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intRoduction

Radiotherapy is a major non-surgical technique in the treat-
ment of cancer. A technology that was once expected to 
become obsolete in the face of chemotherapy and biological 
therapy is now used in around 40–60% of all cancer patient 
cases.1–3 This is partly due to technological advances, such 
as fixed- and rotational-field intensity modulated radio-
therapy (IMRT) techniques and image-guided radiotherapy 
(IGRT), leading to more accurate radiotherapy.4 The field 
has entered an exciting era with rapidly evolving devel-
opments such as image-guided four-dimensional adap-
tive radiotherapy (ART), integration of novel & advanced 
quantitative imaging and future developments on the 
horizon such as stratified or personalised radiotherapy.5–10 
At the heart of these developments is the central role of 
optimised, high quality and efficient treatment planning. 
Complex IMRT techniques have to be inversely planned; 
this means that a computerised treatment plan is generated 
by defining a set of objectives and constraints for tumour 
coverage and healthy tissue sparing and the software uses 
these to generate a large number of radiation segments to 
deliver the required dose. Even though the inverse planning 

process is highly computerised, it is still human resource 
intensive, and typically a high level of treatment planner 
intervention is required to ensure a high-quality plan is 
produced. A typical inverse IMRT planning pathway is 
shown schematically in Figure  1 and described in detail 
in the figure legend. Especially, the depicted interactive 
feedback loop can lead to variability in inter- and intra-
centre plan quality depending on the skills and experience 
of the operator, which could affect clinical outcome11 and 
the efficiency in which a plan is produced. Such resource 
requirements may also limit access to advanced IMRT and 
emerging treatments such as adaptive radiotherapy, or to 
suboptimal usage of these techniques.

Efforts to streamline and standardise the treatment plan-
ning process are ongoing. In the last few years, there has 
been significant progress into research and development 
of automated inverse treatment planning approaches, with 
most commercial manufacturers now offering some form 
of solution. There is a rapidly growing body of research 
published in the literature. These algorithms could signifi-
cantly improve the efficiency, consistency, and quality of 
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ABstRAct

Radiotherapy treatment planning of complex radiotherapy techniques, such as intensity modulated radiotherapy and 

volumetric modulated arc therapy, is a resource-intensive process requiring a high level of treatment planner interven-

tion to ensure high plan quality. This can lead to variability in the quality of treatment plans and the efficiency in which 

plans are produced, depending on the skills and experience of the operator and available planning time. Within the last 

few years, there has been significant progress in the research and development of intensity modulated radiotherapy 

treatment planning approaches with automation support, with most commercial manufacturers now offering some 

form of solution. There is a rapidly growing number of research articles published in the scientific literature on the 

topic. This paper critically reviews the body of publications up to April 2018. The review describes the different types of 

automation algorithms, including the advantages and current limitations. Also included is a discussion on the potential 

issues with routine clinical implementation of such software, and highlights areas for future research.
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treatment planning, leading potentially to improved patient 
access and improved patient outcome through maintaining 
and improving high-quality radiotherapy. In 2014, the National 
Health Service in England and Cancer Research UK published 
a 10 year Vision for Radiotherapy in the UK to allow patients 
to receive advanced and innovative radiotherapy that is cost-ef-
fective, and one suggestion to facilitate this is through the 

implementation of software that automate parts of the planning 
process.1

This paper critically reviews the body of publications up to April 
2018. The review describes the different types of automation 
algorithms for IMRT planning, including the advantages and 
current limitations. Also included is a discussion on the potential 
issues with routine clinical implementation of such software, and 
highlights areas for future research.

liteRAtuRe seARch Methodology

The literature was searched using Elsevier Scopus®, MEDLINE, 
Web of Science™ using the following keywords and logic state-
ments: (“automated planning” OR “automatic planning” OR 
“automation planning” OR “automate planning” OR “knowl-
edge-based” OR “Pareto” OR “multicriteria optimisation” OR 
“multicriteria optimization” OR “template based optimization” 
OR “template based optimisation” OR “interactive optimiza-
tion” OR “interactive optimisation” OR “artificial intelligence” 
OR “AI” OR “artificial neural network” OR “dose prediction” 
OR “machine learning” OR “RapidPlan” OR “AutoPlan” OR 
“rayNavigator”) AND (“radiotherapy treatment planning” OR 
“radiation therapy treatment planning” OR “IMRT treatment 
planning” OR “intensity modulated radiotherapy treatment 
planning” OR “VMAT treatment planning” OR “volumetric 
modulated arc therapy treatment planning” OR “Tomotherapy 
treatment planning” OR “radiotherapy planning” OR “radiation 
therapy planning” OR “IMRT planning” OR “intensity modu-
lated radiotherapy planning” OR “VMAT planning” OR “volu-
metric modulated arc therapy planning” OR “Tomotherapy 
planning”).

The search was made on the 7 May 2018 and included articles 
published up until the end of April 2018. Only full peer-reviewed 
original research articles written in English were included. There 
was no specific limit set on the date of earliest publication. After 
filtering to remove journals unrelated to healthcare and merging 
the searches from the different databases, 342 eligible records 
remained. These records were manually scanned based on the 
title to highlight articles for inclusion. The criteria were to retain 
articles that clearly described either the idea, development or 
clinical application of automated inverse treatment planning 
for IMRT, VMAT, or tomotherapy. Articles that only described 
automatic selection of beam angles, and did not also describe 
subsequent automation of the inverse IMRT or VMAT treatment 
planning, were excluded from this review. While these studies 
are interesting, the decision was made to apply this criterion to 
focus the review on the current topical issue of automated inverse 
planning for IMRT, VMAT or tomotherapy. In articles where 
the title was deemed ambiguous as to whether it fit the criteria 
for inclusion, the abstract was read. In total, 171 peer-reviewed 
papers in scientific journals were included up until the end of 
April 2018. The earliest publication on the topic of automated 
planning in IMRT was in 2003; there were other publications 
pre-2003 related to three-dimensional conformal radiotherapy, 
however while important, these were excluded from this critical 
review. Henceforth, we will succinctly refer to automated inverse 
IMRT planning as “automated planning”.

Figure 1. A typical manual IMRT treatment planning path-

way. The example shown is for a prostate + seminal vesicle 

case. The steps are as follows: (1) CT scan with PTVs and 

OARs delineated; here the colours of ROIs are red: Prostate 

PTV, dark blue: SV PTV, yellow: bladder OAR, brown: rectum 

OAR. (2) create a range of “helper” (ROI) to aid the optimiser; 

e.g. the part of an OAR not overlapping with the PTV, PTVs 

overlapping with each other, ring structures to control dose 

spillage. In the example in Step 2, the ROIs shown are yellow: 

bladder cropped from prostate PTV, green: rectum cropped 

from seminal vesicle PTV, magenta: SV PTV cropped from 

prostate PTV, blue: prostate PTV unedited as it is the higher 

dose prescription than SV PTV. Step (3) set-up beam geom-

etry. (4) Define the initial optimisation objectives either from 

scratch or from a class solution. (5) Run the inverse optimiser 

until it converges to a solution, calculate dose distribution. (6) 

Evaluate the resulting plan, if it is clinically acceptable pro-

ceed to Step 8, otherwise go to Step 7 to adjust the opti-

misation objectives. The part shaded in green (steps 5, 6, 7) 

is the iterative process of optimisation required by the plan-

ner to arrive at a clinically acceptable treatment plan to be 

approved by the clinician in Step 8. After this step, the plan 

will go through the quality control process and preparation 

for treatment, not shown on the flow chart. IMRT, intensity 

modulated radiotherapy; OAR, organ at risk; ROIs, regions of 

interest; PTV, planning target volume; SV, seminal vesicle.
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Figure  2 shows the number of publications per year and the 
cumulative number of papers over the years. The curve exhibits 
some of the characteristics described by Rogers.12 There is the 
initial “lag” period with a steady trend until 2011. After this, there 
is a sharper uplift in the number of papers published per year; 
described as the “take-off ” phase. Around 2008, major radio-
therapy manufacturers began releasing commercial systems and 
this upward trend represents the effect of the early innovations of 
automated treatment planning being translated into widely avail-
able software. There is no evidence yet of the tail-off phase where 
the innovation has been so widely adopted that new research is 
limited. This graph, of course, does not demonstrate the rate of 
clinical adoption as some of the papers are multiple publications 
from the same group. Moreover, not all papers related to clinical 
application.

Through the literature search, three different paradigms of 
automated planning that were employed in clinical practice 
are apparent. These are: knowledge-based planning (KBP),13–85 
protocol-based automatic iterative optimisation (PB-AIO)86–110 
and multicriteria (or also called multiobjective) optimisation 
(MCO).111–183

BAckgRound on the diffeRent AutoMAted 
PlAnning AlgoRithMs

Knowledge-based planning

An approach to improving the speed, efficiency and reducing 
variability in treatment planning is using so-called KBP 
approach. KBP is defined as any approach which directly utilises 
prior knowledge and experience to either predict an achiev-
able dose in a new patient of a similar population or to derive a 
better starting point for further trial-and-error optimisation by a 
planner. There are two distinct approaches to this: the atlas-based 
approach and the model-based approach.

In the atlas-based method,13,14,25,36,47,58 the knowledge base is 
used to select the closest matching patient(s) to give a better 
starting point for the inverse optimisation than would be provided 
by conventional template-based approaches. Chanyavanich et al 

investigated an approach of predicting the starting treatment 
machine parameters based on a database of prior prostate cancer 
fixed-field IMRT plans.58

Dose-volume histogram (DVH)-guidance is one of the 
approaches of model-based KBP.15–24,26–32,69,80,84,85 In this 
approach, a large number of clinically accepted treatment plans 
and contours are used to characterise the relationships between 
anatomical and geometric features for a given anatomical site 
to build a predictive DVH model for that site. For any new 
patient treated in the same anatomical site, this knowledge can 
be used to predict the achievable DVH based on the features of 
similar contours and quality of treatment plan; see an example in 
Figure 3. A range of different implementations of DVH-guided 
KBP has been proposed and developed. Commercially, the 
DVH-guidance KBP approach is utilised by the Varian Eclipse® 
Treatment Planning System as RapidPlan™ (Varian Medical 
Systems, Palo Alto, CI).

A known limitation of the DVH-guidance approach is that the 
DVHs are only predicted for the regions of interest that are 
delineated. This means that regions of tissue outside of delin-
eated regions of interest (ROIs), which a human planner may 
also optimise to reduce dose, may not be taken into account, e.g. 
to enhance conformality or avoid hot spots. Additionally, DVHs 
do not provide any spatial information. An interesting approach 
that has been investigated to overcome these issues is voxel-based 
dose prediction. Rather than predicting DVHs, the idea is to use 

Figure 2. Trend showing the number of peer-reviewed pub-

lications on innovations in automated planning software per 

year, and the cumulative number of publications. The graph 

shows a significant increase from 2011.

Figure 3. An example of DVH prediction KBP in a 3-dose level 

localised prostate cancer case. The shaded lines are the pre-

dicted range of achievable DVHs for the different OARs. The 

solid lines are the actual achieved DVH in the plan. This exam-

ple is from Varian RapidPlan and the dashed lines and arrows 

are the optimisation objectives that have been generated by 

RapidPlan. Courtesy: Royal Surrey County Hospital NHS Foun-

dation Trust, Guildford, UK. DVH, dose-volume histogram; 

KBP, knowledge-based planning; OAR, organ at risk.
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knowledge from prior plans to build a model that can predict 
doses to individual voxels within the patient’s image.33–35,38,39 A 
limitation of the model-based dose prediction approach is that 
the plan quality for new patients strongly depends on the quality 
of plans generated in the past.

Protocol-based automatic iterative optimisation

The challenge with manually optimising a plan is that it is some-
times a time-consuming process to arrive at a clinically accept-
able plan. Moreover, it is often not clear if the plan could be 
better if further adjustments of the optimisation criteria were 
made. The clinically optimal plan is one where there is the best 
trade-off between normal tissue sparing and target coverage, 
taking into account the clinical requirements and priorities 
regarding sparing of the various tissues. For example, one may 
consider a head and neck cancer where the PTV abuts the spinal 
cord. In this case, it is typically the highest clinical priority to 
keep the spinal cord within tolerance and therefore, requires 
compromise of PTV coverage. It is relatively straightforward to 
achieve a plan that meets the spinal cord tolerance (and may. e.g. 
still achieve the PTV D95% objective). However, a better plan 
may be one that keeps the spinal cord just within tolerance while 
maximising the coverage of the PTV, as well as pushing the lower 
doses to other healthy tissue as low as possible. Achieving this 
better plan manually would require significant time, effort, and 
planner experience, as it requires iterative adjustment of opti-
misation criteria to keep challenging the optimiser to achieve a 
progressively better plan until no improvement in plan quality is 
possible. The success of performing this process manually and 
efficiently will depend on the skill and experience of the treat-
ment planner, and the time available to plan.

One approach to solve this is to automate the iterative adjustment 
of the optimisation objectives and constraints.86–88,98,104–110 The 
basic idea is to start with a user-defined template which has the 
required clinical objectives. The user can then input the priorities 
for mandatory (hard) constraints. The optimiser then generates a 
plan that meets all the objectives, at which point the high priority 
constraints are locked down and become hard constraints. A 
script is then put in motion which iteratively pushes the DVH 
of all of the structures to the point where the hard constraints 
were just breached, and then a step is taken back to the point 
where the breach did not occur. At this point, the plan cannot be 
pushed further and could be considered the optimum plan.

Tol et al107 developed an interface to move the mouse cursor on 
the computer screen automatically and thus adapt the optimi-
sation objectives in the Varian Eclipse VMAT optimiser. The 
interface detects the position of the DVH line for each ROI on 
the screen and iteratively moves fixed objectives to ones more 
challenging during the optimisation and was shown to be able 
to automate VMAT planning of head and neck cancer giving 
improved dosimetric results.107

Various authors have developed artificial intelligence (AI) 
systems which simulate the reasoning behaviour of a human 
planner to automatically adjust the optimisation parameters 
during the optimisation process.98,104,105,109 Such AI systems 

have been based on fuzzy logic theory whereby the trial-and-
error actions of expert human planners were converted into 
binary “IF-THEN” logic statements.

A commercially available solution is AutoPlanning within the 
Philips Pinnacle3 TPS (Philips Radiation Oncology Systems, 
Fitchburg, WI). The user initially generates a template (“Treat-
ment Technique”) which has the target prescriptions and the 
goals for organ at risk (OAR) sparing according to the required 
clinical protocol. For OARs, the user also specifies their clinical 
importance, from those that have low significance to those that 
have hard constraints. Based on the PTV(s) and OARs defined, 
the software automatically generates “dummy” optimisation 
structures such as those that take into account overlap between 
OAR and PTV, PTV ring structures to control dose fall, and 
various other “help” structures to control target uniformity and 
dose spillage to the rest of the body. There are also additional 
“advanced” settings to control dose fall-off, homogeneity and 
managing cold/hotspots, which initially have default factory set 
values or could be fine-tuned by the user. Based on the optimis-
ation contours and the settings used, the software automatically 
generates the starting optimisation criteria. The software then 
enters into a 5-loop iterative optimisation cycle to gradually fine-
tune the plan to achieve a solution based on the clinical protocol 
as defined by the user.89,103

Multicriteria optimisation

Another approach which seeks to overcome the issue of finding 
the optimal trade-offs between target coverage and sparing of all 
normal tissues is called MCO (also sometimes called multiob-
jective optimisation).121,131,140,143,146,184 Central to MCO is the 
concept of the “pareto optimal solution”; which is a plan that 
cannot be improved in any of the objectives without degrading 
at least one of the other objectives. There are two approaches 
to MCO, a posteriori and a priori approach. In the a posteriori 
approach, rather than the optimiser generating a single plan, 
multiple plans are automatically generated where each criterion 
is optimised to the extent where it cannot be improved upon 
without affecting at least one other criterion; each of these plans 
is a so-called pareto optimal solution. The schematic in Figure 4 
illustrates this concept with a graph of two competing criteria. 
The graph shows a large number of different feasible planning 
solutions, representing a variety of different permutations for 
criterion 1 and 2. The solid line represents the pareto front where 
improving one criterion inevitably leads to the worsening of the 
other and vice versa. Plans that lie on this front are the “pareto 
optimal solutions”; shown as blue circles in the schematic. The 
plans shown as diamonds are referred to as “dominated” because 
there is always a solution on the pareto front where at least one 
criterion can be improved. Pareto optimality by itself does not 
imply clinical optimality and pareto optimal plans can be clin-
ically highly undesirable. On the other hand, the best clinically 
acceptable plan is pareto optimal. Therefore, in the a posteriori 
approach the database of pareto optimal plans is interactively (a 

posteriori) navigated by the treatment planner to choose a clin-
ically optimal plan.127,131,140,144 The automation in this process 
is that the database of pareto optimal plans is automatically 
generated. The main issue with this approach is the number of 
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plans that are generated, since mathematically there is an infinite 
number of pareto optimal plans, and the intensive computing 
resource required can be a limiting factor. Moreover, especially 
in the case of a large number of clinical objectives, selection of 
a plan may be difficult and operator-dependent. The a posteriori 
approach has been implemented in the commercial RayStation 
TPS, and recently as an option in the Varian Eclipse TPS. In this 
approach, the dimensionality of the pareto fronts is dictated by 
the number of objectives, and thus also the number of plans that 
are required to construct the fronts. Craft and Bortfield describe 
a method to estimate the number of plans that are sufficient128 
and suggest that N+1 plans are sufficient, where N is the number 
of objectives. At the time of writing, this recommendation is the 
basis of the number of plans generated in RayStation rayNav-
igator. Different methods were described in the literature for 
interactively navigating the pareto fronts, using a navigation 
star127,131,140,144 or sliders, however, the premise is still the same. 
The lowest and highest values for each objective is displayed 
visually along with a starting dose distribution and DVH line. 
The user then uses the mouse to drag the objective of interest and 
in near real-time, the software finds the plans in the database that 
are better in the selected criterion, and then, via fast interpola-
tion, the dose distribution and DVH are updated.

In the a priori MCO approach, for each patient, only a single 
pareto-optimal plan is fully automatically generated. This plan 

has clinically desired trade-offs between all objectives, in line 
with the institution’s clinical protocol and treatment tradi-
tion.143,146,185 Optimization is based on a treatment site-specific 
protocol, a so-called “wish-list”, containing the objective func-
tions with assigned priorities and hard constraints that should 
never be violated. An example wish-list for automated plan 
generation with iCycle for localised prostate cancer patients 
is in Table  1. In an automatic multiobjective optimisation 
approach, the objectives are sequentially minimized according 
to their priorities to obtain a pareto optimal plan with favour-
able balances between all objectives. Wish-lists are treatment 
site specific, i.e. no patient-specific adaption is applied. They are 
generated in an iterative tuning process, involving the multidis-
ciplinary planning team. In this process, a first estimate of the 
wish-list is made based on a review of plans of recently treated 
patients, the clinical protocol, and initial team discussions. This 
wish-list is then improved in several iterations consisting of 
(1) use of current wish-list to automatically generate treatment 
plans for CT-scans of a small group of previously treated patients 
(typically five), (2) evaluate the automatically generated plans 
(including comparison with clinically applied plan), (3) update 
the current wish-list (new estimate), (4) go back to (1). This 
iterative improvement of the wish-list is stopped when further 
improvements of the wish-list are deemed not possible. This iter-
ative wish-list improvement has an intrinsic drive to improve 
the clinical plan quality. This a priori MCO approach has been 
developed and implemented in the Erasmus MC Cancer Insti-
tute in their “Erasmus-iCycle” software.129,143,146,162 Apart from 
beam profile optimisation, the system also features automated 
beam angle optimisation.161 As well as optimisation for regular 
linacs, Erasmus-iCycle has separate models for optimization 
of Cyberknife treatments186 and proton treatments (intensity 
modulated proton therapy, IMPT).187 Currently, Elekta AB 
(Stockholm, Sweden) is preparing a commercial implementation 
of the system for photon beams.150

clinicAl evAluAtion And iMPleMentAtion 
of AutoMAted PlAnning techniques

There are many studies in the literature which have clin-
ically implemented commercial and in-house imple-
mentations of PB-AIO, KBP, and MCO automated 
planning.42–46,48–57,59–68,70–79,81–83,89–97,99–103,150–155,157–166,168–177,179–181  
Most of these articles tackle the current commercial imple-
mentations of Varian RapidPlan (KBP), Pinnacle AutoPlan 
(PB-AIO), Raystation (a posteriori MCO), and Erasmus-iCycle 
(a priori MCO).

From the present literature review, 81 (~43%) papers were 
reporting on the clinical evaluation, implementation, or appli-
cation of automated planning. It was noted that most studies 
were retrospective and different methodologies were reported 
for evaluating automated plans and manual plans. The most 
popular method employed, in 67 of the 81 papers, was evalu-
ation based on comparing DVH metrics for PTVs and OARs, 
or deriving other metrics from DVHs such as conformity index, 
homogeneity, tumour control probability, normal tissue compli-
cation probability. Some papers used these in conjunction with 
qualitative blinded clinician evaluation which took the format of 

Figure 4. Schematic diagram of two competing criteria. The 

graph shows a large number of different feasible planning 

solutions, representing a variety of different permutations for 

criterion 1 and 2. The solid line represents the pareto front 

where improving one criterion inevitably leads to the wors-

ening of the other and vice versa. Plans that lie on this front 

are the “pareto optimal solutions”, shown as blue circles in the 

schematic. The plans shown as diamonds are referred to as 

“dominated” because there is always a solution on the pareto 

front where at least one criterion can be improved.
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either binary decisions on whether plans were clinically accept-
able95,162,169,172 or giving plans a ranking.93,103,164 Most studies 
are retrospective, comparing already delivered clinical plans 
with automatic plans. Voet et al performed a prospective study 
on automated planning of head and neck cancer with Eras-
mus-iCycle giving, for each new patient, the treating clinician 
the choice between a plan made with routine trial-and-error 
planning and an automatically generated plan.162 Hansen et al 
prospectively compared Pinnacle3 AutoPlan vs manual planning 
in head and neck cancer with blinded review by three clinicians 
to select the better plan.89

Knowledge-based planning

KBP has been clinically investigated in various clinical sites, with 
most studies reporting that KBP is at least as good, or (slightly) 
better, than manual planning with improved efficiency and consis-
tency, without manual intervention.42–46,48–57,59–68,70–79,81–83 
All of the published studies are via the use of the commercial 
implementation of KBP in the Varian RapidPlan solution. 
Reports have been published for head and neck cancer,72,79,82 
prostate cancer,62,66,78,83,188 cervical cancer,78 lung cancer,75,83,189 
spinal metastasis,63 breast cancer,65 upper gastrointestinal (GI) 
cancers,61,70,76 and lower GI cancers.190 Foy et al reported that 
KBP could reduce the VMAT planning of stereotactic body radio-
therapy of the spine from 1–1.5 h to around 10–15 min.63 Hussein 
et al reported on the clinical validation and benchmarking of the 

commercial RapidPlan KBP system for both IMRT and VMAT 
planning in prostate and cervical cancer. The authors highlighted 
that using the software “out-of-the-box” with the default settings 
for training the KBP models lead to automated plans with poor 
conformity, coverage and plan generation efficiency compared to 
the original clinical plans, and that an iterative process is required 
to fine-tune and optimise the model. After this refinement of the 
model was performed, the authors showed that RapidPlan was 
able to achieve better or comparable plans when compared to the 
original clinical plans.78

Typically, a dose prediction KPB model is trained for one partic-
ular technique and clinical site, meaning that the model has been 
characterised for that particular population of patients; take, e.g. 
a prostate static field IMRT model. Suppose that the treatment 
technique was changed to VMAT or the model was shared with 
a centre that does not have the capability for VMAT. An option 
is to create a VMAT specific model, which requires replanning 
of a large number of patients followed by the refinement of the 
model. However, as the KBP model predicts the dose based on 
the anatomy of the patient and not treatment technique, there 
is the potential that (in this example) the IMRT model could be 
used outside of its original scope for VMAT planning. This is an 
interesting research question to demonstrate how robust a model 
is to changing techniques and sharing between centres. Addi-
tionally, broadening the scope of the model further by including 

Table 1. An example wish-list for automated plan generation with Erasmus-iCycle for localised prostate cancer patients

Constraints

Volume Type Limit

PTV Max dose 105% of DPx

PTV Mean dose 101% of DPx

Rectum & anus Max dose 102% of DPx

PTV shell 50mm Max dose 50% of DPx

Unspecified tissues Max dose 105% of DPx

Objectives

Priority Volume Type Goal Parameters

1 PTV ↓LTCP 0.8 DPx = 78Gy, α = 0.8

2 Rectum ↓EUD 20Gy k = 12

3 OAR 2 ↓EUD 10Gy k = 8

4
PTV shell 5mm
Skin ring 20mm

↓Max dose
↓Max dose

80% of DPx
20% of DPx

5 Rectum ↓Mean dose 5Gy

6 Anus ↓Mean dose 5Gy

7 Bladder ↓Max dose 5Gy

8
PTV shell 15mm
PTV shell 25mm ↓Max dose

50% of DPx
30% of DPx

9 Left & right femoral heads ↓Max dose 50% of DPx

α, cell sensitivity;EUD, equivalent uniform dose;k, volume effect; LTCP, logarithmic tumour control probability; PTV, planning target volume;DPx, 

prescribed dose.

The priorities assigned to the objectives are used in the a priori MCO, guaranteeing for each patient generation of a pareto-optimal plan with 

clinically favorable balances between all treatment objectives. (Courtesy: A.W. Sharfo).
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both IMRT and VMAT plans may potentially improve plan 
quality. Cagni et al investigated the use of helical tomotherapy 
plans to create KBP models for prostate cancer and found that 
this could be successfully performed.53 Other areas of interest 
are whether a model that was trained for a particular clinical site 
could be used in another site with similar anatomy and similar 
relative dose levels to the original model. Some of these areas 
have been addressed in a limited number of studies but is still an 
area of active research.61,66,68,74,76,78 Wu et al investigated using 
a RapidPlan model trained on VMAT rectal plans treated in the 
supine position to create plans in patients treated with IMRT and 
those who were set up in the prone position. The study found 
that OAR sparing and plan consistency was improved but that 
the optimiser needs to be readapted to IMRT planning and that 
manual hotspot reduction is required.74 Most of the reported 
studies in the literature focussed on single institution analysis. 
The performance of a broad scope RapidPlan KBP model for 
oesophageal cancer was investigated by Fogliata et al,76 whereby 
the model took into account different dose prescriptions and 
tumour locations with the ultimate aim of determining whether 
the model could be shared amongst different centres where vari-
ations in clinical protocols can occur. The authors carried out the 
study across three centres, where one centre did not contribute 
any data to the model. In the latter centre, KBP resulted in supe-
rior plan quality. The study highlights the potential benefit of a 
heterogeneous data set, and this has also been highlighted by 
other studies that suggest that keeping statistical (but clinically 
relevant) outliers may be an advantage to the model strength.57,78

An apparent limitation of the KBP approach is that the models 
can only be as good as the training data that has been input in 
the first instance. Strictly speaking, the plans can be clinically 
acceptable but not the optimal plan. RapidPlan attempts to get 
around this by always placing the optimisation objectives for 
OARs lower than the predicted DVH such that it always tries to 
improve on the prediction.

Protocol-based automatic iterative optimisation

Papers in the literature have generally reported that PB-AIO, 
commercially implemented within the Pinnacle TPS, is either 
equivalent to or superior to manual planning regarding plan 
quality and efficiency in automatically generating IMRT or 
VMAT plans in various clinical sites.89–97,99–103 Hazell et al 
compared PB-AIO with manual planning of 26 IMRT head and 
neck cancer plans and evaluated 2 types of plans through DVH 
metrics and clinician-blinded reviews. They found comparable 
target coverage and better sparing of normal tissues, with all plans 
clinically acceptable without manual intervention.103 Hansen 
et al extended the analysis to VMAT and found similar results 
and reported that planner time was halved from 64 min using 
PB-AIO.89 Speer et al used a quantitative point-based scoring 
system where treatment plan parameters were scored to objec-
tively judge plan quality of PB-AIO over manual planning in head 
& neck cancer, where a score of 100 points indicates an optimum 
plan. They demonstrated automated plans using PB-AIO were 
better with an average score of 62.3 points compared to manual 
plans with a score of 59.1 points.100 Similar conclusions about the 
potential for PB-AIO to efficiently produce clinically acceptable 

plans for head and neck cancer have been reported.97,101.91 Nawa 
et al compared PB-AIO with manual planning in 23 prostate 
cancer cases. Comparison was performed using DVH objectives, 
and the study found target coverage and rectal dose was compa-
rable between PB-AIO and manual planning. There was a signif-
icant reduction of the dose to the bladder and femoral heads 
with PB-AIO compared to manual plans. This is potentially due 
to the manual plans not pushing these doses down further as 
they had already passed the clinical tolerances and more atten-
tion was paid to the harder to achieve rectal dose constraints. 
Additionally, the authors quantified a reduction in interoperator 
variability with PB-AIO.91 PB-AIO has been evaluated for hippo-
campal sparing whole brain radiotherapy87,99 and was found to 
result in comparable or better plans with minimal manual inter-
vention and expedited planning time which is essential in this 
palliative group of patients. Studies in oesophagus,92,95 and rectal 
cancer93 cases are also consistent in their conclusions about the 
potential benefit of PB-AIO over manual planning.

However, whilst the overall message in all of these papers is 
favourable for PB-AIO, some studies argue that PB-AIO is a tool 
to improve overall plan quality, but not necessarily to completely 
remove the need for manual optimisation103 and that for some 
particular cases, experienced planners performed better than 
PB-AIO.100 The quality of plans generated by Auto-Planning in 
Pinnacle has also been reported to be dependent on the input 
from experience treatment planners to set the initial user settings 
and define good clinical protocols which are also an important 
consideration.100

Multicriteria optimization

A posteriori MCO clinical implementations (all in RaySta-
tion) have been investigated and validated in different clinical 
sites including prostate cancer,168,169,171,176,179 head and neck 
cancer,164,171 brain,168 lung cancer,172 and lower GI cancers.177 
All studies report better or comparable plan quality with a 
reduction of planning time. Wala et al report that MCO using 
RayStation took approximately 1 h per case and achieved supe-
rior plan quality based on blinded review and DVH objective 
comparisons for localised prostate cancer.169 Other studies also 
report comparable or superior plan quality of a posteriori plans 
in prostate cases. Muller et al report a reduction in planning time 
by around 10 min for post-prostatectomy cases and 45 min for 
brain tumour cases.168 Chen et al used MCO to generate 20 field 
IMRT plans for prostate cancer and head and neck cancer to 
then use the resulting DVH information as the basis for defining 
optimisation objectives for VMAT plan optimisation. Using 
this method, they were able to match the quality of single arc 
VMAT with the quality of a 20 field IMRT plan (where there 
is high quality due to the large degree of freedom).171 Kamran 
et al evaluated the potential benefit of a posteriori MCO in 10 
patients with non-small cell lung cancer who were eligible for the 
RTOG 1308 Phase II trial.172 Evaluation of plan quality between 
MCO and manual planning was performed via a double-blinded 
review and DVH metrics. While all the MCO plans passed the 
DVH objectives, it was noted that clinicians preferred 8/10 of the 
MCO plans. The two manual plans were chosen due to better 
skin sparing and a lower maximum dose to the spinal cord, even 
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though the oesophagus dose was lower. Planning time improved 
by a median of 88 min.172

Navigation-based (a posteriori) MCO could potentially avoid 
the often iterative interaction between planner and physician to 
arrive at a clinically acceptable plan by involving the clinician 
at an earlier stage. However, it is not clear as to whether, prac-
tically, this results in an improvement in the planning workflow 
particularly given the often limited clinician time. Müller et al 
investigated this retrospectively in prostate and brain cancer 
planning and demonstrated potential time savings, but further 
prospective studies are required.168 In the context of a technique 
like a posteriori MCO, how the clinician and planner role will 
evolve will likely vary between different countries. For example 
in the UK, the Clinical Oncologists are responsible for adminis-
tering both radiotherapy and other non-surgical treatments such 
as chemotherapy whereas in other countries there is a different 
approach with Radiation Oncologists who are more focused in 
radiotherapy. Therefore, the practicality of a posteriori MCO in 
the hands of clinicians in the UK will likely be different. One 
approach may be treatment planners taking on an extended role, 
or formalising an existing role, in the decision-making aided by 
the availability of other relevant clinical data and with the appro-
priate training and qualifications.

A limitation of current implementations of a posteriori MCO is 
that the plans optimised are near pareto optimal in the fluence 
space and do not directly consider the machine parameter opti-
misation. The final navigated plan is then converted into a deliv-
erable using direct aperture optimisation. However, McGarry et 
al and Kyroudi et al have shown that dosimetric discrepancies can 
occur between the conversion of the navigated plan into a deliv-
erable plan, and therefore may not reflect the clinical preferences 
that resulted in the choice of the navigated plan and this may 
increase the uncertainty in the plan navigation process.165,179 In 
most cases, this dosimetric difference may not translate to a clin-
ically significant difference, and the advantage in the ability for 
navigating the trade-offs was retained. However, for some cases 
where there are small targets on low-density tissues, the dosim-
etric difference can be significantly larger such that manual fine-
tuning is likely required.165

A priori MCO with Erasmus-iCycle for linacs was validated for 
head and neck cancer,162 prostate cancer,150,185 cervical cancer,174 
lung cancer,180 spinal metastases,175 and gastric cancer.151. By 
itself, Erasmus-iCycle had fully automated MCO for beam 
fluence optimization. For the generation of clinically deliverable 
plans, the system was used as a pre-optimizer for the commercial 
Monaco TPS (Elekta AB, Stockholm, Sweden), which generates 
a deliverable, segmented plan that mimics the pre-optimized 
Erasmus-iCycle dose distribution. In the first evaluation study 
(on head and neck cancer), this plan reconstruction in Monaco 
was performed by a planner.162 In all later studies, the recon-
struction in Monaco was fully automated, i.e. for each patient 
the Erasmus-iCycle dose distribution was used to automatically 
create a patient-specific Monaco planning template, which was 
then used by Monaco for automated generation of a deliverable 
VMAT or IMRT plan, mimicking the Erasmus-iCycle plan. In all 

validation studies, the automated Monaco plans were compared 
with manually generated Monaco plans. Manual fine-tuning of 
automatically generated plans was not performed. For all inves-
tigated treatment sites, there was a considerable reduction in 
hands-on planning time, which virtually reduced to zero with 
fully automated planning. For treatment of the prostate only or 
prostate with seminal vesicles, plan quality between automated 
and conventional plan generation was similar.185 For treatment 
of the prostate with seminal vesicles and elective nodal irradi-
ation and all other sites, the quality of the automatically gener-
ated plans was superior. In the prospective head and neck cancer 
study,162 treating clinicians could, for each patient, choose 
between an automatically and a conventionally generated plan. 
In 97% of cases, preference was given to the plan that was gener-
ated with Erasmus-iCycle. At the Erasmus MC Cancer Institute, 
fully automated planning with the combination Erasmus-iCycle/
Monaco was in routine use for prostate, cervix, lung, and head 
and neck cancer patients.

novel APPRoAches to using AutoMAted 
PlAnning AlgoRithMs

Automated planning as a plan quality assessment 

and checking tool

It was recognised in several studies that the principle of KBP can 
be used both as an automated planning tool and as a plan quality 
assessment tool. This is because the first component of KBP is 
to use prior knowledge to predict the achievable dosimetry for 
a prospective patient. This information can be used to judge the 
quality of a plan and has been shown to be effective by several 
groups.32,36,59,65,71,77,188,191 Additionally, it has also been reported 
to be a useful tool for training new staff members and improve 
the quality of manual planning, and also useful in clinical trial 
QA.61

“Bias-free” comparison of different treatment 

techniques using automated planning

Comparing different treatment techniques (e.g. VMAT and 
IMRT) in a treatment planning study can be prone to human 
subjectivity and bias, particularly there can be questions to what 
extent there were differences in the optimality of the plans for 
the compared techniques. An interesting approach is to use 
automated planning in these studies.163,166,173,181,192 Boylan 
and Rowbottom developed a PB-AIO approach and applied it 
in comparing seven fixed-field IMRT with two arc VMAT for 
nasopharyngeal head and neck cancer patients using a standard 
protocol, and to investigate two experimental strategies (a parot-
id-sparing strategy and dose escalation strategy).192 They showed 
that the IMRT and VMAT techniques were clinically comparable 
for the standard and dose escalation protocols, whereas VMAT 
was better in the parotid sparing strategy. Lechner et al, used 
MCO to objectively compare the quality of flattening filter free 
IMRT and VMAT vs flattening filter plans in prostate and head 
and neck cancer patients.163 Sharfo et al used automated plan-
ning for bias-free comparisons of IMRT and VMAT techniques 
for cervical cancer.181 They demonstrated that a 12 field IMRT 
technique had similar quality as a dual-arc VMAT technique. 
Sharfo et al also used bias-free automated planning for compar-
ison of liver SBRT with a fully non-coplanar technique, coplanar 
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VMAT, or a new approach called VMAT+.161 The latter was 
defined as VMAT supplemented with 1–5 computer-optimized 
non-coplanar beams. Regarding plan quality, they demonstrated 
that VMAT+ was superior to VMAT, and almost as good as fully 
non-coplanar. Treatment times with VMAT+ were much shorter 
than with fully non-coplanar treatment.

In prostate cancer (and other pelvic malignancies), one of the 
common challenges faced by treatment planners is the scenario 
where a patient has an artificial metallic hip implant. This pres-
ents a challenge to the planner as a typical technique is to avoid 
beams entering through the implant due to uncertainties in 
the density, which limits the permissible beam directions. The 
difficulty is amplified if the patient has bilateral implants. Voet 
et al, reported on using a priori MCO to automatically investi-
gate different fixed-field IMRT strategies using the iCycle soft-
ware which was able to optimise both beam angles and fluence 
profiles.173

Automated planning as a decision support tool for 

treatment selection and personalised treatment

Studies have reported on the use of automated planning as a useful 
tool for making informed decisions on a patient’s eligibility for 
specific novel radiotherapy techniques. The potential advantage 
of automated planning in this context is the quick production 
of plans for different techniques and clinical scenarios, where 
otherwise resource-intensive manual plan generations would be 
required.

One application of this is patient selection for proton therapy. 
Automated planning is used to select patients suitable for whom 
a proton treatment plan may be suitable and to promote that 
only patients that would clinically benefit from the treatment are 
selected and to thus avoid using this limited resource in patients 
where potentially a faster photon-based plan would be equally 
or more clinically useful. Delaney et al found that a KBP model 
based only on prior photon VMAT plans was able to predict 
proton DVHs and therefore, may be used in identifying patients 
for proton therapy.64 Bijman et al used MCO to generate photon 
and proton plans, and while the primary focus of their study was 
in the context of analyzing the uncertainty of using normal tissue 
complication probability models for patient selection, the use of 
MCO for fast plan generation was still demonstrated.193

In patients with liver tumours (such as from hepatocellular 
carcinoma or oligometastatic disease) and who are contraindi-
cated for surgical intervention, stereotactic ablative radiotherapy 
(SABR) is a promising treatment modality. However, there 
are some limiting factors and criteria which dictate whether 
a patient is eligible for SABR. The most significant of these is 
the dose to the healthy liver tissue, which will vary depending 
on the tumour volume and liver volume. In practice, the deci-
sion on eligibility can only be determined once the trial-and-
error planning has been attempted, which is an inefficient use 
of resources. Tran et al, reported on using KBP as a tool for 
predicting patient eligibility for liver SABR and to also determine 
whether the patient would benefit from a more complex non-co-
planar technique than a standard coplanar VMAT technique.24 

Rønde et al investigated the feasibility of using MCO for shared 
decision-making in anal cancer and conclude that patient–clini-
cian preference-informed plan selection is feasible.177 Smith et al 
described a novel approach to personalized treatment planning 
by integrating a model of radiotherapy outcome with MCO for 
prostate cancer treatment.170 The MCO model generates the set 
of pareto optimal plans which are then integrated into a Bayesian 
network to model the probabilities of outcomes such as toxicity, 
recurrence, distant metastasis. To predict these probabilities, the 
model uses information from expert opinion and published data, 
and patient characteristics such as clinical staging, Gleason score 
and PSA. The final step is use these probabilities in a Markov 
model then to predict Quality Adjusted Life Expectancy which 
is then the final basis for ranking and selecting the best plan. 
This approach appears to be promising; however, the authors 
point out that further work is required to validate the accuracy 
of the predictions of outcomes. A similar approach has also been 
reported for glioblastoma.139 Valdes et al describe an AI approach 
which identifies previously approved treatment plans which are 
achievable for a prospective patient to aid decision made on a 
personalized level.40

Automated planning for plan library in plan-of-the-

day (PotD) adaptive radiotherapy

Due to various challenges in modern radiotherapy, such as 
limitations in accuracy in automated image segmentation and 
automated planning speed, daily online replanning based on 
daily reimaging has not been routinely applied. A simpler, but 
more feasible approach is PotD ART, which has been reported 
for bladder cancer,194 cervical cancer195 and rectum cancer.196 In 
this approach, the patient is imaged daily and then treated with 
a plan selected from a pre-treatment established patient-specific 
plan library. The library contains plans for various patient anat-
omies. The PotD is the library plan that best fits with the anato-
my-of-the-day. PotD ART involves generation of multiple plans 
for each patient, increasing the planning workload for a depart-
ment. Heijkoop et al have avoided this problem by applying auto-
mated plan generation.195 For each cervical patient, they created 
a library with up to three plans.

discussion

Over the last few years, innovations in automated treatment 
planning software have led to the potential to improve the effi-
ciency and quality of radiotherapy treatment planning. The gain 
in plan quality and reduced interplanner variation may have clin-
ical benefit for patients by removing the low-quality outliers and 
therefore potentially cure more patients, however, these need to 
be demonstrated with clinical evidence.

There has been a rapid increase in the number of papers published 
in this field and there were a variety of approaches and commer-
cial implementations. In general, most papers in the literature 
showed improvements over manual planning across a variety of 
clinical sites. This review covered innovations in automated plan-
ning, but the patient’s treatment planning pathway also involves 
the contouring of ROIs and the quality assurance procedures to 
ensure safe delivery of plans. Automation of these areas is also 
being addressed but have not been covered in this review.197–204
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Real-time interactive planning is a new paradigm for IMRT 
planning that is not based on using traditional optimisation 
algorithms. Instead, the goal is to be able to give the treatment 
planner the ability to perform real-time and interactive manip-
ulation of the isodose or DVH lines and ultra-fast (automated) 
reoptimisation and dose estimation to update the user on the 
impact of interactive modifications. The main potential for this 
type of semi-automated planning is (along with advancements 
in imaging, auto-segmentation, and fast plan verification) to 
realise dose-guided, fast and intuitive adaptive replanning. This 
approach was still in the very early stages in the research domain, 
and as such there were limited proof-of-principle papers that 
were published,205–207 but it is anticipated that these systems 
may become commercially available within the next few years. 
Real-time interactive planning and other innovations in fast 
reoptimisation will play an essential role in the topic of on-table 
adaptation which was being made possible due to developments 
such as MR-radiotherapy machines.208,209 This is an area of 
active research, and some preliminary publications have been 
published, some of which use similar principles for automation 
of the plan reoptimisation as those discussed in this review.210–214 
These developments were also in parallel with necessary devel-
opments in automation of contouring and QA which are also 
central to this concept.

There were a few research areas that require further study, which 
we highlight here. Some studies suggested that cross-institu-
tional sharing of knowledge may improve the quality of the auto-
mated plan generation;66,68,76 however, further research on the 
impact of sharing of KBP models and a priori MCO wish-lists 
for more clinical sites was needed. Furthermore for KBP, the 
size and heterogeneity of the dataset required and the robust-
ness of the resulting model needs further investigation. An area 
of automation where there were limited papers is in IMPT, and 
future developments will be needed as the number of centres that 
will be treating with IMPT is gradually increasing.64,193,215 Also, 
automated plan generation including (non-coplanar) beam angle 
optimization (or beam arc optimization for VMAT) was only 
explored with “bias-free” comparisons in a limited number of 
studies, however showing promising results.163,166,173,181,192 The 
use of automated planning in randomised clinical trials offers 
the opportunity to reduce the level of variability of plan quality 
which may affect the clinical outcomes, and the reduced vari-
ability may also lead to the possibility of reducing the required 
sample sizes meaning trials could potentially recruit quicker. This 
use of automation may also facilitate randomised trials testing 
two extreme treatment techniques which may be manually chal-
lenging to achieve at the desired plan quality. A possible example 
of this could be comparing treatment with a maximum focus on 
sparing of OAR1 with another treatment that maximally spares 
the competing OAR2. The endpoint of such a study could be the 
patients’ Quality of Life. Therefore, the role of automated plan-
ning within clinical trials is an important area of future investi-
gations. Sharing of automated techniques between centres may 
lead to improved consistency between different centres (perhaps 
even worldwide), particularly in rare diseases where adequate 
patient numbers to develop expertise may only be possible across 
a handful of centres. However, a significant barrier was that the 

different types of automated planning implementations presents 
a challenge for sharing of different experiences between centres 
and commercial vendors. Furthermore, the equivalence between 
automated planning techniques was not well-known. Of poten-
tial interest is to investigate whether one automated planning 
technique could be ported to another. The role of automated 
planning for shared decision-making and personalised radio-
therapy has been briefly discussed in this review but this research 
was in the early stages and it is anticipated that further studies 
will follow. For this to become more feasible, plan quality should 
ideally be linked to patient outcome and not DVH-like metrics. 
Finally, guidelines and recommendations on how to perform 
planning studies, agreed by planning experts and endorsed by 
professional bodies, are also highly needed. Planning studies 
can have a focus on development and evaluation of novel strate-
gies/algorithms for automated planning, or automated planning 
may be used for investigating clinical questions, e.g. are protons 
better than photons. For both types of studies, statistical power 
and avoidance of bias (e.g. related to diversity in human planner 
experience) has to be considered. In the technical studies, clin-
ical deliverability of generated plans may not always have the 
highest urgency, whereas this seems a must when using planning 
for comparing different treatment strategies in a clinical setting. 
Other factors that have to be considered in guidelines are quality 
of dose calculation algorithms, adequate coping with geomet-
rical uncertainties (e.g. using margins, and appropriate metrics 
for comparing plans).

While there were some papers in the literature highlighting 
the technical feasibility of automated planning over manual 
planning, there were limited studies that describe the practi-
calities of implementing automated planning, including more 
detail on how the treatment planner’s role may evolve. One of 
the common elements that impact the successful adoption of 
any innovation is “interconnection” as described by Euchner,216 
where it is argued that “innovation happens when ideas collide”. 
This is true for automated planning techniques where there may 
be mixed viewpoints within a hospital organisation regarding 
its advantage and disadvantage amongst the multidisciplinary 
staff groups, which presents a challenge for the successful clin-
ical adoption. Is it an efficiency saving meaning potentially less 
dedicated staff are required and therefore, a mean for cost saving 
or is it an essential tool to be used by a finite staff resource? Is it 
an evolution in treatment planning requiring modified treatment 
planning skills or a route to deskilling staff? As such there are 
the “human factors” that need to be considered for implementing 
automated planning. There are known questions and challenges 
that need to be rationalised, such as: what will happen to the role 
of a treatment planner? Can one fully automate a plan and trust 
the software? Is it possible to automatically generate a plan for 
every patient? How does one ensure people retain their skills and 
is this even necessary? Is there a balanced approach to imple-
menting automated planning? For example, it may be best prac-
tice to prioritise implementing automated planning algorithms 
to handle the most routine cases that have a high workload 
(such as prostate cancer or breast cancer) to re-route expertise to 
focus more efforts on tackling complex cases (which may other-
wise be referred elsewhere) and be able to spend more time on 
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innovative new treatment techniques and research. Potentially, 
this could mean more difficult cases could be treated closer to a 
patient’s home, assuming adequate case numbers are available to 
maintain clinical expertise. Sharing of DVH prediction models 
(RapidPlan), Treatment Techniques (Pinnacle Auto-Planning) 
and wish-lists (Erasmus-iCycle) between centres may also 
address this issue, particularly in rare diseases where adequate 
patient numbers to develop a model may only be possible across 
several centres. Alternatively, should such techniques be initially 
focussed on those sites where significant time savings may be 
made? Experienced treatment planners, in particular, may not 
see the benefits in the use of more routine planning where time 
savings are modest. As such, it can be argued that there should 
always be a role for a multidisciplinary team consideration. 
There may be a clash of cultures amongst different staff groups 
concerning automated planning, and this may require addressing 
before the adoption of such techniques into clinical practice.

Furthermore, the actual benchmarking and validation of auto-
mated planning is not straightforward and requires expert physics 
resource, as highlighted in the literature it is not merely possible 
to use “out-of-the-box”.78 It is important to realize that all current 
implementations of automated planning require a high-level of 
manual planning knowledge for configuration. It is questionable 
that this will change in the coming years as no mathematical 
formulas exist for balancing trade-offs, and dose–response rela-
tionships have significant uncertainties. The impact of a subop-
timal configuration of an automated planning algorithm may be 
similar to an overall geometric error in the treatment prepara-
tion process: it will introduce an overall systematic error in the 
treatments, i.e. for all patients (of a particular tumour type), the 
plan quality is lower than feasible. Treatment planning can be a 
complicated process, and achieving the best radiotherapy treat-
ment with the optimal trade-offs between good tumour coverage 
and healthy tissue sparing requires expert knowledge; replicating 
this with automated software is a difficult achievement and there 
will often be scepticism that the software will do as good a job as 
a human, regardless of how good the published results are.

Guidance by professional bodies on implementation of auto-
mated planning and possible redefining of treatment planner 

roles could provide rationalisation. Algorithms for (semi-)auto-
mation of the configuration of automated planning software 
could also be highly beneficial in facilitating better implementa-
tion, and the development of simple metrics in plan comparison 
may facilitate this.

conclusion

Recent innovations in automated treatment planning software 
have given rise to the potential to broadly improve the efficiency 
of radiotherapy planning and to enhance the overall quality of 
generated treatment plans, which is expected to result in higher 
quality treatments. Automated planning can also facilitate better 
access to high-quality advanced treatments, and harmonize 
radiotherapy treatments between treatment centres. Automated 
planning is now available in different commercial packages, 
each with a different technical approach, and the initial clinical 
reports are promising. The field is currently still rapidly devel-
oping and in a steep upward trend, and there are various areas 
of future research required that have been highlighted in this 
review. Much work is still needed to explore practical issues 
related to clinical implementation, including staffing, and their 
changing roles. In a resource-limited world, disruptive innova-
tive technology is essential to meet future healthcare needs, and 
the rapid adoption of automated planning is one area that should 
be embraced and also possibly supported by professional body 
recommendations.
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