
Automating Workflows for Service Provisioning:

Integrating AI and Database Technologies

Munindar P. Singh and Michael N. Huhns

Microelectronics and Computer Technology Corporation

Information Systems Division

3500 West Balcones Center Drive

Austin, TX, U.S.A. 78759-5398

(512) 338-3431 or {huhns,msingh}@mcc.com

Abstract

Workflows are the structured activities that take place in information sys-

tems in typical business environments. These activities frequently involve sev-

eral database systems, user interfaces, and application programs. Traditional

database systems do not support workflows to any reasonable extent: usu-

ally human beings must intervene to ensure their proper execution. We have

developed an architecture based on AI technology that automatically manages

workflows. This architecture, which executes on top of a distributed computing

environment, has been applied to automating service provisioning workflows;

an implementation that operates on one such workflow has been developed.

This work advances the Carnot Project’s goal of developing technologies for

integrating heterogeneous database systems. It is notable in its marriage of AI

approaches with standard database techniques.

Keywords: Workflows; Distributed AI; Heterogeneous Information Systems

1



A facility for workflow management is an important component of the Carnot

Project at MCC, which seeks to develop a suite of technologies that enable the in-

tegration of heterogeneous information resources. Project deliverables include an

environment for the development of complex multisystem applications that access

information stored in preexisting heterogeneous systems and maintain consistency

constraints across them [5, 8].

Briefly, workflows consist of tasks, appropriately structured [2, 9, 10]. A task is

any unit of computation that performs some useful function in a system. The tasks

that are of particular interest are database transactions, but other computations, e.g.,

those that generate visualizations, can be presented in the same framework.

Integrating preexisting systems is in general a harder problem than designing

distributed systems afresh. Many systems, especially those based on older mainframe

architectures, allow data to be accessed only through arcane interfaces of limited

functionality. The systems and their interfaces cannot be easily modified, and our

work assumes they cannot. This is because of two main reasons: (1) the complexity of

the programming effort that would be required to achieve any modifications, and (2)

the constraint that older applications continue to run as before, since they typically

have a wide user base that relies heavily upon them. Thus, the integration must

permit newly developed applications to coexist with previous applications.

The major goal of the Carnot Project is to create general principles and approaches

for integration of heterogeneous information resources. The Carnot Project is distin-

guished from other database research projects not only in terms of its goals, but also

in having a larger and more significant AI component than is perhaps typical. We

also undertake various application partnerships with our sponsors in order to develop

prototype systems that address their specific problems. This not only serves to test

our research ideas, but also suggests important research problems to work on. We

did one such application partnership with one of our clients, a telecommunications

2



company. In this paper, we describe the key ideas of our ongoing research, as well

as how they were applied to the problems of this client. In Section 1, we describe

how workflows and AI fit into heterogeneous information systems. In Section 2, we

describe the specific problem we addressed and, in Section 3, our solution to it.

1 Background

Classical transaction processing in databases deals with executing access and update

tasks on a single database. Such tasks are traditionally assumed to have the so-

called ACID properties, which help simplify transaction management considerably

[see sidebar on ACID properties]. However, they prove to be overly restrictive in

loosely coupled heterogeneous environments. For example, one of the ways in which

ACID tasks may be coordinated is through mutual commit protocols, which ensure

that either all of a given set of tasks commit or none do. Such protocols, the classical

example of which is the two-phase commit protocol, are notoriously inefficient when

executed over networks. Further, to execute such a protocol, one requires access to

the internal states of transactions, such as their precommit states. A transaction is

in its precommit state when it is internally ready to commit, but is awaiting permis-

sion from the transaction manager to do so. Most commercial database systems do

not provide access to such internal states, thereby making direct implementations of

commit protocols extremely difficult.

The ACID properties are naturally realized when the correctness of database trans-

actions is characterized through some purely syntactic or structural criterion, such as

serializability [3]. However, serializability cannot be efficiently implemented in dis-

tributed systems whose component systems are autonomous. Instead of attempting

to specify correctness criteria purely syntactically, we follow [7] and characterize them

semantically. This allows us to specialize the correctness criteria to the given appli-

cation at the cost of building a deeper model of the application domain. This helps

3



The ACID Properties

Database transactions are designed to have the so-called ACID properties. How-

ever, these properties apply to tasks in general.

• Atomicity means that either all changes to the system state caused by a

task happen or none do.

• Consistency means that a task takes the database from a consistent state

to a consistent state.

• Isolation means that the intermediate results of a task are not visible to

another task.

• Durability means that the changes committed by a task are persistent.

Jim Gray and Andreas Reuter, Transaction Processing: Concepts and Techniques,

Morgan Kaufmann, San Mateo, CA, 1993.

4



simplify several coordination requirements. For example, instead of executing mutual

commit protocols, we can optimistically commit different tasks. If this action should

prove erroneous, we undo the effects of incorrectly committed tasks. This is achieved

by means of compensating transactions, whose definition depends on the semantics of

the underlying domain.

Consequently, in heterogeneous environments, the unit of relevant activity is not a

single database transaction, but rather a workflow that executes over a set of database

and information resources. The constituent tasks of a workflow may be individually

ACID, but the overall workflow usually is not. The problem is to ensure that no

semantic constraint of the information model is violated despite this.

The activities that comprise a workflow of interest are typically already being

carried out in the given organization. However, they are usually carried out by

hand, with people intervening in several crucial stages to ensure that the necessary

tasks are done and that organization-wide consistency constraints are enforced. The

semantics that we alluded to above is supplied by the people or is implicitly encoded

in different business procedures. The canonical examples of workflows are document

flows through organizations. For instance, when an order is received, it must be

entered into the system and several decisions must be taken to process it properly.

These decisions would typically involve access to several information resources within

an enterprise and possibly some outside of it. For example, a request to transfer

money from one account to another requires that the authorization be verified, the

account numbers be validated, and the source account be tested to have the required

balance. External sources of information would be accessed for other requests, such as

loan applications, where a credit bureau’s databases may be consulted to determine

the credit worthiness of an applicant.

It is of great importance to be able to handle the myriad error conditions that

may arise in different workflows. The exception conditions in workflows are the ones

5



that are the hardest to automate. It is in identifying and resolving such conditions

and managing control and data flow appropriately that AI technology can contribute

substantially.

2 The Problem: Workflows for Service Provision-

ing

One of our clients provides a variety of telecommunication services. We studied the

workflow for provisioning one such service that establishes a telecommunication link

between two specified points. In the extant workflow, a set of paper forms is received

that gives a number of relevant details about the service being ordered. These forms

are entered into the system. A test is then performed to determine if certain essential

telecommunication equipment is already in place. If it is, the service can be provided

relatively quickly; otherwise, the processing must be delayed until the equipment is

added.

Service provisioning typically takes several weeks and requires coordination among

many operation-support systems and network elements. Configuring the operation-

support systems so that they can perform such a task often takes several months to

complete. This proves to be of competitive significance in the business environment

in which our client operates. Many of its competitors were formed in the last decade

or so. Unlike our client, these companies are not encumbered with legacy systems

and typically have more modern computational facilities.

We investigated ways to improve the provisioning of one type of communication

facility—digital services. This provisioning takes more than two weeks and involves 48

separate operations—23 of which are manual—against 16 different database systems.

Our goals were to reduce this time to less than two hours and to provide a way in

which new services could be introduced more easily. Our strategy for accomplishing

these goals was to (1) interconnect and interoperate among the previously indepen-

6



Figure 1: Abbreviated Semantic Model of the Provisioning Environment

dent systems, (2) replace serial operations by parallel ones by making appropriate

use of relaxed transaction processing [4, 6, 1], and (3) automate previously manual

operations, thereby reducing the incidence of errors and delays.

An important goal of our project was to exhibit the feasibility of a workflow

management approach that applies to workflows in general. Our specific challenge

was to automate the provisioning workflow as a test-case to achieve the efficiencies

of our client’s competitors without discarding its legacy systems. We should note,

however, our implementation is not meant at this stage for production use, but as a

proof-of-concept exercise.

Figure 1 presents an entity-relationship diagram that shows the most relevant

components of the semantic model of the provisioning problem. Figure 2 presents

7



the basic structure of the workflow we studied—it shows the admissible executions

when everything works correctly. Each node denotes a task. The partial order reflects

the dependencies among the different tasks. Tasks cannot be initiated until all their

dependencies are met; ordinarily, they must be initiated if those dependencies are

satisfied.

Figure 2: The Provisioning Workflow Automated—only the default workflow is
shown, without any exception paths

8



Figure 3: A Distributed AI System for Workflow Management

3 The Carnot Solution

We defined a distributed agent architecture, shown in Figure 3, for intelligent workflow

management that functions on top of Carnot’s distributed execution environment. An

important constraint on our design was to use existing procedures as much as possible

so as to ensure that other applications were not adversely affected by our system. This

turned out to be easily accommodated by our architecture; indeed, we welcomed not

having to worry about the details of the mainframe systems on which we ran various

tasks. Since the actual applications executed by the workflow were assumed to be

defined already, our goal was to manage the overall structure of the applications in

as domain-independent a manner as possible.

Our multiagent system consists of four agents that interact to produce the desired

9



behavior. Figure 3 shows the key components of our architecture. The databases

mentioned on the figure are assumed to include the relevant data and application

programs that execute on them. The necessary applications are executed by the

schedule processing agent; the user interface agent queries the systems to help a user

fill in an order form completely and correctly, and to provide feedback about progress.

This enables the detection of data inconsistencies. It is highly desirable to resolve

inconsistencies early in the process.

The present architecture is enabled by our previous integration of an expert system

shell, which has forward and backward chaining capabilities, a type system, and truth

maintenance, into Carnot’s distributed execution environment. This environment

provides the basic message passing facility that our agents use to interact with other

agents anywhere on the network. We used this facility to implement a scheme by

which agents can exchange assertions, thereby triggering or disabling rules in each

other. We augmented our scheme so that agents that are not expert systems can

also participate in interactions, provided they satisfy a simple protocol. This enabled

us to integrate transparently a graphical interaction agent, which is not an expert

system shell, into the multiagent system.

Figure 4 describes our implementation at a high-level as an entity-relationship

diagram. A key point to note is that the different tasks that correspond to the nodes

of Figure 2 are modeled as database transactions. Each such transaction is initiated

by an agent. Each task has associated with it a message type. The message type

essentially encodes the computation that the underlying IMS databases must execute.

When an agent executes a task, it does so by passing along the relevant message, i.e.,

the name of the file that contains it.

The agents operate as follows. The graphical-interaction agent helps a user fill

in an order form correctly and completely, and checks inventories to give the user

an estimate of when the order will be completed. It also informs the user about

10



Figure 4: Description of the Transaction-Scheduling Agent’s Implementation

the progress of the order. The scheduling agent constructs the initial schedule for

the given request, doing so on the assumption that the relevant subtasks will succeed.

The tasks are scheduled with the maximum concurrency possible, while still satisfying

all required precedence constraints.

The schedule processing agent executes the schedule by invoking different tasks as

necessary. It maintains connections to the databases involved in telecommunication

provisioning, and implements transactions on them. The schedule processor also

ensures that different workflows do not interact spuriously. This is akin to the problem

of concurrency control in traditional database systems. Concurrency control has to

do with ensuring that different transactions that access the same data items do not

access them in relative orders for which there are no equivalent serial executions.

With a workflow, we need to ensure that subtasks on each database can be serialized

in the same order. This may require delaying, or aborting and retrying, different

subtasks.

11



Figure 5: Conceptual Model for Schedule-Repairing Agent

If the schedule processor encounters an unexpected condition, e.g., the failure of a

task, it notifies the scheduling agent, which communicates with the schedule repairing

agent for advice on how to fix the problem. The advice can be information on how to

restart a transaction, how to abort a transaction, how to compensate for a previously

committed transaction, or how to clean-up a failed transaction. These actions are

meant to restore semantic consistency across the system. For example, if the system

is unable to allocate a span to a given service request, it aborts the entire request.

The billing task, if already committed, is compensated. On the other hand, if the

billing task fails, while the span allocation succeeds, the service order is allowed to

proceed and the billing task is retried later. This example highlights the distinction

between vital and nonvital subtasks. The failure of a vital subtask propagates to

the global task; nonvital tasks can simply be retried. A conceptual model for the

knowledge of the schedule-repairing agent is shown in Figure 5.

In our approach, the initial schedule is constructed on the assumption that things

will succeed as expected. This leads to a small, easily executable, schedule. If error

conditions should arise, they are accommodated at run-time by repairing the ini-

12



tial schedule as appropriate. Some of this is automatic, since the undesirable and

unexecuted parts of the schedule are disabled by the truth maintenance system of

the scheduling agent when their preconditions fail to hold. [See sidebar on truth

maintenance.]

The basic structure of this system is domain-independent. The details of the

messages are clearly domain-dependent. Certain parameters, e.g., the identifier of the

service request, are known to the scheduler, but most of the data is passed through

the file system. The files are uniquely named using the known identifier, thereby

allowing different requests to execute concurrently. The other domain-dependent

components of the system are the procedures required to convert data formats from

those produced by one application to those expected by the next. These translation

routines were written using the tools Lex and Yacc. They are invoked as necessary

by the schedule-processing agent. The remaining domain-dependent aspect of the

provisioning workflow is in the resource constraints, which guide the scheduling and

repairing processes.

4 Conclusions

We have completed a prototype implementation, which we treat as a proof-of-concept

exercise, rather than a deployable system. The prototype is being reimplemented for

installation in a restricted production environment (one switching center). If it is

successful, it will be deployed in all switching centers by our client.

Certain desired features will call for AI technology in the final implementation:

these include schedule repair and other semantical aspects of the domain. Because

of business constraints, we do not expect to use our present Lisp-based system for

these, although the ideas will be reimplemented in a C++ or Rosette-based constraint

processor. Certain other features, notably those to do with schedule processing, do

not really require AI approaches, even though AI approaches are useful for rapidly

13



Truth Maintenance Systems in Workflow Scheduling

A truth maintenance system (TMS) provides a simple, built-in, generic way

of managing dependencies, such as in a workflow schedule. Justification-based

TMSs assign a belief status of IN or OUT to each represented assertion. IN

means believed and OUT means not believed. A justification for an assertion is a

pair of lists of assertions: the IN-list and the OUT-list. A justification is valid

if and only if all the assertions on its IN-list are IN and all the assertions on its

OUT-list are OUT. An assertion must be labeled IN if it has at least one valid

justification; otherwise, it must be labeled OUT.

TMSs simplify workflow scheduling. For example, the billing subtask proceeds

on the assumption that the global task will not abort. Further, the billing task

is retried on failure, but only if the global task does not abort in the meanwhile.

The failure of the local circuit assignment subtask causes the global task to abort,

thus removing the justification for proceeding with the billing and, if it already

happened, adding the justification for proceeding with its compensation. Con-

sequently, complicated but correct executions, such as when the billing subtask

succeeds on the fifth attempt, the local circuit subtask fails, and the billing is

canceled, can be realized even though they would not be explicitly specified.

Elaine Rich and Kevin Knight, Artificial Intelligence, McGraw Hill, 1991.

Michael N. Huhns and David M. Bridgeland, “Multiagent Truth Maintenance,”

IEEE Transactions on Systems, Man, and Cybernetics, vol. 21, no. 6, pp. 1437–

1445, December 1991.

14



prototyping them.

An alternative approach for scheduling tasks is to use operations research (OR)

techniques, such as MRP II. With this approach, however, it is difficult to handle

contingencies, such as the failure of a task. An OR approach would require new

constraints to be added that reflect the failure, and then the MRP II system would

have to be rerun to generate a new schedule. The new schedule might be quite

different from the original one, which might cause additional problems, especially if

the original schedule were already being executed.

It is safe to conclude that AI technology helped us sort out various issues and

easily build a working system that could be tested. Having an implementation helps

us understand the needed components and the interfaces among them. This aids in

the design and testing of industrial-strength modules.

The benefits realized from automatic workflow processing include

• Improved turnaround time.

• Error checking of the initial input; validation of fields with respect to other

fields and information in customer databases.

• Streamlining of the present procedures by removing redundant data gathering

and processing.

• Ability to modify the structure of the overall procedure easily.

We believe that as information systems become more complex, there will be an

increasing demand for AI technologies to manage them. It is likely, however, that AI

technologies will have to take a somewhat different, possibly more mundane, form in

applications, than might have been envisioned by the people who developed them.

15



References

[1] Mansoor Ansari, Marek Rusinkiewicz, Linda Ness, and Amit Sheth, “Executing

Multidatabase Transactions,” Proceedings 25th Hawaii Int’l. Conf. on Systems

Sciences, January 1992.

[2] Paul C. Attie, Munindar P. Singh, Amit P. Sheth, and Marek Rusinkiewicz,

“Specifying and Enforcing Intertask Dependencies,” Proceedings of the 19th

VLDB Conference, 1993.

[3] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman, Concurrency

Control and Recovery in Database Systems, Addison Wesley, 1987.

[4] Omran A. Bukhres, Jiansan Chen, Weimin Du, Ahmed K. Elmagarmid, and

Robert Pezzoli, “InterBase: An Execution Environment for Heterogeneous Soft-

ware Systems,” IEEE Computer, Vol. 26, No. 8, Aug. 1993, pp. 57–69.

[5] Philip E. Cannata, “The Irresistible Move towards Interoperable Database Sys-

tems,” First International Workshop on Interoperability in Multidatabase Sys-

tems, Kyoto, Japan, April 1991.

[6] Ahmed K. Elmagarmid, ed., Database Transaction Models for Advanced Appli-

cations, Morgan Kaufmann, San Mateo, CA, 1992.

[7] Hector Garcia-Molina and K. Salem, “Sagas,” Proceedings of ACM SIGMOD

Conference on Management of Data, 1987.

[8] Michael N. Huhns, Nigel Jacobs, Tomasz Ksiezyk, Wei-Min Shen, Munin-

dar Singh, and Philip Cannata, “Integrating Enterprise Information Models in

Carnot,” International Conference on Intelligent and Cooperative Information

Systems (ICICIS), Rotterdam, The Netherlands, June 1993, pp. 32–42.

16



[9] Christine Tomlinson, Paul Attie, Philip Cannata, Greg Meredith, Amit Sheth,

Munindar Singh, and Darrell Woelk, “Workflow Support in Carnot,” IEEE Data

Engineering, Vol. 16, No. 2, June 1993, pp. 33–36.

[10] Darrell Woelk, Paul Attie, Philip Cannata, Greg Meredith, Munindar Singh, and

Christine Tomlinson, “Task Scheduling Using Intertask Dependencies in Carnot,”

ACM SIGMOD, 1993.

17



Biographical Sketches

Michael N. Huhns received the B.S.E.E. degree in 1969 from the University of

Michigan, Ann Arbor, and the M.S. and Ph.D. degrees in electrical engineering in

1971 and 1975, respectively, from the University of Southern California, Los Angeles.

He is a Senior Member of the Information Systems Division at the Microelectron-

ics and Computer Technology Corporation, where he has been conducting research

on the Argo, Antares, Reasoning Architectures, and Carnot projects. Prior to joining

MCC in 1985, he was an Associate Professor of Electrical and Computer Engineering

at the University of South Carolina, where he also directed the Center for Machine

Intelligence. He was previously a Radar Systems Engineer at Hughes Aircraft Com-

pany.

Dr. Huhns is a member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu, ACM, IEEE,

and AAAI. He is the author of over 100 technical papers in machine intelligence and

information systems, and an editor of the books Distributed Artificial Intelligence,

Volumes I and II. His research interests are in the areas of distributed artificial intel-

ligence, machine learning, enterprise modeling and integration, and computer vision.

Munindar P. Singh received the B.Tech. degree in computer science and en-

gineering in 1986 from the Indian Institute of Technology, Delhi. He obtained the

M.S. and Ph.D. degrees in computer science in 1988 and 1992, respectively, from the

University of Texas, Austin. He is a Member of the Technical Staff in the Informa-

tion Systems Division at MCC, where he has been conducting research on distrib-

uted artificial intelligence, heterogeneous database systems, and relaxed transaction

processing. Dr. Singh has written a number of research papers in the above areas.

His monograph on characterizing computational agents, entitled Multiagent Systems:

A Theoretical Framework for Intentions, Know-How, and Communications, is being

published by Springer Verlag.

18


