
Automating Resolution is NP-Hard

Albert Atserias and Moritz Müller
Universitat Politècnica de Catalunya

September 10, 2019

Abstract

We show that the problem of finding a Resolution refutation that is at most poly-
nomially longer than a shortest one is NP-hard. In the parlance of proof complexity,
Resolution is not automatizable unless P = NP. Indeed, we show that it is NP-hard to
distinguish between formulas that have Resolution refutations of polynomial length and
those that do not have subexponential length refutations. This also implies that Reso-
lution is not automatizable in subexponential time or quasi-polynomial time unless NP
is included in SUBEXP or QP, respectively.

1 Introduction

The proof search problem for a given proof system asks, given a tautology, to find an ap-
proximately shortest proof of it. Clearly, the computational complexity of such problems is
of fundamental importance for automated theorem proving. In particular, among the proof
systems for propositional logic, Resolution deserves special attention since most modern
implementations of satisfiability solvers are based on it.

We say that the proof search problem for Resolution is solvable in polynomial time
if there is an algorithm that, given a contradictory CNF formula F as input, outputs a
Resolution refutation of F in time polynomial in r + s, where r is the size of F , and s is
the length of a shortest Resolution refutation of F . More succinctly, we say that Resolution
is automatizable [11]. It is clear that the concept of automatizability applies not only to
Resolution but to any refutation or proof system, and one can ask for automating algorithms
that run in quasi-polynomial time, subexponential time, etc..1

In this paper we show that Resolution is not automatizable unless P = NP. The as-
sumption is clearly optimal since P = NP implies that it is. To prove our result we give
a direct and efficient reduction from 3-SAT, the satisfiability problem for 3-CNF formulas.
The reduction is so efficient that it also rules out quasi-polynomial and subexponential time

1The time of the automating algorithm is not measured in r but in r + s because s can be much larger
than r. We use both r and s, and not just s, because a Resolution refutation need not use all clauses in F ,
but the algorithm should be given the opportunity to at least read all of F .

1

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or 
promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of 
any copyrighted component of this work in other works. DOI 10.1109/FOCS.2019.00038



automating algorithms for Resolution under the corresponding hardness assumptions. More
precisely, let QP and SUBEXP denote the classes of problems that are decidable in quasi-
polynomial time 2(log n)

O(1)
, and in subexponential time 2n

o(1)
, respectively. Then our main

result reads:

Theorem 1.

1. Resolution is not automatizable in subexponential time unless NP ⊆ SUBEXP.

2. Resolution is not automatizable in quasi-polynomial time unless NP ⊆ QP.

3. Resolution is not automatizable in polynomial time unless NP ⊆ P.

That Resolution is not automatizable in polynomial time has been known under a stronger
assumption from parameterized complexity theory, using a more contrived reduction [1]: we
review the literature below. The first two statements in Theorem 1 give the first evidence that
Resolution is not automatizable in quasi-polynomial or subexponential time. As in the third
statement, their assumptions are also optimal in that NP ⊆ QP and NP ⊆ SUBEXP imply
that Resolution can be automated in quasi-polynomial and subexponential time, respectively.

The main result as stated in Theorem 1 is a direct consequence of the fact, which we also
prove, that the problem of non-trivially approximating minimum proof length for Resolution
is NP-hard. If for a CNF formula G we write r(G) for the size of G, and s(G) for the length
of a shortest Resolution refutation of G, then we show:

Theorem 2. There are reals c > 0 and d > 0 and a polynomial-time computable function G
that maps any 3-CNF formula F to a CNF formula G(F ) such that, for r = r(G(F ))
and s = s(G(F )):

(a) if F is satisfiable, then s < rc;

(b) if F is unsatisfiable, then s > 2r
1/d

.

Moreover, c and d can be chosen arbitrarily close to 1 and 2, respectively, which means that
it is NP-hard to approximate the minimal Resolution refutation length to within 2r

1/2−ǫ
for

any ǫ > 0.

Proof idea An idea of how a map G as in Theorem 2 could be defined is implicit in [36].
Pudlák [36, Theorem 2] maps a formula F to REF(F, s), for some s suitable for his context,
where REF(F, s) is a CNF formula whose clauses describe, in a natural way, the Resolution
refutations of F of length s. He used this function to show that the canonical pair of
Resolution is symmetric. In particular, he showed that, if F is satisfiable, then REF(F, s)
has a short Resolution refutation. This refutation proceeds naturally by using a satisfying
assignment for F as a guide to find a true literal in each line of the alleged refutation, line by
line one after another, until it gets stuck at the final empty clause. Conversely, we would like
to show that, if F is unsatisfiable, then REF(F, s) is hard for Resolution. Intuitively, this
should be the case: refuting REF(F, s) means proving a lower bound and “our experience

2



rather suggests that proving lower bounds is difficult” – this is what Pudlák [36, Section 3]
states about a similar formula for strong proof systems.

However, even after considerable time and effort, we failed to prove a Resolution length
lower bound for REF(F, s). We bypass the issue by considering a harder version RREF(F, s)
of REF(F, s). The harder RREF(F, s) is obtained from relativizing REF(F, s) seen as the
propositional encoding of a first-order formula with a built-in linear order, following the
general relativization technique of Dantchev and Riis [19]. When F is satisfiable, Pudlák’s
upper bound for REF(F, s) goes through to RREF(F, s), and the linear order is crucial in
this. On the other hand, a random restriction argument in the style of [19] reduces a length
lower bound for RREF(F, s) to a certain width lower bound for REF(F, s). The bulk of the
current work is in establishing this width lower bound for REF(F, s), when F is unsatisfiable.
It is proved by showing that, even if s = s(n) has (not too slow) polynomial growth, the
formulas REF(F, s) and REF(F, 2n+1) are indistinguishable by inferences of bounded width,
where n is the number of variables in F . Since every unsatisfiable CNF formula with n
variables has a refutation of length 2n+1, the formula REF(F, 2n+1) is satisfiable, from which
it follows that REF(F, s) does not have bounded-width refutations.

The technical device that we use in the indistinguishability argument is a variant of the
conditions from [34], a particular formalization of a Prover-Adversary argument as, e.g., in [19].
The wording is meant to point out some analogy with forcing conditions [6]. This is not
straightforward. The main obstacle overcome by our variant is the presence of the built-in
linear order in REF(F, s). In fact, Dantchev and Riis [19, Section 5] point out explicitly that
their arguments fail in the presence of a built-in linear order.

History of the problem The complexity of the proof search problem has been exten-
sively investigated. Kraj́ıček and Pudlák [33] showed that Extended Frege systems2 are not
automatizable assuming RSA is secure against P/poly. Subsequently, Bonet et al. showed
this for Frege [11] and bounded depth Frege systems [12] assuming the Diffie-Hellman key
exchange is secure against polynomial or, respectively, subexponential size circuits.

In fact, these results rule out feasible interpolation, an influential concept introduced to
proof complexity by Kraj́ıček [27, 29]. We refer to [32, Chapters 17, 18] for an account. If a
system with feasible interpolation has short refutations of the contradictions that state that a
pair of NP problems are not disjoint, then the pair can be separated by small circuits. Hence,
feasible interpolation can be ruled out by finding short proofs of the disjointness of an NP pair
that is hard to separate. Such hardness assumptions turn up naturally in cryptography [23]
which explains the type of assumptions that were used in the results above.

The failure of feasible interpolation for a natural system R implies (cf. [4, Theorem 3])
that R is not even weakly automatizable in the sense that it would be polynomially simulated
(see [18]) by an automatizable system. Hence, the above results left open whether weak
proof systems, in particular those having feasible interpolation such as Resolution [29], were
(weakly) automatizable. We refer to [3] for a survey, and focus from now on on Resolution.

2We refer to the textbook [28, Chapter 4] for a definition of this and the following systems. All notions
relevant to state and prove our results are going to be defined later.

3



Pudlák showed [36, Corollary 2] that the weak automatizability of a proof system is
equivalent to the (polynomial time) separability of its, so-called, canonical NP-pair [37].
This is, informally, the feasibility of distinguishing between satisfiable formulas and those
with short refutations. Hence, to rule it out it suffices to reduce some inseparable disjoint NP
pair to it. Atserias and Maneva [5] found in this respect useful pairs associated to two player
games. The two NP sets collect the games won by the respective players, and separation
means deciding the game. Following [5, 24], Beckmann et al. [9] showed that Resolution is not
weakly automatizable unless parity games are decidable in polynomial time. Note, however,
that this might well be the case, in fact, parity games are decidable in quasi-polynomial
time [14].

Moreover, some non-trivial automating algorithms are known. Beame and Pitassi [8]
observed that treelike Resolution is automatizable in quasi-polynomial time. For general
Resolution there is an algorithm that, when given a 3-CNF formula with n variables that
has a Resolution refutation of length at most s, computes a refutation in time nO(

√
n log s).

This follows from the size-width trade-off of Ben-Sasson and Wigderson [10]. Indeed, it is
trivial to find a refutation of width at most w in time nO(w) if there is one (and, in general,
time nΩ(w) is necessary [7]). When s is subexponential the runtime of this algorithm is the

non-trivial 2n
1/2+o(1)

.
However, the automatizability of Resolution is unlikely. First, Alekhnovich et al. [2]

showed, assuming only P 6= NP, that automatization is not possible in linear time. In
fact, they proved more. They considered the optimization problem of finding, given a con-
tradictory CNF, a Resolution refutation that is as short as possible. They reduced to it
the optimization problem MMCSA of finding, given a monotone circuit, a satisfying assign-
ment that has Hamming weight as small as possible. Known PCP theorems imply that this
problem is not approximable with superconstant but sublinear ratio 2log

1−o(1) n, so the same
holds for finding short Resolution refutations. This argument can be adapted to many other
refutation systems (see [2]).

But the main convincing evidence that Resolution is not automatizable, before the result
of this paper, was achieved by Alekhnovich and Razborov [1]. By a different and ingenious
reduction they showed that if Resolution, or even treelike Resolution, were automatizable,
then MMCSA would have, in the terminology of parameterized complexity theory (see [16,
Proposition 5]), an fpt algorithm with constant approximation ratio. Now, the same pa-
per [1] also established “the first nontrivial parameterized inapproximability result” [20, p.9]
by further deriving a randomized fpt algorithm for the parameterized decision version of
MMCSA, a well-known W[P]-complete problem (see e.g. [21, Theorem 3.14]). The ran-
domized fpt algorithm has subsequently been derandomized by Eickmeyer et al. [20], hence
Resolution is not automatizable unless W[P] = FPT. Very recently, Mertz et al. [26] showed
that Resolution is not automatizable in time n(log logn)0.14 unless ETH fails; this follows the
same line of argument as [1] but is based on a more recent parameterized inapproximability
result due to Chen and Lin [17].

Since these results apply not only to Resolution but even to treelike Resolution, which
is automatizable in quasipolynomial time, Alekhnovich and Razborov stated that the “main

4



problem left open” [1, Section 5] is whether general Resolution is automatizable in quasi-
polynomial time. We consider Theorem 1 as an answer to this question.

The computational problem of computing minimal proof lengths also has a long history.
For first-order logic, the problem dates back to Gödel’s famous letter to von Neumann; we
refer to [35] for a historical discussion, to [13] for a proof of Gödel’s claim in the letter, and
to [15] for some more recent results. In propositional logic, the problem has been shown to
be NP-hard for a particular Frege system by Buss [13], and for Resolution by Iwama [25].
Alekhnovich et al. [2] showed that the minimal Resolution refutation length cannot be ap-
proximated to within any fixed polynomial unless NP 6⊆ P/poly: for every d ∈ N there are
functions G and S, computable in non-uniform polynomial time, such that for every CNF for-
mula F of sufficiently large size r = r(F ) we have either s(G(F )) < S(r) or s(G(F )) > S(r)d

depending on the satisfiability F . This falls short to rule out automatizability because S(r)
has exponential growth. Earlier, Iwama [25] found uniformly computable such functions
with polynomially bounded S(r) but his gap was only S(r) versus S(r)+ rd for a constant d,
so also falls short to rule out automatizability.

Outline In Section 2 we introduce some notation and basic terminology from propositional
logic. Section 3 presents Resolution refutations as finite structures. Section 4 is devoted
to REF(F, s) and proves the width lower bound when F is unsatisfiable (Lemma 4). Section 5
discusses the relativized formula RREF(F, s), the refutation length upper bound when F
is satisfiable (Lemma 11), and the refutation length lower bound when F is unsatisfiable
(Lemma 10). Theorems 2 and 1 are derived from these lemmas in Section 6. In Section 7
we discuss some open issues. Finally, for easiness of reference, in Appendix A we give the
detailed lists of clauses for the formulas REF and RREF.

2 Preliminaries

For n ∈ N we let [n] := {1, . . . , n} and understand that [0] = ∅. A partial function from
a set A to a set B is a function f with domain Dom(f) included in A and image Img(f)
included in B. We view partial functions from A to B as sets of ordered pairs (u, v) ∈ A×B.
For any set C, the restriction of f to C is f∩(C×Img(f)). The restriction of f with image C
is f ∩ (Dom(f)× C).

We fix some notation for propositional logic. Let V be a set of propositional variables
that take truth values in B = {0, 1}, where 0 denotes false and 1 denotes true. A literal
is a variable X or its negation ¬X , also denoted X̄ . We also write X(1) for X and X(0)

for X̄. A clause is a set of literals, that we write as a disjunction of its elements. A clause is
non-tautological if it does not contain both a variable and its negation. The size of a clause
is the number of literals in it. A CNF formula, or CNF, is a set of clauses, that we write as
a conjunction of its elements. A k-CNF, where k > 1, is a CNF in which all clauses have
size at most k. The size of a CNF F is the sum of the sizes of its clauses. We use r(F ) to
denote the size of F .

5



An assignment, or restriction, is a partial map from the set of variables V to B. If α
is an assignment and X(b) is a literal, then α satisfies X(b) if X ∈ Dom(α) and b = α(X);
it falsifies X(b) if X ∈ Dom(α) and b = 1 − α(X). If C is a clause, then α satisfies C if
it satisfies some literal of C; it falsifies C if it falsifies every literal of C. The restriction
of C by α, denoted C↿α, is 1 if α satisfies C and 0 if α falsifies C; if α neither satisfies
nor falsifies C, then C↿α is the clause obtained from C by removing all the falsified literals
of C, i.e., C↿α = C \ {X(1−α(X)) | X ∈ Dom(α)}. If F is a CNF, then F ↿α is the CNF
that contains C↿α for those C ∈ F which are neither satisfied nor falsified by α, and that
contains the empty clause if some C ∈ F is falsified by α.

A clause D is a weakening of clause C if C ⊆ D. A clause E is a resolvent of clauses C
and D if there is a variable X such that X ∈ C and X̄ ∈ D, and E = (C \{X})∪ (D \{X̄});
we then speak of the resolvent of C and D on X , that we denote by res(C,D,X). We also
say that E is obtained from C and D by a cut on X .

Let F be a CNF. A Resolution proof from F is a sequence (D1, . . . , Ds) of non-tautological
clauses, where s > 1 and, for all u ∈ [s], it holds that Du is a weakening of a clause in F , or
there are v, w ∈ [u−1] such that Du is a weakening of a resolvent of Dv and Dw. The length
of the proof is s; each Du is a line. A Resolution refutation of F is a proof from F that ends
with the empty clause, i.e., Ds = ∅. We let s(F ) denote the minimal s such that F has a
Resolution refutation of length s; if F is satisfiable, we let s(F ) = ∞. For a sequence of
clauses Π = (D1, . . . , Ds) let Π↿α be obtained from (D1↿α, . . . , Ds↿α) by removing 1’s and
replacing 0’s by the empty clause. It is clear that if Π is a Resolution refutation of F of
length s, then Π↿α is a Resolution refutation of F ↿α of length at most s.

3 Refutations as structures

For this section we fix a CNF F with n variables X1, . . . , Xn and m clauses C1, . . . , Cm. We
view Resolution refutations (D1, . . . , Ds) of F of length s as finite structures with a ternary
relation D and four unary functions V, I, L, R:

D ⊆ [s]× [n]× B,

V : [s] → [n] ∪ {0},

I : [s] → [m] ∪ {0},

L : [s] → [s] ∪ {0},

R : [s] → [s] ∪ {0}.

(1)

The meaning of (u, i, b) ∈ D is that the literal X
(b)
i is in Du. For each u ∈ [s] exactly one

of V (u) or I(u) is non-zero. The meaning of V (u) = i ∈ [n] is that Du is a weakening of
the resolvent of Dv and Dw on Xi, where v = L(u) ∈ [u − 1] and w = R(u) ∈ [u − 1],
and X̄i ∈ Dv and Xi ∈ Dw. The meaning of I(u) = j ∈ [m] is that Du is a weakening of
the clause Cj of F . Formally, a structure (D, V, I, L, R) of type (1) is a refutation of F of
length s if the following hold for all u, v ∈ [s], i, i′ ∈ [n], j ∈ [m], and b ∈ B:

6



(R1) V (u) = 0 or I(u) = 0, but not both;
(R2) if I(u) = 0, then both R(u) 6= 0 and L(u) 6= 0;
(R3) L(u) < u and R(u) < u;
(R4a) if V (u) = i and L(u) = v, then (v, i, 0) ∈ D;
(R4b) if V (u) = i and R(u) = v, then (v, i, 1) ∈ D;
(R5a) if V (u) = i 6= i′, L(u) = v, and (v, i′, b) ∈ D, then (u, i′, b) ∈ D;
(R5b) if V (u) = i 6= i′, R(u) = v, and (v, i′, b) ∈ D, then (u, i′, b) ∈ D;

(R6) if I(u) = j and X
(b)
i appears in Cj , then (u, i, b) ∈ D;

(R7) (u, i, 0) 6∈ D or (u, i, 1) 6∈ D;
(R8) (s, i, b) /∈ D.

In words, (R1) determines, for every line Du, whether it is a weakening of an initial clause,
i.e., I(u) 6= 0, or a weakening of a resolvent, i.e., V (u) 6= 0. In the first case CI(u) ⊆ Du

by (R6). In the second case, res(DL(u), DR(u), XV (u)) ⊆ Du by (R4) and (R5), with (R2)
and (R3) ensuring that DL(u) and DR(u) are earlier lines in the sequence. Finally, (R7)
ensures no Du is tautological, and (R8) ensures Ds is empty.

We give an example that will play a crucial role in the proof of the width lower bound.

Example 3. We use (D∗, V ∗, I∗, L∗, R∗) to denote the full-tree Resolution refutation of F .
It has length

s∗ := 2n+1 − 1

and its clauses are arranged in the form of a full binary tree of height n with 2n − 1 internal
nodes and 2n leaves. This tree has one node na at level h ∈ {0} ∪ [n] for every a =
(a1, . . . , ah) ∈ {0, 1}h that is labelled by the clause

Ca = X
(a1)
1 ∨ · · · ∨X

(ah)
h ,

that is, the unique clause in these variables falsified by the assignment that maps Xi to 1−ai.
In particular, the root of the tree is labelled by the empty clause and, for h ∈ [n] and a ∈
{0, 1}h−1, the clause Ca that labels node na is the resolvent of the clauses Ca1 and Ca0 that
label the children nodes na1 and na0 on the variable Xh, i.e., Ca = res(Ca1, Ca0, Xh). Since F
is unsatisfiable, every clause Ca that labels a leaf na is a weakening of some clause Cj of F .

To view this refutation as a structure of type (1) we have to identify the nodes na with
numbers in [s∗]. We first identify the leafs, i.e., the nodes na with a ∈ {0, 1}n, with the
numbers [2n], then we identify the nodes on level n−1, i.e., the nodes na with a ∈ {0, 1}n−1,
with the numbers in [2n + 2n−1] \ [2n] and so on, with the root getting s∗ = 2n+1 − 1.

Let a = (a1, . . . , ah) ∈ {0, 1}h for h 6 n. We set V ∗(na) := 0 if h = n, and V ∗(na) := h
if h < n. We set I∗(na) := 0 if h < n, and I∗(na) := j if h = n and j ∈ [m] is, say, smallest
such that Ca is a weakening of Cj. We set L∗(na) := R∗(na) := 0 if h = n. If h < n we
set L∗(na) := na0 and R∗(na) := na1. Finally, (na, i, b) ∈ D∗ if and only if i ∈ [h] and b = ai.

7



4 Non-relativized formula REF

Given a CNF F with n variables X1, . . . , Xn and m non-tautological clauses C1, . . . , Cm, and
a natural number s > 1, we describe a CNF formula REF(F, s) that is satisfiable if and only
if F has a refutation of length s. Its variables are:

• D[u, i, b] for u ∈ [s], i ∈ [n], b ∈ B indicating that (u, i, b) ∈ D.

• V [u, i] for u ∈ [s], i ∈ [n] ∪ {0} indicating that V (u) = i.

• I[u, j] for u ∈ [s], j ∈ [m] ∪ {0} indicating that I(u) = j.

• L[u, v] for u ∈ [s], v ∈ [s] ∪ {0} indicating that L(u) = v.

• R[u, v] for u ∈ [s], v ∈ [s] ∪ {0} indicating that R(u) = v.

Clearly, any assignment to these variables describes a ternary relation D and binary rela-
tions V , I, L and R. The clauses of REF(F, s) are listed in Table 4 of Appendix A. This set of
clauses is satisfied precisely by those assignments that describe refutations of F of length s.
Conversely, given a structure as in (1) the associated assignment α satisfies REF(F, s) if
and only if (D, V, I, L, R) is a refutation of F of length s; this assignment α maps vari-
ables D[u, i, b], V [u, i], I[u, j], L[u, v], and R[u, v] to 1 or 0 depending on whether, respec-
tively, (u, i, b) ∈ D, V (u) = i, I(u) = j, L(u) = v, and R(u) = v or not.

The index u ∈ [s] is mentioned in the variables

D[u, i, b], V [u, i], I[u, j], L[u, v], R[u, v].

Observe that if v 6= u, then v is not mentioned in L[u, v] or R[u, v]. The index-width of a
clause is the number of indices mentioned by some variable occurring in the clause. Observe
that all clauses of REF(F, s) have index-width at most two. The index-width of a Resolution
refutation is the maximum index-width of its clauses.

Lemma 4. For all integers n, w, s > 1 with 2n > s > 6nw and every unsatisfiable CNF F
with n variables, every Resolution refutation of REF(F, s) has index-width at least w.

Proof. Fix an unsatisfiable CNF F with n variables andm clauses. For this proof letG denote
the formula REF(F, s) and let G∗ denote the formula REF(F, s∗), where s∗ = 2n+1 − 1 is
the length of the full-tree Resolution refutation of F from Example 3, which exists for F
because it is unsatisfiable. Let α∗ be the assignment associated to (D∗, V ∗, I∗, L∗, R∗).

Let k be an integer such that 2k < 3w 6 2k+1 and note that 1 6 k < n since n, w > 1
and 2n > 6nw. We partition [s∗] into n− k + 1 intervals B∗

0 , B
∗
1 , . . . , B

∗
n−k where

B∗
0 := [s∗] \ [s∗ − 2k+1 + 1],

B∗
i := [s∗ − 2k+i + 1] \ [s∗ − 2k+1+i + 1] for i = 1, . . . , n− k.

In the notation of Example 3, B∗
0 = {na | a ∈ {0, 1}6k} is the set of 2k+1 − 1 many nodes at

the top k levels of the full binary tree. For i ∈ [n−k], the i-th block B∗
i = {na | a ∈ {0, 1}k+i}

is the set of nodes at level k+ i of the full binary tree. In particular, B∗
n−k is the set of leaves.

8



Likewise, we partition [s] into n− k + 1 intervals B0, B1, . . . , Bn−k where

B0 := [s] \ [s− 2k+1 + 1],

Bi := [s− 2k+1 · i+ 1] \ [s− 2k+1 · (i+ 1) + 1] for i = 1, . . . , n− k − 1,

Bn−k := [s− 2k+1 · (n− k) + 1].

Observe that |B∗
0 | = |B0| = 2k+1 − 1; let t : B0 → B∗

0 be the bijection defined by t(u) :=
u− s+ s∗ so that for all u, v ∈ B0 it holds that

u < v if, and only if, t(u) < t(v). (2)

Observe that for all i ∈ [n− k − 1]:

|B∗
i | = 2k+i > 2k+1 = |Bi| > 3w. (3)

|B∗
n−k| = 2n > s− 2k+1 · (n− k) + 1 = |Bn−k| > 3w, (4)

with the second following from 2n > s > 6nw and 1 6 k < n.
Let H be the collection of partial functions h : [s] ∪ {0} → [s∗] ∪ {0} such that:

(H1) h is injective,
(H2) 0 ∈ Dom(h) and h(0) = 0,
(H3) if u ∈ Dom(h) ∩ B0, then h(u) = t(u) ∈ B∗

0 ,
(H4) if u ∈ Dom(h) ∩ Bi with i ∈ [n− k], then h(u) ∈ B∗

i .

In words, condition (H4) says that h preserves membership in matching intervals, and (H3)
says that the 0-intervals are kept intact through the fixed bijection t. Preserving the intervals
has the following important consequence:

Claim 5. For every h ∈ H and u, v ∈ Dom(h) \ {0} the following hold:

1. h(u) 6= 0 and h(v) 6= 0,

2. if L∗(h(v)) ∈ Img(h), then h−1(L∗(h(v))) < v,

3. if R∗(h(v)) ∈ Img(h), then h−1(R∗(h(v))) < v.

Proof. Property 1 follows from (H1) and (H2). To prove 2 we distinguish several cases:
If v ∈ Bn−k, then h(v) ∈ B∗

n−k by (H4), hence L∗(h(v)) = 0 and h−1(L∗(h(v))) = 0
by (H2), which is smaller than v 6= 0. If v ∈ Bi for some i ∈ [n − k − 1], then h(v) ∈
B∗

i by (H4), hence L∗(h(v)) ∈ B∗
i+1, and h−1(L∗(h(v))) ∈ Bi+1 by (H4) again, which

is smaller than v ∈ Bi. If v ∈ B0, then first note that h(v) = t(v) ∈ B∗
0 by (H3).

We distinguish the cases whether L∗(h(v)) ∈ B∗
0 or not. In case L∗(h(v)) ∈ B∗

0 , we
have h−1(L∗(h(v))) = t−1(L∗(h(v))). Since L∗(h(v)) < h(v), by (2) we have t−1(L∗(h(v))) <
t−1(h(v)) = t−1(t(v)) = v. In case L∗(h(v)) /∈ B∗

0 , we have L
∗(h(v)) ∈ B∗

1 , so h
−1(L∗(h(v))) ∈

B1 by (H4), which is smaller than v ∈ B0. The proof of 3 is analogous to that of 2.

9



For a set I ⊆ [s∗] ∪ {0}, let

∂I :=
{

L∗(u) | u ∈ I \ {0}
}

∪
{

R∗(u) | u ∈ I \ {0}
}

.

A condition is a pair p = (g, h), where g and h are functions in H , such that

(C1) g ⊆ h,
(C2) Img(h) = Img(g) ∪ ∂Img(g).

We say a condition p′ = (g′, h′) extends p if h ⊆ h′, i.e., h′ extends h as a function. Observe,
since 0 ∈ Dom(g),

|Dom(h)| 6 3|Dom(g)| − 2. (5)

We define a partial truth assignment α(p) that sets the variables ofG as follows. Note that
if D[u, i, b], V [u, i], and I[u, j] are variables of G, then D[g(u), i, b], V [g(u), i], and I[g(u), j]
are variables of G∗ which are evaluated by α∗. The assignment α(p) is defined precisely on
the variables of G that mention some u ∈ Dom(g). For such u it maps

– D[u, i, b] to α∗(D[g(u), i, b]), for all i ∈ [n] and b ∈ B;

– V [u, i] to α∗(V [g(u), i]), for all i ∈ [n] ∪ {0};

– I[u, j] to α∗(I[g(u), j]), for all j ∈ [m] ∪ {0};

– L[u, v] to 1 or 0 indicating whether v = h−1(L∗(g(u))), for all v ∈ [s] ∪ {0};

– R[u, v] to 1 or 0 indicating whether v = h−1(R∗(g(v))), for all v ∈ [s] ∪ {0}.

Note that L∗(g(u)) and R∗(g(u)) belong to ∂Img(g) ⊆ Img(h) for every u ∈ Dom(g), so h−1

is defined in the last two cases.
Clearly, if a condition p′ extends p, then α(p) ⊆ α(p′). For I ⊆ [s], the restriction of p

to I, denoted p↿I, is the pair (g∗, h∗) where g∗ is the restriction of g to I ∪{0}, and h∗ is the
restriction of h with image Img(g∗) ∪ ∂Img(g∗).

Claim 6. If p is a condition and I ⊆ [s], then p↿I is a condition and α(p↿I) ⊆ α(p).

Proof. The requirement that g′ and h′ belong to H is obviously satisfied since (H1)-(H4)
are preserved by restrictions to subsets that contain 0. (C1) and (C2) are clear, so p↿I is a
condition. The inclusion α(p↿I) ⊆ α(p) is clear since p extends p↿I.

Claim 7. If p = (g, h) is a condition with |Dom(g)| 6 w and u ∈ [s], then there exists a
condition p′ = (g′, h′) that extends p and such that Dom(g′) = Dom(g) ∪ {u}.

Proof. We assume u 6∈ Dom(g) (otherwise we take p′ := p) and set g′ := g ∪ {(u, u′)}
for u′ ∈ [s∗] chosen as follows: if u ∈ B0, take u

′ := t(u); otherwise u ∈ Bi for some i ∈ [n−k]
and we choose u′ ∈ B∗

i \ Img(h). Note there exists u′ as desired because |B∗
i | > 3w by (3)

or (4), so by (5)
|B∗

i \ Img(h)| > |B∗
i | − 3 · |Dom(g)|+ 2 > 0.

10



It is clear that g′ ∈ H . Write v′0 := L∗(u′) and v′1 := R∗(u′). We have to find v0, v1 ∈ [s]∪{0}
such that h′ := h ∪ {(v0, v

′
0), (v1, v

′
1)} ∈ H . Assume at least one of v′0, v

′
1 is not in Img(h).

Then it is distinct from 0 (i.e., u′ /∈ B∗
n−k), say it is in B∗

i . If i = 0, we find v0, v1 as the
pre-images of v′0, v

′
1 under t. Otherwise i ∈ [n− k] and we choose v0, v1 ∈ Bi such that h′ is

injective. This can be done because |Bi| > 3w by (3) or (4), so by (5)

|Bi \Dom(h)| > |Bi| − 3 · |Dom(g)|+ 2 > 2.

It is clear that h′ ∈ H .

Claim 8. If p is a condition and C is a clause of G, then C↿α(p) 6= 0.

Proof. Let p = (g, h), write α := α(p) and assume α is defined on all variables of C. Then g
is defined on all indices mentioned by C. We distinguish by cases according to the type
(A1)-(A21) of C.

– In case C is of type (A1), i.e., C =
∨

i∈[n]∪{0} V [u, i] for some u ∈ Dom(g), then C↿α

equals (
∨

i∈[n]∪{0} V [g(u), i])↿α∗ and this is 1 because
∨

i∈[n]∪{0} V [g(u), i] is a clause

of G∗. Case (A2) is similar.

– In case (A3), (u ∈ Dom(g) and) α satisfies L[u, v] for v := h−1(L∗(g(u))) ∈ [s] ∪ {0}.
Note L∗(g(u)) ∈ ∂Img(g) ⊆ Img(h), so v is well-defined. Hence C↿α = 1. Case (A4)
is similar.

– In case (A5), C↿α equals (V̄ [g(u), i] ∨ V̄ [g(u), i′])↿α∗ and this is 1 because V̄ [g(u), i] ∨
V̄ [g(u), i′] is a clause of G∗. Case (A6) is similar.

– In case (A7), v or v′ is distinct from h−1(L∗(g(u))) and then, respectively, L[u, v] or
L[u, v′] is falsified by α. Hence C↿α = 1. Case (A8) is similar.

– In case (A9), C↿α equals (Ī[g(u), 0] ∨ V̄ [g(u), 0])↿α∗. But this is 1 since Ī[g(u), 0] ∨
V̄ [g(u), 0] is a clause of G∗. Case (A10) is similar.

– In case (A11), note α(L[u, 0]) = 1 implies h−1(L∗(g(u))) = 0, so L∗(g(u)) = 0 by
Claim 5 (1). Then g(u) is a leaf and I∗(g(u)) 6= 0. Hence 0 = α∗(I[g(u), 0]) = α(I[u, 0]),
so C↿α = 1. Case (A12) is similar.

– In case (A13), note α(L[u, v]) = 1 implies v = h−1(L∗(g(u))). But h−1(L∗(g(u))) =
h−1(L∗(h(u))) < u by (C1) and Claim 5 (2). Case (A14) is similar.

– In case (A15), C↿α = 0 implies u, v ∈ Dom(g) and v = h−1(L∗(g(u))). Hence h(v) =
g(v) = L∗(g(u)) (by (C1)) and α∗(L[g(u), g(v)]) = 1. Further, C↿α = 0 implies
α∗(V [g(u), i]) = 1 and α∗(D[g(v), i, 0]) = 0. Hence α∗ falsifies the clause L̄[g(u), g(v)]∨
V̄ [g(u), i] ∨D[g(v), i, 0] of G∗, a contradiction. Cases (A16)-(A18) are similar.

– In case (A19), C↿α = 0 implies that α∗ falsifies the clause Ī[g(u), j]∨D[g(u), i, b] of G∗,
a contradiction. Case (A20) is similar.

– In case (A21), α(D̄[s, i, b]) = 0 implies s ∈ Dom(g) and α∗ falsifies the D̄[g(s), i, b].
But this is a clause of G∗ since g(s) = t(s) = s∗ by (H3) – contradiction.

11



This finishes the proof of Claim 8.

We are ready to finish the proof of the lemma. Let P be the set of conditions p = (g, h)
with |Dom(g)| 6 w. Assume that there exists a Resolution refutation of REF(F, s) of index-
width smaller than w. Let p0 = (g0, h0) where g0 = h0 = {(0, 0)} and note that ∂Img(g0) = ∅,
so p0 ∈ P . The assignment α(p0) is empty and falsifies the empty clause, the last clause of
the refutation. Let E be the earliest clause in the refutation such that E↿α(p) = 0 for some
condition p ∈ P . In particular, α(p) is defined on all variables of E. By Claim 8, E is not
a weakening of a clause from G. Hence, E is obtained by a cut of earlier clauses C and D
on some variable. Let u ∈ [s] be the index mentioned by this variable. Choose p′ according
to Claim 7. Then α(p′) is defined on all variables in C, D, and E and extends the partial
assignment α(p), so falsifies E. By soundness it falsifies C or D, say, it falsifies C. Let p′′

be the restriction of p′ to the indices mentioned in C. Then α(p′′) falsifies C and p′′ ∈ P
by Claim 6. This contradicts the choice of E.

Remark 9. The width lower bound in the previous lemma does not have much to do
with Resolution; a more general version can be formulated using the notions of semantic
refutations and Poizat width from [5]. The notion of a Poizat tree is straightforwardly
adapted to the many-sorted structures coding refutations. Define index Poizat width like
Poizat width but using the index height of a Poizat tree: the maximum over its branches of
the number of indices from [s] appearing in queries of the branch. Then, the conclusion of
the above lemma can be strengthened to: every semantic refutation of REF(F, s) contains a
formula of index Poizat width at least w/3.

5 Relativized formula RREF

Given a CNF formula F with n variables and m clauses, and a natural number s > 1, we
define the CNF formula RREF(F, s) as follows. We again write X1, . . . , Xn for the variables
and C1, . . . , Cm for the clauses of F . The CNF formula RREF(F, s) has the same variables
as REF(F, s) plus

• P [u] for u ∈ [s] indicating that u is an “active” index.

The clauses of RREF(F, s) are very similar to those of REF(F, s) with a few additional
literals in each clause, and three additional types of clauses. For easiness of future reference,
we explicitly listed the new set of clauses in Table 5 of Appendix A. In words, RREF(F, s)
says that the lines indexed by its at most s active indices describe a Resolution refutation
of F , and it does not put any restriction on the structure of the lines on inactive indices.

First we prove the lower bound:

Lemma 10. There is an integer n0 > 0 such that for all integers n and w with n > n0

and 20 6 w 6 2n/(13n) and every unsatisfiable CNF formula F with n variables, every
Resolution refutation of RREF(F, 13nw) has length bigger than 22w/5.

12



Proof. Let F be an unsatisfiable CNF with n variables andm clauses and 20 6 w 6 2n/(13n).
Assume Π is a Resolution refutation of RREF(F, t) of length ℓ 6 22w/5 where t := 13nw. We
derive a contradiction assuming at various places that n is large enough and this determines
the constant n0. It will be clear that it does not depend on F or w.

We define a random restriction ρ to (a subset of) the variables of RREF(F, t) by the
following random experiment:

1. independently for every u ∈ [t], map P [u] to 1 or 0 each with probability 1/2;

2. let A be the set of u ∈ [t] for which P [u] is mapped to 1;

3. for every u ∈ A and v ∈ [t] \ A, map both L[u, v] and R[u, v] to 0;

4. independently for every u ∈ [t]\A and every variable that mentions u, map the variable
to 1 or 0 each with probability 1/2.

A literal that mentions u ∈ [t] evaluates to 1 under ρ with probability at least 1/4, namely
in the event that P [u] is mapped to 0 in step 1 and the right value is chosen in step 4. Thus,
the probability that a clause of index-width at least w is not satisfied by ρ is at most (3/4)w.
By the union bound, the probability that Π↿ρ contains a clause of index-width at least w is
at most ℓ · (3/4)w, which is strictly less than 1/4 for ℓ 6 22w/5 (here we use that w > 20).
Note the clauses of Π↿ρ use variables of REF(F, t), so index-width is well-defined.

The cardinality of the random subset A is a symmetric binomial random variable with
expectation t/2 = 13nw/2. By the Chernoff bound there is a real ǫ > 0, independent of F
and w, such that |A| < 6nw with probability at most 2−ǫnw. For large enough n this is strictly
less than 1/4. Further, P [t] is mapped to 1 with probability 1/2. Thus, for large enough n,
by the union bound, there exists a restriction ρ in the support of the above distribution, say,
with associated set A ⊆ [t], such that:

(i) Π↿ρ has index-width smaller than w;

(ii) |A| > 6nw;

(iii) ρ maps P [t] to 1, so t ∈ A.

By (iii), ρ satisfies (A24). Also, C↿ρ = 1 for C a clause of type (A22) or (A23) because this
holds for every restriction in the support of the distribution.

Let s = |A| and let REF(F,A) be defined as REF(F, s) except that we use A instead [s]
as index set, with t in the role of s. More precisely, REF(F,A) is obtained from REF(F, s)
by a copy of variables: a variable is replaced by the variable (of REF(F, t)) obtained by
changing its index u ∈ [s] (and v ∈ [s]) to the u-th (and the v-th) member of A.

We claim that for every clause C ∈ RREF(F, t) we either have C↿ρ = 1 or C↿ρ ∈
REF(F,A). We already checked this for (A22)-(A24) and are left with (A1)-(A21). For
example, if C is a clause of type (A3), then C↿ρ = 1 if u /∈ A, and otherwise C↿ρ =
L[u, 0]∨

∨

v∈A L[u, v] is a clause in REF(F,A). The case that C is of type (A4) is similar. The
remaining cases are obvious. Thus, Π↿ρ is a Resolution refutation of REF(F,A) of length at
most ℓ. By (i) and (ii), if n is large enough, this contradicts Lemma 4 (note 2n > t > s).

13



The next lemma gives a polynomial upper bound on the length of Resolution refutations
of RREF(F, s) when F is satisfiable. In fact, its second statement gives an upper bound
that is possibly sublinear in the size of RREF(F, s). This second statement is not needed to
prove Theorems 1 and 2.

Lemma 11. There is a polynomial p(s, n,m) such that for all integers n,m, s > 1 and
every satisfiable CNF formula F with n variables and m clauses, there exists a Resolution
refutation of RREF(F, s) of length at most p(s, n,m). In fact, p(s, n,m) ∈ O((snm)2).

Proof. Let F be a satisfiable CNF with variables X1, . . . , Xn and clauses C1, . . . , Cm. Let α :
{X1, . . . , Xn} → B be an assignment that satisfies F . We derive the clauses

True(u) := P̄ [u] ∨D[u, 1, α(X1)] ∨ · · · ∨D[u, n, α(Xn)]

for u = 1, 2, 3, . . . , s in order. Then n many cuts with (A21) and one cut with (A24) yield
the empty clause.

First, we derive, for all u ∈ [s] and j ∈ [m], as sm many weakenings of clauses
of RREF(F, s), the auxiliary clauses

A0(j, u) := Ī[u, j] ∨ True(u).

Since α satisfies F we can choose for every j ∈ [m] some ij ∈ [n] such that X
(α(Xij

))

ij

appears in Cj. Then P̄ [u]∨ Ī[u, j]∨D[u, ij, α(Xij)] is a clause of RREF(F, s), namely (A19).
But A0(j, u) is a weakening of this.

We derive True(u) for u = 1 through s + m + 2 many cuts. Through a sequence of s
many cuts, starting at (A4) and using (A14) for all v ∈ [s], get P̄ [u] ∨ R[u, 0]. Cut this
with (A12) to get P̄ [u]∨ Ī[u, 0]. Cut this with (A2), followed by a sequence of m many cuts
with all A0(j, u) for j ∈ [m] to get True(u).

Now assume u > 1 and True(v) have been derived for all v < u. First, we derive for
every i ∈ [n] the auxiliary clause

A1(i, u) :=

{

V̄ [u, i] ∨ L[u, 0] ∨ True(u) if α(Xi) = 1
V̄ [u, i] ∨R[u, 0] ∨ True(u) if α(Xi) = 0.

We treat the case α(Xi) = 1, the case α(Xi) = 0 is analogous. Let v ∈ [u − 1]. Cut (A15)
with P̄ [v] ∨ D̄[v, i, 0] ∨ D̄[v, i, 1] of type (A20) on D[v, i, 0] to get

P̄ [u] ∨ P̄ [v] ∨ L̄[u, v] ∨ V̄ [u, i] ∨ D̄[v, i, α(Xi)].

Cut this with True(v) on D[v, i, α(Xi)] to get

P̄ [u] ∨ P̄ [v] ∨ L̄[u, v] ∨ V̄ [u, i] ∨
∨

i′∈[n]\{i}D[v, i′, α(Xi′)].

Cut this with (A17) on D[v, i′, α(Xi′)] for every i′ ∈ [n] \ {i}, and then with with (A22)
on P [v] to get

P̄ [u] ∨ L̄[u, v] ∨ V̄ [u, i] ∨
∨

i′∈[n]\{i}D[u, i′, α(Xi′)]. (6)

14



Now cut (A3) with this formula for all v ∈ [u − 1], and with (A13) for all u 6 v 6 s to get
the following subclause of A1(i, u)

P̄ [u] ∨ L[u, 0] ∨ V̄ [u, i] ∨
∨

i′∈[n]\{i}D[u, i′, α(Xi′)].

For every v ∈ [u − 1], the clause (6) is derived with n + 2 cuts. Thus, A1(i, u) is derived
with (n+2)(u− 1)+ s many cuts. Doing this for all i ∈ [n] amounts to n(n+2)(u− 1)+ns
many cuts.

Having derived the auxiliary clauses A1(i, u) we now derive True(u) in a sequence of n+
m+ 4 cuts. In a sequence of n many cuts, cut (A1) with A1(i, u) for all i ∈ [n], to get

V [u, 0] ∨ L[u, 0] ∨ R[u, 0] ∨ True(u).

Cut with (A9) on V [u, 0], then with (A11) on L[u, 0], and then with (A12) on R[u, 0] to
get Ī[u, 0] ∨ True(u). Cut (A2) with this and then with A0(j, u) for all j ∈ [m] in sequence
to get True(u) as desired.

In total, the refutation uses

(s+ 2 +m) + (n + 1) +
∑s

u=2

(

n(n + 2)(u− 1) + ns+ (n+m+ 4)
)

many cuts: the first term counts the cuts in the derivation of True(1), the second term counts
the cuts to get the empty clause from True(s), and each term in the big sum counts the cuts
in the derivation of True(u) for u = 2, . . . , s. The length of the refutation is bounded by the
number of cuts plus the sm weakenings to get the A0(j, u)’s plus the number of clauses of
RREF(F, s). But, in fact, the clauses (A7) and (A8) are not used by the given refutation,
and REF(F, s) has at most O((snm)2) many other clauses.

Remark 12. In the proof of the upper bound Lemma 11, the built-in linear order in the def-
inition of RREF plays a crucial role. This refers to the side conditions u 6 v in clauses (A13)
and (A14) of the definition of RREF in Table 5 of Appendix A. Indeed, it is not hard see
that if the linear order were not built-in but interpreted, through new propositional vari-
ables O[u, v] and its corresponding clause axioms, then the resulting version of RREF(F, s)
would be exponentially hard for resolution independently of the satisfiability or unsatisfia-
bility of F . This follows from an “infinite model argument” similar to the proof of the main
theorem in [19].

6 Proofs of the hardness results

In this section we derive Theorems 1 and 2 stated in the Introduction.

Proof of Theorem 2. It suffices to define G on 3-CNF formulas F with a sufficiently large
number of variables n. Note m 6 8n3 for m the number of clauses of F . We set

G(F ) := RREF(F, 13n2).

15



Note G(F ) has size between n1/q and nq for some constant q > 0. Thus, (a) follows from the
first statement of Lemma 11 for some constant c > 0, and (b) follows from Lemma 10 for w :=
n and some constant d > 0 (note that 20 6 w 6 2n/(13n) for sufficiently large n).

Our main result, Theorem 1, is implied by the more general statement below. We say that
Resolution is automatizable in time t if there is an algorithm that, given an unsatisfiable CNF
formula F , computes some Resolution refutation of F in time t(r(F ) + s(F )). Recall that a
function t : N → N is time-constructible if there is an algorithm that given 1n (the string of n

many 1’s) computes 1t(n) in time O(t(n)). We say that t is subexponential if t(n) 6 2n
o(1)

.

Theorem 13. Let t : N → N be time-constructible, non-decreasing and subexponential.
If Resolution is automatizable in time t, then there are polynomials q(n) and r(n) and an
algorithm that, given a 3-CNF formula F with n variables, decides in time O(t(r(n))+ q(n))
whether F is satisfiable.

Proof. Assume that Resolution is automatizable in time t and choose c, d and G from
Theorem 2. Let q be as in the proof given above, so G(F ) has size at most nq for every
3-CNF formula F with a sufficiently large number n of variables.

Consider the following algorithm. Given a 3-CNF formula F with n variables, compute
the formula G(F ) and run the automating algorithm for up to t(nq + nqc) steps. If the
algorithm returns a Resolution refutation within the allotted time, then output ‘satisfiable’.
Else output ‘unsatisfiable’.

It is clear that the algorithm runs in time O(t(nq+nqc)+q(n)) for some polynomial q(n);
here we use that t is time-constructible. It suffices to show that it is correct on 3-CNF
formulas F with a sufficiently large number of variables n. If F is satisfiable, then by (a)
of Theorem 2, G(F ) has a Resolution refutation of length at most nqc, so the automating
algorithm computes a refutation within the alloted time and we answer ‘satisfiable’; here we
use that t is non-decreasing. If F is unsatisfiable, then by (b) of Theorem 2, no Resolution
refutation of G(F ) has length at most O(t(nq + nqc)), so the automating algorithm cannot
compute one within the allotted time and we answer ‘unsatisfiable’; here we use that t is
subexponential.

7 Concluding remarks

This final section contains the observation that, by a padding argument, the constants c
and d in Theorem 2 can be chosen arbitrarily close to 1 and 2, respectively, and finishes with
some questions.

Proof of Theorem 2 for c = 1 + ǫ and d = 2 + ǫ. Given ǫ > 0 we define G(F, t) for a 3-
CNF F and a natural t > 0 and verify (a) and (b) for G(F ) := G(F, t) assuming that t and n
are sufficiently large; again, n denotes the number of variables of F . The meaning of “suffi-
ciently large” for t will depend only on ǫ. Write w := nt and let G(F, t) := RREF′(F, 13nw)
be obtained from RREF(F, 13nw) by deleting the clauses of type (A7) and (A8). As has
been noted in the proof, Lemma 11 holds true for RREF′(F, 13nw) instead RREF(F, 13nw).

16



Since F has at most 8n3 clauses, the size r(t) of G(F, t) satisfies n2t 6 r(t) 6 n2t+c0 for some
constant c0 > 0, a number independent of F and t. By Lemma 11, s(G(F, t)) < n2t+c1 for
some constant c1 > 0; but this is at most r(t)1+ǫ if t > c1/2ǫ. By Lemma 10, s(G(F, t)) >

22n
t/5, but this is more than 2r(t)

1/(2+ǫ)
if t > c0/ǫ.

The reduction above falls short to rule out weak automatizability of Resolution. For this
we would need that s(G(F )) = ∞ when F is unsatisfiable, i.e., that G(F ) is satisfiable, but
this is unlikely to hold for a polynomial time G as it would put 3-SAT in co-NP. We refer
to [4] for a proof of equivalence of the different characterizations of weak automatizability
used here and in the Introduction. The main problem left open by the current work is to
find more convincing evidence that Resolution is not weakly automatizable.

On the more technical side, we would like to know whether the formulas REF(F, p(n))
are hard for Resolution where F ranges over unsatisfiable CNF formulas with n variables
and p is some fixed polynomial. We conjecture that this is the case but we only succeeded in
establishing a width lower bound3. Of course, one can define analogous formulas P -REF(F, s)
for any proof system P . For all we know it could be that such formulas P -REF(F, p(n)) are
hard for strong proof systems P like Frege or Extended Frege. Of course, it would be a major
breakthrough to prove this, even under some plausible computational hardness hypothesis.
We refer to [31, Chapter 27] for a discussion.

A Formulas REF and RREF

In this appendix we include the detailed lists of clauses of the formulas REF and RREF.
Recall, we use bars to denote the negation of the variables, e.g., L̄[u, v] denotes the negation
of L[u, v].

(A1) V [u, 0] ∨ V [u, 1] ∨ · · · ∨ V [u, n] u ∈ [s],
(A2) I[u, 0] ∨ I[u, 1] ∨ · · · ∨ I[u,m] u ∈ [s],
(A3) L[u, 0] ∨ L[u, 1] ∨ · · · ∨ L[u, s] u ∈ [s],
(A4) R[u, 0] ∨R[u, 1] ∨ · · · ∨R[u, s] u ∈ [s],
(A5) V̄ [u, i] ∨ V̄ [u, i′] u ∈ [s], i, i′ ∈ [n] ∪ {0}, i 6= i′,
(A6) Ī[u, j] ∨ Ī[u, j′] u ∈ [s], j, j′ ∈ [m] ∪ {0}, j 6= j′,
(A7) L̄[u, v] ∨ L̄[u, v′] u ∈ [s], v, v′ ∈ [s] ∪ {0}, v 6= v′,
(A8) R̄[u, v] ∨ R̄[u, v′] u ∈ [s], v, v′ ∈ [s] ∪ {0}, v 6= v′,
(A9) Ī[u, 0] ∨ V̄ [u, 0] u ∈ [s],
(A10) I[u, 0] ∨ V [u, 0] u ∈ [s],
(A11) Ī[u, 0] ∨ L̄[u, 0] u ∈ [s],
(A12) Ī[u, 0] ∨ R̄[u, 0] u ∈ [s],
(A13) L̄[u, v] u, v ∈ [s], u 6 v,
(A14) R̄[u, v] u, v ∈ [s], u 6 v,
(A15) L̄[u, v] ∨ V̄ [u, i] ∨D[v, i, 0] u, v ∈ [s], i ∈ [n],
(A16) R̄[u, v] ∨ V̄ [u, i] ∨D[v, i, 1] u, v ∈ [s], i ∈ [n],

3Recently, M. Garĺık confirmed the conjecture [22].

17



(A17) L̄[u, v] ∨ V̄ [u, i] ∨ D̄[v, i′, b] ∨D[u, i′, b] u, v ∈ [s], i, i′ ∈ [n], b ∈ B, i′ 6= i,
(A18) R̄[u, v] ∨ V̄ [u, i] ∨ D̄[v, i′, b] ∨D[u, i′, b] u, v ∈ [s], i, i′ ∈ [n], b ∈ B, i′ 6= i,

(A19) Ī[u, j] ∨D[u, i, b] u ∈ [s], j ∈ [m], X
(b)
i ∈ Cj ,

(A20) D̄[u, i, 0] ∨ D̄[u, i, 1] u ∈ [s], i ∈ [n],
(A21) D̄[s, i, b] i ∈ [n], b ∈ B.

Table 4: Clauses of REF.

In the clauses of REF, clauses (A1)-(A8) say V , I, L and R are functions with the appropri-
ate domains and ranges, (A9)-(A10) express (R1), (A11)-(A12) express (R2), (A13)-(A14)
express (R3), (A15)-(A16) express (R4), (A17)-(A18) express (R5), (A19) expresses (R6),
(A20) expresses (R7), and (A21) expresses (R8).

(A1) P̄ [u] ∨ V [u, 0] ∨ V [u, 1] ∨ · · · ∨ V [u, n] u ∈ [s],
(A2) P̄ [u] ∨ I[u, 0] ∨ I[u, 1] ∨ · · · ∨ I[u,m] u ∈ [s],
(A3) P̄ [u] ∨ L[u, 0] ∨ L[u, 1] ∨ · · · ∨ L[u, s] u ∈ [s],
(A4) P̄ [u] ∨R[u, 0] ∨R[u, 1] ∨ · · · ∨R[u, s] u ∈ [s],
(A5) P̄ [u] ∨ V̄ [u, i] ∨ V̄ [u, i′] u ∈ [s], i, i′ ∈ [n] ∪ {0}, i 6= i′,
(A6) P̄ [u] ∨ Ī[u, j] ∨ Ī [u, j′] u ∈ [s], j, j′ ∈ [m] ∪ {0}, j 6= j′,
(A7) P̄ [u] ∨ L̄[u, v] ∨ L̄[u, v′] u ∈ [s], v, v′ ∈ [s] ∪ {0}, v 6= v′,
(A8) P̄ [u] ∨ R̄[u, v] ∨ R̄[u, v′] u ∈ [s], v, v′ ∈ [s] ∪ {0}, v 6= v′,
(A9) P̄ [u] ∨ Ī[u, 0] ∨ V̄ [u, 0] u ∈ [s],
(A10) P̄ [u] ∨ I[u, 0] ∨ V [u, 0] u ∈ [s],
(A11) P̄ [u] ∨ Ī[u, 0] ∨ L̄[u, 0] u ∈ [s],
(A12) P̄ [u] ∨ Ī[u, 0] ∨ R̄[u, 0] u ∈ [s],
(A13) P̄ [u] ∨ L̄[u, v] u, v ∈ [s], u 6 v,
(A14) P̄ [u] ∨ R̄[u, v] u, v ∈ [s], u 6 v,
(A15) P̄ [u] ∨ P̄ [v] ∨ L̄[u, v] ∨ V̄ [u, i] ∨D[v, i, 0] u, v ∈ [s], i ∈ [n],
(A16) P̄ [u] ∨ P̄ [v] ∨ R̄[u, v] ∨ V̄ [u, i] ∨D[v, i, 1] u, v ∈ [s], i ∈ [n],
(A17) P̄ [u] ∨ P̄ [v] ∨ L̄[u, v] ∨ V̄ [u, i] ∨ D̄[v, i′, b] ∨D[u, i′, b] u, v ∈ [s], i, i′ ∈ [n], b ∈ B, i′ 6= i,
(A18) P̄ [u] ∨ P̄ [v] ∨ R̄[u, v] ∨ V̄ [u, i] ∨ D̄[v, i′, b] ∨D[u, i′, b] u, v ∈ [s], i, i′ ∈ [n], b ∈ B, i′ 6= i,

(A19) P̄ [u] ∨ Ī[u, j] ∨D[u, i, b] u ∈ [s], j ∈ [m], X
(b)
i ∈ Cj ,

(A20) P̄ [u] ∨ D̄[u, i, 0] ∨ D̄[u, i, 1] u ∈ [s], i ∈ [n],
(A21) P̄ [s] ∨ D̄[s, i, b] i ∈ [n], b ∈ B,
(A22) P̄ [u] ∨ L̄[u, v] ∨ P [v] u ∈ [s], v ∈ [s],
(A23) P̄ [u] ∨ R̄[u, v] ∨ P [v] u ∈ [s], v ∈ [s],
(A24) P [s].

Table 5: Clauses of RREF

The clauses of RREF are the same as for REF but we add to each clause the literals P̄ [u]
with u ∈ [s] mentioned by the clause. More precisely, P̄ [u] is added to the clauses (A1)-
(A14) and (A19) and (A20), both P̄ [u] and P̄ [v] are added to the clauses (A15)-(A18), and

18



P̄ [s] is added to clause (A21). Further, we add three additional types of clauses numbered
(A22)-(A24).

Acknowledgments

Both authors were partially funded by European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme, grant agreement ERC-2014-
CoG 648276 (AUTAR). First author partially funded by MICCIN grant TIN2016-76573-C2-
1P (TASSAT3). We are grateful to Ilario Bonacina and Michal Garlik for their very useful
comments on an earlier draft of this paper.

References

[1] M. Alekhnovich and A. A. Razborov. Resolution is not automatizable unless W[P] is
tractable. SIAM Journal on Computing 38 (4): 1347-1363, 2008.

[2] M. Alekhnovich, S. R. Buss, S. Moran and T. Pitassi. Minimum propositional proof
length is NP-hard to linearly approximate. The Journal of Symbolic Logic 66: 171-191,
2001.

[3] A. Atserias. The proof-search problem between bounded-width Resolution and bounded-
degree semi-algebraic proofs. 16th International Conference on Theory and Applications
of Satisfiability Testing (SAT’13), LNCS 7962, Springer, pp. 1-17, 2013.

[4] A. Atserias and M. L. Bonet. On the automatizability of Resolution and related propo-
sitional proof systems. Information and Computation 189 (2): 182-201, 2004.

[5] A. Atserias and E. Maneva. Mean-payoff games and propositional proofs. Information
and Computation 209 (4): 664-691, 2011.

[6] A. Atserias and M. Müller. Partially definable forcing and bounded arithmetic. Archive
for Mathematical Logic 54 (1): 1-33, 2015.

[7] A. Atserias, M. Lauria, and J. Nordström. Narrow proofs may be maximally long. ACM
Transactions on Computational Logic 17 (3), 19:1-19:30, 2016.

[8] P. Beame and T. Pitassi. 1996. Simplified and improved resolution lower bounds. In 37th
Annual Symposium on Foundations of Computer Science (FOCS’96), IEEE Computer
Society, pp. 274-282. 1996.

[9] A. Beckmann, P. Pudlák and N. Thapen. Parity games and propositional proofs. ACM
Transactions on Computational Logic 15 (2), article 17, 2014.

[10] E. Ben-Sasson and A. Wigderson. Short proofs are narrow – Resolution made simple.
Journal of the ACM 48 (2): 149-169, 2001.

19



[11] M. L. Bonet, T. Pitassi and R. Raz. On interpolation and automatization for Frege
systems. SIAM Journal on Computing 29 (6): 1939-1967, 2000.

[12] M. L. Bonet, C. Domingo, R. Gavaldà, A. Maciel and T. Pitassi. Non-automatizability
of bounded-depth Frege proofs. Computational Complexity 13 (1-2): 47-68, 2004.

[13] S. R. Buss. On Gödel’s theorems on lengths of proofs II: Lower bounds for recogniz-
ing k symbol provability. In P. Clote and J. Remmel (eds.), Feasible Mathematics II,
Birkhäuser, pp. 57-90, 1995.

[14] C. S. Calude, S. Jain, B. Khoussainov, W. Li and F. Stephan. Deciding parity games in
quasipolynomial time. 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC’17). ACM, pp. 252-263, 2017.

[15] Y. Chen and J. Flum. On the complexity of Gödel’s proof predicate. The Journal of
Symbolic Logic 75 (1): 239-254, 2010.

[16] Y. Chen, M. Grohe and M. Grüber. On parameterized approximability. 2nd Interna-
tional Workshop on Parameterized and Exact Computation (IWPEC’06), LNCS 4169,
pp.109-120, 2006.

[17] Y. Chen and B. Lin. The constant inapproximability of the parameterized dominating
set problem. SIAM Journal on Computing 48 (2): 513-533, 2019.

[18] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic 44 (1): 36-50, 1979.

[19] S. Dantchev and S. Riis. On relativisation and complexity gap for Resolution-based
proof systems. Computer Science Logic (CSL’03), LNCS 2803, pp. 142-154, Springer,
2003.

[20] K. Eickmeyer, M. Grohe and M. Grüber. Approximation of natural W[P]-complete
minimisation problems is hard. 23rd Annual IEEE Conference on Computational Com-
plexity (CCC’08), College Park, MD, pp. 8-18, 2008.

[21] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[22] M. Garĺık. Resolution lower bounds for refutation statements. 44th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS’19), LIPIcs 138, pp.
37:1-37:13, 2019.

[23] J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems.
SIAM Journal on Computing 17 (2): 309-335, 1988.

[24] L. Huang and T. Pitassi. Automatizability and simple stochastic games. In International
Colloquium on Automata, Languages and Programming (ICALP’11), LNCS 6755, pp.
605-617, 2011.

20



[25] K. Iwama. Complexity of finding short resolution proofs. Mathematical Foundations of
Computer Science (MFCS’97), LNCS 1295, pp. 309-318, 1997.

[26] I. Mertz, T. Pitassi and Y. Wei. Short proofs are hard to find. 46th International Collo-
quium on Automata, Languages and Programming (ICALP’19), LIPIcs 132, pp. 84:1-
84:16, 2019.

[27] J. Kraj́ıček. Lower bounds to the size of constant-depth propositional proofs. The Jour-
nal of Symbolic Logic 59 (1): 73-86, 1994.

[28] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Ency-
clopedia of Mathematics and Its Applications 60, Cambridge University Press, 1995.

[29] J. Kraj́ıček. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. The Journal of Symbolic Logic 62 (2): 457-486, 1997.

[30] J. Kraj́ıček. On the weak pigeonhole principle, Fundamenta Mathematicae 170 (1-3):
123-140, 2001.

[31] J. Kraj́ıček. Forcing with random variables and proof complexity. London Mathematical
Society Lecture Note Series 382, Cambridge University Press, 2011.

[32] J. Kraj́ıček. Proof Complexity. Encyclopedia of Mathematics and Its Applications 170,
Cambridge University Press, Cambridge - New York - Melbourne, 2019.

[33] J. Kraj́ıček and P. Pudlák. Some consequences of cryptographical conjectures for S1
2

and EF . Information and Computation 140 (1): 82-94, 1998.

[34] M. Müller and S. Szeider. The treewidth of proofs. Information and Computation 255
(1): 147-164, 2017.

[35] A. Urquhart. Von Neumann, Gödel and complexity theory. Bulletin of Symbolic Logic
(16) 4: 516-530, 2010.

[36] P. Pudlák. On reducibility and symmetry of disjoint NP-pairs. Theoretical Computer
Science 295: 323-339, 2003.

[37] A. A. Razborov. On provably disjoint NP-pairs. Basic Research in Computer Science
(BRICS) Report Series 1 (36), 1994.

21


	1 Introduction
	2 Preliminaries
	3 Refutations as structures
	4 Non-relativized formula REF
	5 Relativized formula RREF
	6 Proofs of the hardness results
	7 Concluding remarks
	A Formulas REF and RREF

