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Abstract

Purpose Periodontitis is the sixth most prevalent disease worldwide and periodontal bone loss (PBL) detection is crucial for
its early recognition and establishment of the correct diagnosis and prognosis. Current radiographic assessment by clinicians
exhibits substantial interobserver variation. Computer-assisted radiographic assessment can calculate bone loss objectively
and aid in early bone loss detection. Understanding the rate of disease progression can guide the choice of treatment and lead
to early initiation of periodontal therapy.
Methodology We propose an end-to-end system that includes a deep neural network with hourglass architecture to predict
dental landmarks in single, double and triple rooted teeth using periapical radiographs. We then estimate the PBL and disease
severity stage using the predicted landmarks. We also introduce a novel adaptation of MixUp data augmentation that improves
the landmark localisation.
Results We evaluate the proposed system using cross-validation on 340 radiographs from 63 patient cases containing 463,
115 and 56 single, double and triple rooted teeth. The landmark localisation achieved Percentage Correct Keypoints (PCK)
of 88.9%, 73.9% and 74.4%, respectively, and a combined PCK of 83.3% across all root morphologies, outperforming the
next best architecture by 1.7%. When compared to clinicians’ visual evaluations of full radiographs, the average PBL error
was 10.69%, with a severity stage accuracy of 58%. This simulates current interobserver variation, implying that diverse data
could improve accuracy.
Conclusions The system showed a promising capability to localise landmarks and estimate periodontal bone loss on periapical
radiographs. An agreement was found with other literature that non-CEJ (Cemento-Enamel Junction) landmarks are the hardest
to localise. Honing the system’s clinical pipeline will allow for its use in intervention applications.
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Introduction

Periodontitis remains a major public health problem
with a high cost to society [26], affecting 45% of UK
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adults1,with 11.2% of the world population experiencing
severe periodontitis conditions [13]. It is characterised by
progressive destruction of tooth-supporting apparatus lead-
ing to edentulism and masticatory dysfunction, which affect
the patients’ quality of life [22]. Periodontal diagnosis is an
important label to record patients’ health status; allowing
clinicians to define the complexity of the treatment required
and the prognosis of the tooth. Rapid disease progression
within a short period of time is difficult to monitor using cur-
rent manual radiographic assessment, because incipient bone
loss might be very challenging for a clinician to recognise.
Timely identification of early bone loss and a precise under-

1 https://digital.nhs.uk/data-and-information/publications/statistical/
adult-dental-health-survey.
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standing of the rate of disease progression would help in
guiding the choice of therapy, assessing individual treatment
needs as well as the potential need for any adjunctive therapy.
Computer-assisted radiographic assessment would enable
significant progress in diagnosis, prevention, and treatment
of early onset and rapidly progressing forms of periodontal
disease. Moreover, it would allow capturing early signs of
disease recurrence after the active phase of treatment, which
are likely to be missed in the current clinical settings, avoid-
ing any delay in intervention and therefore reducing the risk
of tooth loss.

With the introduction of the new clinical guidelines [8,25]
for the classification of periodontal and peri-implant condi-
tions, radiographic assessment became critical for adequate
diagnosis and treatment planning. Periapical radiographs are
the gold standard for the radiographic assessment of patients
with periodontitis, where the clinicians visually inspect the
radiograph and report their findings; including clinical clas-
sification of the disease severity stages [25]. This introduces
subjectivity, variations in reproducibility and the underesti-
mation of the severity of bone loss, especially in moderate
forms of periodontitis [1,7]. This interpretation method is
not sensitive enough and the presence of incipient periodon-
titis might be missed by the human eye [25]. Automation of
the periodontal bone loss (PBL) assessment and calculation
using an artificial intelligence-based tool would be consid-
ered a paradigm shift towards computer-assisted healthcare.

Existing computer-assisted solutions for PBL analysis
focused mainly on the detection and/or disease severity stage
classification from radiographs [4,14,16,19]. This ensured
objectivity of their methods but does not provide a solution
to objectively measure the PBL and then assess the disease
severity from this regressive measurement. The systematic
method to measure PBL is by directly measuring the ratio
between the bone level and apex (tip/end of the root) and
the tooth length, i.e from CEJ to the apex [12] (shown in
Fig. 1). Therefore, by automatically localising these den-
tal landmarks, we can develop Computer-Assisted Diagnosis
(CAD) tools for measuring the extent of PBL displayed in a
periapical radiograph. To the best of our knowledge, there
is no existing all-in-one deep learning-based method that
utilises landmark localisation for automatic horizontal and
vertical bone loss measurement and disease severity grading
on periapical radiographs.

Both panoramic and periapical radiographs have been
utilised for automatic PBL detection and disease progression
analysis [4,14,16]. Krois et al. [16] trained a Convolu-
tional Neural Network (CNN) based model for detecting
the presence of PBL. Since PBL itself is not binary, a cut-
off threshold had to be included in the system; opening it
to subjectivity. Moreover, [16] used panoramic radiographs,
which makes the assessment of individual teeth difficult and
instead can only lead to a holistic assessment of the mouth.

Chang et al. [4] used panoramic radiographs to classify
PBL extent/progression into the periodontitis stages defined
in [25]. The method [4] used a hybrid of deep learning-
based segmentation and conventional CAD processing for
the stage classification. Khan et al. [14] used off-the-shelf
networks (specifically U-Net and DenseNet) to segment peri-
apical radiographs and identify their key features; one of
which being areas of PBL. Lin et al. [19] used classical CAD
and image processing methods for landmark localisation in
the pursuit of measuring PBL in periapical radiographs. This
method [19] solely measured horizontal PBL, did not com-
pare severity grades to clinical estimates and was only tested
on 18 individual teeth from 12 periapical radiographs[19],
which is an extremely limited dataset.

Tiulpin et al. [24] successfully utilised deep learning
for medical landmark localisation. Their work [24] utilised
a single hourglass network with Hierarchical Multi-Scale
Parallel (HMP) residual blocks, MixUp data augmentation
and transfer learning from low-budget annotations for net-
work training. The low-budget training can establish the
Region-of-Interest (ROI) within the radiograph first, before
the high-budget annotations fully process the exact landmark
localisation, hence contributing to improved performance. In
this paper, we extend [24], for the localisation of dental land-
marks in periapical radiographs, by utilising a symmetric
hourglass architecture and proposing an Interstitial Spatial
MixUp (ISM) method as shown in Fig. 1. Moreover, we
show that the predicted landmarks can objectively measure
the PBL and predict the disease severity, providing a CAD
and assessment solution for intervention planning. To the best
of our knowledge, this paper is the first to use a deep neural
network for anatomical landmark localisation on periapical
radiographs, with the aim of jointly measuring the PBL and
disease severity stages, which is a key contribution to the
field of Periodontology.

Our contributions can be summarised as follows:

• A deep learning-based dental landmark localisation
method, trained on periapical radiographs from 63 patient
cases containing 463 single, 115 double and 56 triple root
teeth with significant variation in appearance, that out-
performed other methods, giving an overall Percentage
Correct Keypoints (PCK) of 83.3% across all root mor-
phologies, showing an improvement of 1.7% over the
second best performing method.

• First end-to-end method that computes the objective
PBL measurement, and assesses the periodontitis sever-
ity stages from dental landmarks of single, double and
triple rooted teeth. The obtained results are compared
with clinically labelled stages, validating the correctness
of our method.
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Fig. 1 End-to-end clinical pipeline demonstrating how each tooth is segmented from the full radiograph and parsed through our system to localise
the landmarks and output the percentage of PBL, along with its respective severity stage

• Introduce Interstitial Spatial MixUp (ISM) data augmen-
tation to take advantage of pixel interpolation and the
spatial domain for improved localisation of landmarks.

• Detailed quantitative evaluation and comparison of the
proposed landmark localisation method through 3-fold
cross validation across multiple root morphologies,
which is missing from the literature for this use case.

Problem definition

Given a periapical radiograph, the problem of measuring PBL
and classifying its severity stage involves first localising the
dental landmarks for each root morphology (single, double or
triple root tooth) present in the radiograph and then perform-
ing geometrical analysis for estimating the measurement.
Dental landmark localisation can be considered a regression
problem where the goal is to find the coordinates of each
landmark on the periapical radiograph image. Each tooth is
to be assessed individually, as a solitary image and combined
later on to estimate the overall PBL and severity stage present
in each radiograph. Single, double and triple rooted teeth
all have different amounts of pertinent landmarks, hence the
same network architecture, with different output units, can
be used to assess each root morphology. Single rooted teeth
have five landmarks, namely apex (Ac), left and right-sided
bone levels (BL L , BL R) and left and right-sided Cemento-
Enamel Junctions (C E JL , C E JR) (Fig. 2a). Additionally,
double rooted teeth have 8 landmarks, including left and
right-sided apex (AL , AR), centre left and centre right-sided
bone levels (BL LC , BL L R) (Fig. 2b). Triple rooted teeth
have an additional apex (AC ), totalling 9 pertinent landmarks,
due to the presence of a third root (Fig. 2c).

Once the landmarks are localised, the goal of the system is
to calculate the percentage of PBL and assign an appropriate
severity stage.

Methodology

The proposed method is an end-to-end artificial intelligence
pipeline to automatically determine the severity stage and
the regressive percentage of PBL (see Fig. 1) by predicting
the localisation of the dental landmarks. A single hour-
glass network, with an architecture adjusted from [24] to
accommodate a symmetric hourglass, is used for landmark
localisation. Additionally, ISM is introduced during data aug-
mentation to improve the landmark localisation performance.

Hourglass architecture

Hourglass networks are the backbone of many cutting-
edge landmark localisation systems [21]. Hourglass networks
downsample and subsequently upsample input images to
output a heatmap of key feature areas. The hourglass net-
work architecture featured in [24] converted the heatmaps to
regressive landmarks by using a Soft Argmax layer [5] and
introduced novel entry and exit blocks for landmark localisa-
tion. However, the hourglass used in [24] was asymmetric -
with a differing number of pooling-upsampling layers. This
differs from [21], which stated that the hourglass should be
symmetric, for accurate up-down sampling. Therefore, we
modified the architecture from [24] to accommodate a novel
symmetric design.

The overall architecture of the adjusted symmetric hour-
glass network is shown in Fig. 3. The symmetric hourglass
network uses HMP residual blocks [3] with zero padding,
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Fig. 2 Landmark labels for
single (left), double (centre) and
triple (right) rooted teeth; these
differing landmarks pose a
problem to basic generic
systems due to the varying
amounts of outputs and their
broad variations in physical
appearance

Fig. 3 Symmetric hourglass architecture, adjusted from [24], with a depth of 6. In practice, the entry block precedes the hourglass, which precedes
the exit block. The number in each residual block (e.g. 8W) represents its output dimension

batch normalisation and ReLU activation. HMP blocks are
lightweight and compact groups of convolutional layers
which improve performance by using binarisation and par-
allelisation to improve gradient flow and receptive field size,
whilst minimising computational demand.

All convolutional layers use valid padding and strides of 1,
however, the first convolutional layer in the network’s entry
block does not feature zero padding. The exit block’s dropout
rates are set to 0.25 and nearest-neighbour upsampling is
used in the symmetric hourglass [21]; in future work, trans-
posed convolutions may be evaluated to see their effect on
the upsampling. The width and depth settings [24] are 24 and
4 respectively; the width is from [24], whilst the depth was
reduced from 6 to aid computational demands.

Model additions

We use transfer learning from low-budget annotations,
as introduced in [24], since this was shown to facilitate
in improving accuracy. The low budget annotations only

included the apex landmarks for all teeth (which varies for
each root morphology), as these are the most difficult to
localise [19]. A model is trained using these low-budget
landmarks and the trained weights are then used to instan-
tiate a separate (final) network which trains on the full
labels. Additionally, we use image normalisation to map
all pixels from 0–255 to 0–1, which speeds up the con-
vergence. Generally, MixUp data augmentation [28] creates
new images by interpolating the pixels of similarly-sized
images, whilst CutMix [27] creates augments using local
dropout-and-replacement methods, taking advantage of the
spatial domain. However, CutMix’s methodology is innately
unsuitable for landmark localisation without major overhaul
to detect whether a landmark has been cut and to match
both images’ spatial domains. Therefore, to take advantage
of the spatial domain, we introduce a novel data augmenta-
tion system, ISM, which fuses the pixel interpolation from
MixUp [28] and the spatial domain usage from CutMix [27]
(shown in Fig. 4). These shortcomings and potential bene-
fits are the main motivation of ISM. This differs from regular
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Fig. 4 Interstitial Spatial MixUp Example. The centre of the larger
image is replaced with an interpolation between the smaller and larger
image

Spatial MixUp by interpolating pixel values across the spatial
domain, rather than stitching separate slices of each image
together [18]. In ISM each image is differently sized, with an
interpolation between the larger image (I1) and the smaller
image (I2) replacing the centre of the larger image. Their
labels and pixels are interpolated from Eq. 1, where γ is
a random number between 0 and 1. The differently-sized
images differentiate this from gradual-integration methods,
such as SmoothMix [17], by fully surrounding the smaller
image within the larger image. Entire images are featured
as a uniformly-interpolated subset of a larger image in ISM
in order to ensure constant visibility of all landmarks of the
sub-image, without unfairly skewing results towards more
“shown” landmarks, as may be the case in an implementation
of SmoothMix. ISM’s “hard edges” simulate CutMix, whilst
its interpolation simulates MixUp. It is hoped that ISM will
encourage robustness for real radiographs with surrounding
teeth occlusions and also focus the network’s region-of-
interest localisation, which is a pertinent part of [24], on
two different scales within the same image. Generally multi-
scale evaluations offer consistent improvements in computer
vision [3]. These hypotheses are also motivations for ISM.
In each experiment, ISM expanded each respective dataset
by 50%.

I SM = γ ∗ I1 + (1 − γ ) ∗ I2 (1)

PBLmeasurement and severity classification

PBL is calculated directly from the localised landmarks by
finding the difference between the bone level (apex to bone
level) and the length of the tooth (apex to CEJ), as a fraction of

the full tooth length. Eq. 2 exemplifies how we calculate PBL
for single root teeth - for double and triple rooted teeth, AL

and AR are appropriately used in place of AC . Each tooth has
2 values for bone loss, from the left and right side, of which
the maximum value is recommended [25].

P BL% = max

(

‖C E JL − AC‖ − ‖BL L − AC‖

‖C E JL − AC‖
,

‖C E JR − AC‖ − ‖BL R − AC‖

‖C E JR − AC‖

)

× 100 (2)

Using the PBL %, the severity stage of the disease was cal-
culated. The four severity stages were defined according to
the British Society of Periodontology’s implementation of
the new classification guidelines [8]: stage 1 with PBL less
than 15%, stage 2 with PBL between 15 and 33%, stage 3
with PBL between 33 and 67% and stage 4 with PBL greater
than 67%.

Experiment setup

Dataset

We use a dataset of 340 fully anonymised periapical radio-
graphs that were retrospectively collected at the UCL East-
man Dental Institute. Each radiograph was of varying size,
with an average size of 896 x 887 pixels. Radiographs
were manually annotated using the VIA tool [9] by two
postgraduate specialist trainees in periodontology. Manual
annotations localise each tooth’s location, root morphology
and its respective landmarks (as mentioned in “Problem defi-
nition” section). In each radiograph there are usually multiple
teeth. Each radiograph was cropped using the annotated tooth
detection bounding box such that each tooth was seen as its
own solitary image, without segmenting/masking extraneous
features (i.e. sections of surrounding teeth), to encourage
robustness and simulate realism. We assumed tooth detec-
tion to be a solved problem, as any existing object detection
method can be used robustly for this purpose [6]. Each image
is saved at its raw resolution/size, which varies throughout
the dataset. All landmark coordinate labels are normalised
with respect to the size of the image (setting them to between
0 and 1). The final pre-processed dataset, after discounting
any labelling errors (e.g. incorrect tooth assignation), is sum-
marised in Table 1, indicating the amount of individual teeth
images and the amount of each landmark, classified by root
morphology.

Experiment settings

For each root morphology, an individual network is trained,
matching the network’s output units to the differing number
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Table 1 Summary of the
preprocessed dataset classified
by root morphology

No. Images C E JL C E JR BL L BL R BL LC BL RC AL AR AC

Single 463 463 463 463 463 – – – – 463

Double 115 115 115 115 115 115 115 115 115 –

Triple 56 56 56 56 56 56 56 56 56 56

of landmarks in single, double or triple rooted teeth. To utilise
all of the data available, 3-fold cross-validation is used to
gauge the performance of the networks and verify the robust-
ness of the trained network on totally unseen data. The entire
dataset is split into 3 folds - the first two folds are split into
training and validation (where validation is used to inform
Early Stopping), whilst the third fold remains unseen, as a
hold-out test set. Analysis of this unseen fold is termed evalu-
ation. By training 3 versions of the same model, all of the data
can be evaluated as unseen. All folds and training/validation
splits are patient-independent and therefore feature varying
numbers of patient cases. All images are resized to size (256,
256, 3) using nearest-neighbour sampling [21] before train-
ing. A constant learning rate of 0.001 is used, along with the
Adam optimiser [15] and a batch size of 4. Mean Squared
Error (MSE) loss is used for training and validation. Early
stopping, with a Keras/TensorFlow patience setting of 200
and a 1,000 epoch limit, is used to avoid over-fitting.

Comparisonmethods

The adjusted symmetric hourglass with proposed ISM
model additions (presented in “Model additions” section)
is compared with a baseline ResNet-based regression model
without the proposed ISM model additions (i.e. no pixel nor-
malisation, ISM or transfer learning), a symmetric hourglass
without additions, a network with an asymmetric hourglass
architecture from [24] with and without model additions
and a stacked hourglass network (a cascade of symmet-
ric hourglass models, which is highly popular in landmark
localisation [21]), adapted from [21,24], with model addi-
tions. In the subsequent text, these models are respectively
labelled symmetric hourglass, raw ResNet, raw symmetric
hourglass, asymmetric hourglass, raw asymmetric hourglass
and stacked hourglass. The baseline raw ResNet architecture
used a pretrained ResNet152 encoder [10], with a flattened
convolutional output, followed by a fully-connected layer of
128 units with ReLu activation and batch normalisation. The
final fully connected layer contained N units, where N is the
desired number of outputs. In the stacked hourglass archi-
tecture, symmetric hourglass blocks are stacked consecutive
to one another with intermediate supervision. The entry and
exit blocks from [24], shown in Fig. 3, are also integrated
into the stacked hourglass. For all comparison methods, the
relevant hyperparameters and methods (batch size, learning,

k-fold etc.) remained the same as in “Experiment settings”
section.

Evaluationmetrics

A drawback of MSE (which is used as the differentiable loss
in all models) is that it may be reduced by improving points
which are already sufficiently accurate and representative of
the actual landmark position. For this reason, in landmark
localisation it is common to use the PCK metric to deter-
mine the percentage of points which are “correct”, given a
certain cutoff error distance from the true landmark label
[2,3]. Throughout our evaluation, we vary the cutoff points
to explore the discrete PCK values of predicted landmarks.
The calibration/scale data for the radiographs is not available,
therefore distances needed for PCK are evaluated in pixels.
Since all models have been trained on (256, 256) size images,
their pixel distances are also evaluated at the same resolution.
In order to not conform to a singular arbitrary pixel cutoff
range, which would introduce subjectivity, multiple ranges
between 0 and 25 pixels have been evaluated.

Results and discussion

Figure 5 shows the PCK metric values, at multiple cut-
offs, obtained from the cross-validated landmark localisation
results for the three different root morphologies. The perfor-
mance of the landmark localisation for single root teeth is
far superior to the other two root morphologies’, which was
expected as this is the largest dataset (Table 1) and so pro-
vides more samples for training. The performance for all
root morphologies at the higher cutoffs is encouraging, with
the proposed symmetric hourglass architecture with the pro-
posed ISM additions achieving 88.9%, 73.9% and 74.4%
PCK for single, double and triple rooted teeth respectively
and a combined PCK of 83.3% across all root morphologies,
with a 25 pixel cutoff. This is compared to the asymmet-
ric hourglass with proposed ISM additions, which achieved
86.0%, 74.6% and 74.6% respectively, with an overall PCK
of 81.6%, which is 1.7% lower than the proposed symmet-
ric architecture. ResNet, without proposed ISM additions,
achieved 44.8%, 35.0% and 43.3% respectively, with an over-
all PCK of 42.2%. As can be seen, the symmetric hourglass
consistently outperforms all others on the single root teeth,
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Fig. 5 PCK values with varying cutoff points (in pixels) for all root morphologies. Raw means that the proposed additions from “Model additions”
section were omitted, including pixel normalisation and data augmentation (best viewed in color)

Fig. 6 PCK values per landmark, with varying cutoffs (in pixels) (best viewed in color)

whilst the asymmetric hourglass marginally outperforms the
others on double and triple rooted teeth. The single rooted
teeth are the largest dataset, and hence the symmetric hour-
glass with proposed ISM additions achieves the best PCK
overall. It can be noticed, in Fig. 5, that the proposed ISM
additions (described in “Model additions” section) improve
performance, particularly for the symmetric hourglass.

Figure 6 shows the PCK values for each individual land-
mark type. This shows that generally, the best performing
landmarks are C E JR and C E JL , whilst the worst per-
forming are AR and AL . This supports the prior theory
within literature that the non-CEJ (in this case, specifi-
cally the apexes) are the hardest landmarks to localise [19],
even by clinicians, which is often due to poor radiograph
quality [19]. The AC landmark type has better perfor-
mance, likely because it is the only apex which features
in single rooted teeth, which have generally superior per-
formance. The performance of the symmetric hourglass
is comparable to that of the asymmetric hourglass, with
particularly better localisation of the AC landmark. Both
hourglass methods heavily outperform the ResNet152 base-
line.

The mean and standard deviation of pixel errors with and
without outliers are reported in Table 2. The double rooted
teeth display the highest mean errors, depicting that all net-
works struggle in accurately localising landmarks on these
teeth. This correlates with the comparatively poor perfor-

mance on AL and AR evident from Fig. 6. Notably, similar
to the PCK metrics, the symmetric hourglass outperforms
the asymmetric hourglass for single rooted teeth and showed
comparable results for double rooted teeth. For this same
reason, ISM was compared with MixUp on the symmetric
hourglass, with Fig. 5 and Table 2 showing its consistent
improvement on single root teeth, with less consistent results
on the double and triple rooted teeth. The performance of
the symmetric hourglass is worse when compared to the
asymmetric hourglass for triple rooted teeth, which is the
smallest dataset. The weighted average is taken to determine
the normalised performance of each model under compari-
son, which shows the symmetric hourglass as the superior
architecture. Moreover, the single root pixel errors and PCK
values with varied cutoffs, which were the main reason for
selecting the symmetric hourglass, along with the raw land-
mark predictions all demonstrated statistical differences with
their asymmetric equivalents at significance levels of p<

0.01, p< 0.01 and p= 0.1 respectively, using paired T-Tests,
validating this decision. Double root, triple root and overall
pixel errors showed significance levels of p= 0.5, p< 0.01
and p= 0.25 respectively when symmetric and asymmet-
ric hourglasses were compared. This further emphasises the
difficulty of the double root dataset and hence the impor-
tance of the single root performances, as the largest and
most diverse dataset. The ISM/MixUp comparison showed
statistical significance for the single root pixel errors and
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Table 2 Pixel error mean and standard deviation

Model Root STD-M P-M No Outliers
Mean ± Std Outliers Mean ± Std Outliers

Asymmetric Single 12.12 ± 11.08 2.29% 11.61 ± 8.87 10.28% 14.82 ± 24.91

Hourglass Double 18.03 ± 17.77 4.02% 18.43 ± 16.20 11.52% 24.53 ± 38.86

W/ Proposed ISM Triple 15.53 ± 13.34 3.17% 15.70 ± 12.00 11.71% 18.36 ± 22.15

Additions W-Mean 13.49 ± 12.49 N/A 13.21 ± 10.48 N/A 16.89 ± 27.20

Symmetric Single 10.85 ± 10.13 2.20% 10.36 ± 7.91 11.14% 13.58 ± 24.85

Hourglass Double 18.07 ± 17.04 4.67% 19.01 ± 16.35 11.74% 25.17 ± 38.31

W/ Proposed ISM Triple 17.23 ± 14.12 3.57% 17.39 ± 12.89 10.52% 20.55 ± 23.48

Additions W-Mean 12.72 ± 11.74 N/A 12.55 ± 9.88 N/A 16.30 ± 27.17

Symmetric Single 12.54 ± 11.59 2.59% 12.30 ± 9.50 12.10% 15.52 ± 25.71

Hourglass Double 17.73 ± 16.47 4.02% 17.89 ± 14.90 10.43% 24.00 ± 36.25

W/ MixUp Triple 17.94 ± 14.68 2.98% 17.90 ± 13.10 10.71% 20.46 ± 21.93

Additions W-Mean 13.96 ± 12.75 N/A 13.81 ± 10.80 N/A 17.50 ± 27.29

Asymmetric Single 11.75 ± 11.24 2.76% 11.28 ± 9.07 10.11% 14.96 ± 26.27

Hourglass Double 20.59 ± 19.08 4.35% 21.08 ± 18.09 10.00% 26.86 ± 36.64

No Additions Triple 19.43 ± 13.93 3.37% 19.62 ± 12.57 10.32% 22.27 ± 22.14

W-Mean 14.03 ± 12.90 N/A 13.79 ± 11.02 N/A 17.76 ± 27.79

Symmetric Single 12.69 ± 11.85 2.46% 12.17 ± 9.64 10.19% 15.91 ± 27.40

Hourglass Double 22.56 ± 18.78 4.57% 23.43 ± 17.94 10.54% 28.95 ± 36.15

No Additions Triple 19.48 ± 15.07 3.57% 20.06 ± 13.76 12.30% 22.57 ± 23.49

W-Mean 15.08 ± 13.39 N/A 14.91 ± 11.51 N/A 18.86 ± 28.64

Baseline Single 30.42 ± 18.78 3.28% 30.72 ± 16.69 9.98% 34.13 ± 29.90

ResNet152 Double 41.46 ± 31.27 6.30% 45.30 ± 34.04 10.00% 52.18 ± 53.36

Triple 33.22 ± 24.80 1.79% 31.87 ± 18.09 10.32% 54.05 ± 175.31

W-Mean 32.67 ± 21.58 N/A 33.47 ± 19.96 N/A 39.16 ± 47.00

Stacked Single 13.00 ± 11.04 2.38% 12.90 ± 8.82 13.26% 15.98 ± 25.98

Hourglass Double 19.74 ± 17.84 4.24% 20.12 ± 16.45 10.11% 26.14 ± 36.78

Triple 17.94 ± 14.18 2.98% 17.79 ± 12.69 9.92% 20.56 ± 22.09

W-Mean 14.66 ± 12.55 N/A 14.64 ± 10.55 N/A 18.23 ± 27.60

Bold indicates that this model performs the best in this category (i.e. the asymmetric hourglass w/ proposed ISM additions performs best on double
and triple, whilst the symmetric hourglass w/ proposed ISM additions performs best on the single and W-mean). Outliers are discounted for these
calculations using two different methods (columns): discounting outliers (1) over 2 standard deviations from the mean (STD-M) and (2) outside
the 5th and 95th percentile (P-M). The percentage of outliers per method and the values without outlier exemption are also reported. All values are
calculated using 3-fold validation. W-Mean is the mean across all root morphologies, weighted by the number of samples

PCK with varied cutoffs (p< 0.01) but not the raw pre-
dictions. This shows that ISM is a promising alternative
to MixUp, but more robust and cross-validated experimen-
tation is needed to confirm this unequivocally and this is
a future research direction. The symmetric hourglass per-
forms best on the largest dataset and hence shows robustness
to larger scale experiments too. The symmetric hourglass’
predictions are therefore used for further clinical analy-
sis.

We calculate each individual tooth’s percentage of PBL
and severity stage by applying the approach outlined in
“PBL measurement and severity classification” section on the

predicted and clinician-assigned landmarks independently;
this shows a mean error for PBL % of 6.82 ± 6.43 (with
3.79% outliers), with a predicted severity stage accuracy
of 68.30%. Supplementary Figure 2 shows the correlation
plot for this method. The clinicians also performed a cur-
sory visual assessment of a subsection of the full periapical
radiographs, each showing multiple teeth, assigning them
an overall approximate severity grade and PBL % based on
the worst affected tooth. When this same process is imple-
mented using the symmetric hourglass’ predictions, a mean
error for PBL % of 10.69 ± 9.15 (with 11.89% outliers)
is found. The predicted severity stages showed a classifi-
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Fig. 7 Stage severity confusion matrix, showing the difference in the
system’s predictions versus the clinicians’ visual estimates of severity
stages of full radiographs

cation accuracy of 58%, for which the confusion matrix is
shown in Fig. 7. All severity stage accuracies and the con-
fusion matrix do not discount outliers. The confusion matrix
shows that the majority of confusion comes from stages 2
and 3, likely as these are the most common stages in the
dataset. Overall, the predicted clinical results show good
alignment with the PBL and severity stages derived from
clinicians’ landmarks. Whilst the approximate radiographic
(multiple teeth) PBL and severity stages show good align-
ment to the predictions, but with more variation - this is
expected as this clinical observation method is highly sub-
jective and is not as systematic as the analysis of labelled

landmarks. However, the system does emulate current inter-
observer error evaluated in the periodontal area [20,23],
with clinicians of similar experience to those in this study,
which implies that with a more diverse group of clinical
labellers and more data, the results could improve holis-
tically. Moreover, the PBL calculation method outlined in
Eq. 2 does not account for the central bone loss between
roots, as the data labels did not allow for this; resulting
in underestimation of PBL in extreme cases. Therefore,
to further validate these results, our future work includes
extending the dataset’s diversity and labelling system, by
using cross-checking and comparing clinical assessments,
specifically the assignment of periodontitis severity stages,
performed by multiple clinicians to further understand the
extent of variability that is introduced through subjective clin-
ical assessment.

The qualitative results for the symmetric hourglass net-
work are shown in Fig. 8 and for the baseline are included in
the Supplementary Figure 1. Majoritively the single rooted
teeth’s landmark localisation performs well. The double
rooted teeth also perform well, however, it is evident that
the network performs better on clear teeth facing upwards
(first and final teeth). This lack of spatial robustness may
be remedied through the use of basic data augmentation, as
well as through the inclusion of Spatial Transformation Net-
works, which are commonly used in the literature to align
images to a common axis within networks [11]. The sec-
ond and fourth double root images show vastly incorrect

Fig. 8 Symmetric hourglass’ qualitative results showing single rooted teeth on the first row, double on the second and triple on the third. Red circles
show predictions and green circles show clinicians’ labels (best viewed in colour)
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apex localisations, supporting our previous observation that
whilst double rooted teeth get many landmarks correct, the
ones they get wrong are extremely wrong and are usually
the apex landmarks (refer to Fig. 6). Finally, the triple rooted
teeth show encouraging performance, moreover, the visual-
isation of the images indicates an obvious reason as to why
the more complex triple rooted teeth may be performing bet-
ter than the simpler double rooted teeth (seen in Table 2),
even with a smaller dataset: all of the triple rooted teeth
in the dataset point downwards. Conversely, the single and
double root datasets show teeth pointing upwards and down-
wards (with anomalous sideways images). This shows how
effective aligning images to a common axis can be, further
emphasising the potential benefit that the future inclusion of
Spatial Transformation Networks [11] could yield. Whilst
we analyse all root morphologies, we believe that further
increasing the dataset size to include more double and triple
rooted samples would substantially improve the overall per-
formance.

Conclusion

We proposed an end-to-end system, based on a single hour-
glass network, which unitedly localised dental landmarks to
automatically calculate PBL and disease severity stages using
periapical radiographs. This provides an objective measure-
ment for disease assessment that can aid in better clinical
treatment and interventional therapy planning. Additionally,
we introduced Interstitial Spatial MixUp data augmentation,
a conceptual blend between MixUp and CutMix, and showed
that its addition improved the landmarks’ localisation perfor-
mance over MixUp. The proposed pipeline was evaluated to
show its performance upon all root morphologies, achieving
a peak PCK of 88.9% for single root teeth. We compared
the calculated PBL with clinicians’ visual analyses, evalu-
ating an error of 10.69% and a severity stage classification
accuracy of 58%. Some limitations of this study include the
non-automatic separation of teeth by root morphology, lack
of labels allowing for assessment of PBL between roots (hin-
dering extreme PBL classification) and a scarcity of diverse
data. Therefore, future work involves experimentation and
cross-validation to evaluate ISM’s performance enhance-
ments and extending the dataset to further strengthen the
performance with respect to the clinical severity staging,
so that a computer-assisted radiographic assessment system
could provide significant support in periodontitis diagnostics
and interventional applications.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-021-02431-
z.
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