
The University of Manchester Research

Automating the Development of Metabolic Network Models

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Rozanski, R., Roux, O. (Ed.), & Bourdon, J. (Ed.) (2015). Automating the Development of Metabolic Network
Models. In O. Roux, & J. Bourdon (Eds.), Computational Methods in Systems Biology (pp. 145-156). Springer
Nature.

Published in:
Computational Methods in Systems Biology

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:24. Aug. 2022

https://www.research.manchester.ac.uk/portal/en/publications/automating-the-development-of-metabolic-network-models(d05935d2-e4c2-4ee8-a9e3-c915d39a6bf6).html
https://www.research.manchester.ac.uk/portal/en/publications/automating-the-development-of-metabolic-network-models(d05935d2-e4c2-4ee8-a9e3-c915d39a6bf6).html
https://www.research.manchester.ac.uk/portal/en/publications/automating-the-development-of-metabolic-network-models(d05935d2-e4c2-4ee8-a9e3-c915d39a6bf6).html

Automating the development of metabolic
network models

Robert Rozanski1?, Stefano Bragaglia2, Oliver Ray2, Ross King1

1 School of Computer Science, University of Manchester, M13 9PL, UK
2 Department of Computer Science, University of Bristol, BS8 1TH, UK

Abstract. Although substantial progress has been made in the automa-
tion of many areas of systems biology, from data processing and model
building to experimentation, comparatively little work has been done
on integrated systems that combine all of these aspects. This paper
presents an active learning system, ”Huginn”, that integrates experi-
ment design and model revision in order to automate scientific reasoning
about Metabolic Network Models. We have validated our approach in a
simulated environment using substantial test cases derived from a state-
of-the-art model of yeast metabolism. We demonstrate that Huginn can
not only improve metabolic models, but that it is able to both solve
a wider range of biochemical problems than previous methods, and to
utilise a wider range of experiment types. Also, we show how design of
extended crucial experiments can be automated using Abductive Logic
Programming for the first time.

1 Introduction

Biological systems are extremely complicated. Even the model cellular systems of
Escherichia coli and Saccharomyces cerevisiae consist of thousands of genes, pro-
teins, small molecules, etc., all interacting in complicated spatiotemporal ways.
In addition, as biological systems have evolved through Darwinian evolution,
Ockham’s razor is not as effective as it is in the physical sciences.

Currently, although many computational tools are used to build systems bi-
ology models, the evaluation and analysis of these models is still mostly done by
humans, who identify conflicting results, suspicious or low-confidence elements
of models, ask specific questions to test the models, and run manual experi-
ments. However, humans can only investigate small parts or aspects of models,
because of their typical size and complexity. This bottleneck could be overcome
by automating model development, i.e. the process of asking specific questions,
running tailored experiments to answer them, and revising models if needed.

? corresponding author: rozanskr@cs.man.ac.uk
Huginn is an open-source software, available at:
github.com/robaki/huginnCMSB2015
All figures included in this paper are in public domain; files can be downloaded from:
github.com/robaki/huginnCMSB2015

2

1.1 Adam, a robot scientist

King et al. [10] created an automated system that investigated the problem of
orphan enzymes in metabolic models of yeast. The system, ”Adam”, was able
to propose initial hypothetical models, and then design two-factor growth ex-
periments to test them. The experiments were run using automated laboratory
equipment. The data were then analysed to determine which models to refute.
Adam, although successful, has multiple limitations. Its methods of proposing
hypotheses were specific to the problem of orphan enzymes. Its experiment de-
sign and hypothesis testing algorithms were limited to only one type of experi-
ment, and could not be easily extended. It also lacked general revision capabil-
ities. These limitations make Adam unsuitable candidate for a general-purpose
metabolic model development system.

1.2 Huginn

We have developed Huginn1, to overcome some of the limitations of Adam. In
doing this we have drawn from Machamer’s, Darden’s and Craver’s (MDC) the-
ory of discovering mechanisms. We have adopted MDC concept of mechanism to
represent Metabolic Network Models (MNM) in a way suitable for automated
system. We have also used their characterisation of the final stage of the model
development process as a guide to the design of Huginn. We used Logic Pro-
gramming, and Abductive Logic Programming (ALP) (Gringo [9], Clasp [8] and
XHAIL [15]) to automate model construction and revision, as well as testing
consistency of models with experiments. We have also used them to automate
experiment design in a novel way.

1.3 Metabolic networks as biological mechanisms

A significant amount of research in biology is concerned with development of
models of mechanisms (e.g. of DNA replication). By representing what is hap-
pening in biological systems these models provide a way to predict and explain
their behaviour in a way understandable to humans. Recently the notion of mech-
anisms in biology has attracted the attention of philosophers of science, who have
tried to specify what these mechanisms are, and how they are discovered. [2,5,6]

In this study we have adopted the notion of mechanism proposed by MDC
[14]. They characterise mechanisms as collections of entities and activities or-
ganised in such ways that they can produce regular changes from setup to ter-
mination conditions. For example, a model of cellular respiration would show
how cells produce ATP from glucose through a series of chemical reactions and
transport processes.

The core qualitative information about metabolism are the chemical reac-
tions and other processes that can occur in an organism, as well as chemical
substances involved in them. MNM represents these processes in a form of hyper-
graphs. MNMs typically abstract away not only the concentration and dynamics

1 From the Norse mythology – one of two ravens scouting the world for Odin.

3

of the system, but also some of the conditions, e.g. certain enzymes are expressed
only under specific conditions. MNMs can be understood as MDC-type descrip-
tions of mechanism. MNM show how certain chemicals are produced from other
chemicals by representing continuous chemical paths from the former to the lat-
ter. Initial and termination conditions are the presence of specific species (e.g.
metabolites) and genes in specific compartments (e.g. cytosol). Activities like
chemical reactions, transport, gene expression and complex formation connect
these conditions through intermediate steps.

2 Methods

2.1 Discovery of mechanisms

The MDC concept of biological mechanism was developed to better understand
the discovery of mechanisms. Discovery should not be understood here as an
event, but as an extended iterative process of exploration, specification, building,
testing and revision. According to MDC [4,6], the process starts with exploring
and characterising the phenomenon of interest, i.e. one that is to be explained
by description of mechanism. Then, incomplete and often abstract sketches of
mechanisms are formulated, taking into account clues such as the nature of the
phenomenon, its context (e.g. evolutionary), its spatial and time characteristics.
These sketches show how the phenomenon could possibly be produced. Through
specification and initial evaluation sketches are turned into schemata: these still
may be to some extend incomplete or abstract, but contain enough information
to allow production of fully specified models. Then, through further instantiation
(if required) and searching for direct experimental evidence, final descriptions of
mechanisms are produced. The transition between each of these stages involves
construction, evaluation and anomaly resolution (revision), which is guided by
specific strategies.

In this paper we focus on the latter stages of the discovery process, where
phenomenon is fully characterised and models of mechanisms are composed en-
tirely of non-abstract elements, i.e. they are constructed from specific reactions,
proteins, metabolites and not from place-holder elements. We implement a num-
ber of strategies proposed by MDC in the design of Huginn, specifically:

– continuity and productivity are taken into account in construction, consis-
tency testing, and revision

– generation and elimination of rival hypotheses (using crucial experiments)
– searching for direct evidence for hypotheses by in vivo and in vitro experi-

ments:

• entity and activity detection
• characterising entities in vitro (enzymes’ properties and complex forma-

tion)
• disrupting mechanisms, and studying changes (gene deletions and changes

in medium composition)

4

The model development process used in Huginn (see fig. 1) is initialised in a
number of steps. First, initial models and experiment results are recorded. Then
models are checked for consistency with the results, as well as other criteria,
like ability to produce termination conditions (i.e. synthesize final compounds)
and presence of disconnected activities (e.g. reactions which substrates are not
present in the model). Models that failed are revised. If the pool of initial models
is smaller than user-specified threshold, then additional models are produced to
fill that gap and the system is ready to enter its proper development cycle.

The first step in the development cycle is to design an experiment to test
current working models. Then, the experiment is executed (simulated) and re-
sults used to test working models. Refuted models are then revised. If there is no
way to make a model logically consistent with the results, then one or more of
them will be ignored. This ability to ignore results is important for dealing with
limitations of the Knowledge Representation method, as well as factors such as
experimental noise, and the open world problem. The quality scores of models
are then recalculated based on the number of covered and ignored results.

Huginn stops development process if at least one of three conditions is true.
The first condition is lack of progress. If there were new models produced re-
cently or if the best (highest quality score) model has recently changed, then
development continues. The second condition is running out of experiments to
execute, which happens when working models become empirically equivalent. In
this case Huginn tries to redesign models at random, but if it fails 10 times, it
stops. The last condition is running out of time or exceeding maximum number
of cycles: both values are specified by the user.

record initial
information

recalculate
quality

recalculate
quality

create
additional

models

check if can
continue

stop
development

design and choose
experiment

execute experiment
and record result

test consistency
and revise

create
additional

models

Fig. 1. Model development process

5

2.2 Abductive logic programming

The development process relies on four core operations: consistency checking,
revision, production of additional models and experiment design. We use ALP
for these operations. Abductive inference is typically understood as inference to
the best explanation. In ALP abduction is defined as constructing a hypothesis
H, that together with background knowledge B, entails a set of examples E:

B ∪H |= E

Unlike deduction, abduction is a defeasible form of inference, i.e. given true
background knowledge and examples (observations), it may produce false hy-
potheses. However, it has the advantage of being able to produce novel knowl-
edge. ALP tools have been used previously for completion [3, 11] and revision
of metabolic networks [16]. Thanks to optimisation capabilities of existing tools
one can generate theories that not only satisfy hard logical constraints, but are
also optimal with respect to user-specified criteria.

2.3 Representing models using logic

MNM can be formalised and translated into datalog-style logic programs. Enti-
ties are defined by their type, identifier and version. Huginn currently supports
four types of entities: metabolite, protein, complex or gene. Versions enable one
to represent uncertainty regarding an entity’s properties. Two currently sup-
ported properties are catalyses and transports.

Huginn supports five types of activities: chemical reaction, complex forma-
tion, expression, transport or growth. Substrate and product predicates are used
for all types of activities, and these specify not only what entities are required
and produced, but also in what compartments. Apart from substrates, chemical
reactions and transport may need catalysts or transporters respectively.

Models are defined by specifying which setup conditions and activities they
contain.

All these facts describe the elements involved in the MNM. In order to de-
termine which metabolites are synthesizable, simulation rules are added to this
description. A group of rules marks as active activities which all substrates are
either initially present or synthesizable (in appropriate compartment) and which
catalyst/transporter requirements are met. An additional rule marks all prod-
ucts of active reactions as synthesizable.

2.4 Experiment types and predictions

Model descriptions need to be supplemented with prediction and consistency
rules to support the use of empirical information. Predictions describe what
outcome models predict w.r.t. description of experiment. Outcome is binary:
true or false. In addition, model can be indifferent w.r.t. experiment (it does
not predict any outcome). Model is inconsistent with a result of experiment

6

if outcome of the experiment is different from the predicted one. Prediction
rules determine predicted outcomes of experiments. There are seven types of
experiments currently used in Huginn and each of them has its separate set of
prediction rules:

Entity Detection: detection of metabolites, proteins or complexes.
Entity Localisation: as above, but in a specified compartment.
Activity Detection: used for detecting growth.
Activity Reconstruction: checks if activities can be reconstructed without
enzymes or transporters.
Reconstruction Enzymatic Reaction: checks whether given entity can catal-
yse specific reaction.
Reconstruction Transporter Required : as above, but for transporters.
Two Factor Growth Experiment : used previously to test candidate parent
genes of orphan enzymes [10]. It tests whether decreased growth rate after
gene deletion can be offset by addition of a particular metabolite.

Some types of experiments can include interventions: addition or substraction
of a specific entity from specific compartment. In our study we have restricted
interventions to manipulation of the growth medium (addition/substraction of
nutrients) and gene deletions. The way the interventions are handled differs
depending on the nature of the task (revision, experiment design, etc.).

2.5 Automating crucial tasks

As mentioned above, the four essential tasks in the model development cycle
are: consistency check, revision, construction of additional models and experi-
ment design. All of these tasks were automated using Logic Programming (LP)
techniques.

consistency check: This step consist of checking whether models are consis-
tent with all known results as well as additional structural criteria. Specifically,
models must synthesize all compounds specified in the termination conditions,
they must not contain any activities that are missing substrates, and they can-
not contain two versions of the same entity (that situation would be equivalent
to having inconsistent beliefs about the entity’s properties).

revision: The models are revised by supplementing requirements from consis-
tency check with mode declarations that specify what activities can be added
and removed. XHAIL then tries to minimise a number of changes to the model.
In cases where more than one optimal solution is found, one of them is chosen
at random to keep the population of working models at a constant size.

For example, metabolite met 8 was detected in cells with deleted gene g26.
This outcome is in conflict with predictions of model (a) (fig. 2). In that model
met 8 can be synthesized from input metabolites met 7 and met 11 (marked

7

met_8

met_0

met_14

met_7

r15

met_11met_8

r2

g26

e32

(a)

met_6

met_7

met_8

met_1

r7
r9

(b)

Fig. 2. Revision example: (a) deletion of g26 disrupts reactions r2 (lack of enzyme)
and r15 (lack of substrate: met 0) and thus prevents the model from producing met 8,
contrary to experimental results. Consistency with the results can be restored by adding
two additional reactions (b) which can produce met 8 independently from g26.

met_8

met_0

met_14

met_7

r15

met_11met_8

r2

g12g23g26

e19

(a)

met_8

met_0

met_14

met_7

r15

met_11met_8

r2

g12g23g26

e32

(b)

met_8

met_0

met_14

met_7

r15

met_6

met_11
r33

r37

g12g23g26

e31

(c)

met_8

met_0

met_14

met_7

r15

met_6

met_11
r33

met_20r36

g12g23g26

e29

(d)

Fig. 3. Experiment design example: models (a) and (b) rely on gene g26 to produce
met 0 and met 14, while models (c) and (d) rely on genes g12 and g23 respectively. Thus
experiment consisting in deleting g26 and detecting either met 0 or met 14 will split
these models into two groups: one predicting that the metabolite will be synthesised
despite deletion, the other that it will not be.

8

green) in reaction r2, which requires enzyme coded by g26. Alternatively, it
can be synthesised in r15, but that requires some source of substrate met 0.
Since the only source of met 0 is r2, deletion of g26 disrupts both reactions
and met 8 is not produced. Consistency with the experimental result can be
restored by adding reaction(s) that can synthesise met 8 independently from
g26, e.g. reactions r9 and r7 (fig. 2(b)).

construction of additional models: Additional models are constructed using
almost the same approach as in revision, but with the addition of a requirement
that the resulting models must be different (contain different set of activities)
from any of the working models.

experiment design: The idea behind our approach to experiment design is to
design experiment that will split the working models into two groups of equal
size: one predicting that outcome of experiment is true, the other that it is false.
This can be understood as an extension of the concept of crucial experiment.
The same principle was used before as a strategy for choosing experiments from
pre-generated sets [11].

For example, lets consider four models from fig. 3. The input metabolites are
met 7, met 11 and met 20 (marked green, only shown where relevant), and the
output metabolite is met 14. All models synthesize met 14 in r15, but differ in
ways they produce required substrate for this reaction: met 0. Models (a) and
(b) rely on r2 and gene g26, while models (c) and (d) use r37 (needs gene g12)
and r36 (needs g23) respectively. Therefore, if g26 is deleted models (a) and
(b) will predict that met 14 is not produced, while (c) and (d) will predict that
it is produced. One of plausible experiments for this group of models is then a
detection entity experiment, detecting met 14 and involving one gene deletion
(of g26).

Since some models may be considered to be better and therefore more proba-
bly correct in a subjective sense, we split not raw numbers of models, but rather
their total quality score. Since designing experiment that will split scores into
equal groups is not always possible, this task was implemented as optimisation
problem. The system tries to minimise total penalty, which is calculated as fol-
lows:

P = |0.5 ∗
∑
m

q(m)−
∑
m∈T

q(m)|+ |0.5 ∗
∑
m

q(m)−
∑
m∈F

q(m)|+
∑
m∈I

q(m)

where m is model, q(m) is model’s quality, T , F and I are sets of models
that predict that the outcome is true, false or indifferent respectively. Due to the
complicated nature of this task it was implemented using Gringo/Clasp directly,
not through XHAIL.

9

3 Results and Conclusions

The goal of our study was to evaluate whether the proposed system can be
used in model development. To answer this question we supplied Huginn with
initial models containing errors and run the development process to see whether
the models would be improved. At this initial stage of evaluation the use of
real biochemical experiments is not necessary, and would not be cost effective.
Instead we ran simulations using reference models, which are fragments of the
yeast consensus metabolic model 7.11 [1], between 14 and 54 activities in size.
The knowledge bases containing the activities and entities for model development
were created by mixing elements from a given reference model with additional,
erroneous elements the role of which is to make the development process harder.
The initial models were created by randomly selecting a set of activities from
these knowledge bases.

The improvement of models consisted of removing and adding activities so
that working models resemble the reference model. To quantify the difference be-
tween a model and the reference model we use the symmetric difference between
the sets of activities involved in the models.

The results of our simulations show that Huginn can successfully improve
initial models, with an average reduction in initial error of 76%. For the smaller
test-cases the working models tended to quickly become empirically equivalent
and attempts to recover from it through generation of randomised models would
fail. For the larger test-cases, Huginn tended to continue development until time-
out. The final unsuccessful attempt to construct new models was not associated
with any quality change2 (p=0.13). However, since in many cases constructing
random models allowed Huginn to recover and continue development process,
including this ability was beneficial2 (p=0.0003).

One of the significant differences between Adam and Huginn is Huginn’s abil-
ity to use more types of experiments. To test whether this difference is beneficial
we ran additional simulations while limiting available experiment types to only
two-factor growth experiments. The results show that using more experiments
is associated with larger improvements3 (p=0.047). The main experiment types
used by Huginn were two-factor growth (48% of experiments) and entity detection
(51%). A portion of the latter involved multiple interventions: gene deletions and
medium manipulations (19%). In the most extreme case an experiment would
use 4 gene deletions on top of manipulating the medium composition. While exe-
cution of such experiment in practice would be challenging at best, it shows that
ALP techniques used in Huginn can successfully cope with complex experiment
design problems. The rest of the experiments used in development were entity
localisation experiments.

Another significant difference between Adam and Huginn is in their revision
abilities. Adam can only add individual missing expression activities. While,
thanks to XHAIL, Huginn can handle a wider range of activities, also remove

2 Tested using pair-wise comparison of improvement and then a binomial test
3 Tested using paired, one-tailed t-test

10

all changes
additions

nb. of changes per revision

nb
. o

f r
ev

is
io

ns

(a)

nb. of changes per revision

nb
. o

f r
ev

is
io

ns

all changes
substractions

(b)

Fig. 4. Size of model revisions: each model revision may consist of multiple changes
(additions or substractions of activities). The histograms compare distributions of ad-
ditions (a) and substractions (b) with all changes. Note the log scale on y axis.

them, and introduce multiple changes in one revision. Therefore, it should be
able to make more substantial changes to MNM structures. Our simulations show
that it is indeed the case: 50% of the revisions involved more than one change
(addition/substraction), while the largest involved as many as 28 changes (fig. 4).
Many of these revisions combined the addition and substraction of activities
(29%). The majority of revisions (60%) involved changing elements other than
expression activities. These results show that Huginn takes advantage of its
enhanced revision abilities to introduce larger changes to the models, and is
therefore capable of solving wider range of biochemical problems than Adam –
not only the problem of orphan enzymes, but also other structural problems in
the metabolic networks.

We conclude that Huginn qualitatively improves on Adam by using more
types of experiment, and a more versatile revision method, and that these im-
provements translate into an increased ability to correct models. We also con-
clude that the presented experiment design solution can not only design useful
experiments, but also handle complicated tasks that require multiple interven-
tions. More extensive in silico tests are still needed to test Huginn’s performance
in different configurations and under different circumstances. For example, we
have not yet tested Huginn’s ability to handle inconsistencies in results (e.g.
introduced by experimental errors).

4 Related work

Thagard demonstrated the use of various types of abduction in hypothesis for-
mation using an AI system called PI. [18] Here, we used ”simple abduction” to
revise refuted models.

Substantial advancements have been done in the field of computational dis-
covery. Langley et al. [12] describes BACON, DALTON, GLAUBER, and STAHL

11

– seminal systems designed to model historical discoveries of quantitative and
qualitative laws.

Džeroski and Todorovski [7] described QMN and LAGRANGE – systems
for discovering quantitative and qualitative laws governing dynamical systems.
Schmidt and Lipson [17] developed a system for discovering non-trivial conser-
vation laws from experimental data. Todorovski et al. [19] developed HIPM,
a system for developing complex hierarchical models of dynamical systems us-
ing induction, while taking advantage of expert knowledge. Compared to these
studies we have focussed on qualitative aspects of scientific discovery, which can
provide necessary insight into functioning of biological systems in terms of mech-
anistic explanations. However, methods for developing quantitative models are
likely to be useful in further steps of building biological models.

Valdés-Pérez created MECHEM, a system for proposing possible interme-
diate steps of chemical transformations. The system uses information about
chemicals’ composition and structure to constrain the search-space as well as
divide-and-conquer and Ockham’s razor heuristics to make the search more ef-
ficient. An interesting feature of the system is its ability to propose new reac-
tants. [20] Compared to MECHEM, Huginn focuses on developing larger models
of metabolism from pre-defined reactions and on using biological experiments to
gradually constraint the search-space.

Langley [13] summarises the lessons learned from their experience with de-
veloping computational tools for scientific discovery. They advise one to use the
scientists’ representations and their knowledge; tools should not just summarise,
but provide explanations. Our approach follows these lessons. Representation of
metabolism used by Huginn is taken from biochemistry, ensuring that it is easily
understandable by biologists. Huginn records all produced models and results so
checking why particular models were produced is possible.

Acknowledgment

This work is supported by an EPSRC-EU Doctoral Training Award and the
Faculty Engineering and Physical Sciences of the University of Manchester.

References

[1] H. W. Aung, S. A. Henry, and L. P. Walker. Revising the representation of fatty
acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of
yeast metabolism. Industrial Biotechnology, 9(4):215–228, 2013.

[2] W. Bechtel and R. C. Richardson. Discovering complexity: Decomposition and
localization as strategies in scientific research. MIT Press, 2010.

[3] G. Collet, D. Eveillard, M. Gebser, S. Prigent, T. Schaub, A. Siegel, and S. Thiele.
Extending the metabolic network of ectocarpus siliculosus using answer set pro-
gramming. In Logic Programming and Nonmonotonic Reasoning, pages 245–256.
Springer, 2013.

[4] C. Craver and L. Darden. Discovering mechanisms in neurobiology. Theory and
method in the neurosciences, pages 112–137, 2001.

12

[5] C. F. Craver and L. Darden. In search of mechanisms: Discoveries across the life
sciences. University of Chicago Press, 2013.

[6] L. Darden. Reasoning in biological discoveries. Cambridge University Press, 2006.
[7] S. Džeroski and L. Todorovski. Discovering dynamics: from inductive logic pro-

gramming to machine discovery. Journal of Intelligent Information Systems,
4(1):89–108, 1995.

[8] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A conflict-driven
answer set solver. In Logic Programming and Nonmonotonic Reasoning, pages
260–265. Springer, 2007.

[9] M. Gebser, T. Schaub, and S. Thiele. Gringo: A new grounder for answer set
programming. In Logic Programming and Nonmonotonic Reasoning, pages 266–
271. Springer, 2007.

[10] R. King, J. Rowland, S. Oliver, M. Young, W. Aubrey, E. Byrne, M. Liakata,
M. Markham, P. Pir, L. Soldatova, et al. The automation of science. Science,
324(5923):85–89, 2009.

[11] R. D. King, K. E. Whelan, F. M. Jones, P. G. Reiser, C. H. Bryant, S. H. Mug-
gleton, D. B. Kell, and S. G. Oliver. Functional genomic hypothesis generation
and experimentation by a robot scientist. Nature, 427(6971):247–252, 2004.

[12] P. Langley. Scientific discovery: Computational explorations of the creative pro-
cesses. MIT press, 1987.

[13] P. Langley. Lessons for the computational discovery of scientific knowledge. In
Proceedings of First International Workshop on Data Mining Lessons Learned,
pages 9–12. University of New South Wales, 2002.

[14] P. Machamer, L. Darden, and C. F. Craver. Thinking about mechanisms. Philos-
ophy of science, pages 1–25, 2000.

[15] O. Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic,
7(3):329–340, 2009.

[16] O. Ray, K. Whelan, and R. King. Automatic revision of metabolic networks
through logical analysis of experimental data. In Inductive Logic Programming,
pages 194–201. Springer, 2010.

[17] M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental
data. Science, 324(5923):81–85, 2009.

[18] P. Thagard. Computational philosophy of science. MIT press, 1993.
[19] L. Todorovski, W. Bridewell, O. Shiran, and P. Langley. Inducing hierarchical

process models in dynamic domains. In Proceedings of The National Conference
on Artificial Intelligence, volume 20, page 892. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, 2005.

[20] R. E. Valdés-Pérez. Machine discovery in chemistry: New results. Artificial In-
telligence, 74(1):191–201, 1995.

