
Automating the Provisioning of Application
Services with the BPEL4WS Workflow Language

Alexander Keller1 and Remi Badonnel2�

1 IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA

alexk@us.ibm.com
2 LORIA-INRIA Lorraine

615, rue du Jardin Botanique - B.P. 101, 54600 Villers Les Nancy Cedex, France
remi.badonnel@loria.fr

Abstract. We describe the architecture and implementation of a novel
workflow-driven provisioning system for application services, such as
multi-tiered e-Commerce systems. These services need to be dynami-
cally provisioned to accomodate rapid changes in the workload patterns.
This, in turn, requires a highly automated service provisioning process,
for which we were able to leverage a general-purpose workflow language
and its execution engine. We have successfully integrated a workflow-
based change management system with a commercial service provision-
ing system that allows the execution of automatically generated change
plans as well as the monitoring of their execution.

1 Introduction and Problem Statement

The extremely high rate of change in emerging service provider environments
based on Grid and Web Services technologies requires an increasingly auto-
mated service provisioning process. By provisioning, we mean the process of
deploying, installing and configuring application services. A promising, system-
atic approach to this problem is based upon the adoption of Change Manage-
ment [5]. An important prerequisite for automated Change Management is the
ability of a service provisioning system to interpret and execute change plans
(described in a general-purpose workflow language) that have been generated
by a Change Management System. This requires adding new workflows “on-the-
fly” to provisioning systems, i.e., without writing new program code and without
human intervention. Second, the workflows should contain temporal constraints,
which specify deadlines or maximum allowable durations for each of the activities
within a workflow. Finally, once the workflows are executed by a provisioning
system, the system should be able to check their status to determine if an activity
has completed and, if yes, whether it was successful or not.

This paper describes our approach to addressing these requirements and its
implementation. It enables a provisioning system to understand and execute
� Work done while the author was an intern at the IBM T.J. Watson Research Center

A. Sahai and F. Wu (Eds.): DSOM 2004, LNCS 3278, pp. 15–27, 2004.
c© IFIP International Federation for Information Processing 2004



16 A. Keller and R. Badonnel

change plans specified in the Business Process Execution Language for Web Ser-
vices (BPEL4WS) [1], an open workflow language standard, as a means to apply
change management concepts and to automate provisioning tasks significantly.
In addition, our system is capable of providing feedback from the provisioning
system back to the change manager, so that the latter can monitor how well the
execution of the change plan proceeds, and perform adjustments if needed.

The paper is structured as follows: Section 2 gives an overview of typical
service provisioning systems, such as IBM Tivoli Intelligent Orchestrator (TIO),
and describes related work. Our approach for integrating CHAMPS, a Change
Manager developed at IBM Research, with TIO and a workflow engine capable
of understanding BPEL4WS, is discussed in section 3; we present the proof-of-
concept implementation in section 4. Section 5 concludes the paper and presents
the lessons we learned during this work as well as issues for further research.

2 Towards Automated Service Provisioning

The importance of automating the provisioning of services is underscored by a
recent study [9] showing that operator errors account for the largest fraction
of failures of Internet services and hence properly managing changes is critical
to availability. Today, however, service provisioning systems are isolated from
the change management process: They typically come with their own, propri-
etary workflow/scripting language, thus making it hard for a change manager
to formulate reusable change plans that can be understood by different provi-
sioning systems. Our goal is to tie provisiong systems into the change manage-
ment process. By leveraging the Web Services technology and a standardized,
general-purpose workflow language for expressing change plans and demonstrat-
ing the feasibility of integrating a common-off-the-shelf workflow engine with a
commercial provisioning system, our approach is applicable to a wide range of
provisioning scenarios.

2.1 Provisioning Systems: State of the Art

Typical provisioning systems, such as Tivoli Intelligent Orchestrator (TIO) [4]
provide an administrator with a runtime environment for defining and subse-
quently executing provisioning scripts. Figure 1 depicts the sequence of steps
for provisioning a web site that uses the IBM HTTP Server (IHS), a variation
of the Apache Web Server. In this example, 10 actions need to be carried out
by the provisioning system, which can be summarized as follows: Copying the
install image of the HTTP server into a temporary directory on a target system,
launching the installation, updating the httpd.conf configuration file, installing
the web site content (HTML pages, pictures etc.), starting the HTTP server,
and performing cleanup tasks once the installation has been completed success-
fully. In TIO, such a provisioning workflow consists of a sequence of operations;
these are pre-defined activities that can be adapted and customized by an ad-
ministrator, as well as aggregated into new workflows. For every operation, an



Automating the Provisioning of Application Services 17

Fig. 1. Steps for Provisioning an HTTP Server from a Service Provisioning System

administrator can specify what steps need to be taken if the operation fails, such
as undoing the installation or notifying the administrator. Provisioning systems
that require such fine-grained definitions of provisioning workflows expect an
administrator to have a detailed understanding of the steps involved in setting
up the provisioning of complex, multi-tiered systems. However, the lack of know-
ledge about the structure of a distributed system and the dependencies between
its fine-grained components often tend to make an administrator overly prudent
when designing workflows, e.g., by not exploiting the potential for concurrent
execution of provisioning workflows, thus resulting in inefficiencies.

Another example of a commercial service provisiong system is given in [3].
It describes a workflow-based service provisiong system for an Ethernet-to-the-
Home/Business (ETTx) environment, consisting of a policy engine, a service
builder, an activation engine and a workflow engine. The (proprietary) workflow
engine orchestrates the execution flow of the business process, whereas the ac-
tual provisioning steps are executed by a custom-built activation engine. Our
approach, in contrast, lets a common-off-the-shelf workflow engine orchestrate
the actual provisioning process. Indeed, there has been interest in using work-
flow technologies to coordinate large scale efforts such as change management
[7], and to automate the construction of a Change Plan [8]. However, no current



18 A. Keller and R. Badonnel

provisioning system is able to understand change plans that leverage the full
potential of typical general-purpose workflow languages, such as the concurrent
execution of tasks and the evaluation of transition conditions to determine if the
next task in a workflow can be started.

2.2 Related Work

In addition to the products described above, service provisioning and change
management have received considerable attention in both academia and indus-
try. A constraint satisfaction-based approach to dynamic service creation and
resource provisioning in data centers is described in [10]. Whenever a policy
manager finds a match between an incoming request and a set of resource type
definitions, the task-to-resource assignment is treated as a constraint satisfaction
problem, which takes the service classes as well as the technical capabilities of the
managed resources into account, but does not perform additional optimization.
The output is consumed by a deployment system.

STRIDER [12] is a change and configuration management system targeted at
detecting and fixing errors in shared persistent configuration stores (such as the
Windows Registry). To do so, it follows an elaborate three-step process to analyse
the state of configuration parameters, finds similar, valid configurations and
subsequently narrows down the range of results to the most likely configuration.
Since it deals with (re)setting configuration parameters and does not perform
software deployment, the system does not make assumptions about the order in
which provisioning steps need to be carried out.

Finally, the Workflakes system, described in [11], provides workflow-driven
orchestration of adaptation and reconfiguration tasks for a variety of managed
resources. Workflakes focuses on an adaptation controller for systems and ser-
vices, where workflows describe the dynamic adaptation loop. Our work sup-
ports a change management approach, where dynamically generated workflows
(describing change plans) are executed by a provisioning system.

3 Integrating Change Management and Provisioning

3.1 The CHAMPS Change Manager

The CHAMPS system is a Change Manager for CHAnge Management with
Planning and Scheduling [6]. CHAMPS consists of two major components: The
Task Graph Builder breaks down an incoming request for change into its
elementary steps and determines the order in which they have to be carried out.
This Task Graph is a workflow, expressed in BPEL4WS, consisting of tasks
and precedence constraints that link these tasks together.

In a second step, multiple task graphs (representing the various requests for
change that are serviced by the change manager at a given point in time) are con-
sumed by the Planner & Scheduler. Its purpose is to assign tasks to available
resources, according to additional monetary and technical constraints, such as



Automating the Provisioning of Application Services 19

Service Level Agreements (SLAs) and Policies. To do so, it computes (according
to various administrator-defined criteria) a Change Plan that includes dead-
lines and maximizes the degree of parallelism for tasks according to precedence
and location constraints expressed in the Task Graphs. Again, the BPEL4WS
workflow language is used to express the Change Plan. Figures 5, 7 and 8 in
section 4 contain various examples of instructions specified in a Change Plan.

3.2 Integration Architecture

Once the Change Plan has been computed by the Planner & Scheduler, it is
input to the Provisioning System, which retrieves the required software pack-
ages from a Package Repository, and rolls out the requested changes to the
targets in the order specified in the plan. An important part of this process is
the ability of the provisioning system to keep track of how well the roll-out of
changes progresses on the targets, and to feed this status information back into
the Planner & Scheduler. Being aware of the current status of the provisioning
process enables the Planner & Scheduler to track the actual progress against the
plan and perform on-line plan adjustment (by re-computing the change plan) in
case the process runs behind schedule. In addition, such a feedback mechanism
can be used to gain an understanding on how long it takes to complete a task.

Provisioning
System

Targets

Provisioning
Operations

CHAMPS
System

Change
Plan

Status Data

Installation Configuration

Workflow Status

Deployment
Engine

General-purpose
Workflow
Engine

Package
repository

Fig. 2. Architecture for extending a Provisioning System
with a Workflow Engine

Our architecture,
depicted in figure 2,
aims at integrating the
provisioning system
with CHAMPS to
execute the change
plans in a data center
environment compris-
ing resources such as
server pools, servers,
software products,
switches, and firewalls.
In section 2.1, we
noted that current
provisioning systems
do not execute work-
flows in parallel and
often do not take
temporal and loca-
tion constraints into
account. The deploy-
ment engine of the provisioning system allows us to perform a variety of
management operations on managed resources. While these operations are
grouped into a single sequence on the graphical user interface (cf. figure 1), a
WSDL interface exists that allows the programmatic invocation of individual



20 A. Keller and R. Badonnel

operations from an application outside of the provisioning system by means of
SOAP1 messages. We exploit this feature by feeding the Change Plans created
by the CHAMPS Planner & Scheduler into a general-purpose workflow engine
and invoke individual operations directly from there. More specifically, we use
the BPWS4J workflow engine [2] that is able to execute workflows and business
processes specified using BPEL4WS. A BPEL4WS workflow describes Web
Services interactions and may comprise parallel execution (so-called flows),
sequences, conditional branching, time-out mechanisms, as well as error and
compensation handling.

By doing so, we can execute provisioning tasks defined in change plans con-
currently. The architecture of the extended provisioning system (depicted in
figure 2) is consequently composed of two sub-systems: the BPWS4J workflow
engine and the deployment engine of the provisioning system. The former inter-
acts with the CHAMPS system (cf. section 3.1), as follows: First, the workflow
engine inputs the change plan provided by CHAMPS and starts each provi-
sioning operation by directly invoking the deployment engine. These invocations
are performed either in parallel or sequentially, according to the change plan.
In a second step, the deployment engine is invoked by the workflow engine
and performs the provisioning operations. It reports the status of each operation
execution back to the workflow engine. This status information is used by the
workflow engine to check if the workflow constraints defined in the plan (such
as deadlines) are met. Figure 2 also shows that status feedback happens at two
stages:

First, the interactions between the deployment engine and the workflow en-
gine (i.e., the invocations of provisioning operations and the assessment of their
execution). A major advantage of using a workflow engine for our purposes is the
fact that it automatically performs state-checking, i.e., it determines whether all
conditions are met to move from one activity in a workflow to the next. Conse-
quently, there is no need for us to develop additional program logic that would
perform such checks, as these conditions are specified in the temporal constraints
(so-called links) that connect the activities in a workflow.

The second status feedback loop comprises the interactions between the work-
flow engine and the CHAMPS Planner & Scheduler, i.e., submitting the change
plan and receiving status feedback from the workflow engine. This is needed to
perform plan adjustments in case the roll-out of changes runs behind schedule.

4 Prototype Implementation

The implementation of our prototype demonstrates the invocation of the TIO
deployment engine from the BPWS4J engine, based on the change plans submit-
ted by the CHAMPS system (see figure 3). More specifically, the implementation
addresses the following aspects:

First, one needs to create Web Services Description Language (WSDL) [13]
wrappers for the existing TIO invocation interface. Making TIO appear as a (set
1 Simple Object Access Protocol.



Automating the Provisioning of Application Services 21

of) Web Service(s) is a necessary step to providing a seamless integration with the
BPWS4J workflow engine, as every BPEL4WS invoke operation refers to a Web
Service. The WSDL wrappers define the allowable set of change management
operations that can be used in change plans.

Fig. 3. Integrating the TIO Provisioning System with
the CHAMPS Change Manager

Once this is done, one
can invoke the operations
defined in the WSDL in-
terfaces by submitting a
BPEL4WS workflow (cor-
responding to a change
plan) to the workflow en-
gine, which allows the ex-
ecution of several opera-
tions in parallel.

Third, the deployment
engine needs to monitor
the execution status of the
change plans to determine
whether they are still run-
ning, completed success-
fully, or completed with
an error. This is important
because the workflow en-
gine depends on this infor-
mation to determine if all
the preconditions are satisfied before the next activity can be triggered.

Finally, a change plan may specify deadlines (e.g., task X must be finished
by 8pm) that need to be enforced. The workflow engine must therefore be able
to send an event back to the CHAMPS Planner & Scheduler if a provisioning
activity takes longer than initially planned. The Planner & Scheduler would
then decide if the provisioning process should be abandoned (and rolled back to
a previous state), or continued despite the delay. In the following four sections,
we will discuss how we addressed each of these aspects in more detail.

4.1 WSDL Wrappers for Logical Operations

To facilitate the invocation of provisioning operations from the outside, TIO
can represent each individual operation or sequence of operations as a so-called
logical operation. In TIO, each resource is treated as a component (i.e., Software,
Operating Systems, Switches, Servers, etc.) that provides an (extensible) set of
logical operations. Typically, the TIO component dealing with software provides
logical operations such as Software.deploy , Software.install , Software.start , while
its switch component provides Switch.createVLAN , Switch.turnPortOn etc. For
example, the logical operation Software.install can be used to implement the
IBM HTTP Server (IHS) install operation in the TIO sequence depicted in



22 A. Keller and R. Badonnel

figure 1. In addition, the use of logical operations ensures that the TIO database
gets updated with execution status information.

A first part of our work consists in providing WSDL interfaces to facilitate
the invocation of these logical operations using server IP addresses, software
identifiers, or device serial numbers as inputs. As an example, we have created
the following WSDL interface to perform the logical operations (Software.Install ,
Software.Start , etc.) on the software component:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <definitions name="SoftwareComponent">

3 <message name="installRequest">
4 <part name="softwareName" type="xsd:string"/>
5 <part name="deviceIP" type="xsd:string"/>
6 </message>

7 <message name="installResponse">
8 <part name="requestID" type="xsd:int"/>
9 </message>

10 <portType name="SoftwareComponent">

11 <operation name="install"
12 parameterOrder="softwareName deviceIP">

13 <input message="tns:installRequest"
14 name="installRequest"/>

15 <output message="tns:installResponse"
16 name="installResponse"/>

17 </operation>
...

18 </portType>

19 </definitions>

Fig. 4. Software Component WSDL interface

The listing depicted
in Figure 4 shows the
WSDL definition of Soft-
wareComponent.install
(lines 10-17) that wraps
the TIO logical operation
Software.install . It uses
the software name and
server IP address as
inputs (definition of the
input message install-
Request, lines 3-6) and
returns a request ID
(definition of the output
message installResponse,
lines 7-9). This approach
can be generalized to
accomodate other resources, such as switches, server pools or VLANs.

4.2 Invoking Logical Operations Concurrently

The BPWS4J workflow engine [2] allows us to invoke several logical operations
simultaneously through the above WSDL interfaces. As mentioned in section
3.1, the CHAMPS system uses the BPEL4WS [1] workflow language to describe
change plans: the invocations of logical operations are done through our WSDL
interfaces and by using the invoke construct of BPEL4WS; parallel and sequen-
tial execution paths map to the flow and sequence structured activities.

The deployment engine is driven by the workflow engine and thus able to
execute tasks concurrently, such as the installation of the IHS server and the
deployment of the web site content (HTML pages, pictures etc.). An example,
briefly mentioned in section 2.1, is given in figure 5. It depicts a part of the change
plan, defined in BPEL4WS and rendered in the BPWS4J workflow editor, for
the simultaneous installation and configuration of two websites with different
content, along with IHS servers on two different systems running Linux: The
website with the name WSLA (together with the HTTP server) is to be provi-
sioned on the system ’cuda’ having the IP address 9.2.9.64 (dashed lines in the
figure), while the system ’charger’ with the IP address 9.2.9.63 will host another
HTTP server and the website DSOM2003 (dotted lines in the figure).



Automating the Provisioning of Application Services 23

� Executing flows

Fig. 5. Concurrent Provisioning of 2 Websites

One can see
that using the
BPEL4WS flow
construct yields
the advantage
of decoupling
the provisioning
processes on a
per-system basis:
if the provi-
sioning process
on one system
encounters a
problem, the
provisioning
of the second
system remains
unaffected by this and continues. Concurrent invocations of the change manage-
ment operations can be carried out because the invocation of a logical operation
on the provisioning system through its WSDL interface is non-blocking.

4.3 Monitoring the Execution of Change Plans

1 <?xml version="1.0" encoding="UTF-8"?>
2 <definitions name="Request">

3 <message name="getStatusRequest">
4 <part name="requestID" type="xsd:int"/>
5 </message>

6 <message name="getStatusResponse">
7 <part name="startTime" type="xsd:date"/>
8 <part name="status" type="xsd:string"/>
9 </message>

10 <portType name="Request">

11 <operation name="getStatus"
12 parameterOrder="requestID">

13 <input message="tns:getStatusRequest"
14 name="getStatusRequest"/>

15 <output message="tns:getStatusResponse"
16 name="getStatusResponse"/>

17 </operation>

18 </portType>

19 </definitions>

Fig. 6. WSDL interface for Status Monitoring

In addition to tasks that can
be carried out in parallel, a
Change Plan contains tempo-
ral constraints between vari-
ous tasks that need to be taken
into account as well. As an
example, every invoke oper-
ation within a sequence can
only start if its predecessor has
finished. To retrieve the exe-
cution status of a logical op-
eration from the provisioning
system, we have created a sec-
ond set of WSDL interfaces
(listed below). This informa-
tion is needed by the workflow
engine to determine if a task
within a sequence is still running, or whether it can proceed with the execution
of the next task. As an example, in figure 6, the operation Request.getStatus
(lines 11-17) returns the start time and the status of an execution (definition of
the getStatusResponse message, lines 6-8) from a request ID (definition of the
getStatusRequest, lines 3-5).



24 A. Keller and R. Badonnel

Fig. 7. Monitoring Task Execution Status

To determine
the execution
status of a lo-
gical operation,
the workflow
engine periodi-
cally invokes
the monitoring
WSDL interface.
An example of
how this can
be expressed in
BPEL4WS is
depicted in figure 7. First, the change management operation Installation of
IHS on 9.2.9.64 is invoked through the WSDL interface corresponding to the
appropriate Software.install logical operation. In a second step, the request ID
returned by the invocation is used to check periodically (through the monitor-
ing WSDL interface implementing the method RequestComponent.getStatus)
the status of the running logical operation, until it completes. If this is the
case, the next change management operation of the workflow is started. Our
implementation distinguishes between 3 states for an executing workflow: in
progress, completed (with success), and failed (the return message includes an
error code). If an error occurs during the execution of a logical operation, the
workflow engine returns an error message back to the CHAMPS Planner &
Scheduler, which then needs to determine how to proceed further. This may
involve rolling back and subsequently retrying the operation, or bringing the
target system(s) back to a well-defined state.

By using the WSDL monitoring interface, we are able to enforce temporal
constraints defined in Change Plans such as: the logical operation X must be
finished before the logical operation Y can start , or the logical operation X must
not start before the logical operation Y has started . For a detailed discussion of
the various temporal constraints in Change Plans, the reader is referrred to [6].

4.4 Enforcing Deadlines and Durations

An additional requirement is the enforcement of deadlines for change manage-
ment operations that are given in a Change Plan. To do so, the workflow engine
needs to understand what these deadlines are and notify the CHAMPS Planner
& Scheduler in case a change management operation runs behind schedule. The
Planner & Scheduler would then decide if the change management operation
should be abandoned (and roll back the system to a known state), or if it should
continue despite the delay.

Yet again, we are able to exploit the features of the BPEL4WS language to
specify time constraints on the provisioning workflow. Activities corresponding
to invocations of logical operations can be grouped together by means of the scope
structured activity. An event handler is then attached to a scope activity, which



Automating the Provisioning of Application Services 25

may contain one or more alarms. Each alarm is defined by both a constraint
and an escape activity, which is performed when the constraint is violated. This
mechanism works for single activities as well.

Fig. 8. Enforcing Deadlines and Durations

We use
alarms to define
time constraints
(the BPWS4J
workflow engine
comprises a
timer) so that
we can specify
deadlines (”must
be finished by
8PM”) as well
as impose limits
on the duration
of an activity
(”must take less than 45 minutes”). The escape activities allow us to notify the
CHAMPS system whenever an activity violates its time constraints. In figure 8,
we place an activity (a software installation) within a scope and define the time
constraint duration < 5 min. If the duration exceeds the time period defined
in the change plan, the escape activity attached to the alarm invokes a WSDL
method of the CHAMPS Planner & Scheduler to report the violation. Note that
a notification does not mean that the change plan is automatically aborted.
Instead, the Planner & Scheduler will determine how to proceed, according to
the overall system state, other (competing) change plans, as well as penalties
specified in Service Level Agreements or general Policies. It will then decide
if the current change plan can continue, if it has to be cancelled, or if a new
change plan must be generated later.

5 Conclusion and Outlook

We have presented a novel approach for integrating a change manager with
a service provisioning system to facilitate the workflow-based provisioning of
application services. Our work was motivated by the extremely high rate of
change in emerging e-Commerce environments and the need for integrating ser-
vice provisioning into the change management process. By using a standardized,
general-purpose workflow language for expressing change plans and demonstrat-
ing the feasibility of integrating a common-off-the-shelf workflow engine with a
commercial provisioning system, our approach is applicable to a wide range of
provisioning scenarios.

Our prototype demonstrates that change plans, generated by the CHAMPS
change management system, can be executed by the TIO deployment engine
and that the BPEL4WS workflow language can be used effectively to describe
change plans. While this advantage is likely to apply to other workflow languages



26 A. Keller and R. Badonnel

as well, BPEL4WS has the additional benefit that it is specifically targeted at
Web Services. Second, the use of a workflow engine yields the advantage that
the task of checking the execution status of activities in a distributed system (to
decide if the next activity in a workflow can start) can be completely offloaded
to the workflow engine. Finally, we are able to achieve a very high degree of
parallelism for a set of tasks: In the running example we used throughout this
paper, provisioning a single website (server software and web content) took 185
seconds on average, whereas provisioning additional websites added less than 5%
of overhead in terms of provisioning time per site.

While these initial results are encouraging, there are several areas of further
work: As an example, we are currently working on extending our approach to
address the deployment of more complex multi-tiered application systems in-
volving Web Application Servers and Database Management Systems. Further
promising research topics are advanced error-handling and rollback facilities, and
the automated service composition and aggregation.

References

1. Business Process Execution Language for Web Services Version 1.1. Sec-
ond Public Draft Release, BEA Systems, International Business Machines
Corp., Microsoft Corp., SAP AG, Siebel Systems, May 2003. http://www-
106.ibm.com/developerworks/library/ws-bpel/.

2. Business Process Execution Language for Web Services JavaTM Run Time
(BPWS4J). http://www.alphaworks.ibm.com/tech/bpws4j.

3. M. Cheung, A. Clemm, G. Lin, and A. Rayes. Applying a Service-on-Demand
Policy Management Framework to an ETTx Environment. In R. Boutaba and
S.-B. Kim, editors, Proceedings of the Application Sessions of the 9th IEEE/IFIP
Network Operations and Management Symposium (NOMS’2004), pages 101 – 114,
Seoul, Korea, April 2004. IEEE Publishing.

4. E. Manoel et al. Provisioning On Demand: Introducing IBM Tivoli Intelligent
ThinkDynamic Orchestrator. IBM Corporation, International Technical Support
Organization, Research Triangle Park, NC 27709-2195, December 2003. IBM Red-
book, Order Number: SG24-8888-00.

5. IT Infrastructure Library. ITIL Service Support, June 2000.
6. A. Keller, J.L. Hellerstein, J.L. Wolf, K.-L. Wu, and V. Krishnan. The CHAMPS

System: Change Management with Planning and Scheduling. In R. Boutaba and
S.-B. Kim, editors, Proceedings of the 9th IEEE/IFIP Network Operations and
Management Symposium (NOMS’2004), pages 395 – 408, Seoul, Korea, April 2004.
IEEE Publishing.

7. F. Maurer and B. Dellen. Merging Project Planning and Web-Enabled Dynamic
Workflow Technologies. IEEE Internet Computing, May 2000.

8. J.A. Nilsson and A.U. Ranerup. Elaborate change management: Improvisational
introduction of groupware in public sector. In Proceedings of the 34th Annual
Hawaii International Conference on System Sciences, 2001.

9. D. Oppenheimer, A. Ganapathi, and D.A. Patterson. Why do internet services
fail, and what can be done about it? In Proceedings of the 4th Usenix Symposium
on Internet Technologies and Systems, Seattle, WA, USA, March 2003. USENIX
Association.



Automating the Provisioning of Application Services 27

10. A. Sahai, S. Singhal, V. Machiraju, and R. Joshi. Automated Policy-Based Re-
source Construction in Utility Computing Environments. In R. Boutaba and S.-B.
Kim, editors, Proceedings of the 9th IEEE/IFIP Network Operations and Manage-
ment Symposium (NOMS’2004), pages 381 – 393, Seoul, Korea, April 2004. IEEE
Publishing.

11. G. Valetto and G. Kaiser. Using Process Technology to control and coordinate
Software Adaptation. In L. Dillon and W. Tichy, editors, Proceedings of the 25th
International Conference of Software Engineering (ICSE 2003), pages 262 – 272,
Portland, OR, USA, May 2003. IEEE Computer Society.

12. Y-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H.J. Wang abd C. Yuan, and
Z. Zhang. STRIDER: A Black-box, State-based Approach to Change and Config-
uration Management and Support. In Proceedings of the 17th Large Installation
Systems Administration Conference (LISA 2003), pages 159 – 172, San Diego, CA,
USA, October 2003. USENIX Association.

13. Web Services Description Language (WSDL) 1.1. W3C Note, Ariba, International
Business Machines Corp., Microsoft Corp., March 2001.
http://www.w3.org/TR/wsdl.


	Introduction and Problem Statement
	Towards Automated Service Provisioning
	Provisioning Systems: State of the Art
	Related Work

	Integrating Change Management and Provisioning
	The CHAMPS Change Manager
	Integration Architecture

	Prototype Implementation
	WSDL Wrappers for Logical Operations
	Invoking Logical Operations Concurrently
	Monitoring the Execution of Change Plans
	Enforcing Deadlines and Durations

	Conclusion and Outlook

