
Automating the Application Data Placement in
Hybrid Memory Systems

Harald Servat∗, Antonio J. Peña†, Germán Llort†,
Estanislao Mercadal†, Hans-Christian Hoppe∗ and Jesús Labarta†‡

∗Intel Corporation
†Barcelona Supercomputing Center (BSC)
‡Universitat Politècnica de Catalunya (UPC)

Abstract—Multi-tiered memory systems, such as those based
on Intel R© Xeon PhiTMprocessors, are equipped with several mem-
ory tiers with different characteristics including, among others,
capacity, access latency, bandwidth, energy consumption, and
volatility. The proper distribution of the application data objects
into the available memory layers is key to shorten the time–
to–solution, but the way developers and end-users determine
the most appropriate memory tier to place the application data
objects has not been properly addressed to date.

In this paper we present a novel methodology to build an
extensible framework to automatically identify and place the
application’s most relevant memory objects into the Intel Xeon
Phi fast on-package memory. Our proposal works on top of in-
production binaries by first exploring the application behavior
and then substituting the dynamic memory allocations. This
makes this proposal valuable even for end-users who do not
have the possibility of modifying the application source code. We
demonstrate the value of a framework based in our methodology
for several relevant HPC applications using different allocation
strategies to help end-users improve performance with minimal
intervention. The results of our evaluation reveal that our
proposal is able to identify the key objects to be promoted
into fast on-package memory in order to optimize performance,
leading to even surpassing hardware-based solutions.

Index Terms—heterogeneous memory, hybrid memory, high-
bandwidth memory, performance analysis, PEBS, sampling, in-
strumentation

I. INTRODUCTION

Hybrid memory systems (HM)1 accommodate memories

featuring different characteristics such as capacity, bandwidth,

latency, energy consumption, or volatility. A recent example

of an HM-processor is the Intel R© Xeon PhiTM, containing

two memory systems: DDR and on-package Multi-Channel

DRAM (MCDRAM) [1]. While HM systems present oppor-

tunities in different fields, the efficient usage of these systems

requires prior application knowledge because developers need

to determine which data objects to place in which of the

available memory tiers. A common objective is to shorten the

application time–to–solution and this translates into placing

the appropriate data objects on the fastest memory. However,

fast memory is a scarce resource and the application working

set may not fit. Consequently, it is important to characterize the

application behavior to identify the (critical) data that benefits

the most from being hosted into fast memory and, if not

sufficient, keep the non-critical data away in slower memory.

1Also known as heterogeneous or multi-tiered memory systems.

Tools like EVOP [2], ADAMANT [3], MACPO [4] and

Intel R© Advisor [5] solely rely on instruction-level instrumen-

tation to monitor the data object allocation and their respective

accesses to advise the user about the most accessed variables

and even their access patterns. These metrics are valuable to

understand the application behavior, but the imposed over-

head limit their relevance because they alter the application

performance and generate a daunting amount of data for in-

production application runs, leading to long analysis times.
To overcome these limitations, processor manufacturers

have augmented their performance monitoring unit with sam-

pling mechanisms to provide rich information, including

the referenced memory address. Precise-Event Based Sam-

pling (PEBS) is the implementation of such a feature in

recent Intel processors [6]. Performance analysis tools such

as HPCToolkit [7], MemAxes [8], Extrae [9], and Intel R©

VtuneTMAmplifier [10] use a hybrid approach combining

instrumentation to track data allocation and PEBS to mon-

itor the application data references. This approach enables

exploring in-production executions with a reduced overhead at

the cost of providing statistical approximations, even though

approximations for long runs resemble the actual results.
These tools typically identify the data structures that are

associated to metrics like high-latency loads or high number

of cache misses but leave the tedious work of substituting

the memory allocation calls to the application developer. This

paper advances the current state of the art by introducing a

novel framework design to help end-users, application devel-

opers and processor architects understand the usage of HM

systems, and to automatically promote the critical data to the

appropriate memory layer. The framework design consists of

four stages: (1) low-overhead data collection using hardware-

based sampling mechanisms; (2) attribution of a cost based

on Last-Level Cache (LLC) misses to each data object; (3)

distribution of data objects for a given memory configuration;

and (4) re-execution of the application binary automatically

promoting the different data objects to the proper memory tier.

The two first stages rely on an unmodified open-source tools,

while the third stage is a derivative from an already existing

tool and the fourth stage relies newly developed interposition

library.
The contributions of this paper include:

1) the design of an extensible framework to automatically

distribute the data objects of in-production binaries in

1

montse aragues
Texto escrito a máquina
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/CLUSTER.2017.50

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

HM systems targeting performance, and implementing

it for Intel Xeon Phi processors;

2) an exploration of several strategies to help determine

which application variables to place on which memory

tier in HM systems;

3) the evaluation of the proposed distribution approaches

on a set of well-known benchmarks using the presented

framework methodology, including a comparison with

already existing hardware and software solutions; and

4) the proposal of a novel metric to report the efficient use

of the fast on-package memory by applications.

This paper follows contextualizing the work we present with

already existing state–of–the–art tools and methodologies in

Section II. Section III describes in detail the framework and

its components. In Section IV we put the framework in use

through several benchmarks and applications while analyzing

the obtained results. Finally, Section V draws conclusions and

discusses possible future research directions.

II. RELATED WORK

There exist several alternatives for taking advantage of the

MCDRAM on Intel Xeon Phi processors. The user can benefit

from the fast on-package memory transparently by using it as

a direct-mapped LLC. However, if MCDRAM is configured

in flat mode (i.e. sits on a different part of the address space),

then the easiest alternative for the user is to rely on the

numactl command to place as much application data as

possible into the fast memory. Another alternative is to use

the autohbw library provided by the memkind package [11].

This library is injected into the application before process

execution and it forwards dynamic allocations into MCDRAM

if the requested memory is within a user-given size range

(as long as it fits). The most tedious situation requires the

developer to learn (somehow) about the application behavior

with respect to main memory accesses and manually change

the memory allocations so that they reside on MCDRAM using

memkind. Even though using MCDRAM in cache mode leads

to good performance results, it is not as efficient as consciously

exploiting it in flat mode (see Figure 1), especially for those

workloads where the lack of associativity is a problem. Using

the numactl approach, irrelevant data objects may be placed

on MCDRAM and prevent critical objects from fitting, while

using autohbw or changing the application code requires

detailed application knowledge.

We next describe earlier approaches from a variety of

performance tools that have focused on the analysis of data

structures to bring this knowledge to the user. We divide

this research into two groups depending on the mechanism

used to capture the addresses referenced by the load/store

instructions. Then, we describe how these approaches fit within

the framework design we propose.

a) Instrumenting-based Solutions: The first group of

tools includes those that instrument the application instructions

to obtain the referenced addresses. MemSpy [12] is a prototype

tool for profiling applications on a system simulator that

introduces the notion of data-oriented—in addition to code-

oriented—performance tuning. This tool instruments every

memory reference from an application run and leverages the

references to a memory simulator that calculates statistics

such as cache hits and misses for a given cache organization.

SLO [13] suggests locality optimizations by analyzing the

application reuse paths to find the root causes of poor data

locality. This tool extends the GCC compiler2 to capture the

application’s memory accesses, function calls and loops to

track data reuses, and then it analyzes the reused paths to

suggest code loop transformations. MACPO captures memory

traces and computes metrics for the memory access behavior

of source-level data structures. The tool uses PerfExpert [14] to

identify code regions with memory-related inefficiencies, then

it employs the LLVM compiler3 to instrument the memory

references, and finally it calculates several reuse factors and

the number of data streams in a loop nest. Intel Advisor is a

performance analysis tool that focuses on the thread and vector

performance, and it also explores the memory locality charac-

teristics of a user-given code. The tool relies on PIN [15] to

instrument binaries at instruction-level allowing correlation of

the instructions and the memory access patterns. Tareador [16]

is a tool that estimates the amount of parallelism that can

be extracted from a serial application using a task-based

data-flow programming model. The tool employs dynamic

instrumentation to monitor the memory accesses of delimited

regions of code to determine whether they can simultaneously

run without data race conditions, and then it simulates the

application execution based on this outcome. EVOP is an

emulator-based data-oriented profiling tool to analyze actual

program executions in a system equipped only with a DRAM-

based memory [17]. EVOP uses dynamic instrumentation

to monitor the memory references in order to detect which

memory structures are the most referenced and then estimate

the CPU stall cycles incurred by the different memory objects

to decide their optimal object placement in a heterogeneous

memory system by means of the dmem advisor tool [2].

ADAMANT uses the PEBIL instrumentation package [18]

and includes tools to characterize application data objects,

to provide reports helping on algorithm design and tuning

by devising optimal data placement, and to manage data

movement improving locality.

b) Hardware-based Solutions: The second group con-

sists of tools that benefit from hardware mechanisms to sample

addresses referenced when processor counter overflows occur

and that estimate the access cost from the samples. The

Oracle Developer Studio (formerly known as Sun ONE Studio)

incorporates a tool to explore memory system behavior in

the context of the application’s data space [19]. This exten-

sion provides the analyst with independent and uncorrelated

views that rank program counters and data objects according

to hardware counter metrics and it shows metrics for each

element in data object structures. HPCToolkit was extended

to support data-centric profiling of parallel programs using

hardware sampling capabilities to expose the long latency

memory operations. Similarly, Intel Vtune Amplifier shows

application data objects that induce more cache misses. These

two tools provide their respective graphical user interface that

2http://gcc.gnu.org
3http://www.llvm.org

2

http://gcc.gnu.org
http://www.llvm.org

0

100

200

300

400

500

1 2 4 8 16 32 34 64 68

M
E

M
O

R
Y

 B
W

 (
G

B
/S

)

NUMBER OF CORES USED

DDR MCDRAM/Flat MCDRAM/Cache

Fig. 1: Bandwidth observed on the Triad kernel of the Stream

benchmark when executed with a single thread per core on

an Intel Xeon Phi processor 7250 running at 1.40 GHz and

placing the data in DDR or MCDRAM.

presents data- and code-centric metrics, easing the correlation

among the two. MemAxes uses PEBS to monitor long-latency

load instructions that access addresses within memory regions

delimited by user-specified data objects. The novelty of its

approach is that it associates the memory behavior with

semantic attributes, including the application context which

is shown through a visualization tool. BSC tools have been

extended to sample memory references and then show detailed

access patterns on the application address space, and correlate

them with the application code and other performance counters

through the Folding technique [20].

The work described in this paper combines aforementioned

mechanisms to identify the data objects and report which

would benefit the most from moving to a faster memory. The

report is then analyzed by a novel mechanism that automati-

cally substitutes dynamic allocations referring to critical data

at run-time, letting developers and end-users apply the method

easily even for production binaries. This approach leverages

finer granularity than that of autohbw. Although we have

used the BSC tools and a dmem advisor derivative to leverage

the data analysis and object selection stages of our proposed

methodology, it is possible to swap them with analogous tools.

III. DESIGN AND PROPOSED IMPLEMENTATION

We present an overview of the framework and its main

components in this section. The components of the framework

are executed sequentially as illustrated in Figure 2 leading to

a profile-guided execution. The framework starts by collecting

metrics of the memory objects into a trace-file by using

Extrae. Then, Paramedir [21] identifies those objects that

have missed the most in the LLC (and likely to be the

most bandwidth-demanding) and their respective sizes. Third,

hmem advisor reports which memory objects are best to place

in fast memory according to a given memory specification.

Finally, auto-hbwmalloc automatically substitutes the regular

allocation memory calls to MCDRAM memory honoring the

previous report in a final application execution. The following

subsections provide further details on the components of our

framework proposal.

Report

Binary

Extrae

Step 1

Execution profile

Paramedir

Step 2

Generate

metrics

Trace

Step 3

Determine

allocations

hmem_

advisor

Step 4

Swap memory

allocations

auto-

hbwmalloc

configconfig

configconfig

Fig. 2: The framework design and its components.

Step 1: Extrae

Extrae is an open-source tracing package developed at BSC

that generates Paraver trace-files. This package automatically

instruments applications using the LD_PRELOAD mechanism

to capture information from parallel programming models

such as MPI, OpenMP, POSIX threads, OpenCL, CUDA and

combinations of them. Extrae complements the trace-files with

sampling mechanisms, making sure that performance analysts

get performance details even for long uninstrumented regions.

While Extrae has traditionally focused on capturing the

activity of parallel runtimes, it has been recently extended

to instrument memory allocations, and to sample load and

store instructions from the application using the PEBS mech-

anism, to include further information regarding data objects

and their accesses. This information includes the time-stamp,

performance counters, and the parameters and results of the

call, (i.e. requested size, input and output pointers), and the

call-stack. Extrae uses binutils [22] to obtain human-readable

source code references for the memory accesses. Dynamically-

allocated variables are identified by their allocation call-stack4

while static variables are referenced by their given name.

Although Extrae is able to collect data from many sources of

information, to perform this analysis the framework only needs

dynamic-memory allocations and deallocations and sampled

memory references for the LLC misses. For the former, Extrae

registers the allocated address range through the returned

pointer and the size of the allocation. For the latter, Extrae

registers the address of the particular load or store instruction

that missed in LLC, and it correlates with its corresponding

object by matching the accessed address against the previously

allocated object’s address ranges. The association of memory

references to automatic (stack) variables is not supported at

the time of writing this document.

Regarding the PEBS hardware infrastructure, the metrics as-

sociated to the memory samples depend on the processor fam-

4The call-stack is captured using the backtrace() call from glibc.

3

ily as well as on the performance counter used. For instance,

the PEBS mechanism in the Intel Xeon Phi processors tracks

L2 (LLC) cache load references (either hits or misses) and

provides information regarding the address being referenced.

The information provided for Intel R© Xeon R© processors is

richer: it additionally provides the access cost (in cycles) and

which part of the memory hierarchy provided the data for load

instructions, and whether the access did hit or missed in the

L1 cache for store instructions.

Step 2: Paramedir

The result of an instrumented run with Extrae is a Paraver

trace-file, a sequence of time-stamped events reflecting the

actual application execution. Paraver is the visualization tool

of the BSC tool-suite, which enables users to conduct a global

qualitative analysis of the main performance issues in the

execution by visual inspection, and then focus on the detailed

quantitative analysis of the detected bottlenecks. These analy-

ses can be stored in the so-called configuration files that can

be applied to any trace-file as long as it contains the necessary

data. Paramedir, on the other hand, is the non-graphical version

of Paraver which allows to automatize the analysis through

scripts and configuration files, reporting metric values in a

comma-separated-value (CSV) file.

In this stage Paramedir is applied to compute two statistics

from the trace for each application data object: (1) the cost

of the memory accesses, and (2) the size of the object. We

approximate the access cost by the number of LLC misses, but

this could be easily extended on Intel Xeon processors thanks

to their richer PEBS infrastructure. Regarding the object’s data

size, it is worth mentioning that dynamically-allocated objects

are identified by their call-stack. If an application loops over

a data allocation, the call-stack will be the same for each

iteration, and hence it can not unequivocally distinguish among

the different allocations. In these cases we report the maximum

requested size observed for each repeated allocation site.

Step 3: hmem advisor

hmem advisor is a tool based on EVOP’s dmem advisor. It

parses Paramedir’s output containing the object-differentiated

memory access information and computes an optimized ob-

ject distribution among the available memory layers. Like

dmem advisor, hmem advisor is based on a relaxation of the

0/1 multiple knapsack problem (solving separate knapsacks in

descending order of memory performance at memory page

granularity), where the memory subsystems represent the

knapsacks and the memory objects correspond to the items

to be packed. Each memory subsystem is defined by a given

size and a relative performance in a configuration file, ensuring

that we can extend this mechanism in the future for different

memory architectures.

Ideally, we want to minimize the number of stalled cycles

by the CPU due to main memory accesses. We achieve this

by maximizing the potential CPU stall cycles due to memory

accesses that each memory tier avoids with respect to the

slowest of them. We approach this as the number of per-

object accesses (i.e., LLC misses), as proposed in [2]. We

also devise a future additional refinement enabled by our

approach based on the PEBS metrics provided in Intel Xeon

processors benefiting from object-differentiated information on

miss latency.

Computing a pure 0/1 knapsack (with pseudo-polynomial

computational cost) involving potentially hundreds of mem-

ory objects and large memory levels has proven to be im-

practical in our experiments. We approach this problem by

implementing in hmem advisor two independent and greedy

relaxations of the problem. The first alternative is an approach

that selects the data objects based on the number of LLC

misses and an optionally user-provided percentage thresh-

old. The threshold allows preventing that rarely referenced

objects (but that still fit in the knapsack) are promoted to

fast-memory. The second alternative is a relaxation based

on profit density, i.e. promoting those variables with higher

memory access/data object size ratio. Either approach has

a linear computational cost. No matter the approach leveraged,

the current hmem advisor implementation considers that the

application address space is static. While this assumption does

not hold true for all applications, it may be reasonable for

many applications that allocate data from the start and keep

it until they finalize. Since the generated trace-file in the first

stage of the framework contains a time-varying representation

of the application address space, hmem advisor could use this

information to further tune the suggested allocations.

The output of the tool is a list of selected data objects

that should be promoted to fast memory. This list is written

in a human-readable format for two reasons. First, statically

allocated objects cannot be migrated to a memory layer differ-

ent from the default without modifying the application code.

Second, application developers may prefer to have full control

of the memory placement and modify the code themselves to

migrate the selected data objects into a different memory tier.

Step 4: auto-hbwmalloc

The auto-hbwmalloc component consists of a shared li-

brary that substitutes several dynamic-memory allocation and

deallocation calls5 through the LD_PRELOAD mechanism and

forwards them to an alternate memory allocator. Currently,

the auto-hbwmalloc forwards memory allocations to routines

from the memkind library, but the auto-hbwmalloc component

has been developed so that it can be easily extended to

other allocation mechanisms. At the moment the library only

supports dynamically-linked binaries but we foresee the pos-

sibility of substituting the memory-related calls in statically-

linked binaries using instrumentation frameworks such as PIN

or DynInst [23].

The library contains wrappers to substitute all the

memory-related calls and use the information provided by

hmem advisor to replace the selected dynamic allocations.

Algorithm 1 shows an example of this interposition for the

malloc call with details explained through this section. Each

time the application invokes a malloc, the library intercepts

the call and then checks whether the invocation call-stack

matches with any of those identified in the report from step

5Including malloc, realloc, posix_memalign, free,
kmp_malloc, kmp_aligned_malloc, kmp_free and kmp_realloc.

4

Algorithm 1 Pseudo-code for a substituted malloc.

1: function MALLOC(size)
2: allocated← false

3: if lb size ≤ size ≤ ub size then
4: callstack ← BACKTRACE()
5: <found, in, alloc>← ALLOC CACHE SEARCH(callstack)
6: if ¬found then
7: tx callstack ← CS TRANSLATE(callstack)
8: <in, alloc>← MATCH(tx callstack, sel callstacks)
9: ALLOC CACHE ANNOTATE(callstack, in, alloc)

10: end if
11: if in then
12: if alloc→ FITS(size) then
13: ptr ← (alloc→ MALLOC(size))
14: ALTERNATE REGION ANNOTATE(ptr, size, alloc)
15: alloc→ STATS ADD(size)
16: allocated← true

17: end if
18: end if
19: end if
20: if ¬allocated then
21: ptr ← (posix→ MALLOC(size))
22: posix→ STATS ADD(size)
23: end if
24: return ptr
25: end function

3 (line 8). In case of a positive match, it returns a pointer

to the appropriate allocator object (alloc) that forwards the

allocation to the selected memory allocation call (in this case

memkind) and is used to allocate the data object (line 13).

Due to the inclusion of the ASLR (Address Layout Space

Randomization) security features that randomize the position

of library symbols in the application address space, it is

necessary not only to unwind (line 4) the call-stack but also

to translate it at run-time (using the binutils package [line 7]).

The library itself needs to perform some book-keeping in-

cluding the following items: (1) allocated regions per allocator,

(2) memory used per allocator and (3) execution statistics.

First, memory allocations and deallocations need to be handled

by their specific memory allocation package and cannot be

mixed with others. This makes it necessary to keep a relation

of which allocations have been done by the alternate allocators

in order to use the appropriate calls (line 14). Second, in

Step 2 we mentioned that the framework currently reports the

highest allocation values for dynamically-allocated objects in

loops. This means that hmem advisor may not be aware of the

exact amount of memory used by an application a priori. We

have implemented auto-hbwmalloc so that it keeps the total

amount of alternate space used by the process (line 15) and

it will not request from the alternate allocator more memory

than that specified by the advisor (line 12). This approach

also covers the case where applications allocate memory from

inlined routines. In this case, different allocation sites sharing

the same call-stack may exist and thus mislead the library to

substitute allocations when it should not. Third, and finally, the

auto-hbwmalloc component also captures several application

metrics upon user request that may be valuable for analysis

and debug purposes. These metrics include, among others,

the number of allocations, the average allocation size, the

observed High-Water Mark (HWM) and whether any variable

did not fit into memory due to user size limitations given to

hmem advisor.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

T
IM

E
 (

U
S

)

CALL-STACK DEPTH

Unwind Translate

Fig. 3: Overhead breakdown for call-stack unwinding and call-

stack translation on an Intel Xeon Phi 7250 processor running

at 1.40 GHz using glibc 2.17 and binutils 2.23.

Since applications may face large number of memory

call invocations during execution, we have also explored the

overhead that these may suffer using this library in order

to evaluate whether the overhead could hide the gains by

promoting the data objects to MCDRAM. Figure 3 shows

a breakdown of the unwind and translation cost (Y-axis in

µseconds) when varying the call-stack depth (X-axis). The

results show that the cost of unwinding a short call-stack is

larger compared to the cost of translating its frames, but the

translation cost increases faster than the unwind cost when

increasing the call-stack depth. In this particular case, the

translate cost surpasses the unwind cost eventually and for

the machine tested this occurs when processing a call-stack

deeper than 6 levels. We address this overhead with two

approaches. First, we include a small cache indexed by the

unwound addresses that keep whether an allocation invoked in

that position shall or shall not be allocated using the alternate

allocator (lines 5 and 9). Second, the hmem advisor tool

provides the lowest and highest allocation sizes (lb_size

and ub_size) to filter the allocations to be checked by their

size (line 3), although this can be disabled upon user request.

IV. EXPERIMENTAL EVALUATION

To demonstrate the value of the proposed framework we

evaluate the following applications and provide some of their

characteristics in Table I. The applications include:

• High Performance Conjugate Gradient (HPCG) [24] -

a code that benchmarks computer systems based on a

simple additive Schwarz, symmetric Gauss-Seidel pre-

conditioned conjugate gradient.

• Livermore Unstructured Lagrange Explicit Shock Hydro-

dynamics (Lulesh) proxy application [25] - a representa-

tive of simplified 3D Lagrangian hydrodynamics on an

unstructured mesh.

• Block-Tridiagonal (BT) benchmark - part of the NAS

parallel benchmarks [26] that mimics the computation

and data movement in CFD applications.

• MiniFE - a proxy application for unstructured implicit

finite element codes from the Mantevo and CORAL

benchmark collections [27].

5

TABLE I: Explored applications and their characteristics.

HPCG 3.0mod [24] Lulesh 2.0 [25] NAS BT 3.3.1 [26] miniFE 2.0rc3 [27]

Lines of code 5,718 7,240 6,415 4,609
Language C++ C++ Fortran C++
Parallelism MPI+OpenMP MPI+OpenMP OpenMP MPI+OpenMP
Execution geometry 64 ranks, 4 threads/rank 64 ranks, 4 threads/rank 272 threads 64 ranks, 4 threads/rank

Problem size 1043, 400s 963, 50 its D 4083, 250 its 520×512×512, 200 its

Compilation flags
-g -O3 -xMIC-AVX512

-qopenmp
-g -O3 -xMIC-AVX512
-qopenmp -fno-inline

-g -O3 -xMIC-AVX512
-qopenmp

-mcmodel=medium

-g -O3 -xMIC-AVX512
-qopenmp

Figure of Merit (FOM) GFLOPS z/s Mop/s MFLOPS

Allocation statements6 0/0/0/33/17/0/0 1/0/1/35/23/0/0 0/0/0/0/0/15/15 0/0/0/5/1/0

Number of allocations/process/second 3,263 29.48 0.49 1,006.55

Memory used-HWM7 (MB/process [total]) 928 [59,399] 859 [54,992] 11,136 [11,136] 1,022 [65,439]

Monitoring overhead8 0.42% 0.29% 0.32% 4.10%

Number of samples/process 13,629 3,201 38,215 3,194
Number of samples/process/second 30.46 9.08 12.59 12.25

CGPOP 1.0 [28] SNAP 1.0.7 [29] MAXW-DGTD [30] GTC-P 160328 [31]

Lines of code 4,612 8,583 20,835 8,362
Language Fortran Fortran Fortran C
Parallelism MPI MPI+OpenMP MPI+OpenMP MPI+OpenMP
Execution geometry 64 ranks 64 ranks, 4 threads/rank 64 ranks, 4 threads/rank 64 ranks, 4 threads/rank
Problem size 180×120, 200 trials 32×64×64, 20 its 4th order mi=3, 861, 390, 50 its

Compilation flags -g -O3 -xMIC-AVX512
-g -O3 -xMIC-AVX512
-qno-opt-dynamic-align
-fno-fnalias -qopenmp

-g -O3 -xMIC-AVX512
-qopenmp -align

dcommons

-g -O3 -xMIC-AVX512
-qopenmp

Figure of Merit (FOM) Trials / s Iterations / s Iterations / s Iterations / s

Allocation statements6 0/0/0/0/0/29/6 0/0/0/5/1/0/0 0/0/0/0/0/75/71 156/0/156/0/0/0/0/0

Number of allocations/process/second 18.17 1,006.55 15,853.98 20.57

Memory used-HWM7 (MB/process [total]) 158 [10,173] 1,022 [65,439] 285 [18,276] 1,329 [85,074]

Monitoring overhead8 0.88% 0.15% 0.65% 0.78%

Number of samples/process 8,258 3,194 2,072 17,254
Number of samples/process/second 17.44 12.25 4.13 28.56

• CGPOP [28] miniapp - the conjugate gradient solver from

LANL POP (Parallel Ocean Program) 2.0, which is the

performance bottleneck for the full POP application.

• SNAP [29] - a proxy application to model the perfor-

mance of a modern discrete ordinates neutral particle

transport application solving the linear Boltzmann trans-

port equation in multi-dimensional phase space.

• MAXW-DGTD [30] - an adoption of a Discontinuous

Galerkin Time-Domain solver for computational bioelec-

tromagnetics which use 4th order Lagrange basis func-

tions on tetrahedra for the simulation of human exposure

to electromagnetic waves [32].

• Princeton Gyrokinetic Toroidal Code (GTC-P) [31] - a

simulator for plasma turbulence within Tokamak fusion

devices generating a magnetic field that confines a plasma

within a toroidal cavity and accelerates the plasma parti-

cles around the torus.

We have used most of the applications out–of–the–box from

sources, changing only the compilation process as stated in

Section IV-A and Table I. The only modifications were per-

formed in BT, CGPOP and HPCG. Regarding BT and CGPOP,

the first analyses with the framework indicate that all the

variables that should go into MCDRAM are static variables.

However, since our interposition library cannot promote static

and automatic variables into fast memory, we modified the

most observed variables in BT and CGPOP to be dynamically

allocated so that they can be intercepted. Regarding HPCG, we

have slightly modified the reference code using some well-

known modifications (provided by the official website) that

improve the application performance (see [24] for details).

A. System Setup

We have used a system with one Intel Xeon Phi 7250

processor running at 1.40 GHz. The system has 96 Gbytes

and 16 Gbytes of DDR and MCDRAM memory, respectively,

meaning that the majority of the working sets do not fit in fast

memory. All the experiments have been executed in flat mode

except for the experiments labeled accordingly. The processor

tiles are interconnected using the quadrant cluster mode.

Regarding the software, the machine runs CentOS Linux 7

with a Linux kernel 3.10.0 and the XPPSL package version

1.3.3. All the explored applications have been compiled using

Intel R© C/C++ and Fortran compilers version 2017 update

2 with aggressive optimization flags and generating debug

information. We note that for Lulesh we have disabled inlining

because the application uses it aggressively and this confuses

auto-hbwmalloc due to the same call-stack being reported

from many different allocation sites. MPI applications use

Intel R© MPI library 2017 update 2 and we have not utilized

the MCDRAM memory for the internal MPI buffers to avoid

6Direct allocation statements in format: m/r/f/n/d/a/D, where m stands for
malloc, r for realloc(), f for free(), n for new, d for delete,
a for allocate and D for deallocate. Note that container allocations
(such as C++ STL allocations) are not reported and that allocate and
deallocate may operate on multiple data objects in a single invocation.

7As reported by each process by the Virtual Memory High-Water Mark
(VmHWM) in /proc/self/status before the process termination.

8The overhead is calculated using the reported FOM.

6

interfering with our framework. We use Extrae version 3.4.3

to monitor memory allocations larger than 4 Kbytes and

to sample one out of every 37,589 L2 cache misses. We

have chosen this allocation size to avoid small (and possibly

frequent) allocations such as those related to I/O that are

unlikely to benefit from MCDRAM. The period is a relatively

large number to keep the impact on application execution small

(typically below 1%) although the number of samples depends

on the instruction mix (see details in Table I). Finally, the auto-

hbwmalloc library employs memkind version 1.5.0 to allocate

selected objects in fast memory.

B. Application Analyses

Following our proposed framework, we have monitored

the applications to obtain trace-files containing their memory

allocations and sampled references. Then we applied the

hmem advisor tool with a range of memory sizes and several

allocation strategies. In OpenMP-only applications (i.e. NAS

BT) the exploration size ranges from 32 Mbytes to 16 Gbytes.

MPI (and hybrid MPI+OpenMP) applications have been run

with 64 MPI ranks; we explore the performance obtained when

limiting the used MCDRAM memory in a range from 32 to

256 Mbytes per rank. With respect to allocation strategies,

we have explored the two independent strategies provided in

hmem advisor: based on LLC misses (with 0%, 1% and 5%

thresholds) and the density-based. Each parameter combina-

tion generates an object distribution and then we run again

the application with the auto-hbwmalloc library to check for

improvements by placing the selected objects in MCDRAM.

For comparison purposes with the results obtained using our

framework, we have also executed the applications in four ex-

ecution conditions and we report the results in Figure 4. First,

and as a reference, we measure the application performance

when the workload is located in DDR memory. The second

execution refers to placing as much data as possible into

MCDRAM following a FCFS strategy until it is exhausted and

then fall-backs to DDR (i.e. using numactl -p 1). Third,

we have used the libautohbw library to automatically place

dynamically-allocated data objects larger than 1 Mbyte in fast

memory. Finally, we have also conducted the experiments

when using the MCDRAM in cache mode allowing the user

to completely ignore data object placement.

C. Analysis of the Results

Figure 4 shows the results of the different experiments

executed per application (row). There are three figures per

application (from left to right: absolute performance, MC-

DRAM utilization and good use of the MCDRAM). The

absolute performance refers to the application Figure of Merit

(FOM—the higher the better) if the application reports it

and for the applications that do not report FOM (i.e., SNAP,

CGPOP, MAXW-DGTD and GTC-P) the Figure shows the

iterations/time metric. The values represented in columns

show the performance achieved when executed with our pro-

posed framework and the given configuration based on mem-

ory size limit and allocation strategy. The horizontal lines help

to compare the performance with other approaches, namely:

when the application is executed in DDR (green), when

placing as much as data as possible in fast memory through

numactl -p 1 (red), when using autohbw with 1 Mbyte

threshold (yellow) and when setting MCDRAM in cache mode

(blue). The plots in the middle report the highest MCDRAM

memory utilization (HWM) as reported by the auto-hbwmalloc

library. This information allows us to understand the appli-

cation allocation necessities and explore how much of the

assigned memory has been actually used. Finally, the plot

on the right column depicts the ∆FOM/mbyte metric. This

metric represents the good use of fast memory’s provided size

and helps identifying sweet-spots for dimensioning different

memory tiers on HM machines. A naı̈ve description of this

metric refers to the performance increase achieved when using

a given amount of fast memory. The metric is calculated as:

∆FOM/mbytex(y) = (FOMx(y)− FOMddr(y))/MEMx (1)

where x refers to an experiment, y refers to an application,

FOMddr represents the FOM achieved when running the

application in the reference (DDR) memory, FOMx and

MEMx represent the FOM obtained and MCDRAM-size

when using the selection in experiment x, respectively. Since

we do not have the HWM value for cache and numactl

-p 1 experiments we have decided their MEMx value to be

16 Gbytes as this is the provided memory. The autohbw/1m

experiment has been left out of this analysis because we do

not know the exact amount of data promoted to MCDRAM.

a) Performance-wise remarks: First, and focusing on the

columns of the performance plots (plots on the left), we

observe the expected behavior where the more data placed

in fast memory, the higher the performance (see HPCG [4a],

Lulesh [4d], BT [4g], miniFE [4j], MAXW-DGTD [4s] and

GTC-P [4v]). The exceptions to this behavior are SNAP

(4p) and CGPOP (4m). As stated earlier, CGPOP has been

modified to change most of its static allocations into dynamic

allocations, and the latter already fit in the smaller case

(32 Mbytes per process), so adding more memory does not

provide any benefit. Regarding the knapsack alternatives, we

observe that performance is typically on par with few examples

were density behaves better (Lulesh [4d] and GTC-P [4v])

and one (HPCG [4a]) where Misses(5%) is better.

When comparing the absolute performance from the various

placement alternatives (i.e. columns vs horizontal lines) we

notice the following. Our framework provides best results for

HPCG (4a), miniFE (4j) and GTC-P (4v). The best case of

HPCG shows a 78.88% performance increase when compared

to the DDR execution and 24.82% performance increase when

compared to the second best alternative (cache). The cache

mode is superior for Lulesh (4d) and slightly superior for

MAXW-DGTD (4s). For instance, the best case of Lulesh

in cache mode is 46.98% faster than executing in DDR and

12.68% faster than the second best alternative (using our

proposed framework for 256 Mbytes per process with the

density approach). The usage of numactl -p 1 command

outperforms marginally the cache and framework approaches

on BT (4g), CGPOP (4m) and SNAP (4p). We have also

explored the reason for the difference in Lulesh and SNAP

when compared to our framework. With respect to Lulesh, it

allocates and deallocates many objects during the application

7

11

13

15

17

19

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

G
F

L
O

P
S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

DDR MCDRAM* Cache autohbw/1m

(a) HPCG - FOM

0

50

100

150

200

250

300

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

B
Y

T
E

S M
IL

L
IO

N
S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

(b) HPCG - HWM

0.00

0.01

0.02

0.03

0.04

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

G
F

L
O

P
S

 /
 M

B
Y

T
E

SELECTION

Density Misses (0%) Misses (1%)

Misses (5%) MCDRAM* Cache

(c) HPCG - ∆FOM/mbyte

6500

7500

8500

9500

10500

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

Z
/S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

DDR MCDRAM* Cache autohbw/1m

(d) Lulesh - FOM

0

50

100

150

200

250

300

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

B
Y

T
E

S M
IL

L
IO

N
S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

(e) Lulesh - HWM

0

2

4

6

8

10

12

14

16

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

Z
/S

 /
 M

B
Y

T
E

SELECTION

Density Misses (0%) Misses (1%)

Misses (5%) MCDRAM* Cache

(f) Lulesh - ∆FOM/mbyte

15000

25000

35000

45000

55000

M
O

P
/S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

DDR MCDRAM* Cache autohbw/1m

(g) BT - FOM

16

160

1600

16000

B
Y

T
E

S

M
IL

L
IO

N
S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

(h) BT - HWM

0

50

100

150

200

250

300

M
O

P
/S

 /
 M

B
Y

T
E

SELECTION

Density Misses (0%) Misses (1%)

Misses (5%) MCDRAM* Cache

(i) BT - ∆FOM/mbyte

9000

10000

11000

12000

13000

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

M
F

L
O

P
S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

DDR MCDRAM* Cache autohbw/1m

(j) miniFE - FOM

0

10

20

30

40

50

60

70

80

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

B
Y

T
E

S M
IL

L
IO

N
S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

(k) miniFE - HWM

0

5

10

15

20

25

30

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

M
F

L
O

P
S

 /
 M

B
Y

T
E

SELECTION

Density Misses (0%) Misses (1%)

Misses (5%) MCDRAM* Cache

(l) miniFE - ∆FOM/mbyte

0.3

0.4

0.5

0.6

0.7

0.8

0.9

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

T
R

IA
L

S
/S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

DDR MCDRAM* Cache autohbw/1m

(m) CGPOP - FOM

0

10

20

30

40

50

60

70

80

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

B
Y

T
E

S M
IL

L
IO

N
S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

(n) CGPOP - HWM

0.000

0.002

0.004

0.006

0.008

0.010

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

T
R

IA
L

S
/S

 /
 M

B
Y

T
E

SELECTION

Density Misses (0%) Misses (1%)

Misses (5%) MCDRAM* Cache

(o) CGPOP - ∆FOM/mbyte

0.065

0.070

0.075

0.080

0.085

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

IT
E

R
A

T
IO

N
S

 /
 S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

DDR MCDRAM* Cache autohbw/1m

(p) SNAP - FOM

0

50

100

150

200

250

300

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

B
Y

T
E

S M
IL

L
IO

N
S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

(q) SNAP - HWM

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

0.00016

32 Mbytes 64 Mbytes 128 Mbytes 256 MbytesIT
E

R
A

T
IO

N
S

/S
 /

 M
B

Y
T

E

SELECTION

Density Misses (0%) Misses (1%)

Misses (5%) MCDRAM* Cache

(r) SNAP - ∆FOM/mbyte

8

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

IT
E

R
A

T
IO

N
S

 /
 S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

DDR MCDRAM* Cache autohbw/1m

(s) MAXW-DGTD - FOM

0

50

100

150

200

250

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

B
Y

T
E

S M
IL

L
IO

N
S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

(t) MAXW-DGTD - HWM

0.000

0.001

0.002

0.003

0.004

0.005

32 Mbytes 64 Mbytes 128 Mbytes 256 MbytesIT
E

R
A

T
IO

N
S

/S
 /

 M
B

Y
T

E

SELECTION

Density Misses (0%) Misses (1%)

Misses (5%) MCDRAM* Cache

(u) MAXW-DGTD - ∆FOM/mbyte

0.08

0.09

0.10

0.11

0.12

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

IT
E

R
A

T
IO

N
S

 /
 S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

DDR MCDRAM* Cache autohbw/1m

(v) GTC-P - FOM

0

50

100

150

200

250

300

32 Mbytes 64 Mbytes 128 Mbytes 256 Mbytes

B
Y

T
E

S M
IL

L
IO

N
S

SELECTION

Density Misses (0%) Misses (1%) Misses (5%)

(w) GTC-P - HWM

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

32 Mbytes 64 Mbytes 128 Mbytes 256 MbytesIT
E

R
A

T
IO

N
S

/S
 /

 M
B

Y
T

E

SELECTION

Density Misses (0%) Misses (1%)

Misses (5%) MCDRAM* Cache

(x) GTC-P - ∆FOM/mbyte

Fig. 4: Application experiment results. Density refers to use the density strategy while Misses (0%, 1%, 5%) refer to use the

strategy based on LLC misses with 0%, 1% and 5% thresholds in hmem advisor. DDR refers to place everything in regular

memory. MCDRAM* refers to allocate everything in fast memory and use DDR as a fall-back when MCDRAM is exhausted.

Cache refers on configuring MCDRAM as Cache mode. autohbw/1m refers on using autohbw library with 1 Mbyte threshold.

0.00

0000

0000

0000

bottom

top

C
o
d
e

li
ne

ou
te

r_
sr

c_
ca

lc

o
ct

sw
ee

p

o
ct

sw
ee

p

ou
te

r_
sr

c_
ca

lc

o
ct

sw
ee

p

o
ct

sw
ee

p

ou
te

r_
sr

c_
ca

lc

o
ct

sw
ee

p

o
ct

sw
ee

p

ou
te

r_
sr

c_
ca

lc

o
ct

sw
ee

p

7f530581bf78

7f5309c05666

7f530dfeed54

7f53123d8443

7f53167c1b31

7f531abab220 A
d
d
resses referenced

0

400

800

1200

1600

0.00 3307.64 6615.28 9922.92 13230.56 16538.20

M
IP

S

Time (ms)

Fig. 5: Performance evolution for the main iteration of SNAP.

The plots from top to bottom: source code (function) executed,

the address space referenced and the performance achieved (in

MIPS). The X-axis spans for the duration of the main iteration.

run and this misleads the framework because hmem advisor

considers data objects alive for the whole execution. To

overcome this limitation, we have forced hmem advisor to

consider it has 512 Mbytes of MCDRAM per process but

still limit auto-hbwmalloc to 256 Mbytes per process. With

this approach, which simulates additional address for selecting

data objects the difference shortens to 5.33% (still in favor

of cache mode). Regarding SNAP, we have used the Folding

technique to compare the behavior of the application when

using numactl -p 1 and the framework and we show the

results for the latter in Figure 5. Notice that when the appli-

cation executes the outer_src_calc routine (in orange,

shown in the top plot), then the MIPS rate (in blue, shown in

the bottom plot) drops but this does not happen when using

numactl -p 1 (not shown). The assembly code for this

routine shows register spilling due to register pressure, and as

register copies are stored in stack the execution benefits from

running with numactl -p 1 but not with the framework.

There is no case where the autohbw library outperforms the

rest but still improves the performance in several cases (HPCG,

BT, CGPOP and miniFE) but also decreases the performance

on Lulesh by 8%. This performance drop is explained by two

facts. First, autohbw promotes non-critical data objects into

fast memory which limits its impact. Second, we observe that

allocations ranging from 1 to 2 Mbytes through memkind are

more expensive than regular allocations (this issue is under

investigation at the moment of writing this document). This

second point is important because Lulesh allocates and deal-

locates memory during the main computation while the rest

of the applications allocate memory during the initialization.

b) Memory-usage remarks: Regarding the memory used,

we notice that all workloads tend to use more MCDRAM

when they are allowed to, except for CGPOP and miniFE that

only use 80 Mbytes per process (circa 5 Gbytes in total).

This indicates that CGPOP and miniFE working sets could be

larger and still fit in MCDRAM, and specifically for CGPOP,

that additional performance could be achieved if some static

variables were migrated into fast memory. We also notice

some allocation differences when using the two relaxations of

the 0/1 multiple knapsack problem. The usage of a threshold

(Misses(1%) and Misses(5%) cases) reduces the amount

of data promoted to fast memory, especially in Lulesh (4e),

miniFE (4k), CGPOP (4n) and GTC-P (4w). Interestingly, the

behavior in SNAP (4q) is the opposite, i.e. the density

9

approach allocates far less memory (64 Mbytes) in the 128 and

256 Mbyte cases. This occurs because the application allocates

few small chunks of memory and one large (256 Mbytes)

buffer, and the selection mechanism favors the placement of

the small chunks in MCDRAM but then the large buffer does

not fit.

c) MCDRAM-efficiency remarks: Finally, with respect to

the ∆FOM/mbyte metric we identify different sweet-spots

where the applications get the highest performance metric.

On the one hand, Lulesh (4f), CGPOP (4o), SNAP (4r) and

GTC-P (4x) maximize the use of the fast memory when

using 32 Mbytes per process. On the other hand, miniFE (4l)

and HPCG (4c) raise the sweet-spot to 128 and 256 Mbytes

per process, respectively. In either case, when using more

memory than the sweet-spot, the value of the metric decreases.

This effect means that hmem advisor selects the data objects

by criticality and that moving non-critical objects into fast

memory does not provide any benefit. Even though HPCG

does not show this effect, one could foresee this to happen if

additional MCDRAM is available.

D. General Discussion

Before concluding this section, we highlight some gen-

eral conclusions extracted from these experiments. First, if

the workload fits in MCDRAM, then it is worth using the

numactl -p 1 command because it places all (static, au-

tomatic and dynamic) data objects on MCDRAM because the

framework can only place dynamic variables in MCDRAM

and cache mode is not as performant as flat mode. If the

workload does not fit, then it is crucial to ensure that critical

data objects are stored in MCDRAM and this can be achieved

through the framework or setting the MCDRAM in cache

mode. Interestingly, cache mode and the framework comple-

ment each other regarding the applications they benefit most

(miniFE, HPCG and GTC-P using the framework and Lulesh,

SNAP, MAXW-DGTD using cache mode). We believe that

this divergence is good to cover wider ranges of applications

in terms of maximizing performance and to promote future re-

search on this topic, but for now requires experimental testing

to determine which approach is better. An additional conclu-

sion is that most of the selected workloads do not require

large amounts of fast memory to increase the performance,

although there may be cases (in our experiments, HPCG)

that will benefit from having more MCDRAM. Furthermore,

our framework may help processor architects to dimension

memory tiers on forthcoming processors.

Also, we remark that all this valuable information has been

generated using relatively coarse-grain sampled information.

Revisiting Table I, the reader will notice that the number of

samples captured per application is relatively low (up to 38 K

samples). This leads us to believe that a hybrid approach of

minimal instrumentation and hardware-based sampling mech-

anisms is considerably helpful for exploring in-production

executions as opposed to instruction-level instrumentation.

Finally, we want to address productivity in two directions

besides the automatism provided by auto-hbwmalloc. First,

we highlight that hmem advisor identify a few allocation

sites that greatly benefits from MCDRAM avoiding the user

to need to explore every data allocation. For instance, the

fastest cases of HPCG and miniFE reach their maximum

performance by placing 2 and 3 data objects into fast memory,

respectively, which would save coding time if users prefer

to change the source code. Second, modern languages (such

as C++) and runtimes (such as OpenMP) can hide data-

object allocations (using templates/STL and private constructs,

respectively) from a manual exploration. These allocations are

captured by the tools used in our proposed framework, making

sure that they are not ignored during the analysis.

V. CONCLUSIONS AND FUTURE WORK

We have presented and evaluated a framework that promotes

critical application data objects into the appropriate memory

tier to shorten the time–to–solution automatically. The frame-

work is applied to in-production binaries allowing end-users

and developers to take advantage of HM systems without

having to access the application source code. The usage of

the framework increases the performance of many explored

applications on an Intel Xeon Phi processor, surpassing the

performance of using the MCDRAM as a LLC. The results

we have shown may well be valuable for processor architects

that need to dimension future HM systems based on current

and future application demands.

As future work, it would be interesting to explore ways

on predicting the application performance gains when moving

some data objects into fast memory and one possible approach

could be to replay the trace-file containing all the memory

samples using a simulator. We also envision benefiting from

the detailed memory access patterns obtained through the

Folding technique when intelligently combining coarse-grain

samples. First, Folding allows correlating the code regions

and access patterns with other performance counters such

as stalled cycles due to insufficient load and store buffers.

This information might be useful to determine which objects

prevent the processor from running at full speed due to

unavailable hardware resources and promote them into the

fastest memory layer to avoid the processor stalling. Second,

it also leads us to identify regions of code with regular and

irregular access patterns. This analysis would help placing

irregularly accessed variables into the memory with shorter

latency. Finally, the current framework places a whole data

object in fast memory but it is possible that it does not fit or

that not all the object is accessed uniformly, so it could be

wise to place in fast memory only the critical portion. In this

direction, we could take advantage of research that focus on

data object partitioning [33], [34].

ACKNOWLEDGMENTS

This work has been performed in the Intel-BSC Exascale Lab.

Antonio J. Peña is cofinanced by the Spanish Ministry of Economy

and Competitiveness under Juan de la Cierva fellowship number IJCI-

2015-23266. We would like to thank the Intel’s DCG HEAT team

for allowing us to access their computational resources. We also

want to acknowledge this team, especially Larry Meadows and Jason

Sewall, as well as Pardo Keppel for the productive discussions. We

thank Raphaël Léger for allowing us to access the MAXW-DGTD

application and its input.

10

REFERENCES

[1] A. Sodani, “Knights landing (KNL): 2nd generation Intel R© Xeon Phi
processor,” in 2015 IEEE Hot Chips 27 Symposium (HCS), Aug 2015,
pp. 1–24.

[2] A. J. Peña and P. Balaji, “Toward the efficient use of multiple explicitly
managed memory subsystems,” in IEEE International Conference on
Cluster Computing (CLUSTER), 2014, pp. 123–131.

[3] P. Cicotti and L. Carrington, “ADAMANT: tools to capture, analyze, and
manage data movement,” in International Conference on Computational
Science (ICCS), 2016, pp. 450–460.

[4] A. Rane and J. C. Browne, “Enhancing performance optimization of
multicore chips and multichip nodes with data structure metrics,” in 2012
21st International Conference on Parallel Architectures and Compilation
Techniques (PACT), Sept 2012, pp. 147–156.

[5] “Intel Advisor XE,” last accessed May 2017. [Online]. Available:
https://software.intel.com/en-us/intel-advisor-xe

[6] I. Corporation, Intel 64 and IA-32 Architectures Software Developer’s
Manual, September 2016, vol. Volume 3B: System Programming Guide,
Part 2, ch. 18.4.4.

[7] X. Liu and J. M. Mellor-Crummey, “A data-centric profiler for parallel
programs,” in International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC’13, 2013, pp. 28:1–28:12.

[8] A. Giménez, T. Gamblin, B. Rountree, A. Bhatele, I. Jusufi, P. Bremer,
and B. Hamann, “Dissecting on-node memory access performance: A
semantic approach,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2014, pp. 166–176.

[9] BSC, Extrae user guide, Barcelona Supercomputing Center, 2016,
last accessed May 2017. [Online]. Available: https://tools.bsc.es/sites/
default/files/documentation/extrae-3.2.1-user-guide.pdf

[10] “Intel VTune Amplifier,” last accessed May 2017. [Online]. Available:
https://software.intel.com/en-us/intel-vtune-amplifier-xe

[11] C. Cantalupo, V. Venkatesan, J. Hammond, K. Czurlyo, and
S. D. Hammond, memkind: An extensible heap memory manager for
heterogeneous memory platforms and mixed memory policies, Mar 2015.
[Online]. Available: http://www.osti.gov/scitech/servlets/purl/1245908

[12] M. Martonosi, A. Gupta, and T. Anderson, “MemSpy: Analyzing
Memory System Bottlenecks in Programs,” in Proceedings of the ACM
SIGMETRICS Joint International Conference on Measurement and
Modeling of Computer Systems. ACM, 1992, pp. 1–12.

[13] K. Beyls and E. D’Hollander, “Refactoring for data locality,” Computer,
vol. 42, no. 2, pp. 62–71, 2009.

[14] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke, and
J. Browne, “PerfExpert: An easy-to-use performance diagnosis tool
for HPC applications,” in Proceedings of the ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC). Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1–11.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “PIN: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings
of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). ACM, 2005, pp. 190–200.

[16] V. Subotic, R. Ferrer, J. Sancho, J. Labarta, and M. Valero, “Quantifying
the potential task-based dataflow parallelism in MPI applications,” Euro-
Par, Parallel Processing, pp. 39–51, 2011.

[17] A. J. Peña and P. Balaji, “A framework for tracking memory accesses
in scientific applications,” in 43rd International Conference on Parallel
Processing Workshops (ICCPW). IEEE, 2014, pp. 235–244.

[18] M. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely, “PEBIL:
Efficient static binary instrumentation for Linux,” in IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2010, pp. 175–183.

[19] M. Itzkowitz et al., “Memory profiling using hardware counters,” in
ACM/IEEE conference on Supercomputing (SC), 2003, p. 17.

[20] H. Servat, G. Llort, J. González, J. Giménez, and J. Labarta, “Low-
overhead detection of memory access patterns and their time evolution,”
in European Conference on Parallel Processing. Springer, 2015, pp.
57–69.

[21] BSC, “Paraver web-site,” Barcelona Supercomputing Center, 2016, last
accessed May 2017. [Online]. Available: http://tools.bsc.es/paraver

[22] Free Software Foundation, “GNU Binutils,”
http://www.gnu.org/software/binutils
Last accessed May, 2017.

[23] B. Buck and J. K. Hollingsworth, “An API for runtime code patching,”
Int. J. High Perform. Comput. Appl., vol. 14, no. 4, pp. 317–329, 2000.

[24] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-
performance computing systems,” IJHPCA, vol. 30, no. 1, pp. 3–10,
2016,
URL: http://www.hpcg-benchmark.org/downloads/hpcg-3.0.tar.gz,
SHA1/10: 39e1b7e45e, modifications cover slides 4-7 from http://www.
hpcg-benchmark.org/downloads/sc14/HPCG on the K computer.pdf.

[25] “Hydrodynamics challenge problem,” Lawerence Livermore National
Laboratory, Tech. Rep., last accessed May 2107.
URL: https://codesign.llnl.gov/lulesh/lulesh2.0.3.tgz, SHA1/10:
1ff51421bf. [Online]. Available: https://codesign.llnl.gov/pdfs/
LULESH2.0 Changes.pdf

[26] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,
“The NAS parallel benchmarks,” in Proceedings of the ACM/IEEE
Conference on Supercomputing. ACM, 1991, pp. 158–165,
URL: https://www.nas.nasa.gov/publications/npb.html, SHA1/10:
70e727ff39.

[27] “Mantevo benchmark suite,” last accessed May 2017.
URL: https://asc.llnl.gov/CORAL-benchmarks/Throughput/MiniFE
ref 2.0-rc3.tar.gz, SHA1/10: 64e79502d9. [Online]. Available:
https://mantevo.org/download

[28] A. Stone, J. Dennis, and M. M. Strout, “The CGPOP miniapp, version
1.0,” Colorado State University, Tech. Rep. Technical Report CS-11-103,
2011,
URL: https://github.com/xiehuc/cgpop, SHA1/10: 5e7deea26a.

[29] “SNAP: SN (discrete ordinates) application proxy,” last accessed May
2017.
URL: https://github.com/losalamos/SNAP.git, SHA1/10: b25fd4197c.
[Online]. Available: https://github.com/lanl/SNAP

[30] R. Léger, D. Alvarez Mallon, A. Duran, and S. Lanteri, “Adapting
a finite-element type solver for bioelectromagnetics to the DEEP-ER
platform,” vol. Parallel Computing: On the Road to Exascale, no. 27.
Edinburgh, United Kingdom: IOS Press, 2016, p. 850,
URL: N/A - provided by user directly, SHA1/10: 1ff51421bf. [Online].
Available: https://hal.inria.fr/hal-01243708

[31] “Gyrokinetic Toroidal Code - Princeton,” last accessed May 2017.
URL: http://www.nersc.gov/research-and-development/apex/
apex-benchmarks/gtc-p, SHA1/10: 7b28264821.

[32] C. Durochat, S. Lanteri, and R. Léger, “A non-conforming multi-
element DGTD method for the simulation of human exposure to
electromagnetic waves,” International Journal of Numerical Modelling:
Electronic Networks, Devices and Fields, vol. 27, no. 3, pp. 614–625,
2014. [Online]. Available: http://dx.doi.org/10.1002/jnm.1943

[33] A. J. Peña and P. Balaji, “A data-oriented profiler to assist in data par-
titioning and distribution for heterogeneous memory in HPC,” Parallel
Computing, vol. 51, pp. 46–55, 2016.

[34] P. Roy and X. Liu, “StructSlim: a lightweight profiler to guide structure
splitting,” in Proceedings of the 2016 International Symposium on Code

Generation and Optimization, CGO, 2016, pp. 36–46.

11

https://software.intel.com/en-us/intel-advisor-xe
https://tools.bsc.es/sites/default/files/documentation/extrae-3.2.1-user-guide.pdf
https://tools.bsc.es/sites/default/files/documentation/extrae-3.2.1-user-guide.pdf
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.osti.gov/scitech/servlets/purl/1245908
http://tools.bsc.es/paraver
http://www.gnu.org/software/binutils
http://www.hpcg-benchmark.org/downloads/hpcg-3.0.tar.gz
http://www.hpcg-benchmark.org/downloads/sc14/HPCG_on_the_K_computer.pdf
http://www.hpcg-benchmark.org/downloads/sc14/HPCG_on_the_K_computer.pdf
https://codesign.llnl.gov/lulesh/lulesh2.0.3.tgz
https://codesign.llnl.gov/pdfs/LULESH2.0_Changes.pdf
https://codesign.llnl.gov/pdfs/LULESH2.0_Changes.pdf
https://www.nas.nasa.gov/publications/npb.html
https://asc.llnl.gov/CORAL-benchmarks/Throughput/MiniFE_ref_2.0-rc3.tar.gz
https://asc.llnl.gov/CORAL-benchmarks/Throughput/MiniFE_ref_2.0-rc3.tar.gz
https://mantevo.org/download
https://github.com/xiehuc/cgpop
https://github.com/losalamos/SNAP.git
https://github.com/lanl/SNAP
https://hal.inria.fr/hal-01243708
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/gtc-p
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/gtc-p
http://dx.doi.org/10.1002/jnm.1943

