify objects of analysis (i.e., factual data).

• The third task gives rise to Dimension hierarchies.
For every concept identified as a Dimension, we con-
form its hierarchy of Levels from those concepts re-
lated to it by typical whole-part relationships.

Finally, notice our method input would be an ontology.
For instance, consider the ontology extracted from Research-
Cyc1 presented in figure 3 that will be used as example along
this paper. For the sake of comprehension, it is depicted in
UML (Unified Modeling Language) notation in spite of using
any ontology language like OWL. This subset of Cyc corre-
sponds to a given domain; a sales event: a product is bought
in a specific place (where the event occurs at) by a specific
monetary value, and where a seller and a buyer are involved
in the transaction.

4.1 Pointing out Facts
In the literature we can find different approaches to point

out Facts but most of them are hardly automatable. In fact,
to point out Facts is one of the most difficult steps in the
design process, and it is usually done manually [13]. In our
approach, we consider a concept to be a potential subject
of analysis if it is related to as many potential Dimensions
and Measures as possible. So that, our aim in this section
is twofold; (1) discover potential analysis Dimensions, and
(2) point out potential Measures.

4.1.1 Discovering Potential Dimensions of Analysis:
According to [C2], a concept is a potential Dimension

of analysis if it is related to a Fact by a one-to-many re-
lationship; that is, every instance of data is related to one,
and just one, of its instances. Hence, we can express our
multidimensional pattern to look for potential Dimensions
as follows:

F � = 1r.D, where r ≡ (r1 ◦ . . . ◦ rn)

Notice it is expressed in“Description Logic” (DL) notation
[2] (which OWL is based on), where r and D are variables,

1The Cyc ontology is a commercial knowledge repository
developed to capture and represent common sense. A full
version of Cyc, called ResearchCyc, has been released for
the scientific community (http://www.cyc.com).
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Figure 3: An ontology extracted from ResearchCyc

and F the ontology concept we are trying to identify as a
potential Fact. About the terminology used, we consider a
class to be a unary predicate (i.e., D and F), and a prop-
erty (i.e., r) as a binary predicate expressing a relationship
between two classes. Briefly, the � symbol stands for sub-
sumption, the basic inference on classes in DL. Subsumption
(i.e., A � B) is the problem of checking if the subsumer (B)
is considered more general than the subsumee (A). That is,
if the subsumee can always be considered a subset of the
subsumer. ≡ stands for a logic equivalence and can be de-
fined as a specific kind of subsumption, that is: A � B and
B � A. ◦ stands for properties composition. That is, for the
two properties R and S we have that if {a, b} ∈ R and {b, c}
∈ S , then {a, c} ∈ (R ◦ S). Finally, = 1 stands for func-
tionality that is a specific number restriction where, in our
case, the number of individuals belonging to class D related
to a given individual of the class F , through the property r,
must be exactly one. Thus, we are looking for classes (D)
such that every instance of a given Fact (F) is related, di-
rectly or by composition through a set of properties (r), to,
at least and at most, one of its instances.

To find those concepts fitting as potential Dimensions,
we will evaluate the multidimensional pattern against each
ontology concept to discover if it is a potential Fact. Un-
fortunately, we may not take advantage of generic reasoning
algorithms provided by DL in order to compute this multi-
dimensional pattern since they are not decidable when con-
sidering property chains. Moreover, it may not be express-
ible in some ontology languages like OWL DL. Nevertheless,
it is feasible to find an algorithm to compute our multidi-
mensional pattern with a reasonable complexity degree for
functional properties. As a demonstration, we propose an ad
hoc algorithm to compute this pattern (see figure 4). As dis-
cussed later, our algorithm is mainly based on multiplicities
among concepts. Therefore, we suppose that the ontology
provides multiplicities since nowadays, ontology languages,
such as OWL 1.1 [8], allow to state them in the ontology:

Let M be a matrix of N×N elements where N is the num-
ber of concepts in the ontology. In each row we represent
a concept and its to-one relationships with the rest of the
concepts. Conceptually, a cell of M is ticked if we can find
a to-one (i.e., a functional and complete property) path be-
tween both concepts. In other words, if that column rep-
resents a potential Dimension for that row. Since M is a
sparse matrix, the function create matrix implements it as
a vector of lists (step 1). That is, every position in the vec-
tor represents a concept, and its list contains its functional

typedef list <properties> path

typedef tuple < concept, list<path> > paths to concept

typedef tuple < concept, list<paths to concept> > func depend

functioncreate matrix returns Matrix
1. vector< list<func depend> > M;

2. bool converge = false;

3. initialize(M);

4. first iteration(M, ontology);

5. while(not converge)

(a) propagate path(M, converge);

6. return M;

void propagate path (Matrix �M, bool �converge)
1. bool converge = true;

2. foreach concept c in M do

(a) func depend ini depend = M<c>;

(b) foreach concept p in M<c> do

i. M<c> ∪ (M<c<p>> ◦ M<p>);

(c) if(ini depend ! = M<c>) then

i. converge = false;

Figure 4: An algorithm to look for Dimensions

dependencies (i.e., its potential Dimensions) as well as the
property path between both concepts (see the func depend
typedef declaration). Lists are created and initialized to the
empty list in step 3.

Step 4 looks for direct to-one relationships for each con-
cept. Conceptually, it would represent the first iteration
of our process. This step may be implemented through
generic reasoning algorithms provided by DL. Specifically,
the matching inference algorithm would fulfill our objectives
[3]. This algorithm was conceived to match concepts against
patterns to support the pruning of large concept descrip-
tions discarding unimportant aspects. More precisely, given
a concept pattern D (i.e., a concept description containing
variables) and a concept description C without variables,
the matching problem asks for a substitution σ (of the vari-
ables by concept descriptions) such that C is subsumed by
σ(D). For instance, considering the pattern “the research
interest of those people being only interested in a single re-
search area” (expressed in DL as ∀research-interests.X),
and the concept description “those people only having cats
as pets and being only interested in AI research” (∀pets.Cat
� ∀research-interests.AI), the matching algorithm finds
the scientific interests (in this case Artificial Intelligence)
described in the concept (i.e., assigns to X the value AI).

Since step 4 looks for direct relationships, we can over-
look composition in this step. Therefore, the multidimen-
sional pattern is simplified since we do not longer need to
consider r as a property composition but as a single prop-
erty. We can get rid of the variable r performing matching
for every isolated property. Hence, matching perfectly fits
to our purpose to evaluate the multidimensional pattern for
to-one relationships directly related to a Fact. With this
approach, taxonomies of concepts would be automatically
considered since matching uses subsumption to look for a
proper substitution. Potential Dimensions pointed out in
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Figure 5: Example of propagation of to-one paths by composition

this first iteration are added to the proper list in the vector.
According to our example, figure 5.1 depicts the vector (i.e.,
the matrix) M after performing step 4 over the ontology
introduced in figure 3.

Steps 5 and 5a propagate the to-one paths pointed out,
by composition. That is, if two concepts, A and B, are
related by a direct to-one relationship, and B is also related
through a to-one relationship to a concept C, A functionally
determines C as well. Also notice, that to avoid recurrence
problems in one-to-one relationships, we must not follow the
same property backwards. Following the previous example,
figure 5.2 depicts how these steps work. There, potential
Dimensions of those concepts functionally determined by a
given concept C, are also considered potential Dimensions
of C (see function propagate path). Moreover, note that the
path list has been properly updated (i.e., by concatenating
both path list) to let us know the path from C to its potential
Dimensions.

Finally, this algorithm converges if we can assure that if
in a given iteration vector M is not updated then, in the
following iteration it would not be updated either. It can
be guaranteed since, in the worst case, if P is the max-
imum number of functional properties chained in the on-
tology, in each iteration steps 5 and 5a would propagate,
at least, one property. That is, the path length is strictly
increasing and at most, in P iterations we would have prop-
agated all chained properties in the ontology. Thus, steps
5 and 5a will not be able to propagate any other property
in next iterations. About each iteration, in the worst case,
we have an exponential computational cost with regard to
the number of functional properties chained. However, it
is not a strong limitation, since in a real world case, it is
rather difficult to find several to-one chained relationships
not accepting zeros. For instance, in our example, from 10
functional relationships, the biggest to-one path is of size 2,
and our algorithm would converge in just 2 iterations.

Figure 6: Multiplicities looked for

4.1.2 Pointing out Measures:
In this step we look for Measures (i.e., factual data).

Typically, Measures are numeric attributes allowing data
aggregation. In our method, we consider any numeric data-
type (i.e., those allowing data aggregation by its own nature)
to be a Measure of a given Fact F if, according to [C4], it
preserves a correct data aggregation from F ; that is, if they
are conceptually related by a one-to-one relationship (see
figure 6.1). (1) The to-one multiplicity in the Measure side
forces each Fact instance to be related to just one Measure
value, and forbidding zeros we preserve completeness, (2)
whereas the to-one multiplicity in the Fact side preserves
disjointness. Nevertheless, notice that we can allow zeros in
the Fact side still preserving disjointness but assuming that
that Measure may not be related to any Fact instance.

In practice, (3) we can relax this conceptual one-to-one re-
lationship asking for concepts related to a Fact by a many-
to-one relationship (see figure 6.2). In this case, all those
(many) Measures values related to a given Fact instance
need to be aggregated by some compatible aggregation func-
tion, prior to be inserted in the DW; giving rise to the
conceptual one-to-one relationship needed. Therefore, the
datatype could be either directly related to the Fact or by
properties composition, as shown in figure 6.2. In the first
case, since a datatype does not have an object identifier (i.e.,
oid) we may allow any multiplicity in the Fact side without
violating disjointness. In the second case, the path between
the Fact and the concept which is directly related to the
datatype must accomplish the aggregation conditions dis-
cussed above.

Notice that not all these relationships could be detected
through the matrix M computed previously. In fact, we
would need two different matrixes; one to store those to-
one paths between concepts allowing zeros, and another one
storing to-many paths forbidding zeros. However, for the
sake of readability and comprehension, they have not been
introduced before. These matrixes do not modify the com-
plexity degree of the algorithm, since they can be computed
with equivalent algorithms to the one presented to compute
matrix M; whereas M can be computed as the intersection
of both matrixes (i.e., those to-one paths not allowing zeros).
Finally, note that the baseline algorithm to find Measures
is essentially the same than the one used to discover poten-
tial Dimensions: as shown in the right-side table of figure
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Concept Dimensions Measures

BuyingAnObj. Interval, ComercialOrg., Value (Natural)
MonetaryVal, Value (datatype), Seller,
Buyer, KindOfMoney, SpatialThing.

MonetaryVal. Interval, ComercialOrg., Value (Natural)
BuyingAnObj, Value (datatype), Seller
Buyer, KindOfMoney, SpatialThing.

Product Interval, ConercialOrg. -
Others - -

Figure 7: Multidimensional knowledge pointed out

6, both algorithms aim to propagate one-to-many relation-
ships allowing zeros in the Fact-side. Hence, same consider-
ations about the computational complexity of pointing out
Dimensions are extensible to find Measures.

Once we have pointed out potential analysis Dimensions
and Measures for each concept (see figure 7), we propose
to the user those concepts being potential Facts. The more
potential Dimensions and Measures a concept has, the
higher we rate it to be a good candidate as a potential Fact.
Thus, we define f as a function that, given the number of
potential Dimensions and Measures related to a concept
c, it evaluates c as a promising Fact. This quality func-
tion will prune those concepts not reaching a threshold that
would be provided by the user. Potential Facts not pruned
are ordered according to its f value and presented to the
user that must choose those Facts making more sense for
him/her. In our example BuyingAnObject and Monetary-

Value are clear candidates, but it would be reasonable to
expect the user to just select BuyingAnObject as his/her
Fact of interest.

All in all, as discussed, the baseline algorithm computa-
tional complexity to point out Facts would be exponential.
For every concept we look for its potential Dimensions and
Measures (both being exponential with regard to the max-
imum length of proper relationships we are looking for). Let
N be the number of concepts in the ontology; c the maxi-
mum functional connectivity (i.e., direct to-one relationships
from a concept); and l the maximum chain of functional
properties. In the worst case (i.e., when the ontology con-
forms a clique of to-one properties), we will need N-1 steps
(i.e., the value of l in a clique) to propagate the to-one paths
and determine that every concept is a potential Dimension
of any other. In a smart implementation of this algorithm,
we have been able to raise a Θ(N × cl) complexity assur-
ing that each element (i.e., each cell of matrix M) will be
computed in one step. That is, propagating the functional
dependencies from the end of the functional paths to the
beginning.

Nevertheless, we would like to underline that this is a
theoretical upper bound since it is highly unlikely to find an
ontology where all concepts have maximum connectivity and
all its functional paths are of maximum length. Moreover,
the algorithm cost is exponential w.r.t. l, and in real world
cases it is rare to find large to-one property chains.

4.2 Looking for potential Bases
The second step points out possible Bases for each iden-

tified Fact among those concepts related to it and labeled
as its potential Dimensions of analysis.

According to [C3], we need to find a set of Dimensions
identifying the Fact unequivocally. Bases must contain or-
thogonal Dimensions, and a set of potential Dimensions
will be considered a feasible Base if they are able to identify

function seek bases (Fact F, Matrix M) returns Set<Base>

1. int i=1; Set<Concept> Base;

2. Set<Base> Bases = {}, Combinations =
Get Potential Dimensions(F,M), Candidates Sets;

3. while(Combinations != Ø)

(a) Candidates Sets = {};
(b) Base = Get First Combination(Combinations);

(c) while(Base)

i. if(Feasible Base(Base)) then

A. Bases += Base;

ii. else if(Intermediate Bases(Base)) then

A. Candidates Sets += Base;

iii. Combinations −= Base;

iv. Base = Get Next Combination(Combinations);

(d) i++;

(e) Combinations = Generate Combinations by Size(i,
Candidates Sets, M);

4. return Bases;

Figure 8: A smart algorithm to look for Bases

all instances of a Fact:

�
|Di| ≥ |F|

That is, the Fact cardinality must be lower than or equal
to the product of the cardinalities of those Dimensions
giving rise to a Base.

In our approach, given a set of potential Dimensions,
they are evaluated to be a feasible Base as follows. First,
by means of data samples from our involved data sources,
we estimate the potential Dimensions cardinalities (i.e.,
every |Di|). As introduced in [C2], a Fact is related to Di-
mensions by many-to-one relationships. So that, if any
many-side of these relationships provides numerical multi-
plicities and we know the Dimensions cardinalities, we can
accurately estimate the Fact size as |Di|×multiplicity ; since
every instance of Di is exactly related to multiplicity Fact
instances. If two different cardinalities are inferred from the
same Fact then either the ontology or the sources sampled
are not sound and must be reconsidered. If multiplicities
available are ranged (i.e., minMultiplicity..maxMultiplicity)
we estimate the lower bound of the Fact size as max(|Di|×
minMultiplicityi). Notice we do not set an upper bound
with regard to maxMultiplicity since it would only assure
we are selecting Bases giving rise to dense Cubes; which
would be considered later.

Otherwise, if the ontology does not provide numerical mul-
tiplicities for the Fact - Dimension relationships, we will
also need to sample our data sources in order to estimate the
Fact cardinality; however it is important to sample it from
the same sites as Dimensions to avoid incoherent results.

After that, we start combining potential Dimensions to
point out those combinations identifying the Fact. A naive
solution would embrace to check all possible combinations
between potential Dimensions. However, it would not only
be expensive (i.e., exponential with regard to the number
of potential Dimensions) but also inappropriate since, ac-
cording to [C3], Dimensions conforming a Base should
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be orthogonal, and many concepts have functional depen-
dencies as explained in subsection 4.1. Figure 8 presents a
smarter and efficient algorithm to find all feasible Bases.
Essentially, this algorithm selectively generates sets of po-
tential Dimensions likely to be Bases, according to the
following pruning rules based on [C2] and [C3]:

Proposition 1. Let B and W be sets of potential Di-
mensions of a given Fact F. If B ⊆ W and B is known to
be a Base of F then, W, despite functionally determining
F, is not considered a Base of F since it is not minimal;
there exists a subset of W (i.e., B) functionally determining
the Fact.

Corollary 1. Let B be a set of potential Dimensions
fully functionally determining F. According to proposition
1, this set would only be generated as a combination if all
its subsets were generated and proved not to be Bases of F.
Otherwise, B would not be minimal and, therefore, it would
not be a Base of F.

Proposition 2. Let a and c be two concepts such that
{a}, {c} have been proved not to be Bases of F. According
to [C3], ({a} ∪ {c}) would be generated as a combination
iff, a and c are orthogonal.

Corollary 2. Let B be a set of potential Dimensions
and a and c two concepts. According to proposition 2, {a, c}
was generated at the end of the first iteration iff a and c
were orthogonal. Moreover, according to corollary 1, B is
generated iff all its subsets were generated and refuted as
Bases of F. Consequently, if B was generated, we can say
that ∀a,c ∈ B, a and c are orthogonal. Otherwise, {a, c}
would have not been generated and B neither.

Proposition 3. Let B be a set of potential Dimensions
and c a concept such that c ∈ B. Let I be the set of interme-
diate concepts giving rise to the many-to-one path between
F and c. We say that B might be a Base of F iff, for each
{ci} ∈ I, B − {c} + {ci}, namely the intermediate Bases
of c, has been proved as a Base of F; since each interme-
diate concept determines c and then, if B is a Base then
B − {c} + {ci} should also be a Base. Otherwise, we can
assure it would not be a Base.

With these premises, our algorithm drastically reduces the
searching space. Mainly, it generates (i+1 )-sized sets from
those i-sized candidate sets. An (i+1 )-sized set is generated
if, in the previous iteration, all its i-sized subsets have been
proposed as candidate sets (see step 3e). When it is not able
to generate new (i+1 )-sized sets the process ends (step 3).
But how are sets pointed out as candidate sets? According
to propositions stated above.

As stated in corollary 1, if a set B is proved to be a feasi-
ble Base, all those sets containing B must not be generated
(i.e., in step 3(c)i current Base is not proposed as a candi-
date set). For instance, according to figure 5, if {Product,
SocialBeing} has been proved to be a Base of BuyingAnOb-
ject, any other set containing it (for instance, {Product,
SocialBeing, SpatialThing-Localized} would not be gen-
erated). According to proposition 3, step 3(c)ii only consid-
ers as candidate sets those sets whose intermediate Bases
were proved to be Bases. Realize the importance of this rule
since, something refuted as a Base invalidates all those sets

having it as an intermediate Base (i.e., they are not added
to the candidate sets). In addition, also notice that, as a pre-
requisite of this pruning rule, i-sized combinations generated
in a given iteration must be treated in a proper order to avoid
checking it more than once. For instance, following our ex-
ample, {Interval, SocialBeing, SpatialThing-Localiz-

ed} could be a Base of BuyingAnObject, iff {Product, So-

cialBeing, SpatialThing-Localized} (i.e., an intermedi-
ate Base) is a Base of BuyingAnObject.

Finally, the last prune rule is applied in step 3e of the first
iteration of the algorithm. According to proposition 2, only
those 2 -sized sets whose concepts are orthogonal (i.e., not
appearing in its potential Dimensions list in the matrix
M -see subsection 4.1-) must be generated. For instance,
if {BuyingAnObject} and {MonetaryValue} were potential
Dimensions of a given Fact, they could not give rise to
{BuyingAnObject, MonetaryValue} since each one appear
in the functional dependencies list of the other.

Once Bases have been detected, we sort them accord-
ing to the product value of multiplicities (or cardinalities)
of participating Dimensions. Values closer to the Fact
cardinality will give rise to more dense (not sparse) Cubes
resulting in more efficient designs and, in the end, more intu-
itive Cubes to be handled by the user. Next, the user must
choose those Bases making more sense for him/her. More-
over, it would be necessary to allow the user to invalidate an,
a priori, valid Base. If it happened, the process would be
launched again to propose other Bases pruned as well as to
discard some selected, according to the feedback provided:
which feasible Bases are Bases indeed, and which not.

4.3 Giving rise to Dimension hierarchies
In the previous step (see 4.2) we have pointed out Dimen-

sions of analysis, but we still need to shape their hierarchies
in order to allow summarizability of data; one of the multi-
dimensionality principles.

Dimension hierarchies must guarantee a correct summa-
rizability of data (see [C4]). Thus, in this step we look for
to-one relationships (also known as “Roll-up” relationships)
giving rise to hierarchies allowing a correct data aggregation:
the to-one multiplicity preserves disjointness of aggregated
data, and forbidding zeros we also preserve its completeness.

Starting from each concept identified as a Dimension,
a directed graph following all to-one relationships paths is
depicted, using the matrix M built in subsection 4.1. Notice
that, at this moment, we cannot differentiate the role played
by each graph node (i.e., concepts); either as a Level or as
a Descriptor. However, two specific cases can give us more
information about it. (1) If any concept is placed in more
than one graph, we consider it to be a Level (since it seems
interesting to show data at this granularity level), and we
relate those Levels by semantic relationships to denote their
conceptual relationship. (2) One-to-one relationships in a
graph are depicting either a conceptual relationship between
two different Dimensions or an attribute of a Level (i.e., a
Descriptor). Then, if the ending concept (notice the graph
is directed) was identified as a Dimension, both concepts
would be properly related according to (1). Otherwise, we
consider it to be a Descriptor of the initial concept.

Finally, directed graphs deployed are presented to the user
as Dimension hierarchies, altogether with those seman-
tic relationships between Dimensions pointed out. With
these premises, in most cases we have not been able to iden-
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Figure 9: Resulting multidimensional schema

tify each graph concept either as a Level or a Descriptor.
However, this is sound, since it is up to a design decision
to spot each concept as an attribute of an existing Level
or as a new Level; giving rise to star or snowflake schemas
[11]. Consequently, this differentiation should be made by
the user, if he/she is interested in aggregating data at this
level, when stating his/her requirements.

Eventually, after carrying out all the method steps and
asking the user for his/her requirements at the end of each
step, for each Fact identified, we would get a multidimen-
sional schema like the one depicted in figure 9.

5. CONCLUSIONS
In this paper we have presented a semi-automated method

to point out multidimensional concepts from an ontology
representing our business domain. In our approach, we use
ontologies as well as reasoning tools provided by ontology
languages to look for multidimensional patterns. Currently,
we have carried out a complete simulation of a real case
study to validate the algorithm. Moreover, we have also
presented an in depth theoretical study of the algorithms
complexity to justify its feasibility.

We believe this paper to be the first to address the issue
of semi-automatic multidimensional design from ontologies.
Up to now, traditional approaches were typically carried
out manually and were restricted to work over relational
sources. Conversely, our approach is able to integrate in-
formation from heterogeneous data sources describing their
domain through ontologies. One of the most promising ar-
eas where to apply our method is the Semantic Web, giving
rise to new possibilities like extracting and integrating ex-
ternal data into our DW. In fact, since data warehousing
embraces, essentially, data integration, and the web is the
biggest source of data available, we can consider the web as
the source of the biggest DW to be exploited.
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