
Paper No. 483

Automating Supply-Chain Management
Michael N. Huhns

University of South Carolina
Center for Information Technology

Columbia, SC 29208 USA
+1-803-777-5921

huhns@sc.edu

Larry M. Stephens
University of South Carolina

Center for Information Technology
Columbia, SC 29208 USA

+1-803-777-2895

stephens@sc.edu

Nenad Ivezic
Nat’l. Inst. of Standards & Technology
Manufacturing System Integration Div.

Gaithersburg, MD 20899 USA
+1-301-975-3536

nivezic@nist.gov

ABSTRACT
This paper explores a linguistic approach to coordination
modeling as a formal basis for supply-chain management (SCM)
in manufacturing. The approach promotes the interchange of
standard documents: enterprises need only describe their supply
processes using OAG business object documents and UML
interaction diagrams. Our methodology and tools analyze the
documents and interactions in terms of four linguistic primitives
and convert the diagrams into specifications and implementations
of software agents. The agents then cooperate in automating the
resultant supply chain. We evaluate our methodology in the
context of several industrial scenarios. We conclude that supply-
chain automation using software-agent technology is feasible.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– multiagent systems.

General Terms
Management, Economics, Standardization

Keywords
Supply-chain automation, agent generation, agent-based process
control.

1. INTRODUCTION
A recent study [1] has found that companies lose between 9% and
20% of their value over a six-month period due to supply chain
problems. The problems range from part shortages, excessive
finished good inventories, underutilized plant capacity,
unnecessary warehousing costs, and inefficient transportation of
supplies and finished goods. Because supply chains involve
independent participants—suppliers and manufacturers—who
must maintain the integrity and confidentiality of their
information systems and operations for business advantages, the
problems are exacerbated.
One approach to automating supply chains is to gather companies
into e-marketplaces, where they can negotiate for goods and
services [11]. However, such centralization does not foster

Copyright 2002 Association for Computing Machinery. ACM
acknowledges that this contribution was authored or co-authored by a
contractor or affiliate of the U.S. Government. As such, the Government
retains a non-exclusive royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes only.
AAMAS’02, July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007…$5.00.

collaborations, alliances, and long-term relationships, which are
the more significant drivers of improved efficiency in supply
chains. A distributed architecture is thus preferable, but computer
applications that can automate supply chains require a number of
important properties beyond traditional software approaches.

• Disintermediation (the direct association between users and
their software). Providing a participant with seamless access
to and interaction with remote information, application, and
human resources requires a distributed, active-object
architecture.

• Dynamic composability and execution. A system should
execute as a set of distributed parts, but the resources
required will be mostly unknown until run-time: this requires
an infrastructure to enable their discovery and composition as
needed.

• Interaction. There might be subtle and critical patterns of
interaction among supply-chain participants, but the specific
interactions may be unknown until run-time, and may vary:
this requires that the patterns of interaction be explicitly
represented and reasoned with. There is recent work on the
power of interactions [16].

• Error tolerance and exploitation. As deployed systems
become increasingly complex, they should anticipate and
compensate for errors in their components and interaction
protocols.

Recent advances in software agent architecture and languages can
address the above requirements. This reported effort has made
use of these advances in investigating and developing tools and
methodologies for supply-chain management [10].
The Open Applications Group (OAG) [12], ebXML, and
RosettaNet are standardizing the syntax and semantics of B2B
transactions. We are developing a basis for standardizing (and
automating) the behaviors that are expected of the participants in
a B2B transaction (also, how to handle misbehaviors). For
example, current specifications of a purchase order (PO) do not
say what to do in the following case: if a company does not
receive a response to a PO, should it assume the recipient was not
interested or the PO was lost?
We have found that a B2B transaction (such as in supply chains)
is a formal conversation [5], in the linguistic sense, among several
participants (buyers and sellers or consumers and suppliers) that
follows certain rules and conventions. By making the rules and
conventions explicit, we can guarantee

• The correctness of the transactions

• There are no misunderstandings among the participants

• Exceptions are handled.

Our approach is an agent-based coordination methodology
[8,9,13], utilizing linguistic models with formal logic, process
semantics, and accommodations for exceptions.

2. METHODOLOGY
We have been working to identify and test methods for
automating supply-chain management. The general approaches
that have been suggested for automation can be categorized as
centralized, distributed, and agent-based. As discussed in the
above section, the requirements for robustness and efficiency
favor an agent-based approach. Previous coordination
methodologies developed in the area of autonomous agents are
relevant to SCM [10,14,15]. We performed preliminary
evaluations of these methodologies and designed a prototype
software system that could automate the construction of industrial
supply chains and B2B processes. For a given B2B scenario, the
prototype software system:
1. Captures the scenario as a UML interaction diagram
2. Converts the UML description into a DAML-OIL (DARPA

Agent Markup Language-Ontology Interchange Language)
[2] description

3. Processes the DAML-OIL description of the interaction
diagram to extract B2B conversations

4. Creates state machines for agent behavior in B2B
transactions

5. Augments the state machines to include exception-handling
6. Enacts agents to represent the B2B participants and their

software systems.
We performed our analysis within the context of several
industrially specified scenarios formulated by the OAG. The
scenarios are typified by the UML interaction diagram in Figure
1. Such scenarios, and their associated interaction diagrams,
would represent the starting points for setting up automated
supply chains among a number of independent organizations.
Figure 2 shows the resultant use cases (for a scenario involving
Ford and four of its suppliers) that can be identified from the
interaction diagram. Our precise methodology is
1. Participants construct an interaction (i.e., sequence) diagram

in UML. The messages in the sequence diagram must be
standard business documents, such as the OAG Business
Object Documents (BODs).

2. Participants provide values for the parameters of the BODs.
To automate this, a tool is being constructed that parses the
interaction diagram, identifies the BODs, and queries the
participants for the values. For example, the parameters
needed in the subsequent phase to identify the threads of a
purchase-order conversation are as follows:

a. ProcessPO (id, sender, receiver)

b. AckPO (id, sender, receiver,
{partial/final},
{accept/reject/modify})

c. ShowShipment (id, sender, receiver)

d. ProcessInvoice (id, sender, receiver)

We represent this information in DAML-OIL and store it in a
.daml file. The file is then validated against the DAML-OIL
representation for standard BODs that we created.

3. The Conversation Table Generator software takes as input
the DAML-OIL file representing a particular scenario and
produces a conversation table. Entries in this table are
produced by applying the following general rules:
• Rule 1:

If first message in a scenario
Then all entries := 0.
Else If messageID(BOD-instance) ==
 messageID(earliest BOD-instance)
Then respondTo(BOD-instance) :=
 messageNumber(earliest BOD-instance)
Else If messageID(BOD-instance) has no
 earlier match AND
 sender(BOD-instance) ==
 receiver(previous BOD-instance)
Then respondTo(BOD-instance) :=
 messageNumber(previous BOD-instance)
Else respondTo(BOD-instance) := 0

• Rule 2:
If type(BOD-instance) == AckPO
 AND NOT decision(BOD-instance) == Refuse
 OR type(BOD-instance) == ShowShipment
 OR type(BOD-instance) == ReceivePO
 OR type(BOD-instance) == ANSI_X12_855
Then
 replyTo(BOD-instance) :=
 respondTo(BOD-instance) AND
 resolve(BOD-instance) :=
 respondTo(BOD-instance) AND
 complete(BOD-instance) := 0
Else replyTo(BOD-instance) := 0 AND
 resolve(BOD-instance) := 0

• Rule 3:
If type(BOD-instance) == ProcessPO OR
 type(BOD-instance) == ANSI_X12_850
Then
 complete(BOD-instance) := 0
Else If [type(BOD-instance) ==
 ProcessInvoice OR
 type(BOD-instance) == AckPO AND
 decision(BOD-instance) == Refuse] AND
 messageID(BOD-instance) ==
 messageID(earliest AckPO-instance) AND
 status(earliest AckPO-instance) == Final
Then
 complete(BOD-instance) :=
 messageNumber(earliest AckPO-instance)

4. From the conversation table, the Dooley Graph Generator
software generates a collaboration diagram (Dooley graph).

5. From the Dooley graph, the Agent Generator software
generates the state machines for agent behaviors representing
each role that the business entities are assuming.

The interactions in Figure 1 consist of the exchange of structured
documents termed by the OAG Business Object Documents
(BODs). For B2B interactions, a ProcessPO BOD is a directive
that carries the composite semantics of request and inform, i.e.,
the sender requests the recipient to evaluate the PO and inform the
sender of the results. The informal semantics is that ProcessPO
will be followed by a response from the recipient, and that the
response will be either an AckPO or a DeclinePO.

A more formal semantics can be specified using DAML-OIL.
This is shown for the Ford scenario in Appendix A. Alternatively,
the semantics for the BODs can be represented using the PSL
formalism [6].
Such BOD semantics are used to construct conversation tables (as
shown in Table 1) automatically and then check the consistency of
the messages in the tables. Each message (document) that is
exchanged during a B2B transaction is analyzed in terms of four

(antisymmetric and irreflexive) binary relations: (1) respondsTo,
(2) repliesTo, (3) resolves, and (4) completes. Please see [14,15]
for a precise specification of the semantics of these relations.
They enable different B2B protocols to be compared and analyzed
for correctness and completion. They also enable a large protocol
to be decomposed into a number of smaller, standardized
subprotocols, where the participants have simple predefined roles.
The next steps in the methodology are to convert the messages in
the conversation table into a bipartite conversation graph, as
shown in Figure 3, and then into a collaboration diagram (Figure
4) that delineates the specific conversations in which each
participant is engaged. The arcs in Figure 3 help identify the roles
of the participants in the B2B transactions. The notation Ford1
indicates that message 1 (to Jarvis) is being sent by Ford; the
notation 4Ford indicates that message 4 (sent by Jarvis) is being
received by Ford. More specifically, the arc from Ford1 to 4Ford
indicates that Jarvis in message 4 is replying to Ford’s message 1
(ProcessPO). The arc from Lubetec6 to 2Lubetec indicates that
message 6 (ShowShipment) resolves Ford’s message 2
(ProcessPO). The arc from Ford2 to 7Ford indicates that message
7 completes intermediate messages 5, which, in turn, resolves
message 2. Rules for constructing these arcs are found in [14].
This graph is the basis for constructing Dooley graphs [14],
shown in Figure 4 in their equivalent form as collaboration
diagrams. Dooley graphs help identify the roles of participants in
a B2B transaction. Note that participants in collaborations can fill
different roles at different times, and thus can be involved in many
simultaneous conversations. The role changes that occur over
time for each participant in a B2B transaction can be shown as
histories or as partitioned character timelines. We show these for
the Ford scenario in Table 2.
Both Singh [14] and Parunak [15] encountered the problem that
parts of a conversation that should be connected are not. This is
because some messages require multiple responses, and their
methodology could not capture this. For example, a ProcessPO
message is two requests: “Will you supply the item?” and “Will
you inform me when you ship?” We have solved this by allowing
partial replies to earlier messages. The result is that parts of an
overall conversation are reconnected meaningfully, thereby
preventing the proliferation of participant roles.
A software agent can fill each of the roles that can be identified in
the collaboration diagram. Moreover, the diagram for each role
can be converted directly into a state-machine description for the
behavior of the agent. This leads to a capability for automatically
generating the agents, who then operate as managers of the B2B
supply-chain process. Several of the state-machine behavioral
descriptions are shown in Figure 5, with a textual description for
one of the Ford roles as follows:

Agent State Machine Behavior for Ford2
 States: Start, State1, Stop, State2, State3
 Arcs are
 send:ProcessPO from Start to State1
 receive:Refuse from State1 to Stop
 receive:AckPO from State1 to State1
 receive:Timeout from State1 to Start
 receive:AckPO from State1 to State2
 receive:ShowShipment from State2 to State2
 receive:ProcessInvoice from State2 to State3

Figure 2: Use-case model for Ford supply-chain interoperability scenario.

 Figure 1: Interaction diagram for the OAG scenario involving Ford and
its suppliers.

Table 1. Conversation Table for Ford Interoperability Scenario
ID Sender Receiver Message Respond

To
Reply
To

Resolve Complete

1 Ford Jarvis ProcessPO
2 Ford Lubetec ProcessPO
3 Ford E Logistics ProcessPO
4 Jarvis Ford AckPO 1 1 1
5 Lubetec Ford AckPO 2 2 2
6 Lubetec Ford ShowShipment 2 2 2
7 Lubetec Ford ProcessInvoice 2 5
8 Jarvis Ford ShowShipment 1 1 1
9 Jarvis Ford Refuse 1 4
10 Ford Greenfield ProcessPO 9
11 Greenfield Ford AckPO 10 10 10
12 Greenfield Ford ShowShipment 10 10 10
13 Greenfield Ford ProcessInvoice 10 11
14 E. Logistics Ford ReceivePO 3 3 3

Table 2. Messages and histories with partial replies

Role History

Ford (F1, 1, J1); (F2, 2, L1); (F3, 3, E1); (J1, 4, F5);
(L1, 5, F6); (L1, 6, F2);(L2, 7, F2); (J1, 8, F1);
(J2, 9, F1); (F4, 10, G1); (G1, 11 F7); (G1, 12, F4);
(G2, 13, F4); (E1, 14, F3)

Jarvis (F1, 1, J1); (J1, 4, F5); (J1, 8, F1); (J2, 9, F1);

Lubetec (F2, 2, L1); (L1, 5, F6); (L1, 6, F2); (L2, 7, F2);

Greenfield (F4, 10, G1);(G1, 11 F7);(G1, 12, F4);(G2, 13, F4);

Efficient
Logistics

(F3, 3, E1); (E1, 14, F3)

3. Automated Exception Handling
3.1 Types of Exceptions
Exceptions can occur at a variety of places in a B2B process and
in a variety of forms. In order to accommodate exceptions, they
must all be anticipated. One way of doing this exhaustively is to
consider the inverse of all goals, as done in [7], which helps in
identifying the failure mechanisms for all goals. We have applied
this to our specific B2B scenario, with the following result:

• Goal: Unachieved state

• Deadline: Missed; Achieved late

• Product goal: Product violates constraints; Wrong quantity

• Payment: Missed; Sent late; Wrong amount

• Order: Product violates constraints; Wrong quantity; Missed
deadline; Wrong customer

• Storage: Wrong product; Wrong quantity; Wrong location

• Delivery: Wrong product; Wrong quantity; Missed deadline;
Wrong customer; Wrong location

An alternative approach is an exception-type taxonomy [3,4].

3.2 Incorporating Exceptions in Agents
The result of applying this exception-handling analysis to B2B
transactions consisting of OAG BODs is that for messages

refuse refuse | commit | timeout
commit refuse | commit | timeout
and for actions on state transitions
getAckPO getAckPO | getRefuse
getAckPO getAckPO | getRefuse

where the symbol means “is replaced by.” The result is an
agent description that handles exceptions automatically, leading to
a robust implementation of B2B transactions. Figure 6 shows
how an agent description is augmented to consider exceptions.
Figure 7 summarizes all of the steps in the methodology that we
have formulated above.

4. DISCUSSION
The methodology investigated in this paper provides a basis for
the convergence of multiple standards for supply-chain
management that could potentially become ready-to-use
technology for software vendors. The methodology makes use
of—and begins to formalize—the standard business documents
that OAG and RosettaNet are developing. We have also produced
a prototype that demonstrates how the methodology can be
automated. Although promising, it has not yet been deployed.

Supplier

Warehouse

Figure 5: State-machine behavioral descriptions for
enacting agents that implement B2B supply-chain processes.

Figure 4: Collaboration diagram (Dooley graph) for Ford
interoperability scenario, constructed from bipartite
conversation graph and showing participant roles.

Lubetec5

Ford2

Ford3

Jarvis4

Ford1

Lubetec6

Lubetec7

Jarvis8

Jarvis9

Ford10

Greenfield11

Greenfield12

Greenfield13

Eff.Logistics14

2Lubetec

3Eff.Logistics

4Ford

5Ford

1Jarvis

6Ford

7Ford

8Ford

9Ford

10Greenfield

11Ford

12Ford

13Ford

14Ford

Sender Receiver

Figure 3: Bipartite conversation graph derived from the
conversation table for the Ford scenario.

Start

Waiting for
Payment

Order Complete
Receive(payment) ^send("Thank you")

^send(ProcessInvoice)

Ignore Exceptions

Start

Waiting for
Payment

Order Complete

Receive(payment) ^send("Thank you")

Set Deadline
Alarm

^send(ProcessInvoice)

exceeded(Deadline)
^send(ReminderInvoice)

Consider Exceptions

Figure 6: Agent descriptions can be automatically augmented to handle exceptions.

Create
Agent-
Based
B2B

Transaction
State

Machine

Generic B2B
Use-Case
and Class
Models

Identify B2B
Conversations

Participants
Develop B2B
Interaction
Diagrams

Exception-
Augmented
Transaction
Templates

BOD
Semantics

Augment
B2B

Transaction
State

Machine

Participants
Enact B2B
Interaction

Agents

Dooley
Graph

Agent
Skeleton

Robust
Agent

Skeleton

Figure 7: Agent-based coordination methodology for B2B automation.

Our investigation has considered a number of issues in the
evaluation of SCM and B2B automation:
1. Investigation of approaches to coordination modeling. We

selected an approach based on a linguistic analysis of
conversations. The investigation included a proof-of-concept
for a real-world supply-chain scenario.

2. Identification of example SCM standards to test the selected
approach. We have identified Open Application Group
(OAG) B2B standards as the most relevant for supply-chain
management in the automotive and aerospace manufacturing
areas. Two example SCM scenarios developed by Ford and
Lockheed Martin were chosen from the OAG Vendor
Challenge event. Our choice was based on the realism of
these scenarios, which were developed by manufacturers.

3. Evaluation. The linguistic approach was formalized to
capture SCM semantics, based on the scenarios of SCM
interactions. A multistep, formal procedure was defined, and
then evaluated on the selected SCM scenarios.

4. Prototyping of a computational procedure that demonstrates
use of the approach on the example SCM standards. The
prototype includes
4.1. Representation of an interaction diagram in DAML-

OIL (an emerging Semantic Web standard).
4.2. Conversation Table Generator software, along with the

rules for producing conversation tables.
4.3. Collaboration Diagram (Dooley graph) Generator,

which takes the output of the Conversation Table
Generator and constructs intermediate graphs for
conversation analysis.

4.4. Formalization and classification of exceptions to
normal behavior. A key contribution of this work is
the framework in which business exceptions to
“normal” behavior can be included and represented
within our method. With this capability, an end-user
has a means to represent the entire behavior of SCM
roles in a uniform, repeatable way.

4.5. Agent state-machine generator software that defines
the behavior of individual roles involved in the SCM
scenarios. It takes as input the collaboration diagrams
and definition of exceptions to normal behavior and
produces descriptions of behavior (i.e., state machines)
for each participating role.

During the application of coordination modeling to handle real
SCM standards and scenarios we have identified two technical
issues. The first issue has to do with the adopted, foundational,
semantic categories (i.e., respond, reply, resolve, and complete)
that have been proposed as a basis for reasoning about interaction
and coordination. We have discovered that the semantics of these
categories are insufficient to capture some of the SCM details.
The other issue has to do with the algorithm for generation of the
collaboration diagrams that is based on these four categories and
creates indeterminate situations in some cases. One way of
dealing with these issues is through identifying a heuristic rule to
constrain a space of possible behavior diagrams to those that are
more manageable.
Convergence is occurring among the three major standards
efforts: OAG, RosettaNet, and ebXML. Our results offer a

prototyped coordination modeling approach for aiding the
convergence.

5. CONCLUSIONS
The methodologies described here promote the interchange of
standard business documents and compensate for exceptions that
might occur during execution. Enterprises need only describe
their supply processes using standard business documents and
UML interaction diagrams. The methodologies and tools convert
the diagrams into specifications for software agents, which then
cooperate in automating the resultant supply chain.
This investigation has also identified additional work that needs to
be done in order to refine the methodology, demonstrate its utility,
and foster its adoption. The additional work includes

• Encoding the semantics of the complete set of BODs in
DAML-OIL and/or PSL

• Resolving technical issues in a Dooley graph representation
of conversations

• Formulating the agent-based coordination methodology for
additional scenarios, enabling the automation of a larger set
of interactions among B2B participants

• Collaborating with OAG, RosettaNet, OASIS, ebXML, and
other B2B interest groups.

The final result will provide a major benefit to industrial and
commercial efficiency, as well as competitiveness in global
markets. Although our work to date indicates that supply-chain
automation using software-agent technology is feasible, its
widespread adoption will require appropriate standards so that
companies can confidently invest their efforts in techniques that
will truly be interoperable.

6. ACKNOWLEDGMENTS
We have been collaborating with Michael Gruninger and James
G. Nell at the U.S. National Institute for Standards and
Technology, which supported the work reported here. Certain
commercial products are identified in this paper. These products
were used only for demonstration purposes. This use does not
imply approval or endorsement by NIST, nor does it imply that
these products are necessarily the best available for the purpose.

7. REFERENCES
[1] T.J. Becker, “Putting a Price on Supply Chain Problems:

Study Links Supply Chain Glitches with Falling Stock
Prices,” Georgia Tech Research News, December 12, 2000
http://www.gtresearchnews.gatech.edu/newsrelease/
CHAINR.html.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila, “The
Semantic Web,” Scientific American, May 2001.

[3] C. Dellarocas and M. Klein, “A Knowledge-Based Approach
for Designing Robust Business Processes,” in Business
Process Management: Models, Techniques, and Empirical
Studies, W.van der Aalst et al., eds., Springer-Verlag Lecture
Notes in Computer Science 1806, pp. 50-65, 2000.

[4] Chrysanthos Dellarocas, Mark Klein, and Juan Antonio
Rodriguez-Aguilar, “An Exception-Handling Architecture
for Open Electronic Marketplaces of Contract Net Software
Agents,” Proceedings International Conference on
Electronic Commerce, ACM Press, October 2000

[5] Mark Greaves, Heather Holmback, and Jeffrey Bradshaw,
“What Is a Conversation Policy?” Proceedings of Workshop
on Specifying and Implementing Conversation Policies,
Autonomous Agents ’99, Seattle, WA, May 1999.

[6] Michael Gruninger, “PSL Interoperability Example,”
Technical Report, Dept. of Industrial Engineering, University
of Toronto, December 1997.

[7] Michael Gruninger, “Classes of Goals and Constraints,”
Technical Report, Dept. of Industrial Engineering, University
of Toronto, September 1999.

[8] Michael N. Huhns and Munindar P. Singh, “Managing
Heterogeneous Transaction Workflows with Cooperating
Agents,” in Agent Technology: Foundations, Applications
and Markets, N. R. Jennings and M. J. Wooldridge, editors,
Springer-Verlag, Berlin, 1998, pp. 219-240.

[9] Michael N. Huhns and Larry M. Stephens, “Automating
Supply Chains,” IEEE Internet Computing, vol. 5, no. 4,
July-August 2001, pp. 90-93.

[10] Nenad Ivezic, Mario Barbacci, Don Libes, Tom Potok, and
John Robert, “An Analysis of a Supply Chain Management
Agent Architecture,” in Proceedings 4th International
Conference on Multiagent Systems, IEEE Computer Society
Press, July 2000, pp 401-402.

[11] Kuldeep Kumar, “Technology for Supporting Supply-Chain
Management,” CACM, vol. 44, no. 6, June 2001, pp. 58-61.

[12] Open Applications Group, “Plug and Play Business Software
Integration,” http://www.openapplications.org/downloads/
whitepapers/whitepaperdocs/whitepaper.htm, 2000.

[13] Steve Osborn, “The Role of Agents in Business-to-Business
(B2B) Electronic Commerce,” www.agentlink.org, 2000.

[14] H. Van Dyke Parunak, “Visualizing Agent Conversations:
Using Enhanced Dooley Graphs for Agent Design and
Analysis,” in Proceedings 2nd International Conference on
Multiagent Systems, AAAI Press, 1996, pp. 275-282.

[15] Munindar P. Singh, “Synthesizing Coordination
Requirements for Heterogeneous Autonomous Agents,”
Autonomous Agents and Multi-Agent Systems, Kluwer
Academic Publishers, vol. 3, no. 2, June 2000, pp. 107-132.

[16] Peter Wegner, “Why Interaction is More Powerful Than
Algorithms,” CACM, Vol. 40, No. 5, May 1997, pp. 80-91.

Appendix A. B2B Scenario in DAML-OIL
<?xml version="1.0" ?>
<rdf:RDF
 xmlns:daml
="http://www.daml.org/2001/03/daml+oil#"
 xmlns:bod
="http://www.engr.sc.edu/research/cit/projects/
 DAML/BODs#">
<daml:Ontology rdf:about="">
 <rdfs:comment>
 Definition of OAG BODs for Ford scenario
 </rdfs:comment>
</daml:Ontology>
<bod:ProcessPO rdf:ID="BOD1">

 <bod:bodSender>Ford</bod:bodSender>
 <bod:bodReceiver>Jarvis
Tools</bod:bodReceiver>
</bod:ProcessPO>
<bod:ProcessPO rdf:ID="BOD2">
 <bod:bodSender>Ford</bod:bodSender>
 <bod:bodReceiver>Lubetec</bod:bodReceiver>
</bod:ProcessPO>
<bod:ProcessPO rdf:ID="BOD3">
 <bod:bodSender>Ford</bod:bodSender>
 <bod:bodReceiver>Efficient
Logistics</bod:bodReceiver>
</bod:ProcessPO>
<bod:AckPO rdf:ID="BOD1">
 <bod:bodSender>Jarvis Tools</bod:bodSender>
 <bod:bodReceiver>Ford</bod:bodReceiver>
 <bod:ackDecision>Accept</bod:ackDecision>
 <bod:ackStatus>Final</bod:ackStatus>
</bod:AckPO>
<bod:AckPO rdf:ID="BOD2">
 <bod:bodSender>Lubetec</bod:bodSender>
 <bod:bodReceiver>Ford</bod:bodReceiver>
 <bod:ackDecision>Accept</bod:ackDecision>
 <bod:ackStatus>Final</bod:ackStatus>
</bod:AckPO>
<bod:ShowShipment rdf:ID="BOD2">
 <bod:bodSender>Lubetec</bod:bodSender>
 <bod:bodReceiver>Ford</bod:bodReceiver>
</bod:ShowShipment>
<bod:ProcessInvoice rdf:ID="BOD2">
 <bod:bodSender>Lubetec</bod:bodSender>
 <bod:bodReceiver>Ford</bod:bodReceiver>
</bod:ProcessInvoice>
<bod:ShowShipment rdf:ID="BOD1">
 <bod:bodSender>Jarvis Tools</bod:bodSender>
 <bod:bodReceiver>Ford</bod:bodReceiver>
</bod:ShowShipment>
<bod:AckPO rdf:ID="BOD1">
 <bod:bodSender>Jarvis Tools</bod:bodSender>
 <bod:bodReceiver>Ford</bod:bodReceiver>
 <bod:ackDecision>Refuse</bod:ackDecision>
 <bod:ackStatus>Final</bod:ackStatus>
</bod:AckPO>
<bod:ProcessPO rdf:ID="BOD10">
 <bod:bodSender>Ford</bod:bodSender>
 <bod:bodReceiver>Greenfield</bod:bodReceiver>
</bod:ProcessPO>
<bod:AckPO rdf:ID="BOD10">
 <bod:bodSender>Greenfield</bod:bodSender>
 <bod:bodReceiver>Ford</bod:bodReceiver>
 <bod:ackDecision>Accept</bod:ackDecision>
 <bod:ackStatus>Final</bod:ackStatus>
</bod:AckPO>
<bod:ShowShipment rdf:ID="BOD10">
 <bod:bodSender>Greenfield</bod:bodSender>
 <bod:bodReceiver>Ford</bod:bodReceiver>
</bod:ShowShipment>
<bod:ProcessInvoice rdf:ID="BOD10">
 <bod:bodSender>Greenfield</bod:bodSender>
 <bod:bodReceiver>Ford</bod:bodReceiver>
</bod:ProcessInvoice>
<bod:ReceivePO rdf:ID="BOD3">
 <bod:bodSender>Efficient
Logistics</bod:bodSender>
 <bod:bodReceiver>Ford</bod:bodReceiver>
</bod:ReceivePO>
</rdf:RDF>

