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Automating the Addition of Fault Tolerance

with Discrete Controller Synthesis

Alain Girault⋆ and Éric Rutten⋆⋆

INRIA and Grenoble University

Abstract. Discrete controller synthesis (DCS) is a formal approach, based on the same state-space exploration

algorithms as model-checking. Its interest lies in the ability to obtain automatically systems satisfying by

construction formal properties specified a priori. In this paper, our aim is to demonstrate the feasibility

of this approach for fault tolerance. We start with a fault intolerant program, modeled as the synchronous

parallel composition of finite labeled transition systems; we specify formally a fault hypothesis; we state

some fault tolerance requirements; and we use DCS to obtain automatically a program, having the same

behavior as the initial fault intolerant one in the absence of faults, and satisfying the fault tolerance

requirements under the fault hypothesis. Our original contribution resides in the demonstration that DCS

can be elegantly used to design fault tolerant systems, with guarantees on key properties of the obtained

system, such as the fault tolerance level, the satisfaction of quantitative constraints, and so on. We show

with numerous examples taken from case studies that our method can address different kinds of failures

(crash, value, or Byzantine) affecting different kinds of hardware components (processors, communication

links, actuators, or sensors). Besides, we show that our method also offers an optimality criterion very useful

to synthesize fault tolerant systems compliant to the constraints of embedded systems, like power consumption.

Keywords. fault tolerant systems, discrete controller synthesis, automatic fault tolerance.

Category C.3: Computer Systems Organization. Special-purpose and application-based systems. Real-time

and embedded systems.

Category D.3.2: Software. Programming languages. Concurrent, distributed, and parallel languages.

Category F.2.2: Theory of Computation. Analysis of algorithms and problem complexity. Non numerical

algorithms and problems. Computations on discrete structures.

1 Introduction

1.1 Discrete controller synthesis

Discrete controller synthesis (DCS, also known as “supervisory control of discrete event systems”) was invented

by Ramadge and Wonham in the nineteen eighties [48]. Its theoretical foundation is language theory. The goal of

DCS is, starting from two languages U and D, to obtain a third language C such that:

U ∩ C ⊆ D (1)

The three languages U , D, and C represent respectively the plant, the desired system, and the controller. U ∩ C
is called the controlled system. Since the context is language theory, the alphabet I of the plant U is to be

understood as the set of events that can occur, and the language U is the set of all possible words made with the

letters of I, each understood as a possible behavior of the plant (i.e., a sequence of events). A tool suite for DCS,

called TCT, has been implemented.1

Since U and D are given and we want to find C such that U ∩ C ⊆ D, the solution could be written as

C = D.U−1 provided that the operators ‘.’ and ‘−1’, classical for real numbers, existed for languages. In this

sense DCS can be seen as an inversion problem.

The alphabet I of the language U is partitioned into two subsets: the set IC of controllable events and the

set IU of uncontrollable events. The first key point of DCS is that the controller can only act on the controllable
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38334 Saint-Ismier cedex, France, Email: Eric.Rutten@inria.fr
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events of the plant. The second key point is that the synthesized controller is the most permissive one, meaning

that the language U ∩ C must be the greatest one included in D.

Note that DCS can fail for a given objective D. This means that no language C exists acting only on IC and

such that U ∩ C ⊆ D.

Finally, it is classical to represent the pair (plant,controller) as a closed loop system, where the controller

observes the plant and modifies its behavior through the controllable events. This is illustrated by Figure 1. This

figure depicts two arrows between the plant U and the controller C. These communications do not necessarily

need to take place through a communication network since most DCS tools directly produce the controlled system

U ∩ C.

outputs

controller C

plant U
uncontrollable inputs

controllable inputs

Fig. 1. The closed loop system (plant,controller).

Several research teams have applied and extended these language theory techniques to labeled transition

systems (LTS), both in the area of computer science and discrete event systems control theory. The algorithms

used in DCS are the same as those of model checking: mostly it is state space exploration, reachability analysis,

and invariance analysis, be it enumerative or symbolic with Binary Decision Diagrams (BDDs). In particular, this

is the case of the SIGALI
2 [43] tool that we have used in the present article. Also, in model checking, it is well

known that objectives can be equivalently expressed as predicates on the states of U or as LTSs.

Within SIGALI, the desired system D is specified as a set of state properties, possibly involving synchronous

observers [29], and synthesis objectives upon them : we use essentially the objectives to make invariant a subset

of states, or keep reachable a subset of states. This is very versatile and allows the user to change easily his

synthesis objective. Figure 2 summarizes the behavior of SIGALI.

Sigali
U : system model

(modular)

U ∩ C: controlled system

D: invariance or

reachability property

Fig. 2. Overview of DSC with SIGALI.

DCS can be used on different kinds of systems, be it hardware or software. In the case of a software sys-

tem, modeling the system with an LTS does require a high level of abstraction. This is classically achieved by

considering only the control layer of the software and by abstracting away the data computations, as in [1].

1.2 The need for fault tolerance

There is no arguing that dependability is a key issue in critical systems. There are three threats to dependability:

fault, error, and failure, with the classical causality relationship [4]:

· · · −→ fault
activation
−−−−−→ error

propagation
−−−−−−→ failure

causality
−−−−→ fault −→ · · ·

For instance, consider a software where one variable x is incorrectly modified in one execution path. This is

commonly known as a bug, but, in the field of dependability, it is referred to as a fault. When the software takes

this precise execution path, then it is an error. When the incorrect value of x prevents the software from delivering

its nominal service, then we have a failure. Finally, the failure of a subsystem is seen as a fault in the encompassing

system.

We believe in the need of separation of concerns between the functional specification and the fault tolerance

requirement. Hence, we would like to propose automatic methods to turn a fault intolerant program implementing

the functional specification3, into a new program implementing the same functional specification (i.e., preserving

the semantics of the initial program) and tolerant to the faults required by the user. There have been several

methods proposed in the past, and we will study them in Section 8.

2 SIGALI: http://www.irisa.fr/vertecs/Logiciels/sigali.html.
3 By “fault intolerant”, we mean a program that is not necessarily fault tolerant.
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1.3 Contribution

We propose a DCS-based framework to transform automatically a fault intolerant program into a fault tolerant

one. It offers the following features:

– The possibility to try several fault hypotheses on the same specification.

– The possibility to evaluate several fault tolerance requirements.

– In the final program, the guarantee by construction of the fault tolerance level required by the user.

The above-mentioned features are generally also offered by most methods and algorithms that provide fault

tolerance automatically. The originality of our DCS-based method is that the failure recovery mechanism provided

by DCS is dynamic (hence it does not induce too much redundancy overhead like static methods), with a static

guarantee on the fault tolerance of the obtained system (unlike dynamic methods). As a result, if offers the best of

both worlds, static guarantee and small overhead, at the price of an exhaustive state-space exploration at compile-

time. Besides, our method also offers an optimality criterion very useful to synthesize fault tolerant systems with

embedded constraints like power consumption.

Compared to relevant related work on approaches similar to DCS for fault tolerance, our originality is that

we propose an integrated framework offering a full coverage of the possible failures of the system’s components:

processors, communication links, actuators, and sensors. Furthermore, we not only address the easy to tolerate

crash failures, but also the much more difficult value and Byzantine failures, a feature which is unique to our

framework. Finally, we use optimal DCS over finite paths in order to provide more possibilities of synthesis for

fault tolerance; this is another unique feature of our framework.

1.4 Outline

We start by introducing the formal model of labeled transition systems and how they are used in DCS: this is

Section 2. Then, we present in Section 3 the general principles for automating the addition of fault tolerance

with DCS. In Section 4 we detail how to specify and handle the failures of hardware components (processors,

communication links, actuators, and sensors). In Section 5 we detail how to specify and handle several kinds of

failures (crash, value, and Byzantine failures). In Section 6 we present advanced DCS features, like how to specify

and handle quantitative constraints, and how to obtain a distributed controller. Then, we present in Section 7 two

previously unpublished case studies that exemplify how our framework can be actually used to specify and make

fault tolerant an entire system. We have completed three other case studies that further demonstrate the pertinence

of our framework: they have been published in [27,23,28,22] so we do not include them in the present article

(although several of our examples presented in Sections 4 to 6 will be taken from these articles). We end with a

presentation of the related work in Section 8, and with concluding remarks in Section 9.

2 Formal models used in DCS

2.1 Labeled transition systems

A labeled transition system (LTS) is a tuple S = 〈Q, q0, I,O, T 〉, where Q is a finite set of states, q0 is the

initial state of S, I is a finite set of input events (produced by the environment), O is a finite set of output event

(emitted towards the environment), and T is the transition relation, that is a subset of Q × Bool( I) × O∗ × Q,

where Bool( I) is the set of boolean expressions of I. If we denote by B the set {true, false}, then a guard

g ∈ Bool( I) can be equivalently seen as a function from 2 I into B.4

Each transition has a label of the form g/a, where g ∈ Bool( I) must be true for the transition to be taken (g is

the guard of the transition), and where a ∈ O∗ is a conjunction of outputs that are emitted when the transition

is taken (a is the action of the transition). State q is the source of the transition (q, g, a, q′), and state q′ is the

destination. A transition (q, g, a, q′) will be graphically represented by q
g/a
−−→ q′.

An LTS is deterministic (resp. reactive) iff, for each state q ∈ Q and for each valuation of the inputs, there

exists at most (resp. at least) one transition from q and whose guard is true for this inputs valuation.

4 For any set X , 2X is the set of all subsets of X .
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The composition operator of two LTSs put in parallel is the synchronous product, noted ||, as defined by

Milner [46] and a characteristic feature of the synchronous languages [6]. The synchronous product is commutative

and associative. Formally:

〈Q1, q0,1, I1,O1, T1〉 || 〈Q2, q0,2, I2,O2, T2〉 = 〈Q1 ×Q2, (q0,1, q0,2), I1 ∪ I2,O1 ∪ O2, T 〉

with T = {((q1, q2)
g1∧g2/a1∧a2

−−−−−−−−→ (q′1, q
′
2)) | q1

g1/a1

−−−→ q′1 ∈ T1, q2
g2/a2

−−−→ q′2 ∈ T2}.

Here, (q1, q2) is called a macro state, where q1 and q2 are its two component states.

Like all product operators for LTSs, the synchronous product causes a combinatorial explosion, since the

number of states in S1||S2 is, at worst, equal to the product of the number of states of S1 by S2. However, it limits

this explosion, compared to the asynchronous product, where for two LTSs making each a transition in parallel,

all interleavings are explicitly represented in the product, with all intermediary states. Indeed, the synchronous

product makes it possible to group parallel transitions into one global transitions where several local transitions

are taken in the same step, without developing sub-steps.

A path in the LTS S = 〈Q, q0, I,O, T 〉 is a sequence of transitions q1
g1/a1

−−−→ q2
g2/a2

−−−→ q3 · · · qn
gn/an

−−−−→
qn+1. A trace is a path starting in the initial state q0. The set of all traces of S is noted T (S). A state q of Q is

reachable iff there exists a trace to q. A set of states E is reachable iff all its states are. In the CTL temporal

logic [24], this is stated as S ⊢ ∀♦(E). A set of states E is invariant iff any transition having as source a state

of E has its destination state in E. In CTL, this is stated as S ⊢ ∀�(E).

2.2 Discrete controller synthesis on labeled transition systems

The plant U is specified as an LTS, more precisely the result of the synchronous product of several LTSs. D is the

objective that the controlled system must fulfill. The controller C obtained with DCS achieves this objective by

restraining the transitions of U , that is, by disabling those that would jeopardize the objective D.

The set I of inputs of U is partitioned into two subsets: the set IC of controllable inputs and the set IU

of uncontrollable inputs. Formally, I = IC ∪ IU and IC ∩ IU =∅. As a consequence, a transition guard g ∈
Bool( IC ∪ IU ) can be seen as a function from 2 IC × 2 IU into B.

A transition is controllable iff there exists at least one valuation of the controllable inputs such that its guard

is false; otherwise it is uncontrollable. Formally, a transition (q, g, a, q′) ∈ T is controllable iff ∃X ∈ 2 IC such

that ∀Y ∈ 2 IU , we have g(X,Y ) = false.
In the framework of this paper, we use the following functions to synthesize the controlled system U ∩ C,

where E is any subset of states of U (possibly specified itself as a predicate on states ϕ):

– S′ = make invariant (S,E) is a function that synthesizes and returns a controllable system S′ such that the

controllable transitions leading to states qi+1 6∈ E are inhibited, as well as those leading to states from where

a sequence of uncontrollable transitions can lead to such states qi+k 6∈ E.

For example, consider a LTS S, synchronous composition of several LTSs, with one of them being an

observer with a state Error. The function making invariant the set of global states where the local state of the

observer is different from Error inhibits behaviors leading to this Error state, making it unreachable. This

technique will be used in Section 6.4.

– S′ = keep reachable (S,E) is a function that synthesizes and returns a controlled system S′ such that the

controllable transitions entering subsets of states from whereE is not reachable are disabled. Note that making

E invariant is equivalent to making states not in E unreachable.

For example, a system can have a set of states defined as safe back-up configurations, where the system

should always be able to go in case of need, from anywhere in its reachable state space.

– E′ = reachable under control (S,E) is a function that returns a subset E′ of the states of S such that states

in E′ are reachable by controllable transitions. This function allows us to transform a reachability objec-

tive into an invariance one: keep reachable (S,E) = make invariant (S, reachable under control (S,E)).
This feature will be useful in Section 6.3 when we consider conditioned reachability objectives.

It must be noted that the order in which synthesis operations are applied does matter: indeed, their composition

is not commutative in general. Reachability can not be considered before an invariance constraint, because the

latter might compromise the former by removing paths and breaking reachability. On the contrary, considering

reachability after invariance does not jeopardize the invariance, as it will not result in paths going out of the

invariant set.
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This introduction to the formal models used in DCS is kept simple in order to concentrate the paper on its con-

tribution concerning fault tolerance issues. Readers interested in more detailed formalizations of discrete controller

synthesis are referred to [48,43,2].

Figures 3 shows, from left to right, an example of DCS on an LTS with five states and two inputs, one control-

lable c and one uncontrollable u. The objective is to make this system invariant w.r.t. the subset of state E, i.e.,

to avoid state S4. Given the particular uncontrollable transitions, only a smaller subset E’ can be controlled. This

example shows that, in the general case, even for propositional state properties and invariance objectives, the DCS

algorithm has to explore the whole state space in order to find the controllable transition in a path where control

has to be enforced, in cases where the following transitions are not controllable. The LTS on the right shows the

controlled system, where in state S2 the controllable input c is forbidden to take the value true and must be

false, hence inhibiting the wrong behavior to be avoided by disabling the transition from S2 to S3.

E
E’

S0 S1

S2S4

S3

c

cu

not c

not c u

u
E

E’
S0 S1

S2S4

S3

c

cu

not c

not c u

u
E

E’
S0 S1

S2S4

S3

c

cu

not c

not c u

u

E
E’

S0 S1

S2S4

S3

c

cu

not c

not c u

u

c = false

Fig. 3. An example of DCS, on an automaton.

If DCS fails w.r.t. the objective D, since all the state space is traversed during the synthesis (be it exhaustively

or symbolically), it means that it is impossible to restrain the plant U only by disabling controllable transitions. In

our framework for fault tolerance, we will discuss the implication of this situation.

2.3 Tools and programming languages

We use the Mode Automata language to program LTSs [40].5 Without going into too many details, Mode Automata

are LTSs: each state represents a different mode of operation of the program, specified as data-flow equations

relating the inputs and the outputs of the program. Mode Automata use the synchronous product operator to

combine several programs put in parallel. This allows the user to program in a clean and modular way.

The compiler associated to the Mode Automata language, MATOU, compiles an LTS into the Z/3Z format6,

which is the input format of the SIGALI tool for DCS [43]. Finally, we use SIGALSIMU to co-simulate the system

and the controller. This tool chain, illustrated in Figure 4, is the support for a DCS methodology [1] that was also

used to generate task managers [44].

SigalSimu
interactive

simulation

Mode

controlled

system

Automata

system model

Z/3Z

encoding

properties

Sigaliweights

components

Fig. 4. Tools used.

Note that we use the synchronous composition as a model specification facility, because of its clarity and

elegance; however it is not intrinsically necessary, and the asynchronous product may be used too; in that sense

our choice of tools is not central to the paper. Concerning performance, the impact is not obvious: synchronous

composition tends to reduce the state space because intermediate states in the communications are abstracted away

by the instantaneous broadcasting; on the other side, labels on the transitions can be more complex.

5 Matou: http://www-verimag.imag.fr/∼maraninx/MATOU
6

Z/3Z is the Galois field with three elements, {−1, 0, 1}.
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3 A framework for automating the addition of fault tolerance with DCS

From the point of view of fault tolerance, it is natural to consider the fault events as uncontrollable events. Then,

the plant U must represent all the possible behaviors, both the good ones (where either no fault occurs, or those

that occur are masked) and the bad ones (where at least one fault prevents the system from providing its nominal

service). Finally, the desired system D must express the fact that a certain number of faults must be tolerated. By

synthesizing a controller C guaranteeing that U ∩ C satisfies the properties of D, we will obtain automatically a

fault tolerant system.

Note however that uncontrollable events are by no means restricted to be fault events. They can be any event

that the user wants to be determined by the environment, e.g., non-deterministic events.

Besides, the fault model will be described as an LTS that will be composed in parallel with the remaining of

the plant specification. This approach yields two advantages, first it is flexible and modular since it is possible to

change the fault hypothesis without modifying the remaining of the specification, and second it is formal thanks

to the usage of an LTS.

The design of dependable systems calls for a dedicated specification and validation procedure. Two key points

must be taken into account: the fault hypothesis and the fault tolerance policy. This is detailed in the following

paragraphs.

3.1 Defining the fault intolerant system

The first step involves designing the fault intolerant system. We use LTSs to specify the various concurrent parts of

the system (both hardware and software), and the synchronous parallel composition operator to compose them in

order to obtain the full system; these formal models have been defined in Section 2.1. We advocate that designing

a single monolithic LTS is both non-modular and non-scalable. Breaking down the system into a set of concurrent

components that collaborate together to the desired behavior has always been the method of choice to achieve

modularity and scalability. It is also much easier to design each sub-component independently of its interactions

with the other sub-components, and to rely on DCS to derive automatically their interactions.

3.2 Defining the fault hypothesis

A fault hypothesis states which components of the system may fail. If more than one component is likely to fail,

failure configurations are a common way to express subsets of components that may fail together. According

to this hypothesis, the remaining components are supposed to be reliable: they never fail, or if such a failure

occurs, the whole system fails. The fault hypothesis can be obtained by a stochastic analysis, in order to find the

probability for each failure configuration; this is out of the scope of our paper. In the following, we assume that all

the specified failure configurations are equally probable.

Then, a fault model is required for each component identified by the fault hypothesis. For a given component

failure, what this failure implies has to be specified. This amounts to defining a behavior that is triggered by this

failure. For instance, when a component fails (processor, communication link, sensor, etc.), it may stop reacting

to its environment (fail-silent behavior) or it may react by emitting random values (Byzantine behavior). Another

aspect of the fault model is to specify whether the faults are permanent or temporary. The failure models must be

combined with the failure patterns in order to specify realistic failure scenarios.

3.3 Defining a fault tolerance policy

Ideally, a fault tolerant system should maintain its functionalities and its performance (nominal service) even

though some of its components are faulty. In practice, this assumption is too strict and expensive to implement.

Thus, if a failure occurs, the nominal service may be replaced by a degraded operating mode. When the system

runs inside a degraded mode, only a subset of its initial functional requirements are still met. We achieve fault

tolerance by establishing such a degraded mode when a failure occurs.

In our context, DCS is used to control the system’s behavior, in order to ensure a minimal service. The fault

tolerance policy is a DCS control objective expressing fault tolerance: what the system should always do or avoid,

despite failure occurrences. The control objective can be a temporal logic property, expressing either an invariant

or an accessibility property.

However, a degraded operating mode only exists for those systems that are controllable. DCS will act on

the subset of controllable events of the system for service maintenance purposes. The system behavior will be

6



constrained by driving these controllable events appropriately. If DCS fails, it means that the system at hand

cannot be made fault tolerant for the required fault tolerant policy and under the specified fault hypothesis; thus,

the system must be redesigned, either by relaxing some constraint or by adding/improving the available resources:

for instance, the number of processors can be increased.

One important point not addressed by DCS is the possible faults of the controller itself. One feasible solution

is to apply to the controlled system the classical techniques of fault tolerance, for instance active replication with

voting, where the number of active replica depends on the number of faults to be tolerated.

Technically, the fault tolerance policy is specified in terms of the functions make invariant (S,E) and

keep reachable (S,E), where E is any subset of states of the fault intolerant system S. This subset E will be

specified either directly as a set or as a predicate ϕ on states of S. In particular, when the fault intolerant system S
is the parallel product of several LTSs, then ϕ can be a predicate on the states of one (or several) of its component

LTSs:

U = S1 ‖S2 ‖ · · · ‖Sn with Si = 〈Qi, qi0, Ii,Oi, Ti〉 (2)

E = {q = (q1, . . . , qn) ∈ Q1 × · · · × Qn | ϕ(q1, . . . , qn) = true} (3)

In other words, each macro state of the product such that its component states match the predicate ϕ is in E.

4 Specifying the hardware component failures

A complete system classically consists of several hardware components: processors, communication media, sen-

sors, and actuators. In accordance, when designing fault tolerant systems, we should not only address the failures

of the processors (what most of the related work does), but also the failures of the communication media, the

sensors, and the actuators. In particular, in distributed systems, communication media are usually more subjects to

failures than processors. Also, in embedded systems, sensors and actuators are critical components, whose failure

will inevitably put the system in a degraded mode, if not causing its actual failure.

As we have said in Section 3, which hardware components can fail will be expressed in the fault tolerant

hypothesis. We show in this section that each kind of hardware component calls for specific means to handle its

failure.

4.1 Processor failures

f

OK

ERR

f̄

r̄

r

OK

ERR

f̄

r̄

f

f

OK

ERR

d̄

r̄

DEG f̄r

d

(a) (b) (c)

Fig. 5. (a) LTS of a processor with permanent fail-silent failures; (b) Same with temporary failures; (c) Same with degraded

modes.

Figure 5(a) specifies a processor subject to permanent failures: the processor starts in the OK states, and upon

the reception of the input failure event f , goes into the ERR state, where it stays forever. Figure 5(b) specifies a

processor subject to transient failures: once in the ERR state, it can go back to the OK state following the repair

input event r. Figure 5(c) specifies a processor that can go into the DEG state following the degraded mode input

event d; once there, it can go into the ERR state; finally, the processor can be repaired (event r). Degraded modes

are very useful to model intermediary behaviors where the processors is not crashed but does not deliver its full
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functionality: for instance, it could be running at half its normal clock speed. These three LTSs are just examples

of what can be specified, and the user is free to modify them to suit his needs.

In terms of DCS, it is natural that the events f and d be uncontrollable (i.e., ∈ Iu), since a failure is an

event intrinsically uncontrollable. To differentiate them from the other events, they are typeset in bold italic font.

Concerning the repair event r, this depends on the system the user wants to specify: if the system is self-repairable,

then r will be controllable, while if the repair is an external operation (e.g., requiring the intervention of a human

operator), then it will be uncontrollable.

If we are dealing with a distributed architecture consisting of n processors, then we must put in our specifi-

cation n such LTSs, not necessary all of the same kind (the three LTSs above can be mixed at will). Each such

LTS will need to have a separate vocabulary, each identified by a different subscript: fi will therefore denote the

failure event of processor i.
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Fig. 6. Three examples of environment models for a 3 processor architecture: (a) Only one failure can occur; (b) Two failures

can occur, possibly simultaneously; (c) Failure pattern.

Aside from the processor failure model, what failures can occur in the system must also be specified: for

instance, how many processors can fail? Or can they fail simultaneously? In terms of our processor LTSs of

Figure 5, the question is how can the fi and di events occur? Like we have said, all the failure events fi and di

are uncontrollable. But this means that there is no constraints whatsoever on them. In particular, all the events fi

could occur, meaning that all processors could fail. Of course, this would result in a total failure of the system,

with no possibility at all to ensure the fault tolerance of the system. No one expects a system to tolerate a failure

of all the processors it is made of. To specify the way in which the failures can occur, the user must provide a LTS

modeling the environment. Its purpose is to issue the signals fi (resp. di) from signals f ′

i (resp. d′

i) produced by

the environment. These signals f ′

i and d′

i will be uncontrollable (i.e., ∈ Iu), reflecting the fact that a failure can

occur at any time, while the signals fi and di will be local, i.e., neither in Iu nor in Ic, and will be used only for

building the synchronous product of all the LTSs.

The three LTSs of Figure 6 concern a distributed architecture consisting of three processors: they are examples

of possible environment models that filter the uncontrollable events f ′

i and d′

i to produce the local events fi and di

that must be tolerated by the system. Providing such an environment model is up to the designer. His choice will
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depend on his knowledge of the system and the related failure assumptions. For instance, if it is unlikely for two

failures to occur simultaneously, he will remove from the automaton 6(b) the three transitions from B to Fi,j .

Alternatively, if he wants to consider malicious attacks, he will keep them.

The models above alone do not allow the user to specify how the failures are actually detected. If the user

wants to concentrate on error processing only, then this is sufficient and he can assume that there exists a reliable

external unit that reports an error if and only if a failure has occurred. Otherwise, the user can specify additional

LTSs to model the failure detection process, for instance by detecting discrepancies between the outputs of two

redundant processing units, and issuing the corresponding f ′

i event.

To specify a whole system, the above-described models of processors and environments can be used along

with the models of several tasks running on those processors. Such a task can, for instance, be migrated from

a processor P1 to another processor P2 in order to react to a failure event affecting P1. The advantage lies in

the decoupling of the task, the environment, and the processor model, making the definition of the fault tolerant

policy straightforward: indeed, it suffices to request that no task be active on a faulty processor to synthesize

automatically, by DCS, a controller making the system fault tolerant. Such a scheme has been reported in [27].

Additionally, more sophisticated fault tolerance mechanisms can be specified, for instance checkpointing and

rollback, as described in [22].

Finally, note that communication links and memories can be treated exactly in the same way.

4.2 Actuator failures

In order to model the failure of an actuator, one has to specify how the failures affect the service that the actuator is

supposed to deliver. For instance, consider a braking system subject to failures. When not faulty, the brake is either

open (state O) or closed (state C), and can switch from the open to the close state according to the controllable

input c, or vive versa with o. The brake becomes faulty following the uncontrollable event f , and goes either in

the FO state if it was open at the time of the failure, or to the FC state if it was closed. The failures are permanent,

which is modeled by the fact that the states FO and FC are sink states. This behavior is encoded in the LTS of

Figure 7(a). To model temporary failures, it suffices to add transitions from the FO (resp. FC) state back to the O
(resp. C) state, labeled with the controllable repair input r. This is depicted in Figure 7(b).

f

ōf̄

c̄f̄

f

cf̄of̄

FC

FO

C

O r̄

of̄

r

r

f

f

cf̄

c̄f̄

ōf̄ r̄

O

C

FO

FC

(a) (b)

Fig. 7. (a) LTS of a braking system subject to permanent failures; (b) Same with temporary failures.

Furthermore, degraded modes can also be specified: for instance, the LTS of Figure 8(a) shows a braking

system that can be either open (state O), closed (state C), or half-open (state H). In terms of breaking pressure,

the pressure would of course be equal to the maximal pressure (say m) in state F , equal to 0 in state O, and equal

to m/2 in state H . Figure 8(b) shows the LTS of a braking system with two degrade modes, one consisting of the

statesDO andDH , where the breaking pressure is in the interval [0,m/2], and a second degraded mode consisting

of the states DC and DH ′, where the braking pressure is in the interval [m/2,m]. The degraded states are entered

upon the occurrence of the uncontrollable event d, while the failure states are entered upon the occurrence of the

uncontrollable event f . For the sake of clarity, the self-loops have been omitted.

9



cf̄

ocf̄
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cōd̄
of̄

O

DH

FHH

FCDC

FODO

C

DH ′

(a) (b)

Fig. 8. (a) LTS of a three-state braking system subject to permanent failures; (b) Same with degraded modes.

Like in Section 4.1, it is mandatory to specify how many actuators of the same kind can fail and in what

manner. This is done by providing an LTS like those of Figure 6.

Other kinds of actuators can be defined. The common feature is that the LTS must specify how the failures

affect the service that the actuator is supposed to deliver. For instance, a valve controlling the flow of some liquid

might be specified by exactly the same LTS as the braking system that we have just described.

The common feature that all actuator specifications must share concerns the state variables of the actuator

(e.g., the braking pressure, or the flow of liquid that passes through the valve). Due to the DCS framework, these

state variables must be encoded by discrete variables. Yet, as we have shown in Figure 8(a), it is perfectly possible

to extend this discretization to more than two states, at the price of more state space. This is the same as the output

of a sensor, as we will see in Section 4.3.

4.3 Sensor failures

In order to model a sensor subject to failures, it is necessary to specify how the failures affect the service that

the actuator is supposed to deliver. For instance, consider a liquid level sensor: either it is immersed in the liquid

(hence wet, in stateW ), or it is not (hence dry, in stateD), or faulty (in theERR state). See the LTS in Figure 9(a).

It goes to the ERR state upon receiving the failure event f . It goes from state W to D upon receiving the event d,

and back to state W upon receiving the event w. The events d and w are issued by the environment (or possibly by

another LTS modeling the liquid tank itself) to signal the sensor that it must change state. Concerning the failure

event f , either it is uncontrollable or it must be produced by an environment model provided by the user, just like

the LTSs of Figure 6 for the processor failures.

f̄ w̄/0 f̄ d̄/1

f/vf/v

f̄w/1

f̄d/0

/v

WD

ERR

f̄ w̄/0 f̄ d̄/1

f̄w/1

f̄d/0

r̄/v

rw/1rd/0

f/v f/v

D

ERR

W

(a) (b)

Fig. 9. (a) LTS modeling a liquid level sensor subject to permanent failures; (b) Same with transient failures.

Now, the purpose of a sensor is to produce an output corresponding to the physical data sensed by it from the

environment. In the case of a liquid level sensor, this will be a Boolean equal to 1 when the sensor is wet, and

to 0 when the sensor is dry. However, when the sensor is faulty, its the value of its output should not be fixed: we

model this by making this output equal to an uncontrollable event, called v in Figure 9(a).
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Figure 9(a) specifies a sensor subject to permanent failures: the ERR state is a sink state. If one wants to

specify a sensor subject to transient failures, it suffices to add transitions back from ERR to D and W , like it is

done in Figure 9(b).

5 Handling different kinds of failures

There are various kinds of failures that can affect the hardware components of the system. They are classified

according to the following criteria [4]:

– their domain: in value or temporal (in the latter case, their duration must also be specified);

– their coherence w.r.t. all the users;

– their detectability by the user.

For instance, crash failures are actually temporal and permanent failures; they are detectable and coherent: they

are the easiest failures to detect (and to tolerate), but conversely they have the least failure mode coverage7. At the

other end of the spectrum, Byzantine failures are incoherent value failures: they are the hardest failures to detect

(and to tolerate), but conversely they have the largest failure mode coverage. Because they are easier to model and

to tolerate, most of the related work concentrates on crash failures. In contrast, we show in this section not only

how to handle crash failures within our DCS framework, but also value failures and even Byzantine failures.

5.1 Crash failures

Crash failures are the easiest kind of failures to model and to handle. A hardware component subject only to crash

failures is called fail-silent. Either it works fine, or it is faulty and in this case it ceases to emit any output. In

particular, such failures are very easy to detect, for instance with heartbeat: the processor emits an “I am alive”

message at regular intervals with some fixed period T , and whenever two messages in a row are not received, we

know that the processor is faulty.

A consequence of this definition is that Figure 5 does not capture the nature of crash failures, because it says

nothing about the outputs of a processor when it is faulty. But in fact, it is not necessary to model explicitly the

processor’s outputs: it suffices to specify that any task executed onto a processor runs fine (i.e., produces correct

outputs) until the processor becomes faulty, in which case the task stops producing any outputs. In conjunction

with the LTSs of Figure 5, it suffices to specify that no task can be active on a faulty processor.
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Fig. 10. LTS of task τj .

7 The coverage of a failure mode assumption is defined as the probability that the assertion that formalizes the assumption is

true, conditioned on the fact that the component has failed [47].
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For instance, Figure 10 shows the LTS of a simple task τ j that can be active on either processor P1, P2, or P3,

borrowed from [27]. The task is first idle (state Ij) until it receives a run uncontrollable event rj . It then goes to

the ready state Rj , where it waits until the controller decides to activate it either on processor P1 (state Aj
1), on

processor P2 (state Aj
2), or on processor P3 (state Aj

3). At any time, the controller can decide to migrate the task

onto another processor (thanks to the events aj
i ). This goes on until the task terminates and goes to state T j , which

is signaled by the reception of the uncontrollable event tj .

Now, when several tasks obeying to the above specification are run concurrently on a three processor archi-

tecture, if the user wants to model fail-silent failures, it suffices to express that no task should ever be active on

a faulty processor, and hence should be migrated by the controller onto another not faulty processor. Since the

failures of a fail-silent processor are easy to detect, it is consistent to apply DCS with the following function:

S′ = make invariant



S,¬
n
∨

j=1

p
∨

i=1

(Aj
i ∧ ERRi)





where S is the fault-intolerant system resulting from putting in parallel one LTS like the one of Figure 10 for

each task τ j , one LTS like the one of Figure 5(a) for each processor Pi, and one LTS like the one of Figure 6(a)

specifying the environment. This scheme has been used in [27,22].

One can notice that, in the resulting controlled system, this control objective will lead to choosing between

states Aj
i in the LTS of Figure 10. Indeed, in the global LTS resulting from the composition of LTSs shown

previously, from a global state product of the local state OK of a processor P1 and the local state Aj
1 of task τ j ,

on the occurrence of a fault event f1, the controller will only allow a transition satisfying the objective, and given

that a local transition towards ERR1 will take place, the controller will constrain the values of the aj
i controllable

inputs in such a way that the LTS must go from the local state Aj
1 into either Aj

2 or Aj
3. This is also illustrated in

Figure 3.

5.2 Value failures

Value failures are much more difficult to detect than crash failures: in particular, obvious schemes like heart-

beating do not work. The difficulty within a DCS framework is to model the fact that when the failure occurs, the

variable concerned by this failure can take any value. Two cases must be distinguished:

– For a boolean variable u, this can be easily modeled by adding an additional uncontrollable variable v and

making u equal to v whenever the failure occurs. As a result, the value of the faulty variable u can be any

value in B. This is shown in Figure 9, where the additional uncontrollable variable v serves as the output of

the sensor whenever it is faulty.

– For a numerical variable u, it is necessary to discretize its domain of values, to encode this domain with

boolean variables, and to add as many uncontrollable variables to generate uncontrollable values in the domain

of u. This is exactly similar to abstract interpretation [20], and future work could concern coupling abstract

interpretation with DCS in order to be able to synthesize controllers on systems with numerical variables; in

particular, we plan to apply techniques such as dynamic partitioning [30].

5.3 Byzantine failures

Byzantine failures are like value failures, except that they are also incoherent [37]. This means that a processor

subject to Byzantine failures which must send a data to two distinct processors can send two different values to

each of them! For this reason, they are even more difficult to detect than value failures. The scheme we propose

is a generalization of the value failures: for each boolean variable u computed by a given component C, we add

as many additional uncontrollable variables (vi)1≤i≤n, where n is the number of other components (Ci)1≤i≤n to

which C must send the value of u. When C is not faulty, it sends to all components (Ci)1≤i≤n the same correct

value u. But when C is faulty, it sends to each component Ci a different value vi.

Figure 11(a) depicts a non-faulty component C that computes an internal function u = F (i) and transmits the

result u to n other components C1, . . . ,Cn: each of those components receives the same value. Figure 11(b) shows

the corresponding component having the same functionality F but with Byzantine failures. When the failure event

f occurs (i.e., when f = 1), the result u of the internal function F is bypassed, and each component Ci receives

a different value vi instead of u. This is exactly a Byzantine failure. Otherwise (i.e., when f = 0), the behavior is

the same as in Figure 11(a).
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Fig. 11. (a) A non-faulty component C connected to three other components; (b) The same component subject to Byzantine

failures.

6 Advanced DCS features

There are several other features offered by our method, which we present in this section. The first one concerns

shared resources (for instance a communication device): we will show that, just by modifying the DCS objective

that specifies the desired behavior, the user can switch from a resource in shared access to a resource in mutual

exclusion (Section 6.1). The second feature is optimal DCS, which allows us to enforce quantitative constraints

on the synthesized fault tolerant system. Such constraints are very useful when designing embedded systems, e.g.,

power consumption, memory footprint, bandwidth, and so on (Section 6.2).

The remaining features concern the technical aspects of DCS. First we show how conditioned DCS objectives

can be used to take degraded modes explicitly into account within the fault tolerant policy (Section 6.3). Secondly,

we show how synchronous observers can be used to refine the fault tolerant objectives and to express more complex

objectives (Section 6.4).

6.1 Shared resources

We consider two tasks τ1 and τ2, running on the same processor, and competing for a shared resource, for instance

a communication device connected to their processor. Figure 12 shows the LTSs of both tasks: each starts in

state Xi, where it does not have access to the resource, and goes to state Ai, where it has access to the resource,

upon receiving event ai.

x1

X1 A1

a1

x̄1ā1

x2

X2 A2

a2

x̄2ā2

(a) (b)

Fig. 12. (a) LTS of task τ1; (b) LTS of task τ2.

In order to specify the access policy of the shared resource, we design the DCS objective of the desired system

in the following way:

– Shared access (default access policy): true.
– Mutual exclusion (useful when a resource can only be used by one client at a time):

S′ = make invariant (S,¬(A1 ∧A2)).
– Continuous access (useful when a resource must be monitored or controlled at all time, for instance a robotic

arm because of the gravity compensation that must be constantly applied to prevent it from falling):

S′ = make invariant (S,A1 ∨A2).

The above formulas can be straightforwardly generalized to more than two tasks and more than one shared re-

source.

An interesting particular case of mutual exclusion is critical sections. Figure 13 shows the generic LTS of

a task having n successive steps S1 to Sn: when in step Si, it must wait for the arrival of event ti before go-

ing to the next step Si+1; after the final steps Sn, it goes to the terminated step T . Then, a task τ1 having n
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successive steps and competing for a shared resource will be specified by putting in parallel the two LTSs of Fig-

ures 12(a) and 13: because of the parallel composition, its states will be pairs (s1, q1) with s1 ∈ {X1, A1} and

q1 ∈ {S1,1, . . . , S1,n, T1} (with a renaming of the states Si of the LTS of Figure 13 into S1,i). Similarly, a second

task τ2 will be specified by putting in parallel the two LTSs of Figures 12(b) and 13 (with a similar renaming of

the states). Then, the following function guarantees that only step Si is a critical section for both tasks τ1 and τ2:

S′ = make invariant
(

S,¬
(

(A1, S1,i) ∧ (A2, S2,i)
))

t̄n

S1

t1
S2

t2
Sn

tn−1

t̄1

T
tn

t̄2

Fig. 13. LTS of a task having n successive steps S1 to Sn.

6.2 Optimal discrete controller synthesis

It is possible to associate, to each transition and/or state of the initial system a weight, and to specify some

combination function of the weights. This function is then used for the computation of the synchronous product,

and it can be required that it never goes above or below some fixed maximal or minimal bound, or even that it be

maximized or minimized. This is what optimal synthesis does [36,53,50,41,42]. Such an optimization can apply

to single transitions [44] or to finite paths. Let us note that optimal synthesis does not guarantee that the controlled

system will be deterministic, but only that it will be the most permissive one optimizing the combination function.

It is indeed possible that two outgoing and controllable transitions produce the same result on the combination

function.

Within our framework, it is very useful to model limited resources, like memory or power, which are crucial for

embedded systems, and we have demonstrated its applicability in two case studies [27,22], the former is a single

transition optimization, while the latter is a finite path optimization. Concretely, we use following additional DCS

function, where ψ is any cost function from the states to the integers:

– S′ = maximize step (S, ψ) is a function that synthesizes and returns a controllable system S′ such that, from

any state qi, all the controllable outgoing transitions that lead to successor states qi+1 having a non maximal

cost function ψ(qi+1) are disabled. Optimization must always be applied after the invariance and reachability

objectives, as a means of choosing one optimal solution among the correct ones.

For instance, we can specify three tasks τ1, τ2, and τ3, each modeled by the LTS of Figure 10, running on

three processors P1, P2, and P3. Table 1 gives the power consumption costs and the quality of each task onto

each processor, as well as the maximal power consumption of each processor. The notion of quality refers, e.g.,

to computation tasks that can give more accurate results if given better computing resources. The combination

function for both weights is the sum, that is, the cumulative power consumption (resp. the cumulative quality) is

the sum of the power consumptions (resp. of the qualities) in all the active states of the synchronous product.

power consumption Cj
i quality Qj

i

per task and processor per task and processor

P1 P2 P3 P1 P2 P3

τ1 4 4 2 3 5 3

τ2 2 2 3 2 2 5

ta
sk

τ3 2 3 4 2 2 5

bound bi 5 3 6

Table 1. Power consumption Cj

i and quality Qj

i of the tasks τj on the processors Pi, with the bounds bi giving the maximal

power consumption of each processor.

The complete system specification can therefore be given by the LTSs of Figure 10 for the three tasks, of

Figure 5(a) for the three processors, and of Figure 6(a) for the environment model. A configuration of the system is
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an assignment of the tasks to the processors: for instance, the configuration 〈A1
1|A

2
2|A

3
3〉 indicates that the tasks τ1,

τ2, and τ3 are respectively executed on the processors P1, P2, and P3, while the configuration 〈A2
1, A

3
1|∅|A

1
3〉

indicates that τ1 is on P3, that τ2 and τ3 are on P1, and that P2 executes no task. There is a total of 27 different

configurations.

A basic fault tolerant policy can require that no task be active on a faulty processor:

S′ = make invariant



S,¬
3

∨

j=1

3
∨

i=1

(Aj
i ∧ ERRi)





Thanks to optimal DCS, it is possible to refine this policy by requiring that no processor exceeds its maximal

power consumption bound:

S′′ = make invariant



S′,

3
∧

i=1





3
∑

j=1

Cj
i ≤ bi









Note that, in the above objective, the predicate ϕ that specifies the subset E is actually a constraint on the costs of

the component states; this is a generalization of the state predicates of Equation (3) in Section 3.3.

Finally, again thanks to optimal DCS, we can require that the cumulative quality of the tasks be maximal:

S′′′ = maximize step (S′′, Qg)

where the qualityQg of the current global state of the system is the sum of qualities of the tasks, each in its current

state (Aj
1, Aj

2, or Aj
3): Qg =

∑3

j=1
Qj , where Qj has the value of Q in the current state of task τj .

For instance, suppose that P2 fails (i.e., the uncontrollable event e2 occurs) while the system is in the configu-

ration 〈A1
1|A

2
2|A

3
3〉. From this state, the 27 possible configurations are reachable. We shall not discuss all of them,

but rather just explain that the three following configurations must be avoided in the controlled system since they

violate one of the required properties:

– 〈A1
1|A

2
2|A

3
3〉, after no migration, violates the fault tolerance property;

– 〈A1
1, A

2
1|∅|A

3
3〉, after the migration of τ2 to P1, violates the maximal power consumption property because of

the bound b1 of P1;

– and 〈A1
1|∅|A

2
3, A

3
3〉, after the migration of τ2 to P3, violates the maximal power consumption property because

of the bound b3 of P3.

As a consequence, the three corresponding transitions must be disabled by the synthesized controller. In contrast,

the two following configurations satisfy the four required properties:

– 〈A2
1, A

3
1|∅|A

1
3〉, after the migration of τ1 to P3 and of τ2 and τ3 to P1;

– and 〈A2
1|∅|A

1
3, A

3
3〉, after the migration of τ1 to P3 and of τ2 to P1.

Among those two configurations, thanks to the quality property, the controller should prefer 〈A2
1|∅|A

1
3, A

3
3〉 since

the corresponding cumulative quality is 10 (3 + 2 + 5), instead of only 7 (2 + 2 + 3) for 〈A2
1, A

3
1|∅|A

1
3〉.

What we have just described involves an optimization of the controlled system only over a single step. That is,

from the current state, it selects the transition that leads to the immediate successor state that optimizes the given

criteria. But in general, it does not select the transition that leads ultimately to the reachable state that optimizes

the given criteria. This is known as path optimization, and we have demonstrated its utility within our framework

of DCS for fault tolerance [22].

Optimal DCS over finite paths involves a modified Bellman DCS algorithm [5] in order to deal with path

having infinite loops, something that the classical Bellman algorithm cannot do. We will not go into the details of

our modified algorithm, which can be found in [22]. We illustrate its application to fault tolerance on tasks having

several successive phases separated by checkpoints. Such a task is exemplified by the LTS of Figure 14(a): the

task, named τ1, begins in the idle state I1, then goes in the ready stateR1, before starting its first phaseA on either

one of the processors Pi (in one of the states A1
i ); the task can be migrated to another processor while still in its

first phase (these are the “horizontal” transitions which are rollbacks); only after passing its first checkpoint can it

start its second phase B, again on either one of the processors Pi (in one of the states B1
i ); again, the task can be

migrated to another processor while still in its second phase; finally, only after passing its second checkpoint can

the task terminate and go to the terminated state T 1. In this LTS, there are only two phases / checkpoints, but in
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the general case this number is arbitrary. Like in Section 5.1, the events r1 and t1 (the latter playing the role of the

second checkpoint events) are uncontrollable; the first checkpoint events c1 are also uncontrollable (and similarly

for the LTS of Figure 14(b)).

Furthermore, we associate to each state a static cost representing the cost for the task to traverse this state. We

also assume that the processors are subject to permanent crash failures, and we adopt the environment model of

Figure 6(a). The problem consist now in finding a controller that will guarantee that no task be active on a faulty

processor (fault tolerance policy), and that the total costs of executing the tasks from their idle to their terminated

state be minimized; this cost is computed by summing, for each task, the individual cost of each traversed state.

For instance, if a task is migrated from P1 to P2 before its first checkpoint, then it must pay the cost of its first

phase twice: this is consistent with the classical notion of checkpoints and rollback.
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Fig. 14. Example of runs for two tasks, T 1 (a) and T 2 (b), executing on three processors, when P2 fails.

Figures 14(a) and 14(b) show the examples of runs for two tasks, respectively named T 1 and T 2, executing on

three processors. The cost of each state is indicated next to its state. In this example, the best execution cost for

task T 1 would be 1+1+2+1+1=6, which corresponds to executing its first phase on P3 and its second phase on P1.

The best execution cost for task T 2 is 1+1+1+1+1=5, which corresponds to executing its first phase on P2 and its

second phase on P1. The run proceeds as follows. First, T 1 is scheduled on P3 and T 2 is scheduled on P2. At that

moment, processor P2 fails. T 2 must migrate immediately and the best cost solution is offered by processor P3; in

the meantime, task T 1 remains on processor P3. The tasks can execute their own checkpoint independently of each

other, when receiving the corresponding uncontrollable event c1,2. Just after a checkpoint, processor migrations

can also occur for optimality reasons: here, both T 1 and T 2 migrate respectively from P3 to P1 in order to achieve

their best execution cost.

6.3 Conditioned discrete controller objectives

Conditioned DCS objectives are very useful to address degraded modes of control, e.g., to achieve a management

of the degraded modes. The principle is that each such mode is specified by, on one hand a predicate on states

(ϕi)1≤i≤n, and on the other hand a condition (Ci)1≤i≤n. Then, there are two possibilities, either a conditioned

invariance or a conditioned reachability:

– A single conditioned invariance objective is achieved by S′ = make invariant (S,Ci ⇒ ϕi), where the

predicate Ci ⇒ ϕi is of course equal to ¬Ci ∨ ϕi. In the case of multiple conditioned invariance objectives,

the controlled system is synthesized by S′ = make invariant (S,
∧n

i=1
(Ci ⇒ ϕi)). A useful instantiation of

this is the synthesis function S′ = make invariant (S, (C ⇒ ϕ1) ∧ (¬C ⇒ ϕ2)), which amounts to switch

from the DCS objective ϕ1 to ϕ2 and back according to the condition C.
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– A conditioned reachability objective is a bit more elaborate, and requires first to transform the objective into

an invariance one: keep reachable (S,E) = make invariant (S, reachable under control (S,E))
(see Section 2.2). Then, for a single conditioned objective, the controlled system is synthe-

sized by S′ = make invariant (S,Ci ⇒ reachable under control (S, ϕi)). In the case of

multiple conditioned reachability objectives, the controlled system is synthesized by S′ =
make invariant (S,

∧n
i=1

(Ci ⇒ reachable under control (S, ϕi))).

As a consequence, the obtained controlled system will satisfy the predicate ϕi (that is, either the subset of

states satisfying ϕ will be invariant or reachable) provided that the condition Ci holds. Of course, this technique

involving conditioned synthesis objectives can be used to design many other systems and not just degraded modes.

A full case study involving degraded modes and conditioned DCS objectives is presented in Section 7.1.

6.4 Synchronous observers

Observability is an important notion in discrete controller synthesis. Just like the alphabet I of the language U is

partitioned into two subsets (the set Ic of controllable events and the set Iu of uncontrollable events), it can also

be partitioned into two other subsets: the set Io of observable events and the set Iuo of unobservable events.

The idea is that the controller must behave in the same way whether an unobservable occurs or not [39,18].

Within our framework, it is sometimes useful to express a synthesis objective that refers to the output of one

of the system’s LTSs. In such a case, if its internal states of this LTS were observable, then the controller could

make some of its internal states unreachable (by disabling incoming transitions). In contrast, if this LTS’s internal

states were unobservable, then the controller would not be able to make them unreachable. As we can see, this is a

different notion of observability as the one defined in [39,18], since it refers to the states rather than to the events

and transitions.

A typical situation where a synchronous observer is useful is a system consisting of a plant coupled to one

or more sensors (and with a model of the fault hypothesis as usual). The purpose of such a design is to take into

account the value failures of the sensors. However, it is not possible to express the synthesis objective w.r.t. the

state of the sensors, because it directly tells whether or not the sensors are faulty, and this contradicts our objective

to tolerate the value failures of the sensors, hence without knowing if the sensors are faulty or not. For this reason,

the synthesis objective must be expressed w.r.t. the state of the plant. But in this case, the possible value failure of

the sensors will not be taken into account when synthesizing the controller, because the closed loop consisting of

the plant and the controller is independent of the values of the sensors.

This situation is illustrated by Figure 15: the synthesized controller interacts only with the plant, independently

of the eventual value failures of the sensors.

events events

input events

control

eventsPlantController Sensors

input events

Fault

hypothesis

fault events

local local

state variables

Fig. 15. A controlled system equipped with sensors subject to failures.

Therefore, we propose to add a synchronous observer [29] to the system, an LTS whose job is to observe

the outputs of the sensors, and to go in a state named “BAD” as soon as these outputs correspond to the former

synthesis objective. As a consequence, the new synthesis objective becomes ¬BAD, that is, the BAD state

should be unreachable. Now the closed loop includes the plant, the controller, and the sensors. This new situation

is illustrated by Figure 16.
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fault events
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Fig. 16. The same system as in Figure 15 with a synchronous observer.

We have conducted with Huafeng Yu a full case study, consisting of a water tank with liquid level sensors,

subject to value failures [28].

7 Case studies

Throughout Sections 4 to 6, we have used numerous examples extracted from three previously published case

studies [27,23,28,22]. These examples show the usefulness of our framework. To further demonstrate this, we de-

tail in this section two unpublished case studies: a system tolerant to the failures of its actuators, and the Byzantine

generals revisited.

7.1 A system tolerant to the failures of its actuators with conditioned synthesis objectives

The system under study in this section consists of two tanks of liquid, connected by two pipes; it is a benchmark

defined by the COSY group (“Control of Complex SYstems”) of ESF (“European Science Foundation”). The left

tank can be filled with liquid by opening the valve V0. The right tank can be emptied by opening the valve V3.

The flow in the upper (resp. lower) pipe is controlled by the valve V1 (resp. V2). Each valve is subject to fail silent

faults; in other words, it is the actuators of the system that can fail. This is illustrated in Figure 17. The level of

the liquid in the left tank is abstracted as either N0 (the tank is empty), N1 (the level is between the lower and the

upper pipe), N2 (the level is above the upper pipe), or N3 (the tank is over-flooding). Similarly, the level in the

right tank is abstracted as either N ′
0, N ′

1, N ′
2, or N ′

3.

N ′

3

L2

L1

V0

V3V2

V1

N2

N1

N0

N3

N ′

0

N ′

1

N ′

2

Fig. 17. A system with two tanks, two pipes and four valves.

We can observe that this system offers only a limited form of redundancy, since each actuator (valve) plays a

specific role that cannot be directly fulfilled by the other actuators. For this kind of systems, it is always difficult

to elaborate efficient fault tolerance strategies. We will see however that DCS brings satisfactory results to this

respect.

Each valve Vi is an actuator subject to failure, and can hence be modeled by the LTS of Figure 18; this LTS

is similar to what has been shown in Figure 7(a). When not faulty, the valve is either open (state Oi) or closed

(state Ci), and can switch from the open to the close state according to the controllable input ci, or vive versa
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with oi. The valve becomes faulty following the event fi, and goes either in the FOi state if it was open at the

time of the failure, or to the FCi state if it was closed. The failures are permanent, which is modeled by the fact

that the states FOi and FCi are sink states. The LTS of valve Vi also outputs a variable named vi that represents

the status of the valve: by convention, 1 means open while 0 means closed.

fi/1

fi/0

oif̄i/1 cif̄i/0

FCi

FOi

Ci

Oi

Fig. 18. LTS modeling the behavior of valve Vi.

For the sake of simplicity, we assume that all the valves have exactly the same flow per time unit. For instance,

when V0, V2 and V3 are open while V1 is closed, the level in both tanks does not change. Also, because of the

rules of communicating tanks, the level in the right tank can never be greater than the level in the left tank. The

behaviors of the left and right tanks being tightly interdependent one of another, it is not possible to model each as

a separate LTS. Rather, we propose the LTS of Figure 19 to model the joint behavior of the two tanks according

the status of the four valves.

v0 ∧ v̄1 ∧ v̄2

v̄0 ∧ (v1 ∨ v2) ∧ v3v̄0 ∧ (v1 ∨ v2)

v0 ∧ v̄1 ∧ v̄2 v0 ∧ v2 ∧ v̄3

v0 ∧ v̄1 ∧ v̄2 ∧ v̄3

v0 ∧ (v1 ∨ v2) ∧ v̄3

v̄0 ∨ (v1 ∧ v2)

v̄0 ∧ v2 ∧ v3

v2 ∨ (v0 ∧ v1)

v̄0 ∧ v̄2 ∧ v3

v̄0 ∧ v̄1 ∧ v̄2 ∧ v3

v0 ∧ (v1 ∨ v2) ∧ v̄3

v0 ∧ v̄1 ∧ v̄2 ∧ v3

v0 ∧ v̄1 ∧ v̄2 ∧ v̄3

v0 ∧ v̄1 ∧ v̄2 ∧ v3

v0 ∧ v2 ∧ v̄3

v̄0 ∧ v̄1 ∧ v̄2 ∧ v3

v0 ∧ v̄2

v̄0 ∧ v̄2 ∧ v3

v0 ∧ v̄1 ∧ v̄2 ∧ v̄3

v0 ∧ (v1 ∨ v2) ∧ v̄3

N0, N
′

0

N3, N
′

1 N3, N
′

2N3, N
′
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N2, N
′

2

N1, N
′

1N1, N
′

0

N2, N
′

0 N2, N
′

1

N3, N
′

3

Fig. 19. The LTS modeling the joint behavior of the two tanks.

This model assumes that, if the right tank is empty (state Ni, N
′
0), then it is not possible to empty the left

tank without temporarily filling the right tank. In other words, transitions from Ni, N
′
0 to Ni−1, N

′
0 are forbidden.

Furthermore, this model forbids two level changes in a row: for instance, to move from N0, N
′
0 to N2, N

′
0, the

system must before go into N1, N
′
0. Finally, to avoid too complex drawings, the self-transitions that make the LTS

reactive have been omitted in Figure 19.

The plant is therefore the synchronous product of the LTSs of the double tanks (Figure 19) and of the four

valves (Figure 18). It is show in Figure 20.
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Fig. 20. Complete system made of the tanks and the four valves.

The problem we want to address for our two-tanks system is to synthesize a controller guaranteeing the two

following functions:

LV1: No tanks over-floods. This is achieved by S′ = make invariant
(

S,¬
∨3

i=0
N3 ∨N

′
i

)

. Note that, because of

the physical configuration of the two tanks and the two pipes, the right tank can over-flood only if the left tank

does so too. In other words, it suffices to prevent the system from going in the state N3, instead of N3 ∨N
′
3.

LV2: The level in the left and right tanks must be regulated respectively at N2 and N ′
1. This is achieved by

S′′ = keep reachable (S′, {(N2, N
′
1)}).

Unfortunately, if the valve V0 fails while it is open, and at the same time either the valve V3 fails while it is

closed, or both valves V1 and V2 fail while they are closed, then the objective LV1 becomes impossible to satisfy.

This intuition is confirmed by SIGALI that fails to synthesize the required controller. The fundamental reason for

this is the low level of redundancy offered by the fault intolerant system.

One solution would be to strengthen the fault hypothesis, by assuming that only one valve can fail. In terms

of our system model, this would result in adding an LTS similar to the one of Figure 6(a). Rather, we choose to

condition the synthesis objective according to the faults of the valves. Our synthesis functions LV1 and LV2

therefore become:

LV1’: If the valve V0 is not stuck in the faulty and open state, then no tank over-floods. This is achieved by

S′ = make invariant
(

S,¬FO0 ⇒ ¬
∨3

i=0
(N3, N

′
i)

)

.

LV2’: If the four valves work fine, then the level in the left and right tanks must be regulated respectively at N2

and N ′
1. This is achieved by (see Section 6.3 for the explanations about conditioned reachability objectives)

S′ = make invariant

(

S,
∧3

i=0
(Oi ∨ Ci) ⇒ reachable under control (S, {(N2, N

′
1)})

)

.

This two-tanks system has been implemented in MATOU by Safouan Taha [51]. The controlled system syn-

thesized by SIGALI with the objectives LV1’ and LV2’ behaves as expected: while the four valves work fine, it

regulated the liquid level at N2 in the left tank and at N ′
1 in the right tank.
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We believe that this approach (DSC with conditioned synthesis objectives) is very useful to design fault tolerant

systems. It guarantees by construction a specified level of fault tolerance, and offers a very elegant way to specify

degraded modes in a system.

7.2 The Byzantine generals revisited

In this section, our goal is to model Byzantine faults by means of LTSs and uncontrollable events, and to obtain

with DCS the same result as Lamport et al. [37] in the particular case of 4 generals. Note that the result in [37]

is parametric for n generals and hence much more general than what we achieve here. It would be interesting in

future work to extend our DCS framework to handle such parametric models.

In [37], Lamport et al. define the Byzantine generals problem in the following way: n divisions of the

Byzantine army, each commanded by its own general, are camped outside an enemy city. The generals must decide

on a common plan of action, either attack or retreat, by communicating with one another only by oral messages.

The problem is that some generals are traitors who try to prevent the loyal generals from reaching agreement.

One of the generals is the commander of the army, while the n− 1 remaining ones are his lieutenants.

The commander first sends an order (attack or retreat) to his n−1 lieutenants. If he is loyal, then he must send

the same order to all his lieutenants; but if he is a traitor, then he can send different orders to his lieutenants, that

is, incoherent orders. It was after this article that incoherent value faults have been called Byzantine faults.

Then, each lieutenant transmits the received order to all the other lieutenants. Again, a loyal lieutenant must

transmit the order he has received from his commander to all the other lieutenants, but not if he is a traitor.

The goal is to find an algorithm guaranteeing that the loyal generals will reach a consensus for their plan of

action. Formally, the two following interactive consistency conditions must be satisfied:

IC1: All the loyal lieutenants obey the same order.
IC2: If the commander is loyal, then each loyal lieutenant obeys the order sent to him.

The algorithms 1.1 and 1.2, proposed by Lamport et al., are respectively the actions performed by the com-

mander and by the n − 1 lieutenants: m is the number of potential traitors (the actual number of traitors is not

known), v is the initial order, and i is the number of the lieutenant.

Algorithm 1.1 Byzantine Commander (m, v)
1 Send my order v to the n − 1 lieutenants;

Algorithm 1.2 Byzantine Lieutenant (m, i)
1 vi := value received from the commander;

2 if m = 0 then

3 Use as order the value vi;

4 else

5 Send vi to the n − 2 other lieutenants;

6 forall j 6= i do

7 vj := value received from the lieutenant j;

8 end do

9 Use as order the majority maj (v1, v2, . . . , vn−1);

10 end if

Lamport et al. demonstrate by induction over m that, to accommodate the presence of at most m traitors, there

must be at least 3m+ 1 generals to guarantee that all the loyal generals reach the consensus. Three hypotheses on

the exchanged messages are necessary: each message sent is correctly received, the receiver knows the sender, and

the absence of a message can be detected. In terms of computer science, these hypotheses can be satisfied by a fully

connected point-to-point network, and with synchronized clocks. Moreover, the function maj (v1, v2, . . . , vn−1)
is such that if a majority of the values vi is equal to v, then the result is v.

The problem we want to address in this section is the following: among the n Byzantine generals, how many

at most can be traitors? In order to answer to this question with DCS, we model the environment as the most

permissive possible LTS, having as inputs ec, e1, e2, and e3 (respectively the betrayal of the commander and the

three lieutenants), and producing as outputs tc, t1, t2, and t3 (each of those will be used as input respectively by

the LTS of the commander and the three lieutenants; see Figure 21). We note Loyc and Trac respectively the state

where the commander is loyal or traitor, and Loyi and Trai the state where the i-th lieutenant is loyal or traitor.

The following LTS is therefore the most permissive environment model:
〈

Loyc
ec/tc

−−−→ Trac

〉

||

〈

Loy1
e1/t1
−−−→ Tra1

〉

||

〈

Loy2
e2/t2
−−−→ Tra2

〉

||

〈

Loy3
e3/t3
−−−→ Tra3

〉
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Our idea is that DCS will constrain this environment model by preventing some generals to be traitors, that is

by inhibiting some of its transitions. In contrast with Section 4.1, the events ec, e1, e2, and e3 must therefore be

controllable. In other words, we want to obtain by DCS the most permissive LTS guaranteeing that the generals

will reach the consensus in any circumstances. Note that when doing so, we limit in fact the actual number

of traitors instead of the potential number of traitors. In other words, our model considers that m is the actual

number of traitors instead of the potential number of traitors.

We note Attc and Retrc respectively the state where the commander attacks or retreats, and Atti and Retri
the state where the i-th lieutenant attacks or retreats.
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Fig. 21. Complete system made of the environment model, the commander, and the three lieutenants.

The LTS of the commander receives, as input, the initial order v he is supposed to send to the three lieutenants

(v being an uncontrollable event): v = true means attack while v = false means retreat. To model the fact that,

if he is a traitor, then he can send incoherent messages, we add three uncontrollable inputs, uc
1

, uc
2

, and uc
3

(as we

have shown in Section 5.3 and in Figure 11). In his normal mode of operation, his three outputs are equal to v.

But when he is a traitor, his three outputs are each equal to one of his three uncontrollable inputs. Similarly, the

LTS of lieutenant i receives, as input, the order vi sent by the commander, and which he is supposed to transmit

to the two other lieutenants, via his outputs vi
2 and vi

3. To model the fact that, if he is a traitor, then he can send

incoherent messages, we add two uncontrollable inputs, ui
2

and ui
3

. Finally, the LTS of lieutenant i must compute

the majority of the three received values, vi, v
2
i and v3

i , in order to determine if he must go to the state Atti or

Retri.
In terms of DCS, the properties IC1 and IC2 translate into:

– Property IC1 = unreachability of the states such that the predicate ∀i 6= j, Loyi ∧ Loyj ∧
(

(Atti ∧Retrj) ∨

(Retri ∧Attj)
)

is true, that is:

S′ = make invariant
(

S,∀i 6= j, Loyi ∧ Loyj ∧
(

(Atti ∧Retrj) ∨ (Retri ∧Attj)
)

= false
)

– Property IC2 = unreachability of the states such that the predicate ∀i, Loyc∧Loyi∧
(

(Attc∧Retri)∨(Retrc∧

Atti)
)

is true, that is:

S′ = make invariant
(

S,∀i, Loyc ∧ Loyi ∧
(

(Attc ∧Retri) ∨ (Retrc ∧Atti)
)

= false
)

With Nour Brinis we have implemented the system of Figure 21 in MATOU. By asking to SIGALI to synthesize

a controller with the two properties above, we have obtained a controlled system of four Byzantine generals

tolerating the presence of one traitor among them [12]. This result is consistent with the theorem of Lamport

et al. The originality of our approach lies in the usage of uncontrollable inputs to model incoherent values, as

well as in the usage of DCS to determine the maximal number of Byzantine admissible faults, by producing the

environment model that is the most permissive and still guarantees that the generals reach the consensus whatever

the circumstances.
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8 Related work

To the best of our knowledge, although they do not mention any software implementation, Cho and Lim have

been the first ones to develop the idea of making a system fault tolerant thanks to DCS, by considering faults

as uncontrollable events [17]. Their results are based on the framework of supervisory control of discrete event

systems of Ramadge and Wonham [48]. First, the set of events Σ is partitioned into Σ = Σc ∪Σuc = Σn ∪Σan,

respectively the subsets of controllable, uncontrollable, normal, and abnormal events; moreover, Σan ⊂ Σuc.

With respect to a marker set of states Qm (the objective for the control), they define a recurrent event to be such

that Qm can be reached from its originating state, either through controllable or other recurrent events. Then, a

fault event is an abnormal event that does not prevent the system from reaching Qm, otherwise it is a failure

event. Their guideline is that a fault is a malfunction while a failure is a total breakdown. Finally, a system is

fault tolerant w.r.t. Qm if, when any abnormal event occurs during the execution, either there must exist another

event sequence which can reach Qm, or the path to this abnormal event can be eliminated. Any event sequence,

which consists of normal events or fault events and which drives the initial state to Qm, is called a tolerant fault

event sequence (TFES) if, for each normal event, all the possible events following the corresponding states are

either controllable or other recurrent events. The set of all TFES is then taken as the legal language K, which is

achievable by construction, i.e., both controllable and observable. Finally, the plant is constructed as the parallel

composition of several finite state automata. The differences w.r.t. our own work reside in:

– their usage of a set of states as control objective instead of invariance or reachability properties, which are

easier to use in practice, all the more when in conjunction with a synchronous observer;

– their usage of the basic parallel product instead of the synchronous product: the latter limits the combinatorial

explosion, without avoiding it entirely though;

– the absence of clear definition of their fault hypothesis, while we model it as an LTS, which is both more

formal and more flexible;

– our usage of optimal DCS that provides more possibilities of synthesis as well as to limit the non-determinism

of the controlled system;

– finally, our usage of a DCS software tool while Cho and Lim do not mention such a tool.

In [45], Marchand and Samaan exemplify the use of DCS in the specific case of a power transformer. Like

them, we model failure events with uncontrollable boolean inputs. Their modeling is very specific to their case

study: for instance, the fault propagation is influenced by the opening and closing of circuit-breakers. In contrast,

our framework covers a much wider range of fault tolerance issues.

The technique proposed by Kulkarni and Arora in [33], and improved in [34,35,9], is close to our own work.

It involves synthesizing automatically a fault tolerant program starting from an initial fault intolerant program. In

their model, a program is a set of processes, each with its local variables. Each program’s state is a valuation of

the program’s variables. Two execution models are considered: the high atomicity model, where the program can

read and write any number of its variables in one atomic step (i.e., it can make a transition from any one state

to any other state), and the low atomicity model, where it can not (actually, each process can write only its own

variables, and can read only its own variables and its neighbor’s). The initial fault intolerant program ensures that

its specification is satisfied in the absence of faults, but no guarantees are provided in the presence of faults. Then,

a fault is a subset of the set of transitions. The authors consider three levels of fault tolerance:

– the failsafe ft: even in the presence of faults, the synthesized program guarantees safety;

– the non-masking ft: even in the presence of faults, the synthesized program recovers to states from where its

safety and liveness are satisfied;

– and the masking ft: conjunction of the two above mentioned levels.

To address their two models of atomicity and their three levels of fault tolerance, the authors propose a sound

and complete algorithm that is polynomial in the state space of the source fault intolerant program for the high

atomicity model (resp. exponential for the low atomicity model). In the low atomicity model, the transformation

problem is NP-complete, except for non-masking ft for which the complexity is unknown. Each transformation in-

volves recursively removing bad transitions. However, some transitions cannot be removed (like the uncontrollable

transitions in DCS), but this is the case only of fault transitions (while in DCS, any event can be uncontrollable,

not only faults). An efficient BDD-based algorithm has been presented in [8] and implemented in the SYCRAFT

tool [10].8

8 SYCRAFT: http://www.cse.msu.edu/∼borzoo/sycraft
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Attie et al. have also proposed an automatic synthesis method for fault tolerant programs [3]. In their approach,

a system is a set of concurrent processes, each consisting of a directed graph, where states are connected by

transitions labeled by guarded commands. At each execution step, one process is randomly chosen to fire an

enabled transition from its current state. To specify such systems, the temporal logic CTL is used as a specification

language. Such a specification allows to distinguish between the safety part and the liveness part of the system.

Faults are modeled as guarded commands that perturb the system’s state. The occurrence of a fault is modeled as

a directed graph whose transitions are labeled by fault guarded commands. Attie et al. use the same fault tolerance

properties as Kulkarni and Arora: in masking tolerance, both the safety and the liveness parts are respected; in

fail-safe tolerance, only the safety part but not necessarily the liveness part is respected; and in non-masking

tolerance, the liveness part is always respected but the safety part is only eventually respected.

The fault tolerance synthesis problem starts with a problem specification (a CTL formula of the form

init spec∧AG(global spec)), a fault specification (a CTL formula F ), a problem-fault coupling specification (a

CTL formulaAG(coupling spec)), and a type of tolerance TOL (either masking, fail-safe, or non-masking). The

goal is to synthesize a concurrent program that satisfies init spec∧AG(global spec) in the absence of faults, sat-

isfies AG(coupling spec) in the absence of faults, and is TOL-tolerant to F for init spec ∧ AG(global spec).
The authors use the decision procedure of [24] to solve this problem, i.e., to synthesize the recovery behavior

that conforms to the required tolerance properties. The overall time complexity is exponential in the size of the

specification (i.e., the size of the problem specification plus the size of the problem-fault coupling specification).

There are three important differences between our approach and the ones of Kulkarni and Arora and Attie et

al. Firstly, their model of computation (MoC) is the non-deterministic interleaving, while ours is the synchronous

deterministic parallel composition. We believe that, when designing safety critical distributed systems, a determin-

istic MoC is better suited than a non-deterministic one (it makes debugging easier and facilitates formal model-

based methods). This claim is supported by the successes achieved by the synchronous MoC [6], in particular

in avionics [11]. Secondly, only fault transitions are uncontrollable, while we use uncontrollable events to model

fault events but also any event decided non-deterministically by the environment. And finally, our method can

handle some form of optimality w.r.t. costs associated to states of the system.

Based on the work of Kulkarni and Arora, Gärtner and Jhumka propose a way to deal also with non fusion

closed traces [26]. A specification is fusion closed iff the entire history of every trace is present in every state of

the trace (hence the next state of the systems depends only on its current state and on the inputs, i.e., not on the

sequence of previous events). The usual way to transform a non fusion closed specification into a fusion closed

one involves adding history variables to the states, in order to remember the sequence of past inputs. However, in

general this is exponential. The authors propose a polynomial method, which involves splitting fusion paths (here

a new state is added), and then removing the bad fusion states. If n is the number of state of the initial non fusion

closed specification, then, at worst, the number of states of the resulting equivalent fusion closed specification

is O(n2). This result has later been generalized in [35].

Kamach et al. have applied DCS to a system with several modes of operations [32]. Their approach allows

the user to specify, for instance, one nominal mode and one degraded mode for a subsystem, and to switch this

subsystem between those two modes according to two uncontrollable events, called commutation events. They

present a case study consisting of a small industrial pneumatic production line, with two jack cylinders and one

pump. The horizontal jack cylinder has a degraded mode, where it can no longer move. The commutation events

associated to the horizontal jack cylinder are p (failure) and r (repair). This case study has been implemented with

the TCT tool of Ramadge and Wonham.

There are also works in the domain of hardware synthesis, or scheduler synthesis, in co-design. Similarities

with our work exist, at least in the informal statement of the problems: the use of discrete event dynamical systems

as formal models of reactive systems, be it Petri nets or LTS, to synthesize sequences in the presence of constraints

of different kinds, with controllable and uncontrollable inputs. Hardware synthesis is an elaborate optimization

and constraints process. It can involve notions related to game theory. However, there are differences with our

work, which can be hidden by similarities of vocabulary. For example Cortadella et al. distinguish uncontrollable

and controllable inputs by the constraints on the moment when they can be read, the objective being to avoid

blocking schedules [19]. They make the relation with the notions, in the synchronous language ESTEREL, of

“signal” (uncontrollable) and “sensor” (controllable).

In contrast, we use the words controllable and uncontrollable in the different meaning of Ramadge and Won-

ham, which is very classically accepted in the community of supervisory control, also called Discrete Controller

Synthesis [48]. There, the synthesis involves computing the constraint in the value of controllable variables of a

system (and not the moment of their “reading”), as a function of uncontrollable values and current state, so that

the paths that can be taken in the controlled LTS do respect the properties given as synthesis objectives, and this
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whatever the values of uncontrollable variables (and not the moment of their “reading”). Controllable events are

used to inhibit some behaviors, through a constraint on their value so that the transitions they are labeling cannot

be taken by the controlled system. Controllable events are inputs of the uncontrolled system, but not of the final

system once the controller is integrated. The control which is synthesized in supervisory control concerns the

values, not the moments of reading operations. Another significant difference with the work of Cortadella et al. is

that the questions of fault tolerance, which we are treating, do not seem to be explicitly addressed there.

Another research area close to DCS is planning, a technique that has emerged from artificial intelligence.

Results on the automatic generation of fault tolerant plans have been obtained by Jensen et al. [31]. After defining

the general problem of finding a n-fault tolerant plan, the authors concentrate on 1-fault tolerant planning and

present two algorithms based on Ordered BDDs [14]. The main limitation of their results is that they tolerate only

one fault, while our model can accommodate an arbitrary number of faults.

Timed Game-Automata (TGA) can also be used in a framework for automating the addition of fault-tolerance.

Quite naturally, one player could be the environment producing the faults, while the other player could be the

controller trying to keep the system in a subset of safe states (this subset being formally specified as a reachability

or safety property). Although there exists an efficient on-the-fly algorithm to verify safety and reachability prop-

erties for TGAs [16], implemented in the UPPAAL-TIGA tool9, this appealing idea has never yet been applied to

fault-tolerance.

Formal approaches to the design of fault tolerant systems have mostly considered the problem of formal

verification, in the context of process algebra [49,13,7]. They verify that an existing, hand-made design (replicas

interaction control, voters, etc) satisfies a certain equivalence with the nominal functionality specification, even in

case of faults. What distinguishes these approaches from DCS is the fact that fault tolerance properties are verified

a posteriori. In contrast, DCS approaches synthesize automatically a controller that will insure the required fault

tolerance properties by construction, that is a priori.

9 Conclusion and future work

9.1 Contribution

After introducing discrete controller synthesis (DCS) and its application to the automatic addition of fault tol-

erance in systems, we have presented in details how to specify and handle the failures of hardware components

(processors, communication links, actuators, and sensors). Then we have shown how to specify and handle sev-

eral kinds of failures (crash, value, and Byzantine). Finally, we have demonstrated with two case studies how our

framework for fault tolerance can be used in practice. These case studies share the fact that the plant is specified

as the synchronous product of several LTSs, with one LTS representing the fault hypothesis, and that the synthesis

objective is specified as reachability and invariance predicates on states. Our research results are supported by a

tool chain [1] (developed by us and by other research labs): MATOU to program LTSs in an easy way, and SIGALI

for the DCS tool. The great advantages of our framework for fault tolerance are:

– It is automatic, because DCS produces automatically a fault tolerant system from an initial fault intolerant

one.

– The separation of concerns, because the fault intolerant system can be designed independently from the fault

tolerance requirements.

– The flexibility, because, once the system is entirely modeled, it is easy to try several fault hypotheses, several

environment models, several fault tolerance goals, several degraded modes, and so on.

– The safety, because, in case of positive result obtained by DCS, the specified fault tolerance properties are

guaranteed by construction on the controlled system.

– The optimality when optimal synthesis is used, modulo the potential numerical equalities (hence a non strict

optimality).

If DCS fails w.r.t. the fault tolerance objective, then since all the state space is traversed during the synthesis

(be it exhaustively or symbolically), it means that no solution exists for the required objective, fault hypothesis,

environment model, and partition of the events into the controllable and the uncontrollable ones. The solution is

then to relax one of these constrains, for instance to tolerate less failures.

9 UPPAAL-TIGA: http://www.cs.aau.dk/∼adavid/tiga
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9.2 Discussion on complexity

The main drawback of our framework is the combinatorial explosion. This is a general drawback of DCS. Con-

cretely, for large systems, the state space is too big to be traversed by a synthesis tool in a reasonable time. For

some classes of problems, DCS can even be undecidable [54,52].

For the decidable part, our opinion is that DCS is today at the same level as model checking was 15 years ago,

that is, it is a promising technique, but due to its algorithmic complexity it cannot be applied yet to industrial size

systems. However, it must be noted that DCS does benefit from algorithmic and tools progress occurring in the

model-checking area.

Furthermore, in our applicative setting, the problem of the algorithmic complexity can be tackled by defining

appropriate methodologies. Our approach is to focus on the control kernel of a system, abstracting from the rest

(e.g., numerical computations). Even though identifying the right level of description is more of a practical than a

theoretical essence, it can have a vital impact on the concrete applicability of the techniques [1].

Finally, the synthesis of controllers is a constructive operation, so the complexity comparison should be made

with the manual writing of controllers, followed by their verification and debugging. It is from that perspectives

that we think that, in the case of the algorithms we use, their complexity remains reasonable, in the sense that they

can be used for systems of a size where manual design would be very hard.

Regarding the results we have presented in this article, two points that can be improved w.r.t. scalability:

1. The DCS tool that we use, SIGALI, is very powerful thanks to its usage of a tri-valued logic (Z/3Z), but this

comes at the price of less computational efficiency. This is embodied by two drawbacks: firstly the translation

from Mode Automata (our language to specify LTSs) into Z/3Z (the input format of SIGALI), and secondly

the symbolic state space traversal by SIGALI, currently performed with TDDs, the ternary equivalent of BDDs,

but alas less efficient. Nonetheless, DCS being a constructive method (in contrast with model-checking which

is a diagnosis method10), we advocate that it is well worth spending some computation time to obtain correct-

by-construction fault tolerant systems.

2. We would like to combine our results with abstract interpretation [20] to achieve the control of systems

with both numerical and discrete data; this would allow us to pursue further our work on handling the value

and Byzantine failures. Tools that implement efficiently abstract interpretation on LTSs exist, for instance

NBAC [30].

9.3 Future work

In the framework we have presented so far, the result of the DCS is a centralized controlled system, fault tolerant

provided that the synthesis objective includes a fault tolerance requirement (e.g., no task should be active on a

faulty processor). However, it remains a centralized system, because it consists of a single global LTS, which is

the result of the synchronous product of the plant and the synthesized controller. This can be a problem w.r.t. fault

tolerance, since most fault tolerant systems must intrinsically be distributed to offer redundancy [25]. In particular,

the controlled system should be tolerant to the failures of the controller.

The automatic generation of local controllers achieving global control objectives is a more difficult task, also

known as decentralized supervisory control [38,18], among which we distinguish two cases: First the case

where the local controllers do not communicate at run time, and second the case where the local controllers can

exchange information at run time. However, there are two reasons that prevent us from using this technique. On the

one hand, distributed DCS is not fault tolerant, since the failure of one local controller (e.g., following the failure

of the processor it is running on) can lead to the failure of the whole system. And on the other hand, the distributed

DCS problem without communication between local controllers has been shown to be undecidable [54,52].

Rather, we propose to distribute afterwards the controller. It can also be distributed manually when it is small

enough, as demonstrated in [23]. The controller being an LTS, classical LTS distribution algorithm like [15]

can be used. Without entering into the details, starting from a centralized LTS, this algorithm produces a set

of communicating LTSs, one for each desired computing location, guaranteed to be semantically equivalent to

the initial centralized LTS. Then, classical fault tolerance techniques can be used to make the communications

between the local LTSs tolerant to the failures of the processors and the communication links.

Another track that we are considering currently involves addressing specifically software faults. Indeed, soft-

ware faults could be addressed by modeling with behaviors such as n-version programming and voting mecha-

nisms, and then by adapting the fault tolerant policy to this particular case.

10 Some even say “autopsy”!
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Finally, our framework and tool chain could be integrated within the NEMO compiler [21], which nicely

integrates DCS as a compilation step of the domain-specific language for multi-task systems NEMO. This would

provide a more integrated and easy to use fault tolerant framework.
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