
Citation: Orchi, H.; Sadik, M.;

Khaldoun, M.; Sabir, E. Automation

of Crop Disease Detection through

Conventional Machine Learning and

Deep Transfer Learning Approaches.

Agriculture 2023, 13, 352.

https://doi.org/10.3390/

agriculture13020352

Academic Editors: Alessandro

Matese and Santhana Krishnan

Boopalan

Received: 9 November 2022

Revised: 13 January 2023

Accepted: 23 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Automation of Crop Disease Detection through Conventional
Machine Learning and Deep Transfer Learning Approaches
Houda Orchi 1,*, Mohamed Sadik 1 , Mohammed Khaldoun 1 and Essaid Sabir 1,2

1 NEST Research Group, Engineering Research Laboratory (LRI), Department of Electrical Engineering,
National Higher School of Electricity and Mechanics (ENSEM), Hassan II University of Casablanca,
Casablanca 20000, Morocco

2 Computer Science Department, University of Quebec at Montreal (UQAM), Montreal, QC H2L 2C4, Canada
* Correspondence: houda.orchi@ensem.ac.ma

Abstract: With the rapid population growth, increasing agricultural productivity is an extreme
requirement to meet demands. Early identification of crop diseases is essential to prevent yield
loss. Nevertheless, it is a tedious task to manually monitor leaf diseases, as it demands in-depth
knowledge of plant pathogens as well as a lot of work, and excessive processing time. For these
purposes, various methods based on image processing, deep learning, and machine learning are
developed and examined by researchers for crop leaf disease identification and often have obtained
significant results. Motivated by this existing work, we conducted an extensive comparative study
between traditional machine learning (SVM, LDA, KNN, CART, RF, and NB) and deep transfer
learning (VGG16, VGG19, InceptionV3, ResNet50, and CNN) models in terms of precision, accuracy,
f1-score, and recall on a dataset taken from the PlantVillage Dataset composed of diseased and healthy
crop leaves for binary classification. Moreover, we applied several activation functions and deep
learning optimizers to further enhance these CNN architectures’ performance. The classification
accuracy (CA) of leaf diseases that we obtained by experimentation is quite impressive for all models.
Our findings reveal that NB gives the least CA at 60.09%, while the InceptionV3 model yields the
best CA, reaching an accuracy of 98.01%.

Keywords: traditional machine learning; deep learning; crop disease detection; classification
accuracy; deep learning optimizers; activation functions

1. Introduction

Crop diseases have always been one of the main threats to agricultural production
as they drastically reduce the productivity and quality of agricultural products [1]. There-
fore, early detection of diseases is a major challenge for crop production [2]. Identifying
diseases in crops as early as possible is essential to curb the spread of disease in fields and
foremost to optimize the usage of pesticides to mitigate the environmental and health risks
associated with their application. For these purposes, many techniques in phytopathol-
ogy are exploited to detect diseases, namely methods related to chemical analysis of the
affected area of a plant and indirect methods such as the use of physical techniques such as
spectroscopy [3]. Such techniques demand the intervention of highly qualified personnel
with expertise in the field and relatively expensive rates [4]. Therefore, the search for
an accurate, fast, automatic, and less expensive disease detection method has become an
absolute necessity for researchers and farmers. In this line, researchers are employing
image processing [4,5], machine learning [6,7], and deep learning techniques [8,9] to aid
in the task of identifying diseases at a very early stage. In addition, crops are subjected
to a variety of diseases caused by pathogens such as bacteria, fungi, and viruses [10] that
appear in different parts such as leaves, stems, and roots. In our paper, we focus on leaves
as they are the most common disease detection feature.

Agriculture 2023, 13, 352. https://doi.org/10.3390/agriculture13020352 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13020352
https://doi.org/10.3390/agriculture13020352
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0003-4918-9804
https://orcid.org/0000-0001-9946-5761
https://doi.org/10.3390/agriculture13020352
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13020352?type=check_update&version=3

Agriculture 2023, 13, 352 2 of 35

Our motivation is to enhance the overall detection model performance. Notably,
we aim to strike a compromise between high accuracy and a low misclassification rate.
Thus, we compared different competitive machine learning and deep learning algorithms,
using several computer vision techniques and various performance evaluation metrics to
evaluate our results to find out the most efficient model that can be exploited for real-time
leaf disease identification and classification. So, from the findings, we were able to pin
down the advantages and inconveniences of each model.

This present comparative study stands out from other studies in that it is conducted on
a massive dataset containing several types of crops and the use of both ML/DL techniques,
resulting in weeks of training for the models to be completed. The novelty of this study lies
in obtaining the most appropriate combination of the DL optimizer and the CNN model,
which delivered greatly better results compared to prior research. The remainder of this
article is arranged as follows: the next section provides a review of the existing research on
this topic. Then, the third section presents the materials and methodology needed to carry
out this study. Afterward, the fourth section reports the experimental results along with
their extensive discussion, and finally, the article concludes with the fifth section, which
tackles possible future directions for the present work.

Related Work

In previous research, various ML and DL algorithms have already been proposed for
crop leaf disease detection [11], and some of them are explored in the following section.
Among these studies, Orchi et al. [12] established a brief survey of methods of identifying
crop diseases using ML and DL techniques, in particular SVM, ANN, CNN, and RNN, to
help researchers recognize the disadvantages and advantages of the different techniques
used for plant disease detection.

Today, a growing trend to replace machine learning algorithms with those based
on deep learning methods for leaf image classification is gaining momentum. In fact,
Argüeso et al. [13] deployed an approach to the distance metric within few-short learning
that relied on triplet loss as well as a shallow classifier at class limits that proved efficient
for classifying plant leaf diseases with little training images annotated using deep learning.
Their approach showed greater than 90% accuracy using only 80 images per class for six
diseases. In contrast, Pantazi et al. [14] suggested a technique for identifying diseases
(downy mildew, powdery mildew, healthy, and black rot) on grape leaves by applying class
classification and the local binary pattern to extract features and the algorithm Grab cut to
segment the images. The novelty in their model is the high generalization capacity, which
has been proven and tested on different leaf samples from diverse plant species, reaching
an accuracy of 95%. Specifically, 44 combinations of the plant diseases tested out of 46 were
classified perfectly, resulting in a 95% total success rate. The resolution of conflicts between
classifiers into one class is crucial. This enables correct identification when ambulatory
data belong to single or multiple conditions, i.e., more than 50% of the cases have reached
100% identification capacity.

Arora et al. [15] applied a Deep Forest algorithm for maize leaf disease classification
from an image set containing three classes of diseased leaves and one class of healthy leaves.
Their approach has surpassed deep neural networks in terms of accuracy, as it combines
both the robustness of assembled decision trees and the architecture of neural networks.
Ubiquitous, automatic detection via mobile devices has become a trend in the area of
disease diagnosis. Tang et al. [16] introduce a hybrid lightweight CNN-based approach for
identifying grape diseases, such as black measles, and black rot, by leveraging channel-wise
attention (CA) mechanisms. Thus, they enhanced the ShuflleNet architectures by using
the compression and excitation blocks as the channel-wise attention mechanism as well
as the ShuffleNet v1 and v2 architectures as the backbone. Their model was compressed
from 227.5 MB to 4.2 MB and tested on a dataset of 4062 grape leaf images that gave a high
accuracy of 99.14% in real-time.

Agriculture 2023, 13, 352 3 of 35

Another special type of SNN is the ELM algorithm. In this perspective, Bhatia et al. [17]
implemented the Extreme Learning Machine (ELM) based on a TPMD dataset (Tomato
Powdery Mildew Disease) collected in real-time for leaf disease prediction, stating that this
TPMD dataset was very unbalanced, so they used many resampling techniques such as
Random Under Sampling (RUS), Random Over Sampling (ROS) [18], Synthetic Minority
Over-sampling (SMOTE) [19], and Importance Sampling (IMPS) to balance the dataset
before feeding it into the selected predictive model. Subsequently, ELM algorithms were
developed for the unbalanced dataset as well as for the balanced dataset acquired using
resampling techniques. The performance analysis of these ELM algorithms is performed
using two predictive accuracy measures, namely Area Under the Curve (AUC) and Classi-
fication Accuracy (CA). Therefore, the findings indicated that the ELM algorithm works
much better for the dataset obtained from resampling techniques. In particular, the better
outcome was attained using the IMPS technique, with the maximum values for AUC and
CA, or 88.57% and 89.19%, respectively. The power of their Deep Forest model is justified
by achieving an accuracy of 96.25%.

2. Materials and Methods

We have conducted a thorough comparative study between cutting-edge DL and
ML models for the case study of binary crop disease classification on Python using many
libraries such as Numpy, Pandas, Scikit-learn, Keras, and TensorFlow. Moreover, a per-
formance enhancement of the CNN architectures has been undertaken by training the
most performing model (obtained in the former step) by using different activation and
optimization functions of DL.

2.1. Dataset

Our dataset was drawn from the PlantVillage Dataset [20]. Crop leaf images were
taken under different weather conditions with a standard digital camera. They were
gathered from many sources, which makes the dataset more diversified and tailored to the
application of machine learning algorithms, notably deep learning ones. In total, there are
42854 images of 8 different crops, divided into 23 distinct classes, given as a pair: healthy
leaf and diseased leaf.

The crop leaf images are sized at 256 × 256 pixels in RGB color, as shown in Figure 1,
which displays a few randomly selected leaf images from the dataset to give a glimpse of
the raw image form. Hence, color change, background suppression, and contrast tuning are
required for removing any potential bias. The species in this set of images are grape, apple,
peach, cherry, strawberry, corn, bell pepper, potato, and tomato. These crop leaves are
affected by viral, fungal, and bacterial diseases. The dataset in detail is presented in Table 1.
Note that the image distribution is not uniform, presenting a problem of data imbalance.

Table 1. The detailed dataset was extracted from the PlantVillage dataset.

Crop Leaf Diseases Nb of Images

Apple

Apple scab 630
Black rot 621

Cedar apple rust 275
Healthy 1645

Bell Pepper Bacterial spot 4997
Healthy 1478

Cherry Powdery mildew 1052
Healthy 854

Corn

Common rust 1192
Leaf spot 513

Leaf blight 985
Healthy 1162

Agriculture 2023, 13, 352 4 of 35

Table 1. Cont.

Crop Leaf Diseases Nb of Images

Grape

Black Measles 1383
Leaf blight 1076
Black rot 1180
Healthy 423

Peach
Bacterial spot 2297

Healthy 360

Potato
Early blight 1000
Late blight 1000

Healthy 152

Strawberry Leaf scorch 1109
Healthy 456

Agriculture 2023, 13, x FOR PEER REVIEW 3 of 35

dataset was very unbalanced, so they used many resampling techniques such as Random Un-
der Sampling (RUS), Random Over Sampling (ROS) [18], Synthetic Minority Over-sampling
(SMOTE) [19], and Importance Sampling (IMPS) to balance the dataset before feeding it into
the selected predictive model. Subsequently, ELM algorithms were developed for the unbal-
anced dataset as well as for the balanced dataset acquired using resampling techniques. The
performance analysis of these ELM algorithms is performed using two predictive accuracy
measures, namely Area Under the Curve (AUC) and Classification Accuracy (CA). Therefore, the
findings indicated that the ELM algorithm works much better for the dataset obtained from
resampling techniques. In particular, the better outcome was attained using the IMPS technique,
with the maximum values for AUC and CA, or 88.57% and 89.19%, respectively. The power of their
Deep Forest model is justified by achieving an accuracy of 96.25%.

2. Materials and Methods
We have conducted a thorough comparative study between cutting-edge DL and ML

models for the case study of binary crop disease classification on Python using many libraries such
as Numpy, Pandas, Scikit-learn, Keras, and TensorFlow. Moreover, a performance enhancement of
the CNN architectures has been undertaken by training the most performing model (obtained in
the former step) by using different activation and optimization functions of DL.

2.1. Dataset
Our dataset was drawn from the PlantVillage Dataset [20]. Crop leaf images were taken

under different weather conditions with a standard digital camera. They were gathered from
many sources, which makes the dataset more diversified and tailored to the application of machine
learning algorithms, notably deep learning ones. In total, there are 42854 images of 8 different crops,
divided into 23 distinct classes, given as a pair: healthy leaf and diseased leaf.

The crop leaf images are sized at 256 × 256 pixels in RGB color, as shown in Figure 1, which
displays a few randomly selected leaf images from the dataset to give a glimpse of the raw
image form. Hence, color change, background suppression, and contrast tuning are required
for removing any potential bias. The species in this set of images are grape, apple, peach,
cherry, strawberry, corn, bell pepper, potato, and tomato. These crop leaves are affected by
viral, fungal, and bacterial diseases. The dataset in detail is presented in Table 1. Note that the
image distribution is not uniform, presenting a problem of data imbalance.

Figure 1. An overview of some crop leaf images selected randomly from the PlantVillage dataset.

Figure 1. An overview of some crop leaf images selected randomly from the PlantVillage dataset.

2.2. Experimental Setup

The experimental study was performed on a Google Compute Engine instance called
Google Collaboratory along with a local HP Pavilion workstation having a RAM capacity
of 16 GB. The Collaboratory notebook [21] is powered by Jupyter, which runs like a Google
Docs object. Moreover, the notebooks are preconfigured with leading machine learning
libraries, such as Keras, TensorFlow, as well as Matplotlib. The Google Collaboratory
provides access to fast TPUs and operates on Ubuntu 17.10 64-bit. This one is made up
of an Intel Xeon processor with 13 GB of RAM and powered by an NVIDIA Tesla K80
processor, 12 GB of RAM, and 2496 CUDA. Our experiments are developed and run in
Python, by employing the PyTorch library, taking advantage of automated differentiation
on graphs of varying computations. Moreover, we experimented with the PyTorch Zoo
model, including different pre-trained models upon the ImageNet dataset. We also used
the TPU Collaboratory accelerated runtime, which is suitable not only for accelerating
operations such as deep learning but also for handling other GPU-centric applications.
TPUs are also known to be faster than GPUs, and each TPU provides up to 180 teraflops of
floating-point performance and 64 GB of memory with high bandwidth on a single board.

2.3. Machine Learning Approach

When working with conventional ML algorithms, some basic pre-processing steps
must be followed. These core steps are illustrated below in Figure 2.

Agriculture 2023, 13, 352 5 of 35Agriculture 2023, 13, x FOR PEER REVIEW 5 of 35

Figure 2. Diagram illustrating the training and testing phases.

2.3.1. Image Preprocessing
First, the RGB images are resized to a smaller pixel size to accelerate the computations,

followed by using Gaussian blur for noise removal. Since the RGB format cannot separate the
image’s intensity, it has shadows and lights that make it less suitable for removing the back-
ground. So, the RGB crop leaf images are converted to another color space called HSV (Hue,
Saturation, Value), which can separate the color from the intensity.

2.3.2. Background Removal and Segmentation of the Diseased Region
Afterward, the habitual preprocessing steps, including removing background and arti-

facts, are carried out as shown in Figure 3. Indeed, the background suppression step is pivotal
in the process because it can bring down the quality of the features retrieved from the crop leaf
images. Thus, background elimination is performed to preclude any potential skew in the ex-
tracted features. We opted for a mask generation-based technique for segmentation purposes
using the color information, color intensity, and brightness of the HSV color space (which is
the most straightforward technique for image segmentation as it reduces memory usage and
computation time). We thresholded the HSV image for the green and brown color range, sep-
arating the images’ areas of interest. Green means that the image samples are healthy, and
brown means they are diseased. Thresholding of the HSV images results in a mask for a healthy
and diseased leaf image in RGB color space. Then, these segmented images are transferred to
feature descriptors as shown in the flowchart below.

Figure 3. Sample input image (left) and background removal from the leaf (right).

Figure 2. Diagram illustrating the training and testing phases.

2.3.1. Image Preprocessing

First, the RGB images are resized to a smaller pixel size to accelerate the computations,
followed by using Gaussian blur for noise removal. Since the RGB format cannot separate
the image’s intensity, it has shadows and lights that make it less suitable for removing the
background. So, the RGB crop leaf images are converted to another color space called HSV
(Hue, Saturation, Value), which can separate the color from the intensity.

2.3.2. Background Removal and Segmentation of the Diseased Region

Afterward, the habitual preprocessing steps, including removing background and
artifacts, are carried out as shown in Figure 3. Indeed, the background suppression step is
pivotal in the process because it can bring down the quality of the features retrieved from the
crop leaf images. Thus, background elimination is performed to preclude any potential skew
in the extracted features. We opted for a mask generation-based technique for segmentation
purposes using the color information, color intensity, and brightness of the HSV color space
(which is the most straightforward technique for image segmentation as it reduces memory
usage and computation time). We thresholded the HSV image for the green and brown color
range, separating the images’ areas of interest. Green means that the image samples are
healthy, and brown means they are diseased. Thresholding of the HSV images results in
a mask for a healthy and diseased leaf image in RGB color space. Then, these segmented
images are transferred to feature descriptors as shown in the flowchart below.

Agriculture 2023, 13, x FOR PEER REVIEW 5 of 35

Figure 2. Diagram illustrating the training and testing phases.

2.3.1. Image Preprocessing
First, the RGB images are resized to a smaller pixel size to accelerate the computations,

followed by using Gaussian blur for noise removal. Since the RGB format cannot separate the
image’s intensity, it has shadows and lights that make it less suitable for removing the back-
ground. So, the RGB crop leaf images are converted to another color space called HSV (Hue,
Saturation, Value), which can separate the color from the intensity.

2.3.2. Background Removal and Segmentation of the Diseased Region
Afterward, the habitual preprocessing steps, including removing background and arti-

facts, are carried out as shown in Figure 3. Indeed, the background suppression step is pivotal
in the process because it can bring down the quality of the features retrieved from the crop leaf
images. Thus, background elimination is performed to preclude any potential skew in the ex-
tracted features. We opted for a mask generation-based technique for segmentation purposes
using the color information, color intensity, and brightness of the HSV color space (which is
the most straightforward technique for image segmentation as it reduces memory usage and
computation time). We thresholded the HSV image for the green and brown color range, sep-
arating the images’ areas of interest. Green means that the image samples are healthy, and
brown means they are diseased. Thresholding of the HSV images results in a mask for a healthy
and diseased leaf image in RGB color space. Then, these segmented images are transferred to
feature descriptors as shown in the flowchart below.

Figure 3. Sample input image (left) and background removal from the leaf (right). Figure 3. Sample input image (left) and background removal from the leaf (right).

Agriculture 2023, 13, 352 6 of 35

2.3.3. Feature Extraction

Selecting the appropriate features is arguably the most difficult and important part of
implementing ML algorithms, which demands a profound analysis as well as proficiency in
the concerned domain. In our program, we have deployed three feature descriptors, namely:

Hu Moment’s descriptor [22]: we used it to describe and quantify the shape of objects,
which normally stands for the object outlines. Then we converted the color images into
grayscale images and calculated the seven invariant moments that are dedicated to the
rotation, translation, and object scale change, to recognize the object independently of these
factors. These seven moments [23] are given by the following Formula (1).

M1 = η20 + η02
M2 = (η20− η02)

2 + 4 η11
2

M3 = (η30− 3η12)
2 + (3 η21

2− η03)
2

M4 = (η30 + η12)
2 + (η21 + η03)

2

M5 = (η30 − 3η12)(η30+η12) +
[
(η30+η12)

2− 3(η21+η03)
2
]
+ (3η21 − η03)(η21+η03)

[
(η30+η12)

2 + (η12+η03)
2
]

M6 = (η20− η02)
[
(η30 + η12)

2 − (η21 + η03)
2
]
+ 4η11(η30 + η12)(η21 + η03)

M7 = (3 η21 − η03)(η30+η12)
[
(η 30+η12)

2− 3(η 21+η03

)]
+ (η30− 3η12)(η21+η03)+[3(η 30+η12)

2 − (η 12+η03)
2]

(1)

where ηpq represents the relative moments that are centered on the centroid, and which
can be computed as stated beneath:

ηpq = ∑x ∑y (x− x)p (y− y)q I(x, y) (2)

I(x, y) stands for the pixel intensity value at the coordinates (x, y), and p, q are non-
negative integers. As well, the centroid is the center of the coordinates (x, y), which we
have set as x and y, respectively.

x =
m10

m00
and y=

m10

m00
(3)

where m10 is a shape’s regular moment in a binary image defined by:

mij = ∑x ∑y xiyj I(x, y) (4)

These seven moments form the feature vector V = [M1,M2,M 3,M4,M5,M6,M7].
Haralick Texture descriptor [24]: We used the Haralick texture descriptor to quantify

the texture of the images. The color images must be converted to grayscale for the Haralick
descriptor to extract texture features. Moreover, the fundamental concept involved in the
calculation of these Haralick texture characteristics is the GLCM gray-level co-occurrence
matrix [25] which comprises 13 features. From this GLCM matrix C(∆x,∆y), which is defined
on an n * m image I with the (∆x, ∆y) offset as stated below:

C(∆x ,∆y) (i, j) =
n

∑
p=1

m

∑
q=1

{
1, I(p, q) = i and I(p + ∆x, q + ∆y) = j
1, I(p, q) = j and I(p− ∆x, q− ∆y) = i

}
0, otherwise

(5)

Note that the co-occurrence matrix can be seen as a frequency matrix of neighboring
pixels in an image I with a lag (∆x, ∆y), where there are two pixels, one with grey level i
and the other with grey level j. It is noteworthy that this matrix is symmetric. The textural
characteristics are computed based on a statistical theory. Hence, the Haralick texture
features are calculated as listed in Table 2 [26]:

Agriculture 2023, 13, 352 7 of 35

Table 2. Calculation of Haralick texture features.

Angular Second Moment

It denotes the summation of the squares in the grey-level co-occurrence matrix.

f1 =
N−1

∑
i, j=0

(Pi, j)
2 (6)

Contrast

It represents the local intensity difference sum, where i 6= j.

f2 =
N−1

∑
i, j=0

Pi, j (i− j)2 (7)

Correlation

It denotes the gray-level linear dependence of adjacent pixels.

f3 =
N−1

∑
i, j=0

Pi, j (i−µ)(j−µ)
σ2 (8)

Squares Sum

Variance

f4 =
N−1

∑
i, j=0

Pi, j (i− µ)2 (9)

Sum Mean (µ) f5 =
N−1

∑
i, j=0

iPi, j (10)

Inverse Different Moment f6 =
N−1

∑
i, j=0

1

1 + (i− j)2 Pi, j (11)

Sum Variance f7 =
2N

∑
i=2

(i− f8)
2Pi,j(i) (12)

Sum Entropy f8 = −
2N

∑
i=2

Pi,j(i) ln
(
Pi,j
)
(i) (13)

Entropy

It indicates the required amount of information on the image for compression.

f9 =
N−1

∑
i,j=0
− ln

(
Pi,j
)

Pi,j (14)

Agriculture 2023, 13, 352 8 of 35

Table 2. Cont.

Difference Variance f10= Variance of
N−1

∑
i,j=0

(15)

Difference Entropy f 11 = −
N−1

∑
i,j=0

Pi,j(i) ln
{

Pi,j(i)
}

(16)

Correlation information measures

f 12 =
HXY−HXY1

max{HX, HY} (17)

f 13= (1 − exp [−2 .0(HXY2 − HXY)])1/2 (18)

where: HXY = − ∑i ∑j Pi,j ln
(
Pi,j
)

Furthermore, HX and HY are the px (is the marginal likelihood matrix entry obtained by
adding the Pi,j rows) and py (stands for the marginal likelihood matrix entry obtained by
adding the Pi,j columns) entropies.

Maximal Correlation Coefficient f 14= (Second largest eigenvalue of
k=N−1

∑
0

P(i, k)P(j, k)
Px(i) Py(k)

)1/2 (19)

Color Histogram descriptor [27]: We have computed a histogram of 26 bins for each
channel and applied the number of pixels per bin as characteristics, then multiplied by
three channels, which yields 78 characteristics.

So, after extracting the features from images as shown in Figures 4–7, they are stacked
together using ‘np. stack’ Numpy function. Then, according to the images located in the file,
the labels are encoded in digital format for better understandability by the machine. The
dataset is partitioned into training and testing sets with a proportion of 80/20. Following
this, we have employed Min–Max scaling. This scaling puts the value between 0 and 1.
Feature scalability is a method of standardizing independent characteristics within data to
a specified range. It is conducted during data preprocessing to deal with highly variable
magnitudes, units, or values. If scaling of features is not carried out, a machine learning
algorithm will tend to emphasize large values and regard small values as inferior, regardless
of the unit of the values. Hence, once the characteristics are pulled from the images, they
are saved into an HDF5 file. Note that the Hierarchical Data Format Version 5 [28] is an
open-source file format for handling heterogeneous, enormous, and intricate data. The
HDF5 employs a “file folder” framework that enables you to arrange the file data in several
structured ways, like how you might arrange directories on your computer. Eventually,
the model is trained on 6 machine learning models, and it is vetted through the 10 k-fold
cross-validation method.

Agriculture 2023, 13, 352 9 of 35

Agriculture 2023, 13, x FOR PEER REVIEW 9 of 35

Agriculture 2023, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/agriculture

Color Histogram descriptor [27]: We have computed a histogram of 26 bins for each
channel and applied the number of pixels per bin as characteristics, then multiplied by
three channels, which yields 78 characteristics.

So, after extracting the features from images as shown in Figures 4–7, they are stacked
together using ‘np. stack’ Numpy function. Then, according to the images located in the
file, the labels are encoded in digital format for better understandability by the machine.
The dataset is partitioned into training and testing sets with a proportion of 80/20. Follow-
ing this, we have employed Min–Max scaling. This scaling puts the value between 0 and
1. Feature scalability is a method of standardizing independent characteristics within data
to a specified range. It is conducted during data preprocessing to deal with highly variable
magnitudes, units, or values. If scaling of features is not carried out, a machine learning
algorithm will tend to emphasize large values and regard small values as inferior, regard-
less of the unit of the values. Hence, once the characteristics are pulled from the images,
they are saved into an HDF5 file. Note that the Hierarchical Data Format Version 5 [28] is
an open-source file format for handling heterogeneous, enormous, and intricate data. The
HDF5 employs a “file folder” framework that enables you to arrange the file data in sev-
eral structured ways, like how you might arrange directories on your computer. Eventu-
ally, the model is trained on 6 machine learning models, and it is vetted through the 10 k-
fold cross-validation method.

Figures 4–7 illustrate the segmentation results of crop leaves randomly drawn from
the dataset affected by different diseases such as Cercospora, anthracnose, fire blight, and
early blight.

Figure 4. Sample input image of a Cercospora-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).

Figure 5. Sample input image of an Anthracnose-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).

Figure 6. Sample input image of a fire blight-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).

Figure 4. Sample input image of a Cercospora-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).

Agriculture 2023, 13, x FOR PEER REVIEW 9 of 35

Agriculture 2023, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/agriculture

Color Histogram descriptor [27]: We have computed a histogram of 26 bins for each
channel and applied the number of pixels per bin as characteristics, then multiplied by
three channels, which yields 78 characteristics.

So, after extracting the features from images as shown in Figures 4–7, they are stacked
together using ‘np. stack’ Numpy function. Then, according to the images located in the
file, the labels are encoded in digital format for better understandability by the machine.
The dataset is partitioned into training and testing sets with a proportion of 80/20. Follow-
ing this, we have employed Min–Max scaling. This scaling puts the value between 0 and
1. Feature scalability is a method of standardizing independent characteristics within data
to a specified range. It is conducted during data preprocessing to deal with highly variable
magnitudes, units, or values. If scaling of features is not carried out, a machine learning
algorithm will tend to emphasize large values and regard small values as inferior, regard-
less of the unit of the values. Hence, once the characteristics are pulled from the images,
they are saved into an HDF5 file. Note that the Hierarchical Data Format Version 5 [28] is
an open-source file format for handling heterogeneous, enormous, and intricate data. The
HDF5 employs a “file folder” framework that enables you to arrange the file data in sev-
eral structured ways, like how you might arrange directories on your computer. Eventu-
ally, the model is trained on 6 machine learning models, and it is vetted through the 10 k-
fold cross-validation method.

Figures 4–7 illustrate the segmentation results of crop leaves randomly drawn from
the dataset affected by different diseases such as Cercospora, anthracnose, fire blight, and
early blight.

Figure 4. Sample input image of a Cercospora-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).

Figure 5. Sample input image of an Anthracnose-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).

Figure 6. Sample input image of a fire blight-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).

Figure 5. Sample input image of an Anthracnose-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).

Agriculture 2023, 13, x FOR PEER REVIEW 9 of 35

Agriculture 2023, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/agriculture

Color Histogram descriptor [27]: We have computed a histogram of 26 bins for each
channel and applied the number of pixels per bin as characteristics, then multiplied by
three channels, which yields 78 characteristics.

So, after extracting the features from images as shown in Figures 4–7, they are stacked
together using ‘np. stack’ Numpy function. Then, according to the images located in the
file, the labels are encoded in digital format for better understandability by the machine.
The dataset is partitioned into training and testing sets with a proportion of 80/20. Follow-
ing this, we have employed Min–Max scaling. This scaling puts the value between 0 and
1. Feature scalability is a method of standardizing independent characteristics within data
to a specified range. It is conducted during data preprocessing to deal with highly variable
magnitudes, units, or values. If scaling of features is not carried out, a machine learning
algorithm will tend to emphasize large values and regard small values as inferior, regard-
less of the unit of the values. Hence, once the characteristics are pulled from the images,
they are saved into an HDF5 file. Note that the Hierarchical Data Format Version 5 [28] is
an open-source file format for handling heterogeneous, enormous, and intricate data. The
HDF5 employs a “file folder” framework that enables you to arrange the file data in sev-
eral structured ways, like how you might arrange directories on your computer. Eventu-
ally, the model is trained on 6 machine learning models, and it is vetted through the 10 k-
fold cross-validation method.

Figures 4–7 illustrate the segmentation results of crop leaves randomly drawn from
the dataset affected by different diseases such as Cercospora, anthracnose, fire blight, and
early blight.

Figure 4. Sample input image of a Cercospora-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).

Figure 5. Sample input image of an Anthracnose-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).

Figure 6. Sample input image of a fire blight-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).
Figure 6. Sample input image of a fire blight-affected leaf (left) with its segmented healthy area
(middle) and extracted disease spot (right).

Agriculture 2023, 13, x FOR PEER REVIEW 10 of 35

Figure 7. Sample input image of an early blight-affected leaf (left) with. its segmented healthy area
(middle) and extracted disease spot (right).

2.3.4. Classification
Support Vector Machine (SVM) [29] is a supervised learning algorithm that is used

to solve regression and classification problems. Classification is performed by setting a
separation hyperplane in the function space. In its basic form, it performs a linear classifi-
cation on two clusters. Thanks to the kernels, nonlinear classification can also be carried
out. They are employed to transform the underlying feature space into an infinite or high-
dimensional feature space through a kernel function and then to construct an OSH (Opti-
mal Separating Hyper Plane) between the two classes in the transformed space, thus
achieving highly nonlinear hyperplanes and gaining expert knowledge of the problem
through kernel engineering. Among these great advantages is also the regularization pa-
rameter, which encourages the user to avoid overfitting. To build a non-linear support
vector classifier, we substitute the inner product (x, y) for the kernel function K (x, y), as
shown in (24).

𝑓(𝑥) = 𝑠𝑔𝑛(෍ (a୧୪୧ୀଵ y୧k K(x୧) + b)) (20)

where f(x) sets the belongingness of x. At this point, we suppose that abnormal subjects
were tagged as +1 and others as −1. The SVM consists of two parts. Throughout the learn-
ing phase, the first phase chooses the basis K (xi, x) = 1, 2....N from the specified kernel set,
whereas the second phase builds a linear function in the space. Doing so is analogous to
locating the optimum hyperplane in the resulting characteristic space.

Three principal kinds of kernel functions presently exist, whose formula is given in
Table 3:

Table 3. Principal kernel functions and their formulas.

Polynomial kernel function K୮୪୭୷(x, x୧) = [(x. x୧) +1]୯ 21
The outcome is a polynomial classifier of the rank q

Radial Basis Kernel (RBF) function Kୣୠ୤(x, x୧) = exp(|୶_ ୶౟|మ஢మ) 22
Sigmoid kernel function K(x, xi) = tan h (v(x. xi) + c) 23

Note that polynomial kernel and RBF functions are broadly used owing to their pow-
erful classification capabilities [30]. As a result, we performed numerous setup experi-
ments and discovered that the Radial Basis Function with C = 100 as the normalization
parameter produced the best outcomes. The accuracy obtained on the test set is 84,10%,
as shown in Figure 8.

Figure 7. Sample input image of an early blight-affected leaf (left) with. its segmented healthy area
(middle) and extracted disease spot (right).

Figures 4–7 illustrate the segmentation results of crop leaves randomly drawn from
the dataset affected by different diseases such as Cercospora, anthracnose, fire blight, and
early blight.

2.3.4. Classification

Support Vector Machine (SVM) [29] is a supervised learning algorithm that is used
to solve regression and classification problems. Classification is performed by setting
a separation hyperplane in the function space. In its basic form, it performs a linear
classification on two clusters. Thanks to the kernels, nonlinear classification can also be
carried out. They are employed to transform the underlying feature space into an infinite
or high-dimensional feature space through a kernel function and then to construct an OSH
(Optimal Separating Hyper Plane) between the two classes in the transformed space, thus
achieving highly nonlinear hyperplanes and gaining expert knowledge of the problem
through kernel engineering. Among these great advantages is also the regularization
parameter, which encourages the user to avoid overfitting. To build a non-linear support

Agriculture 2023, 13, 352 10 of 35

vector classifier, we substitute the inner product (x, y) for the kernel function K (x, y), as
shown in (24).

f (x) = sgn(∑l
i=1(aiyik K(xi) + b)) (20)

where f(x) sets the belongingness of x. At this point, we suppose that abnormal subjects
were tagged as +1 and others as −1. The SVM consists of two parts. Throughout the
learning phase, the first phase chooses the basis K (xi, x) = 1, 2. . . N from the specified
kernel set, whereas the second phase builds a linear function in the space. Doing so is
analogous to locating the optimum hyperplane in the resulting characteristic space.

Three principal kinds of kernel functions presently exist, whose formula is given
in Table 3:

Table 3. Principal kernel functions and their formulas.

Polynomial kernel function
Kploy(x, xi) = [(x.xi) + 1]q (21)

The outcome is a polynomial classifier of the rank q

Radial Basis Kernel (RBF) function Kebf(x, xi) = exp

(
|x_ xi|2

σ2

)
(22)

Sigmoid kernel function K(x, xi) = tan h(v(x.xi) + c) (23)

Note that polynomial kernel and RBF functions are broadly used owing to their pow-
erful classification capabilities [30]. As a result, we performed numerous setup experiments
and discovered that the Radial Basis Function with C = 100 as the normalization param-
eter produced the best outcomes. The accuracy obtained on the test set is 84.10%, as
shown in Figure 8.

Agriculture 2023, 13, x FOR PEER REVIEW 11 of 35

Figure 8. Comparison of machine learning algorithms.

K-Nearest Neighbors (KNN) [31] is a fairly straightforward algorithm that is fre-
quently used to address classification issues. It does not have a training phase and is non-
parametric. When selecting a sample class, KNN looks at its k nearest neighbors and de-
cides which class it pertains to by plain majority rule, assuming that many of the samples
in the same class are near to each other in the functionality space. Note that lower values
of k enable greater non-linearity but are very susceptible to aberrations. In contrast, higher
values of k are not suitable for complex boundaries, but they allow good generalization.

The KNN classification steps are as follows: 𝑋௜: learning data 𝑌௜: class labels 𝑥௜: the unknown sample
Step 1: for i = 1 to n, perform the above steps
Step 2: calculate the distance d (xi, x)
Step 3: Finish for
Step 4: Repeat Step 1 while keeping the indices for the K shortest distances d (𝑥௜, x) in mind
Step 5: Turn the majority label over.

We found that small values of k gave better results, so ranging k from 1 to 9 does not
influence the accuracy significantly. The highest outcome is 91.67%, much higher than the
one obtained by the SVM.

Random Forest (RF) [32] relies on a heuristic partitioning of the description space.
The decision structure of a tree is built on the recursive division of this space, making the
ultimate decisions highly dependent on the upstream divisions. The search space of pos-
sible decision tree structures is then strongly constrained by these dependencies. A ran-
dom forest consists of a basic classifier set such as a decision tree presented in: {ℎ(𝑥, 𝛩௞), 𝑘 = 1,…L}

Random forests consist of a collection of binary decision trees into which randomness
has been introduced. RF was defined by Breiman et al. [33] with the following broad defini-
tion.
Consider (ℎ෠(𝛩ଵ), … , ℎ෠(𝛩௤)) a set of tree predictors, with 𝛩ଵ, … , 𝛩௤independent random var-
iables of Ը௡. The random forest predictor ℎ෠ோி is acquired by aggregating this set of ran-
dom trees in the following way:

 ℎ෠ோி (𝑥) = 1𝑞 ෍ ℎ෠(𝑥, 𝛩௟௤
௟ୀଵ) (24)

The average prediction of the individual trees in the regression.

Figure 8. Comparison of machine learning algorithms.

K-Nearest Neighbors (KNN) [31] is a fairly straightforward algorithm that is frequently
used to address classification issues. It does not have a training phase and is non-parametric.
When selecting a sample class, KNN looks at its k nearest neighbors and decides which
class it pertains to by plain majority rule, assuming that many of the samples in the same
class are near to each other in the functionality space. Note that lower values of k enable
greater non-linearity but are very susceptible to aberrations. In contrast, higher values of k
are not suitable for complex boundaries, but they allow good generalization.

The KNN classification steps are as follows:
XI: learning data
YI: class labels

Agriculture 2023, 13, 352 11 of 35

xI: the unknown sample
Step 1: for i = 1 to n, perform the above steps
Step 2: calculate the distance d (xi, x)
Step 3: Finish for
Step 4: Repeat Step 1 while keeping the indices for the K shortest distances d (xI, x)

in mind
Step 5: Turn the majority label over.
We found that small values of k gave better results, so ranging k from 1 to 9 does not

influence the accuracy significantly. The highest outcome is 91.67%, much higher than the
one obtained by the SVM.

Random Forest (RF) [32] relies on a heuristic partitioning of the description space.
The decision structure of a tree is built on the recursive division of this space, making
the ultimate decisions highly dependent on the upstream divisions. The search space of
possible decision tree structures is then strongly constrained by these dependencies. A
random forest consists of a basic classifier set such as a decision tree presented in:

{h(x, Θk), k = 1, . . . L}

Random forests consist of a collection of binary decision trees into which random-
ness has been introduced. RF was defined by Breiman et al. [33] with the following
broad definition.

Consider (ĥ(Θ1), . . . , ĥ
(
Θq
)
) a set of tree predictors, with Θ1, . . . , Θq independent

random variables of

Agriculture 2023, 13, x FOR PEER REVIEW 11 of 35

Figure 8. Comparison of machine learning algorithms.

K-Nearest Neighbors (KNN) [31] is a fairly straightforward algorithm that is fre-
quently used to address classification issues. It does not have a training phase and is non-
parametric. When selecting a sample class, KNN looks at its k nearest neighbors and de-
cides which class it pertains to by plain majority rule, assuming that many of the samples
in the same class are near to each other in the functionality space. Note that lower values
of k enable greater non-linearity but are very susceptible to aberrations. In contrast, higher
values of k are not suitable for complex boundaries, but they allow good generalization.

The KNN classification steps are as follows: 𝑋௜: learning data 𝑌௜: class labels 𝑥௜: the unknown sample
Step 1: for i = 1 to n, perform the above steps
Step 2: calculate the distance d (xi, x)
Step 3: Finish for
Step 4: Repeat Step 1 while keeping the indices for the K shortest distances d (𝑥௜, x) in mind
Step 5: Turn the majority label over.

We found that small values of k gave better results, so ranging k from 1 to 9 does not
influence the accuracy significantly. The highest outcome is 91.67%, much higher than the
one obtained by the SVM.

Random Forest (RF) [32] relies on a heuristic partitioning of the description space.
The decision structure of a tree is built on the recursive division of this space, making the
ultimate decisions highly dependent on the upstream divisions. The search space of pos-
sible decision tree structures is then strongly constrained by these dependencies. A ran-
dom forest consists of a basic classifier set such as a decision tree presented in: {ℎ(𝑥, 𝛩௞), 𝑘 = 1,…L}

Random forests consist of a collection of binary decision trees into which randomness
has been introduced. RF was defined by Breiman et al. [33] with the following broad defini-
tion.
Consider (ℎ෠(𝛩ଵ), … , ℎ෠(𝛩௤)) a set of tree predictors, with 𝛩ଵ, … , 𝛩௤independent random var-
iables of Ը௡. The random forest predictor ℎ෠ோி is acquired by aggregating this set of ran-
dom trees in the following way:

 ℎ෠ோி (𝑥) = 1𝑞 ෍ ℎ෠(𝑥, 𝛩௟௤
௟ୀଵ) (24)

The average prediction of the individual trees in the regression.

n. The random forest predictor ĥRF is acquired by aggregating this
set of random trees in the following way:

ĥRF (x) =
1
q

q

∑
l=1

ĥ(x, Θl) (24)

The average prediction of the individual trees in the regression.

ĥRF (x) = argmax1≤k≤K

q

∑
l=1

1ĥ(x,Θl)=k (25)

A majority vote among the classification’s prediction trees.
The term random forest arises from considering that individual predictors here are explicitly

per-tree predictors as well as each tree relies on a supplementary random variable. Using RF,
we achieved better and greater accuracy over other machine learning algorithms 97.54%.

Naive Bayes (NB) [34]: The Naive Bayes algorithm represents one of the most straight-
forward and efficient ways of classifying. This classifier relies on the Bayesian network
concept, which stands for a possible graphical model featuring a random set of variables
along with their conditional autonomy. There are many efficient algorithms in Bayesian
networks that perform assimilation and learning. The only prerequisite is that the features
of the data operate independently. Data features are interdependent owing to their genetic
roots. However, the dependence does not seem to be stout. Consequently, classification
algorithms may assume that the features are independent and use the Naive Bayes ap-
proach. It first generates probabilities for each sequence in the data, then calculates the
probable sequence number for each sample and compares it to the number of occurrences
in the database. The sample is then ranked based on the number of probable sequences.
The Naive Bayes algorithm is a simple probabilistic classifier that uses the Bayes theory
and assumes a high level of independence among the data features. The data storage
possibilities for X with a category label Cj are:

P
(
Cj\X

)
=

P
(
X\Cj

)
∗ P
(
Cj
)

P(X)
(26)

Agriculture 2023, 13, 352 12 of 35

By applying this classifier to our dataset, we obtained the least precision of 60.09%
compared to the other classifiers.

Latent Dirichlet Allocation (LDA) [35] is part of the ML toolkit used to explain sets of
observations through the identification of unobserved groups defined by similarities in the
data. Using this model, we obtained an accuracy of 80.28%.

Classification And Regression Trees (CART) [36] can be applied to solve classification
and regression predictive modelling problems. It serves as the foundation for essential
algorithms including random forest, bagged, and boosted decision trees. CART classifier
uses a binary tree representation and employs recursive binary splitting to divide the input
space. Therefore, an expensive approach is employed to split the space, named recursive
binary splitting. The accuracy obtained is 94.45%.

2.4. Deep Learning Approach

DL models represent a subset of machine learning algorithms that use many layers
to make feature learning more hierarchical and have been consistently proven to success-
fully learn extremely intricate models with sufficient data. The learning process has two
primary phases [37]:

The input is transformed nonlinearly in the first phase, and the output is built using a
statistical model. The second phase aims at fine-tuning the model by using a derivative
technique. The network then repeats these two phases several times till it reaches a
satisfactory accuracy level. With DL models, no feature engineering is required as these
networks are driven by raw data and can train those features as appropriate. Convolutional
neural networks (CNN) are frequently employed to solve image recognition tasks. Hence,
we compared this model to four other pre-trained models, namely InceptionV3, VGG19,
VGG16, and ResNet50.

2.4.1. Image Preprocessing

Data preprocessing is the fundamental milestone in any deep learning approach.
Moreover, data augmentation must be performed, so that the system can work properly
in all out-of-sample images as well as prevent the overfitting problem from arising. The
image size is 256 × 256. Thus, it is essential to resize the input images and subsequently
normalize the image pixel values by dividing them by 255 and then proceed to the im-
plementation of different data augmentation techniques, such as rotating the images by
using transformations such as affine transformation, turning the data on the horizontal
axis, photo brightness, as well as changing randomly the hue and saturation values.

2.4.2. Convolutional Neural Networks CNN

CNN represent a leading category for image recognition and classification [38]. CNN
can strongly model nonlinear functions. Unlike SVM and KNN, this one does not converge
toward the global optimum. It can also be used directly on raw data without the need
for handcrafted features. The artificial neurons in a CNN are inspired by the structure of
biological neurons, consisting of a summation term, connection weights, and a nonlinear
activation function. The number of hidden layers and neurons in a CNN is often determined
through trial and error. Each neuron X is characterized by certain of its bias, weights, and
activation function. Images are introduced into the deep learning model through the input
layer, where the neuron carries out a transformation as depicted in Equation (31).

X = (weights ∗ input) + bias (27)

An artificial neural network without an activation function is weaker and less suitable
for tasks involving complex patterns. Without the activation function, it is equivalent to
a linear regression model. So, the proper choice of activation function enables the DL to
effortlessly learn very challenging patterns and the following are among the prominent
purposes of the activation function:

Agriculture 2023, 13, 352 13 of 35

− To hold the output restricted to the desired range.
− To encompass a non-linear functionality in the data.

Different Kinds of Activation Functions

Several activation functions are available in the literature [39–41] and some of them
are outlined in detail below:

-Sigmoid: It stands for a non-linear function producing output values ranging from 0
to 1, and the resulting output will be non-linear with an identical sign. The function has no
symmetry around zero:

f(x) =
1

1− e−x (28)

-Tanh: It is akin to a sigmoid function but is symmetrical around 0 and produces
output values in the range [−1, 1], and the output sign can vary.

tanh(x) = 2 ∗ sigmoid(2x)− 1 (29)

g(x) = 1− 2 tan h2x (30)

The generated output for the sigmoid and tanh functions features upper and
lower bounds.

-ReLu: It denotes a rectified linear unit and is a non-linear function. The ReLu function
possesses an edge over other functions because it rarely activates all neurons at once. If
the output value is inferior to 0, the neuron is disabled. It is substantially more efficient
computationally than the tanh and sigmoid functions:

f(x) = max (0, x) (31)

-Softmax: It is built up of several sigmoids. It yields values ranging from 0 to 1 and
processes data probabilities related to the class employed in the multiclass task:

π(z)j =
ezj

∑K
k=1 ezj

, for j = 1, 2, 3, 4, . . . k (32)

-Softplus: It is a sort of conventional function released in 2001. It is differentiable and
simple to prove thanks to its derivative.

This is an optional replacement for the dead ReLu. The outcome ranges from [0 to ∞]:

y = log (1 + ex) (33)

-Softsign: It resembles the tanh much more; except that tanh is exponentially converging
while Softsign is polynomially converging. The resultant outcome lies between [−1, 1]:

y =
1

1− 1
x

(34)

-Swish function: It is one of the earliest hybrid combination AFs proposed, combining
the input function and the sigmoid AF to produce a hybrid AF. It was introduced by
Ramachandran et al. [42] and uses an autonomous search technique based on reinforcement
learning to compute the function. The Swish function has properties of non-monotonicity,
and smoothness being bounded below and unbounded above. Its smoothness makes it
effective for training deep learning (DL) architectures and improving generalization and
optimization outcomes.

f (x) = x.sigmoid(x) =
x

1 + e−x (35)

-Leaky ReLU: It was introduced to address the issue of “dead neurons” in the recti-
fied linear unit (ReLU) by adding a small negative slope to keep weight updates active

Agriculture 2023, 13, 352 14 of 35

throughout the entire propagation process [43]. The parameter α was then introduced to
ensure that gradients never reach zero during training. LReLU calculates the gradient with
a low fixed value for the negative gradient within a range of 0.01, so the LReLU function is
calculated as below.

f (x) = αx + x =

{
x if x > 0
αx if x ≤ 0

(36)

-Exponential Linear Units (ELUs): ELU is a variant of the rectified linear unit (ReLU)
proposed by Clevert et al. [44]. It is used to speed up deep neural network (DNN) training
and has the advantage of overcoming the vanishing gradient problem by using the identity
function for positive values and enhancing learning features. ELUs also have negative val-
ues that push the average unit activation closer to zero, reducing computational complexity
and improving training speed. ELUs are a good alternative to ReLUs because they can
reduce bias shifts by driving the average activation toward zero during training.

The ELU is expressed as:

f (x) =
(

x, if x > 0
αexp(x)− 1, if x ≤ 0

)
(37)

The gradient or derivative of the ELU equation is provided as follows:

f ′ =
(

1, if x > 0
f (x) + α, if x ≤ 0

)
(38)

where hyperparameter α = ELU monitors the point of saturation for the negative net inputs
and is typically set to 1.0. There is a well-defined saturation plateau in the negative mode
of the ELU, which allows learning robust representations and provides faster learning and
higher generalization than LReLU and ReLU with a particular network structure, especially
over five layers, and ensures state-of-the-art results regarding the ReLU variants. However,
a critical restriction of the ELU is it fails to center the values at zero as well as the parametric
ELU was suggested to solve this problem [45].

Table 4 provides a detailed comparison of the different activation functions used in
this study, including their advantages and disadvantages.

Table 4. The pros and cons of the applied activation functions.

Activation
Function Advantages Disadvantages When Might It Be Used?

Sigmoid
[41]

-Smooth gradient, avoiding “skips”
in the output values
-Consistently differentiable

-Decreasing gradient: It refuses to
learn more and is quite slow to
reach an accurate prediction.
-Computationally demanding

If the output lies between (0,1)
then the sigmoid may be
employed

Tanh
[41]

-Centered on zero
-Continuously differentiable at
any point

-Vanishing gradient issue
-Since the function is nonlinear, it
can effortlessly backpropagate
errors/faults

If the output lies between (0,1)
or (−1, 1), then the tanh
can be used

ReLU
[41]

-It is computationally efficient and
allows the net to get together quickly
-Backpropagation is allowable
-Non-linear: Although it possesses a
derivative function

-Once the inputs contact
zero/negative, the gradient
becomes zero, making the
network unable to perform
backpropagation and failing
at learning
-Unlimited and undifferentiable
at zero

ReLU is widely used, when we
want to predict output values
higher than 1 because tanh or
sigmoid are not appropriate for
this purpose

Agriculture 2023, 13, 352 15 of 35

Table 4. Cont.

Activation
Function Advantages Disadvantages When Might It Be Used?

Softmax
[39]

-Proficient in managing different
classes, single class among
other functions
-Provides the probability of the input
value to be in a particular class.

-Does not consider the rejection of
null values
-This is unlikely to work if data
are non-linearly separable

when predicting a probability
for a multi-class task, the
Softmax function must be
implemented in the last layer

Softplus
[41]

-Soft derivative employed in
backpropagation and it is equivalent to
a sigmoid function

-Operation not as affordable
as ReLU Rather never

Softsign
[41]

-Better and faster learning due to the
absence of difficulties related to the
vanishing gradient
-Softsign prevents neuron saturation,
which enables much more
efficient learning.

-Frequently, the gradient yields
either an extremely high or
low value
-More costly to calculate than tanh

Rather never

Swish
[42]

-It yields an efficient propagation of
information during training and has an
improved accuracy as it is devoid of
leakage gradient problems

-It is very costly in terms
of calculation.

It is used in very deep networks,
when the number of hidden
layers is high (nearly 30)

LeakyReLU
[42]

-Seeks to overcome the “dead neuron”
-Straightforward implementation and
low-cost operation

-Large gradients can change the
weights so that neural units are
permanently disabled
(never activated).

To be used only if you expect
a “dying ReLU” problem, so it
should be applied in
hidden layers.

ELU
[44]

-It can deliver negative outputs
-Resolves both the vanishing gradient
and the dying ReLU problem

-Computationally demanding
-For x >0, it can jump the
activation along with the output
range of [0, ∞]

When the risk of overfitting is
high, and it should be used in
hidden layers.

Convolutional neural networks (CNNs) classify incoming images into specific cat-
egories (e.g., healthy or affected) by processing them as pixel arrays with a resolution
represented as h × w × d (h = height, w = width, d = dimension). For example, an image
with dimensions 8 × 8 × 3 is a matrix of RGB values, while an image with dimensions
4 × 4 × 1 is a matrix of grayscale values. The CNN applies a series of convolutional layers
with kernels to extract features from the input image using the convolution mathematical
function, defined as the continuous function of two functions f and g:

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t− τ)dτ =

∫ ∞

−∞
f(t− τ)g(τ)dτ (39)

The analogous convolution function in the discrete state is stated as such:

(f ∗ g)(n) =
∫ ∞

m=−∞
f(m)g(n−m) =

∫ ∞

m=−∞
f(n−m)g(m) (40)

The above 1D convolution for the numerical image can be expanded to a 2D convolu-
tion, such as:

(f ∗ g)(x, y) =
M

∑
m=−M

N

∑
m=−N

f(x− n, y−m)g(n, m) (41)

In this application, a kernel or filter (called the “g function”) is applied to an input
image (called “f”). The process of applying the kernel to the image is known as 2D con-
volution, which involves sliding the kernel over the image and performing a convolution
operation at each point. This produces a 2D array called a feature map. The feature map
is then processed by a nonlinear activation layer, which determines whether a neuron

Agriculture 2023, 13, 352 16 of 35

should be activated based on the weighted summation and bias. Activation functions that
can be used in this layer include ReLU, Leaky ReLU, ELU, and Softmax. The purpose of
determining the activation function is to illustrate non-linearity in the neuron’s output.
Spatial pooling also termed down-sampling or subsampling, decreases each feature map’s
dimensionality while retaining the relevant information. It also helps to prevent overfitting
by reducing the number of computations and parameters. There are various types of
pooling, such as average, sum, and maximum pooling. The final layer in a convolutional
neural network (CNN) is a dense or fully connected layer, where every neuron receives
input from all the neurons in the previous layer.

This layer produces the model’s output with probabilities between 0 and 1 [46]. The
model depicted in Figure 9 represents a complete CNN process for input image classification
according to assigned values.

Agriculture 2023, 13, x FOR PEER REVIEW 16 of 35

dimensions 8 × 8 × 3 is a matrix of RGB values, while an image with dimensions 4 × 4 × 1
is a matrix of grayscale values. The CNN applies a series of convolutional layers with
kernels to extract features from the input image using the convolution mathematical func-
tion, defined as the continuous function of two functions f and g: (f ∗ g)(t) = න f(τ)g(t − τ)dτ = න f(t − τ)g(τ)dτஶ

ିஶ
ஶ

ିஶ (39)

The analogous convolution function in the discrete state is stated as such: (f ∗ g)(n) = න f(m)g(n − m) = න f(n − m)g(m)ஶ
୫ୀିஶ

ஶ
୫ୀିஶ (40)

The above 1D convolution for the numerical image can be expanded to a 2D convo-
lution, such as:

(f ∗ g)(x, y) = ෍ ෍ f(x − n, y − m)g(n, m)୒
୫ୀି୒

୑
୫ୀି୑ (41)

In this application, a kernel or filter (called the “g function”) is applied to an input
image (called “f”). The process of applying the kernel to the image is known as 2D convo-
lution, which involves sliding the kernel over the image and performing a convolution
operation at each point. This produces a 2D array called a feature map. The feature map
is then processed by a nonlinear activation layer, which determines whether a neuron
should be activated based on the weighted summation and bias. Activation functions that
can be used in this layer include ReLU, Leaky ReLU, ELU, and Softmax. The purpose of
determining the activation function is to illustrate non-linearity in the neuron’s output.
Spatial pooling also termed down-sampling or subsampling, decreases each feature map’s
dimensionality while retaining the relevant information. It also helps to prevent overfit-
ting by reducing the number of computations and parameters. There are various types of
pooling, such as average, sum, and maximum pooling. The final layer in a convolutional
neural network (CNN) is a dense or fully connected layer, where every neuron receives
input from all the neurons in the previous layer.

This layer produces the model’s output with probabilities between 0 and 1 [46]. The
model depicted in Figure 9 represents a complete CNN process for input image classifi-
cation according to assigned values.

Figure 9. The architecture of CNN.

The key configuration settings for a convolutional neural network (CNN) include:
The number of concealed layers, the activation function used in each layer, the method of

Figure 9. The architecture of CNN.

The key configuration settings for a convolutional neural network (CNN) include:
The number of concealed layers, the activation function used in each layer, the method of
regularization, the optimization technique, the technique of regularization, and method
of optimization.

In this work, we not only compared several activation functions that exist in the DL
literature and applied them to leaf disease detection tasks, but also implemented several
DL optimizers and compared them to our target problem of classifying leaf diseases.

Optimization Method

SGD optimizer was employed to train all CNN architectures in the first step. After
obtaining the best DL model, an attempt was also made to upgrade the plant disease
classification results. To this end, we applied five cutting-edge DL optimizers to train
the InceptionV3 architecture that achieved both the best f1-score as well as validation
accuracy over 10 epochs at the first stage of the parsing process. Some specifications of
these optimizers are presented below:

-SGD: It is one of the most straightforward deep learning optimizers. It requires the
rate of static learning for all parameters throughout the learning process and has a fast
convergence capability [47].

-Adagrad: This employs various learning rates for each model parameter. It adjusts
the learning rate in accordance with the update frequency of each parameter [48].

-RMSProp: To shorten the learning time seen in Adagrad, the RMSProp optimization
functions have been suggested and its learning rate decreases exponentially [49].

-Adadelta: It represents an expanded version of the Adagrad optimizer that stacks
up against prior gradients over a frozen time frame, ensuring continual learning even
after numerous repetitions. It leverages the Hessian approximation to provide the current
direction inside the negative gradient and suppress the update rule’s learning rate [50].

Agriculture 2023, 13, 352 17 of 35

-Adam: The Adaptive Moment Estimation optimizer estimates first- and second-
moment adaptive learning rates of gradients for several parameters [51]. It combines the
benefits of two expanded forms of the SGD optimizer, namely Adagrad as well as RMSProp.
Unlike RMSProp, it averages the second gradient moment and also employs the preceding
gradients to accelerate learning [51].

Optimizer Training Specifications

The PlantVillage dataset was used to train all the CNN architecture-based models
from scratch. The random search approach was used to tweak the deep learning optimizers’
hyperparameters [52]. The problem of internal covariate shift arises in the neural network
due to the variation of the input data distribution owing to a modification in the previous
layer’s number of parameters. This issue was solved by using batch normalization, which
is a highly efficient and successful technique for a high learning rate [53].

In the first step, for training all CNN architectures, the ReLU was used due to its
computational efficiency [54,55] and its ability to diminish the likelihood of gradient
vanishing. Table 5 lists the parameters of all DL optimizers.

Table 5. Hyperparameters of DL optimizers.

Optimizers Specifications

SGD [47] -weight decay = 0.0005, momentum = 0.9,
nesterov = False, lr = 0.001

Adagrad [48] -epsilon = 1 × 10−7, lr = 0.001

RMSProp [49,56] -epsilon = 1 × 10−7, rho = 0.9, lr = 0.001

Adadelta [50] -epsilon = 1 × 10−8, lr = 0.001, beta1 = 0.9,
beta2 = 0.999, amsgrad = False

Adam [51] -epsilon = 1 × 10−8, beta1 = 0.9,
beta2 = 0.999, lr = 0.002

Hyperparameter Tunning

The backbone of any deep learning model is the tuning of the hyperparameters. Find-
ing the best parameters is an incredibly laborious task, requiring numerous experiments
to be undertaken when building the model. The hyperparameters comprise the batch
size, loss function, epoch number, and learning rate, as well as the optimizer, which are
generally regarded to tune the model. For the sake of building the classification model
for three classes, a specific range of each hyper-parameter is considered. Thereby, several
experiments were carried out to build an efficient model. After running some experi-
ments with varying the given hyperparameters, it was inferred that the accuracy of the
model strongly depends on the learning rate, batch size, epoch number, and the dataset
size. In the present research, the following hyperparameters were used: batch size = 32,
optimizer = RMSProp, loss function = binary cross-entropy, decay learning = 0.0001, initial
learning rate = 0.01, epochs = 100. By employing these parameters, the model yielded
satisfactory classification accuracy as shown in Figure 10 on our test set. In our setup,
we used a CNN with ten hidden layers, we firstly inserted a 2D convolutional layer with
32 filters, a 3× 3 kernel, the input size as the dimensions of our image, which is 256 × 256 × 3,
and the ReLU (Linear Rectified Unit) as the activation functions in the hidden layers, then
we added Leaky ReLUs because this one solves the problem of the dying linear rectified
units. Next, we added a maximum pooling layer with MaxPooling2D () that halves the
image size, and so forth. We stacked up 10 of these layers together, with each subsequent
CNN adding more filters (32, 64,128, etc.). Lastly, we flattened the output of the CNN layers,
fed it into a fully connected layer, and then into the final dense layer, which is a sigmoid
activation function with 2 units, which is necessary for addressing a binary classification
task. For the specification setup when training the model. We trained our CNN model with

Agriculture 2023, 13, 352 18 of 35

the binary cross-entropy loss, which assesses the model performance and whose output is
a likelihood value ranging from 0 to 1. Moreover, we used the RMSProp optimizer. Indeed,
the RMSProp is a judicious optimization algorithm as it automates the learning rate tuning
for us. We appended the accuracy to the metrics so that the model monitors the accuracy
during training. This configuration gave us an accuracy of 93.89% as illustrated in Figure 10
on our test set.

Agriculture 2023, 13, x FOR PEER REVIEW 18 of 35

Hyperparameter Tunning

The backbone of any deep learning model is the tuning of the hyperparameters. Find-
ing the best parameters is an incredibly laborious task, requiring numerous experiments
to be undertaken when building the model. The hyperparameters comprise the batch size,
loss function, epoch number, and learning rate, as well as the optimizer, which are gener-
ally regarded to tune the model. For the sake of building the classification model for three
classes, a specific range of each hyper-parameter is considered. Thereby, several experi-
ments were carried out to build an efficient model. After running some experiments with
varying the given hyperparameters, it was inferred that the accuracy of the model strongly
depends on the learning rate, batch size, epoch number, and the dataset size. In the pre-
sent research, the following hyperparameters were used: batch size = 32, optimizer =
RMSProp, loss function = binary cross-entropy, decay learning = 0.0001, initial learning
rate = 0.01, epochs = 100. By employing these parameters, the model yielded satisfactory
classification accuracy as shown in Figure 10 on our test set. In our setup, we used a CNN
with ten hidden layers, we firstly inserted a 2D convolutional layer with 32 filters, a 3 × 3
kernel, the input size as the dimensions of our image, which is 256 × 256 × 3, and the ReLU
(Linear Rectified Unit) as the activation functions in the hidden layers, then we added
Leaky ReLUs because this one solves the problem of the dying linear rectified units. Next,
we added a maximum pooling layer with MaxPooling2D () that halves the image size,
and so forth. We stacked up 10 of these layers together, with each subsequent CNN add-
ing more filters (32, 64,128, etc.). Lastly, we flattened the output of the CNN layers, fed it
into a fully connected layer, and then into the final dense layer, which is a sigmoid activa-
tion function with 2 units, which is necessary for addressing a binary classification task.
For the specification setup when training the model. We trained our CNN model with the
binary cross-entropy loss, which assesses the model performance and whose output is a
likelihood value ranging from 0 to 1. Moreover, we used the RMSProp optimizer. Indeed,
the RMSProp is a judicious optimization algorithm as it automates the learning rate tuning
for us. We appended the accuracy to the metrics so that the model monitors the accuracy
during training. This configuration gave us an accuracy of 93.89% as illustrated in Figure
10 on our test set.

Figure 10. Curve represents the loss and accuracy value for the CNN model.

2.4.3. ResNet50
The ResNet50 model stands for Residual Networks, which was a baseline in the

ILSVRC and COCO classification competitions carried out in 2015 and was presented by
He et al. [57]. Their architecture is the winner, having an error rate of 3.57%. The multiple
nonlinear layers’ inability to make identity mappings learnable and the concern of degra-
dation prompted the framework of deep residual learning. It is a robust deep learning
architecture relying on numerous piled-up residual units. The latter constitute the build-
ing set of blocks employed to build the network. These residual units are composed of
convolution and pooling layers. The architecture is quite like the VGG network made up

Figure 10. Curve represents the loss and accuracy value for the CNN model.

2.4.3. ResNet50

The ResNet50 model stands for Residual Networks, which was a baseline in the
ILSVRC and COCO classification competitions carried out in 2015 and was presented
by He et al. [57]. Their architecture is the winner, having an error rate of 3.57%. The
multiple nonlinear layers’ inability to make identity mappings learnable and the concern
of degradation prompted the framework of deep residual learning. It is a robust deep
learning architecture relying on numerous piled-up residual units. The latter constitute the
building set of blocks employed to build the network. These residual units are composed of
convolution and pooling layers. The architecture is quite like the VGG network made up of
3× 3 filters, except that ResNet is around 8 times more profound than the VGG architecture.
This is due to the use of global pooling layers instead of fully connected layers. ResNet
was updated again [58] to achieve higher accuracy by upgrading the residual module to
employ identity mappings. Note that the number beside ResNet indicates the number of
network layers, and we took ResNet50, implying that it has 50 layers for processing. The
ResNet50 receives inputs in 256 dimensions, and the prime benefit of this architecture is the
embedding of skip connections, that also aids to address the issue of vanishing gradient
descent. In this paper, we deployed the ResNet50 architecture with pre-trained weights on
the ImageNet dataset.

The following are the parameters used:

• DL Optimizer: Stochastic Gradient Descent (SGD).
• Shear range: 0.2.
• Activation function: ReLu/Sigmoid.
• Loss function: Binary-cross-entropy.
• The number of epochs: 100.

This one converges over 100 epochs and reaches an accuracy of 93.57%, as shown in
Figure 11.

Agriculture 2023, 13, 352 19 of 35

Agriculture 2023, 13, x FOR PEER REVIEW 19 of 35

of 3 × 3 filters, except that ResNet is around 8 times more profound than the VGG archi-
tecture. This is due to the use of global pooling layers instead of fully connected layers.
ResNet was updated again [58] to achieve higher accuracy by upgrading the residual
module to employ identity mappings. Note that the number beside ResNet indicates the
number of network layers, and we took ResNet50, implying that it has 50 layers for pro-
cessing. The ResNet50 receives inputs in 256 dimensions, and the prime benefit of this
architecture is the embedding of skip connections, that also aids to address the issue of
vanishing gradient descent. In this paper, we deployed the ResNet50 architecture with
pre-trained weights on the ImageNet dataset.

The following are the parameters used:

• DL Optimizer: Stochastic Gradient Descent (SGD).
• Shear range: 0.2.
• Activation function: ReLu/Sigmoid.
• Loss function: Binary-cross-entropy.
• The number of epochs: 100.

This one converges over 100 epochs and reaches an accuracy of 93.57%, as shown in
Figure 11.

Figure 11. Curve represents the loss and accuracy value for the ResNet50 model.

2.4.4. InceptionV3
Inception vN was firstly presented by Szegedy et al. [59] in the GoogLeNet architec-

ture with N pointing to the version number. Szegedy et al. proposed the InceptionV3 net-
work, which provides upgrades to the module of Inception to similarly increase the clas-
sification accuracy of ImageNet. This Inception module consists of basic asymmetric and
symmetric components, including convolutions, maximum pooling, medium pooling,
dropping, fully connected layers, and concatenations. Batch normalization is widely used
in InceptionV3 and applied to the activation inputs. Loss is primarily calculated via Soft-
max. We employed the InceptionV3 architecture with pre-trained weights on the
ImageNet dataset.

Following are the parameters used:

• DL Optimizer: Adam
• Shear range: 0.2
• Activation function: Sigmoid
• Loss function: Binary-cross-entropy
• Number of epochs: 100

This architecture converges over 100 epochs and reaches an accuracy of 98.01%, as
shown in Figure 12.

Figure 11. Curve represents the loss and accuracy value for the ResNet50 model.

2.4.4. InceptionV3

Inception vN was firstly presented by Szegedy et al. [59] in the GoogLeNet architecture
with N pointing to the version number. Szegedy et al. proposed the InceptionV3 network,
which provides upgrades to the module of Inception to similarly increase the classification
accuracy of ImageNet. This Inception module consists of basic asymmetric and symmetric
components, including convolutions, maximum pooling, medium pooling, dropping, fully
connected layers, and concatenations. Batch normalization is widely used in InceptionV3
and applied to the activation inputs. Loss is primarily calculated via Softmax. We employed
the InceptionV3 architecture with pre-trained weights on the ImageNet dataset.

Following are the parameters used:

• DL Optimizer: Adam
• Shear range: 0.2
• Activation function: Sigmoid
• Loss function: Binary-cross-entropy
• Number of epochs: 100

This architecture converges over 100 epochs and reaches an accuracy of 98.01%, as
shown in Figure 12.

Agriculture 2023, 13, x FOR PEER REVIEW 20 of 35

Figure 12. Curve represents the loss and accuracy value for the InceptionV3 model.

2.4.5. VGG16
VGGNet is a CNN architecture introduced by Simonyan et al. [60] for the ILSVRC-

2014 competition. The model achieved an accuracy of 98.09% with an error rate of 7.5%,
placing it in the top five in ImageNet. It is a dataset including over than 14 million images
pertaining to 1000 classes. The VGG16 model was trained over a period of weeks using
NVIDIA Titan Black GPUs. This is an improvement over AlexNet, which uses numerous
3 × 3 kernel filters instead of large kernel filters. Typically, this network is described by its
simplicity, as described by Simonyan et al.[60] along with just 3 × 3 convolutional layers piled
on top of each other in ascending profundity. The max-pooling reduces the volume size. Fur-
thermore, two fully connected layers, each containing 4096 nodes and a Softmax function. The
finetuning of VGG16 was performed by removing the original Softmax classifier and replac-
ing it with our own. We employed the VGG16 network with pre-trained weights on the
ImageNet dataset.

Following are the parameters used:

• DL Optimizer: RMS prop.
• Shear range: 0.2.
• Activation function: Sigmoid.
• Loss function: Categorical-cross-entropy.
• Number of epochs: 100.

This architecture converges over 100 epochs and achieves an accuracy of 87.50%, as
shown in Figure 13.

Figure 13. Curve represents the loss and accuracy value for the InceptionV3 model.

2.4.6. VGG19
VGG19 is an alternative variant of VGGNet consisting of 19 weight layers and in-

cludes sixteen convolutional layers, three fully connected layers, five MaxPool layers, and

Figure 12. Curve represents the loss and accuracy value for the InceptionV3 model.

2.4.5. VGG16

VGGNet is a CNN architecture introduced by Simonyan et al. [60] for the ILSVRC-
2014 competition. The model achieved an accuracy of 98.09% with an error rate of 7.5%,
placing it in the top five in ImageNet. It is a dataset including over than 14 million images
pertaining to 1000 classes. The VGG16 model was trained over a period of weeks using
NVIDIA Titan Black GPUs. This is an improvement over AlexNet, which uses numerous

Agriculture 2023, 13, 352 20 of 35

3 × 3 kernel filters instead of large kernel filters. Typically, this network is described by
its simplicity, as described by Simonyan et al. [60] along with just 3 × 3 convolutional
layers piled on top of each other in ascending profundity. The max-pooling reduces the
volume size. Furthermore, two fully connected layers, each containing 4096 nodes and
a Softmax function. The finetuning of VGG16 was performed by removing the original
Softmax classifier and replacing it with our own. We employed the VGG16 network with
pre-trained weights on the ImageNet dataset.

Following are the parameters used:

• DL Optimizer: RMS prop.
• Shear range: 0.2.
• Activation function: Sigmoid.
• Loss function: Categorical-cross-entropy.
• Number of epochs: 100.

This architecture converges over 100 epochs and achieves an accuracy of 87.50%, as
shown in Figure 13.

Agriculture 2023, 13, x FOR PEER REVIEW 20 of 35

Figure 12. Curve represents the loss and accuracy value for the InceptionV3 model.

2.4.5. VGG16
VGGNet is a CNN architecture introduced by Simonyan et al. [60] for the ILSVRC-

2014 competition. The model achieved an accuracy of 98.09% with an error rate of 7.5%,
placing it in the top five in ImageNet. It is a dataset including over than 14 million images
pertaining to 1000 classes. The VGG16 model was trained over a period of weeks using
NVIDIA Titan Black GPUs. This is an improvement over AlexNet, which uses numerous
3 × 3 kernel filters instead of large kernel filters. Typically, this network is described by its
simplicity, as described by Simonyan et al.[60] along with just 3 × 3 convolutional layers piled
on top of each other in ascending profundity. The max-pooling reduces the volume size. Fur-
thermore, two fully connected layers, each containing 4096 nodes and a Softmax function. The
finetuning of VGG16 was performed by removing the original Softmax classifier and replac-
ing it with our own. We employed the VGG16 network with pre-trained weights on the
ImageNet dataset.

Following are the parameters used:

• DL Optimizer: RMS prop.
• Shear range: 0.2.
• Activation function: Sigmoid.
• Loss function: Categorical-cross-entropy.
• Number of epochs: 100.

This architecture converges over 100 epochs and achieves an accuracy of 87.50%, as
shown in Figure 13.

Figure 13. Curve represents the loss and accuracy value for the InceptionV3 model.

2.4.6. VGG19
VGG19 is an alternative variant of VGGNet consisting of 19 weight layers and in-

cludes sixteen convolutional layers, three fully connected layers, five MaxPool layers, and

Figure 13. Curve represents the loss and accuracy value for the InceptionV3 model.

2.4.6. VGG19

VGG19 is an alternative variant of VGGNet consisting of 19 weight layers and includes
sixteen convolutional layers, three fully connected layers, five MaxPool layers, and one
SoftMax layer. It was developed for large-scale visual recognition. The primary upside
of this network is that its coding script is open source, and we could feasibly implement
transfer learning and run the architecture for further networks. Moreover, the network can
learn small collective kernels instead of a single large kernel, as including multiple small
kernels enables the network to learn intricate features. We employed the VGG19 network
with pre-trained weights on the ImageNet dataset.

Following are the parameters used:

• Optimizer: RMS prop.
• Shear range: 0.2
• Activation function: Sigmoid.
• Loss function: Binary-cross-entropy.
• Number of epochs: 100.

It converges over 100 epochs and reaches an accuracy of 86.70%, as shown in Figure 14.

Agriculture 2023, 13, 352 21 of 35

Agriculture 2023, 13, x FOR PEER REVIEW 21 of 35

one SoftMax layer. It was developed for large-scale visual recognition. The primary up-
side of this network is that its coding script is open source, and we could feasibly imple-
ment transfer learning and run the architecture for further networks. Moreover, the net-
work can learn small collective kernels instead of a single large kernel, as including mul-
tiple small kernels enables the network to learn intricate features. We employed the
VGG19 network with pre-trained weights on the ImageNet dataset.

Following are the parameters used:

• Optimizer: RMS prop.
• Shear range: 0.2
• Activation function: Sigmoid.
• Loss function: Binary-cross-entropy.
• Number of epochs: 100.

It converges over 100 epochs and reaches an accuracy of 86.70%, as shown in Figure 14.

Figure 14. Curve represents the loss and accuracy value for the VGG19 model.

3. Experimental Results
This part firstly reports on the comparative analysis of six classical ML algorithms

and five architectures based on the CNN model to select the best algorithm, and then the
findings regarding the performance improvement of the best fitting model (InceptionV3)
using a variety of activation functions and DL optimization algorithms.

A detailed description of the parameters used has been given in the prior section. The
ML and DL models were implemented in Python, through the scikit-learn library for the
conventional algorithms and Keras as well as TensorFlow for the DL model. The program
was run on the Google Colaboratory notebook, which provides freely available GPU,
TPU, and CPU resources. The classical algorithms were trained on the GPU, while the DL
model was trained on the TPU. The dataset was split into training and testing sets in an
80–20 ratio (We utilized 80% of the data for training and 20% for testing). For performance
metrics, we employed f1-score, accuracy, recall, precision, the ROC curve, and the confu-
sion matrix. Thus, the results are shown below in Figure 15. From the experimental find-
ings, we found that the NB classifier achieved an accuracy of 60,09%, much lower than
other classical ML algorithms. Unlike the RF model, with an accuracy of 97.54%, it was
able to far outperform all other ML algorithms. Whereas CART and KNN produced re-
sults that were roughly comparable, ranging between 94.45% (for the CART) and 91.67%
(for the KNN). On the other hand, for models based on deep transfer learning. The Incep-
tionV3 model is the most efficient, with a precision of 98.01%, so it was able to outperform
CNN from scratch and other pretrained models. This is due to its ability to handle both
missing and unbalanced data without forgetting that its execution time is quite fast com-
pared to other DL models.

Figure 14. Curve represents the loss and accuracy value for the VGG19 model.

3. Experimental Results

This part firstly reports on the comparative analysis of six classical ML algorithms
and five architectures based on the CNN model to select the best algorithm, and then the
findings regarding the performance improvement of the best fitting model (InceptionV3)
using a variety of activation functions and DL optimization algorithms.

A detailed description of the parameters used has been given in the prior section. The
ML and DL models were implemented in Python, through the scikit-learn library for the
conventional algorithms and Keras as well as TensorFlow for the DL model. The program
was run on the Google Colaboratory notebook, which provides freely available GPU, TPU,
and CPU resources. The classical algorithms were trained on the GPU, while the DL model
was trained on the TPU. The dataset was split into training and testing sets in an 80–20 ratio
(We utilized 80% of the data for training and 20% for testing). For performance metrics, we
employed f1-score, accuracy, recall, precision, the ROC curve, and the confusion matrix.
Thus, the results are shown below in Figure 15. From the experimental findings, we found
that the NB classifier achieved an accuracy of 60,09%, much lower than other classical ML
algorithms. Unlike the RF model, with an accuracy of 97.54%, it was able to far outperform
all other ML algorithms. Whereas CART and KNN produced results that were roughly
comparable, ranging between 94.45% (for the CART) and 91.67% (for the KNN). On the
other hand, for models based on deep transfer learning. The InceptionV3 model is the most
efficient, with a precision of 98.01%, so it was able to outperform CNN from scratch and
other pretrained models. This is due to its ability to handle both missing and unbalanced
data without forgetting that its execution time is quite fast compared to other DL models.

1

Figure 15. Chart of machine learning and deep transfer learning models.

Figure 15. Chart of machine learning and deep transfer learning models.

Agriculture 2023, 13, 352 22 of 35

3.1. Performance Measures

The evaluation of the trained models’ output was elaborated using several perfor-
mance measures, namely f1-score, accuracy, recall, and precision, as reported in Table 4, and
AUC (Area Under ROC), which is determined by the true negatives (TN), true positives
(TP), false negatives (FN), and false positives (FP) obtained from the confusion matrix.

a. Precision: It depicts in binary classifications all the positive classes predicted correctly
by the model; how many of them are positive. It is computed by dividing the number
of correctly classified positive samples by the number of predicted positive examples.
The formula is expressed as follows:

Precision =
TP

TP + FP

b. Recall/or sensitivity [61]: It sets the number of correctly predicted samples among all
the positive classes. The equation is stated as below:

Recall/sensitivity =
TP

TP + FN

c. F1-score [62]: The F1 score yields a global estimate of a test subject’s recall and accuracy.
It refers to the harmonic average of recall and precision. Formally, the F1 score is
determined by the following:

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

d. Accuracy: This is a metric for assessing classification models. It is a fraction of all
correct predictions. Formally, it is expressed as below:

Accuracy =
No o f correct Precisions
Total no o f Precisions

These various performance metrics are applied to predict the outcome of the different
models, and a list of them is presented in Table 6. From this exhibit Table, we can see
that the metrics of the InceptionV3 network outperformed all the measured machine
learning algorithms. For instance, the recall of the tested machine learning algorithms was
92.26% (KNN), 84.37% (SVM), and 97.47% (RF), while it was 97.53% (InceptionV3), 91.64%
(ResNet50), 91.39% (CNN), and 90.17 (VGG16) for the evaluated deep learning networks.

Table 6. The testing set performance of 12 algorithms is addressed in this benchmarking study.

Architecture Accuracy Precision Recall F1-Score

InceptionV3 98.01% 96.52% 97.53% 96.52%
CNN 93.89% 91.57% 91.39% 91.32%

ResNet50 93.57% 92.41% 91.64% 91.69%
VGG16 87.50% 90.43% 90.17% 89.77%
VGG19 86.70% 88.18% 86.94% 86.68%

RF 97.54% 97.92% 97.47% 97.71%
CART 94.45% 94.24% 94.06% 94.18%
KNN 91.67% 91.96% 92.26% 92.27%
SVM 84.10% 84.38% 84.37% 84.40%
LDA 80.28% 80.01% 79.94% 79.93%
NB 60.09% 68.65% 59.95% 54.74%

To be noticed, we are highly concerned about the sensitivity/recall, which calculates
the percentage of true positives (diseased leaves). For example, if a leaf infected (true
positive) is predicted to be healthy (predicted negative), the consequences will be extremely

Agriculture 2023, 13, 352 23 of 35

onerous. All evaluated metric values were superior to 60.09% of the tested machine learning
algorithms and superior to 86.70% of the tested deep learning models. The classification
outcomes of the RF classifier were the best among the six machine learning algorithms
examined, followed by the CART classifier and lastly the KNN classifier. Concurrently, the
ranking order of the classification outcomes of the tested deep learning models, from top to
bottom, is InceptionV3, CNN from scratch, ResNet50, VGG16, and finally VGG19.

e. The confusion or error matrix [63]: It describes the classifier’s performance on the test
data. It helps to identify and pinpoint each cluster that might have been misclassified
by the classifier and to further improve the proposed classification model in the future.
Each row represents the predicted class examples, and each column of the matrix
represents the actual class examples. Thus, we computed the confusion matrix of
each model to compare the different algorithms, as it allows us to measure the degree
of classification model accuracy for each category. As we are dealing with a binary
classification of leaf disease, we are interested in false negatives (FN). This is also
called “type 2 error”, which represents the rate of misclassified crop leaves that appear
healthy but are affected by diseases, thereby presenting a severe threat to the crop,
especially if it concerns a viral disease that will spread swiftly over the field. To gain
clearer perspective of classification findings, we employed confusion matrix plots
and ROC curves (receiver operator characteristic) to depict the distinct crop binary
classification results with distinct ML and DL algorithms.

Figure 16 illustrates the confusion matrix graphs of the six machine learning models,
as well as the five DL networks. In a confusion matrix chart, the abscissa represents
the predicted label, and the ordinate represents the actual label. The confusion matrix
diagonal contains the correctly classified instance data, and the values over/under the
diagonal are the misclassified instances. As depicted in Figure 16, with the eleven machine
and deep learning models, there were many instances (<300) where diseased leaves were
misclassified as healthy (False Negative) on a test set of 8727. For the RF algorithm, the
number of diseased crop leaves misclassified as healthy is 90. On the other hand, the
number of healthy crop leaves misclassified as diseased is 110. Thus, the number of
misclassified leaves is 200 (FN + FP) with an accuracy reaching 97.54%, which demonstrates
its reliability in plant disease classification compared to other ML algorithms such as the
NB algorithm, where 260 diseased leaves were misclassified as healthy. The results revealed
that the NB algorithm is the least recommended for leaf disease classification regarding
accuracy and FN. Regarding the deep learning networks, the InceptionV3 network was
found on top as the number of leaves that were diseased but predicted to be healthy (FN)
was 204, and otherwise for the FP was 100 so the total number of misclassified leaves
(FP + FN) was 304 out of a dataset of 8727.

So, we are keen to minimize the incidence of misclassifying diseased leaves, since it is
a genuine threat when the classifier classes them as healthy, especially in the presence of a
contagious disease that spreads swiftly through the field. Respectively for the DL models,
we found that the InceptionV3 model is the best one for classifying diseases since not only
does it produce a very high accuracy of 98.01% but it can also properly classify the leaves
wherein the number of misclassified diseased leaves is 204. In contrast, the ResNet50 model
yielded a great accuracy of 93.57% except that the number of misclassified diseased leaves
(1748 incorrect predictions) is extremely high compared to the InceptionV3 architecture.
This implies that studies based only on prediction are insufficiently reliable to assess the
efficiency of a classifier. Then, what might be the root cause of this phenomenon? Looking
at the experimental dataset, we observed that the characteristics of crop leaf diseases,
including leaf mold and bacterial spot and downy mildew diseases, were quite close to
each other, which could explain this phenomenon.

Agriculture 2023, 13, 352 24 of 35

Agriculture 2023, 13, x FOR PEER REVIEW 24 of 35

algorithms such as the NB algorithm, where 260 diseased leaves were misclassified as
healthy. The results revealed that the NB algorithm is the least recommended for leaf
disease classification regarding accuracy and FN. Regarding the deep learning net-
works, the InceptionV3 network was found on top as the number of leaves that were
diseased but predicted to be healthy (FN) was 204, and otherwise for the FP was 100
so the total number of misclassified leaves (FP+FN) was 304 out of a dataset of 8727.

Figure 16. Confusion matrixes for the ML and DL algorithms.

So, we are keen to minimize the incidence of misclassifying diseased leaves, since it
is a genuine threat when the classifier classes them as healthy, especially in the pres-
ence of a contagious disease that spreads swiftly through the field. Respectively for
the DL models, we found that the InceptionV3 model is the best one for classifying
diseases since not only does it produce a very high accuracy of 98.01% but it can also
properly classify the leaves wherein the number of misclassified diseased leaves is

Figure 16. Confusion matrixes for the ML and DL algorithms.

f. The ROC curve (Receiver Operating Characteristics Curve) [64] is a powerful tool
for evaluating the performance of an ML/DL model. The ROC is applied to binary
classification tasks where the output is composed of two distinct classes, and it repre-
sents a probability curve plotting the TPR against FPR at different threshold values
and basically separates “signal” from “noise”. Otherwise, it expresses sensitivity as a
function of 1- specificity for all possible threshold values of the marker studied. So,
it demonstrates a trade-off phenomenon between specificity and sensitivity. Indeed,
Sensitivity is the ability of the test to detect diseased leaves correctly, and specificity
is the capacity of the test to detect healthy leaves correctly. This underscores the
affectability of the classifier model. Where False Positive Rate (FPR) indicates the ratio
of the negative class that was incorrectly classified by the classifier. Formally, it is
expressed as below:

Agriculture 2023, 13, 352 25 of 35

FPR =
FP

TN + FP
= 1− Specificity

where True Positive Rate (TPR) indicates the proportion of the positive class that was
properly classified by the classifier. It is formally stated as follows:

TPR =
TP

TP + FN
= Specificity

The ideal classifier will have a ROC curve where the contour reaches a rate of 100%
certified positives with zero improvements in the center x point (true positives). The area
under the curve (AUC) measures the ability of a classifier to distinguish between clusters
and serves as a summary of the ROC curve across all cutoffs, which is invariant to disease
prevalence and diagnosis threshold choice. Generally, there are 4 cases: When the AUC is
equal to 1, then the classifier is perfectly and correctly capable of discriminating all negative
and positive class items. If the AUC corresponds to 0, then the classifier would predict all
positives as negative, and all negatives as positive.

- When AUC = 0.5, the classifier is unable to differentiate between positive and negative
class points. This means that it predicts a random or a steady class for all data points.

- When 0.5 < AUC < 1, it is likely that the classifier can discriminate positive class values
from negative ones. This stems from the ability of the classifier to detect a greater
number of true negatives and true positives than false negatives and false positives.

In general, the wider the AUC, the better the model’s ability in discriminating between
negative and positive classes. Figure 17 illustrates the ROC curves of the ML/DL algorithms
tested. As illustrated in the Figure, the areas under the curve (AUC) of the different
algorithms were greater than 76.85%; some even reached 99.73%. In Figure 17, The RF
algorithm scored the best performance, with the AUC of the crop leaves hitting. While the
ReNet50 network and the NB algorithm performed poorly compared to the other ML/ DL
models tested.

3.2. Improvement in Classification Outcomes by DL Optimizers

In this work, a performance enhancement of the CNN architectures has been attempted
by training the best model (obtained from the prior phase of algorithm comparison) over
several deep learning optimization functions. Table 7 resumes the outcomes found by using
different optimization algorithms. Some significant observations can be stated as following:

Table 7. Performance of the applied deep learning optimizers to train the InceptionV3 model.

Activation Function Accuracy Precision Recall F1-score

Adadelta 80.50% 81.74% 81.38% 81.25%
Adagrada 86.00% 88.50% 88.31% 88.33%

Adam 86.80% 89.60% 89.45% 89.47%
RMSprop 86.30% 85.75% 81.78% 81.03%

SGD 87.60% 83.86% 80.06% 89.41%

Noticeable variations were seen in training/validation accuracy, loss, recall, precision,
and F1 score when training the InceptionV3 model using various deep learning optimizers.
SGD and Adam were the most performing optimizers for the chosen architecture.

The InceptionV3 architecture trained with the SGD optimizer reached the highest
validation accuracy and F1 score of 87.60% and 0.8941, respectively, which clearly shows
the effectiveness of the proposed optimizer. Therefore, it could be used for various other
agricultural operations. Yet, a decrement in performance was also noticed once the opti-
mization functions were switched from SGD to Adadelta and Adagrada, as illustrated in
Figure 18 where the optimizer showed its lowest validation accuracy.

Agriculture 2023, 13, 352 26 of 35
Agriculture 2023, 13, x FOR PEER REVIEW 26 of 35

Figure 17. ROC and AUC curves of tested DL and ML models.

3.2. Improvement in Classification Outcomes by DL Optimizers
In this work, a performance enhancement of the CNN architectures has been at-

tempted by training the best model (obtained from the prior phase of algorithm compar-
ison) over several deep learning optimization functions. Table 7 resumes the outcomes
found by using different optimization algorithms. Some significant observations can be
stated as following:

Figure 17. ROC and AUC curves of tested DL and ML models.

Agriculture 2023, 13, 352 27 of 35

Agriculture 2023, 13, x FOR PEER REVIEW 27 of 35

Table 7. Performance of the applied deep learning optimizers to train the InceptionV3 model.

Activation Function Accuracy Precision Recall F1-score
Adadelta 80.50% 81.74% 81.38% 81.25%
Adagrada 86.00% 88.50% 88.31% 88.33%

Adam 86.80% 89.60% 89.45% 89.47%
RMSprop 86.30% 85.75% 81.78% 81.03%

SGD 87.60% 83.86% 80.06% 89.41%

Noticeable variations were seen in training/validation accuracy, loss, recall, precision,
and F1 score when training the InceptionV3 model using various deep learning optimizers.
SGD and Adam were the most performing optimizers for the chosen architecture.

The InceptionV3 architecture trained with the SGD optimizer reached the highest
validation accuracy and F1 score of 87.60% and 0.8941, respectively, which clearly shows
the effectiveness of the proposed optimizer. Therefore, it could be used for various other
agricultural operations. Yet, a decrement in performance was also noticed once the opti-
mization functions were switched from SGD to Adadelta and Adagrada, as illustrated in
Figure 18 where the optimizer showed its lowest validation accuracy.

Figure 18. Curve represents the loss and accuracy value of different DL optimizers applied for train-
ing the InceptionV3 model.

3.3. Effectiveness of Deep Learning with Different Activation Functions
To build an optimized and efficient DL model based on the CNN architecture, we

performed several experiments by varying the hyperparameters and activation functions
to assess the DL performance using various activation functions, as shown in Table 8.
From the findings, we remark that InceptionV3 with swish surpasses all other AFs and
reveals a very good performance and reaches an accuracy of 0.9010 with a precision that
amounts to 0.9135, a recall that comes to 0.9088. and the F1-score stands at 0.9077.

Table 8. Performance of the different activation functions applied to train the InceptionV3 archi-
tecture.

Activation Function Accuracy Precision Recall F1-Score
Tanh 89.28% 91.12% 91.11 % 91.08%

Sigmoid 88.95% 90.94% 90.86% 90.88%
Softmax 87.27% 88.52% 87.75% 87.57%
Softsign 89.50% 91.30% 91.28% 91.29%

LeakyReLu 87.06% 91.00% 90.95% 90.96%
Swish 90.10% 91.35% 91.88% 90.77%

Elu 89.25% 86.57% 83.48% 83.31%
ReLu 88.73% 90.50% 89.87% 89.72%

Figure 18. Curve represents the loss and accuracy value of different DL optimizers applied for
training the InceptionV3 model.

3.3. Effectiveness of Deep Learning with Different Activation Functions

To build an optimized and efficient DL model based on the CNN architecture, we
performed several experiments by varying the hyperparameters and activation functions
to assess the DL performance using various activation functions, as shown in Table 8. From
the findings, we remark that InceptionV3 with swish surpasses all other AFs and reveals a
very good performance and reaches an accuracy of 0.9010 with a precision that amounts to
0.9135, a recall that comes to 0.9088. and the F1-score stands at 0.9077.

Table 8. Performance of the different activation functions applied to train the InceptionV3 architecture.

Activation Function Accuracy Precision Recall F1-Score

Tanh 89.28% 91.12% 91.11 % 91.08%
Sigmoid 88.95% 90.94% 90.86% 90.88%
Softmax 87.27% 88.52% 87.75% 87.57%
Softsign 89.50% 91.30% 91.28% 91.29%

LeakyReLu 87.06% 91.00% 90.95% 90.96%
Swish 90.10% 91.35% 91.88% 90.77%

Elu 89.25% 86.57% 83.48% 83.31%
ReLu 88.73% 90.50% 89.87% 89.72%

Softplus 89.80% 91.44% 91.00% 90.88%

Additionally, it is noticed that the InceptionV3 with LeakyReLU model shows its
lowest validation accuracy amounting to 87.06, so according to Figure 19, it is remarkable
in the loss curve that the InceptionV3 with LeakyReLu model marks a high loss value
compared to the other AF curves.

Agriculture 2023, 13, x FOR PEER REVIEW 28 of 35

Additionally, it is noticed that the InceptionV3 with LeakyReLU model shows its
lowest validation accuracy amounting to 87.06, so according to Figure 19, it is remarkable
in the loss curve that the InceptionV3 with LeakyReLu model marks a high loss value
compared to the other AF curves.

Figure 19. Curve represents the loss and accuracy value of different activation function applied for
training the InceptionV3 model.

3.4. Computational Time Spent for Building Each Model
We have seen the performance of these eleven algorithms in crop disease classifica-

tion. Indeed, the computational complexity of ResNet50 as well as the training of the
VGG19 architecture, is more significant than that of machine learning. The training over
100 epochs took more than 32 h in ResNet50 with TPU. This makes the network more
complex and challenging to train on standard computers. On the other hand, validation
and testing are much faster. Based on the comparison of processing time presented in
Table 9 and the classification accuracy of the deep and machine learning techniques em-
ployed in our analysis, the InceptionV3 pre-trained model produced better classification
accuracy and consumed lower time compared to other DL models such as ResNet 50 and
VGG19 and CNN from scratch, which are very time consuming. On the other hand, RF is
the best classifier compared to other ML counterparts, as it provides better performance.
Even if its training time is slightly longer than KNN and CART, but it remains much less
time-consuming than SVM. In summary, the leading architectures such as VGG16 and
VGG19 produce better performance during training but not perfect results during crop
disease classification tests. Furthermore, these architectures reduce the overhead of fea-
ture extraction, which is unlike machine learning algorithms. We discovered through
these comparative experiments that the quality of the retrieved features has a substantial
influence on the final classification outcomes for machine learning models.

Table 9. The comparison of execution time for deep and machine learning techniques.

Classifiers Execution Time (Hour: Min)
InceptionV3 (over 100 epochs) 14 h 20

LDA 8 h 30
VGG16 (over 100 epochs) 22 h 35
VGG19 (over 100 epochs) 29 h 46

ResNet50 (over 100 epochs) 32 h 21
CNN (over 100 epochs) 27 h 45

KNN 7 h 17
CART 9 h 28

RF 6 h 55
NB 4 h 32

SVM 10 h 35

Figure 19. Curve represents the loss and accuracy value of different activation function applied for
training the InceptionV3 model.

Agriculture 2023, 13, 352 28 of 35

3.4. Computational Time Spent for Building Each Model

We have seen the performance of these eleven algorithms in crop disease classification.
Indeed, the computational complexity of ResNet50 as well as the training of the VGG19
architecture, is more significant than that of machine learning. The training over 100 epochs
took more than 32 h in ResNet50 with TPU. This makes the network more complex and
challenging to train on standard computers. On the other hand, validation and testing
are much faster. Based on the comparison of processing time presented in Table 9 and
the classification accuracy of the deep and machine learning techniques employed in
our analysis, the InceptionV3 pre-trained model produced better classification accuracy
and consumed lower time compared to other DL models such as ResNet 50 and VGG19
and CNN from scratch, which are very time consuming. On the other hand, RF is the
best classifier compared to other ML counterparts, as it provides better performance.
Even if its training time is slightly longer than KNN and CART, but it remains much
less time-consuming than SVM. In summary, the leading architectures such as VGG16
and VGG19 produce better performance during training but not perfect results during
crop disease classification tests. Furthermore, these architectures reduce the overhead of
feature extraction, which is unlike machine learning algorithms. We discovered through
these comparative experiments that the quality of the retrieved features has a substantial
influence on the final classification outcomes for machine learning models.

Table 9. The comparison of execution time for deep and machine learning techniques.

Classifiers Execution Time (Hour: Min)

InceptionV3 (over 100 epochs) 14 h 20
LDA 8 h 30

VGG16 (over 100 epochs) 22 h 35
VGG19 (over 100 epochs) 29 h 46

ResNet50 (over 100 epochs) 32 h 21
CNN (over 100 epochs) 27 h 45

KNN 7 h 17
CART 9 h 28

RF 6 h 55
NB 4 h 32

SVM 10 h 35

4. Discussion

Typically, research in this area is conducted by following a specific architecture or
classifier on a single crop species using only a few performance measures. It might be
challenging to gather several architectures and then compare them to determine which one
is most suitable for a given task and yields the highest accuracy. Thus, we were motivated
to perform an extensive comparison using multiple ML and DL algorithms on a large
dataset containing multiple crops.

What distinguishes our work from prior ones is that we have employed a wider
array of performance evaluation metrics to properly appraise the model’s reliability, while
developing a comparison between various deep learning optimizers and activation func-
tions to improve the results obtained from the comparison of machine learning algorithms
with DL, with the aim of finding the most appropriate combination of the model, which
can also be applied to further advance research on other agricultural applications, such
as weed classification, grass/crop discrimination, and plant recognition. Since we are
working on a binary classification where there are two classes: diseased/healthy leaves.
The stakes of confounding a diseased leaf with a healthy one, or even missing a diseased
leaf, might be highly raised, especially for viral diseases that are spreading rapidly in the
field. Accordingly, our main objective is to prevent this confusion and to this end, we grant
great importance to recall measuring the model’s performance in disease classification.
Moreover, we strive not only for high accuracy or recall. However, we aim at overcoming

Agriculture 2023, 13, 352 29 of 35

the models’ weaknesses (fitting of hyperparameters, proper choice of parameters such as
the loss function) and determining whether they have misclassified the crop leaves. Indeed,
there is no point in deploying a model that provides the highest accuracy but misclassifies
diseased leaves as healthy.

Based on this comparison, we found that the InceptionV3 network performs better
in terms of accuracy, precision, and recall. Nevertheless, we are seeking for decreasing
FN rate (diseased leaves being misclassified as healthy) which is a bit high compared
to the RF classifier. On the other hand, the RF classifier offers lower accuracy than the
InceptionV3 model, but its FN rate is significantly lower than any other model, as shown
in Figures 16 and 17, the RF has a wider area under the curve which means that the
classifier has more ability to distinguish classes. It is noteworthy that the CNN-based
models have key advantages over other machine learning algorithms, which are reflected
in their outstanding ability to autonomously perform feature engineering. The DL parses
the data for associating features and will combine them to facilitate faster learning without
being explicitly prompted to do so. Conversely, the hand-crafted feature extractor requires
elaborate features and captures only low-level edge information. This is why neural
structures are of such relevance and is exemplified by the InceptionV3 model’s successful
use of the receptive field concept to acquire local visual features to depict the topology of
the image.

In fact, since the theoretical learning process of the InceptionV3 is similar to MLP, it
represents an extension model of the MLP. A constraint of MLP is that it has a tendency
to allocate a large value (almost +1) to one neuron in the output layer while all remaining
neurons possess a low value (almost −1). This poses challenges in dismissing errors in real-
time applications [65]. Conversely, the Random Forest considers the estimated probability
when making a classification decision. This likelihood information gives a reliable and
accurate grading list of label predictions. Moreover, using these likelihood values can
facilitate the design of an effective rejection mechanism.

The Random Forest method is highly promising for classification, as it is not only
non-parametric [66], but also offers the ability to estimate the significance of individual vari-
ables in the classification and to process high-dimensional data simultaneously with high
computational efficiency. Even in cases of multiple noisy features, Random Forest performs
perfectly, so there is no need for feature selection. Most interestingly, it is known to have
high ROC and classification accuracy compared to the existing classification algorithms [67].
Therefore, it can enhance the classification performance of the hybrid architecture after
changing the output units in the InceptionV3 model. As such, this idea of combining this
novel hybrid InceptionV3 architecture with the RF classifier will constitute a new avenue
to explore so as to benefit from both higher accuracy and recall with a much lower FN
rate. Moreover, the tweaking of hyperparameters, as well as the choice of parameters and
activation function, are tedious tasks that drastically impact the result obtained from the
DL, its computational efficiency and the model’s learning accuracy. The employment of
non-linear FAs can aid the model in discovering complex data, processing them, and learn-
ing by producing correct predictions. This urged us to elaborate comparison between these
different AFs on our dataset, and the latter ones yielded dissimilar results, we remarked
that the combination of the InceptionV3 with the Swish function outperformed the other
models, providing better accuracy of up to 90.10% and a recall up to 0.9188. Furthermore,
it was observed that when the InceptionV3 architecture was trained using different deep
learning optimizers, the Inception network trained by the SGD optimizer achieved the high-
est Recall of 0.9753, suggesting that this combination of CNN architecture and optimization
algorithms. The details are displayed in Figures 18 and 19 and Tables 7 and 8.

Limitations of Machine Learning and Deep Learning

In the following, we explore several limitations of the machine learning and deep
learning models employed in our present work, in order to tackle the challenges encoun-
tered during our experimental work and propose new strategies that could be undertaken.

Agriculture 2023, 13, 352 30 of 35

One of them is that the present datasets do not include images collected and annotated from
real-life scenarios. Thus, training is performed by using images captured in a controlled
environment. Another constraint is that the existing proposed techniques cannot recognize
multiple diseases in an image or several occurrences of the same disease in an image.
Additionally, we faced many problems while building the ML models. For example, during
the training of the KNN classifier, the number of neighbors must be defined by the user,
and the model is highly sensitive to noise. Moreover, the main problem with the SVM
algorithm is the choice of the right kernel function. Because for each dataset, a different
kernel function produces different results.

Meanwhile, DL models demand more learning time and computational resources, but
they may attain higher prediction accuracy and higher generalization ability, indicating
that deep learning has superior learning ability. Compared with conventional machine
learning, it may automatically and efficiently retrieve features from an image. DL models
can clearly differentiate the image with similar features that are troublesome for the conven-
tional machine learning algorithms to recognize. As the computing cost of deep learning
models increases sharply with the dataset size, the trade-off between the accuracy of the
results and the computing cost remains challenging. Furthermore, traditional machine
learning algorithms require subjective feature extraction to transform binary vectors into
one-dimensional vectors. In contrast, deep learning models can objectively extract features
and directly process two-dimensional image data. In a nutshell, deep learning model is
better suited for modeling image data. Its robust characteristic extraction capability and
learning ability are not acquired by conventional machine learning algorithms. Moreover,
the problem of class imbalance in classification typically causes the learning algorithm
to be dominated by the majority classes, and the minority class features are sometimes
ignored, resulting in misclassification bias. As a result, careful consideration must be given
to the learning algorithm to improve minority class accuracy, as well as resort to hybrid
techniques based on misclassification analysis.

Another challenge encountered during the application of the DL optimizers for exam-
ple is that the SGD is consistently slow to converge as it requires a forward and backward
propagation for each record. Then, the path to attain the global minima gets very noisy.
Moreover, it is mandatory to tune the learning rate manually, by running several exper-
iments since the suggested value is often not appropriate for every task. This way, the
Adagrad optimizer surmounts the drawbacks of SGD as there is no necessity to manually
tweak the learning rate; however, there is a tremendous downside, due to the monotonic
decline of the learning rates, at some point in the time step, the model will cease learning
because the learning rate is approaching 0. A major drawback of using the sigmoid is the
vanishing gradient problem. For a very high or low value of x sample, the sigmoid deriva-
tive is very small. This may lead to a failure of the network in learning more information,
as well as it is computationally demanding since it contains an exponential term.

In light of these stated limitations, we briefly recap all the restrictions and benefits of
deep learning applied during model training in Table 10.

Other guidelines might also be considered to address these shortcomings as we
mentioned in our prior work [68], such as the use of a new dataset, which contains many
labeled images of leaves captured in a real environment; or as an alternative to create
synthesized and generated images by hybrid data augmentation techniques based on the
Generative Adversarial Network (GAN) architecture [69] to enhance crop leaf disease
detection in real-world images. Finally, the comparison results reveal that there is no single
tailored technique to meet all research challenges. Therefore, the appropriate method is
selected based upon the applications and the dataset size.

Agriculture 2023, 13, 352 31 of 35

Table 10. Strengths and weaknesses of deep learning optimization.

Optimizers Advantages Disadvantages

SGD
The computation time for each update is not depending on the

overall number of training samples, and many computations cost is
being saved.

It is challenging to select an appropriate
learning rate, as well as using the same
learning rate for all the parameters is

inadequate. The solution in certain cases
might be trapped at the saddle point.

Adagrad

At the beginning of training, the accumulative gradient is smaller,
the learning rate is higher, and the learning speed becomes faster. It

is adequate for addressing sparse gradient problems.
As the training time expands, the

cumulative gradient becomes
increasingly larger, causing the learning

rate to tend toward zero, leading to
inefficient parameter updates.

Each parameter’s lr is tuned in an adaptive way.
An efficient optimizer holds information about pseudo curvature
and can cope with stochastic objectives very successfully, which

makes it relevant and applicable to batch learning.

RMSProp RMSProp converges more swiftly than SGD. The learning rate must be chosen
manually.

Adadelta
Addressing the inefficient learning problem in the later phase of

AdaGrad. It is convenient for the optimization of non-convex and
non-stationary problems.

During The late training phase, The
updating process might be repeated

around The local minimal value.

Adam
The gradient descent process is quite steady. It suits mostly

non-convex optimization problems with both large datasets and
wide dimensional space.

The technique may fail to converge in
some instances.

5. Conclusions

In the present research paper, an exhaustive comparative study has been carried out
between several cutting-edge deep learning models and machine learning ones. Moreover,
the performance of the best-resulting network has been improved by using various activa-
tion functions and deep learning optimization algorithms. The findings are very promising
and strongly indicate the dominance of the DL models over classical ML algorithms. Thus,
the recall, the obtained accuracy and above all the simplicity of the approach confirm that
the DL method is the best way forward for image classification problems with relatively
large datasets. Nevertheless, DL algorithms also have some constraints, namely that a very
powerful GPU/TPU is mandatory for training, as CNN models are time-consuming to
train and might take hours to weeks depending on the dataset size.

Therefore, to lessen the learning time, we employed pre-trained models. Moreover,
merging the machine learning algorithms and deep networks requires much fewer CPU
resources and will use about half of the memory bandwidth while generating better
models. So, going forward, a web application can be implemented with a complete system
composed of server-side elements containing a hybrid model based on the best-found
functions (SGD optimizer+ swish activation function + RF+ InceptionV3) trained with
features such as a display of the crop’s recognized diseases that can be applied in the field
for validation and testing. Moreover, the application may provide a forum for agronomists
and farmers to discuss treatments and precautions for diseases they have experienced.
Moreover, we will strive to decrease the learning time, computational complexity, and deep
model size to run them on embedded or mobile platforms.

Author Contributions: Conceptualization, H.O. and M.S.; methodology, H.O.; software, H.O.; vali-
dation, M.S., M.K. and E.S.; formal analysis, M.S.; investigation, M.S.; resources, M.K.; data curation,
M.K.; writing—original draft preparation, H.O.; writing—review and editing, M.K.; visualization,
E.S.; supervision, E.S.; project administration, M.S. and M.K.; funding acquisition, M.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This research k was done within the framework “Agrometeorological Stations Platform”
project funded by the Moroccan Ministry of Higher Education and Scientific Research-National
Centre for Scientific and Technical Research (NCSTR) (PPR2 project).

Agriculture 2023, 13, 352 32 of 35

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in [PlantVillage
Dataset] at [https://www.plantvillage.org/], reference number [20].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used throughout this manuscript.

AI Artificial Intelligence
AF Activation function
ANN Artificial Neural Networks
AUC Area Under Curve
Adam Adaptive moment estimation method
CA Classification Accuracy
CA Channel-wise Attention
CART Classification And Regression Trees
CNN Convolutional Neural Networks
DL Deep Learning
ELM Extreme Learning Machine
ELU Exponential Linear Unit
FLS Few-Short learning
FC Fully Connected
IMPS Importance Sampling
KNN K-Nearest Neighbor
LDA Latent Dirichlet Allocation
ML Machine Learning
MLP Multilayer Perceptron
NB Naive Bayes
NN Neural Networks
ResNet Residual Network
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
RF Random Forest
ROS Random Over Sampling
ROC Receiver Operating Characteristics
RUS Random Under Sampling
SGD Stochastic Gradient Descent
SMOTE Synthetic Minority Over-sampling Technique
SNN Spiking Neural Networks
SVM Support Vector Machine
TPMD Tomato Powdery Mildew Disease
VGG Visual Geometry Group

References
1. Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on

major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [CrossRef] [PubMed]
2. Dhingra, G.; Kumar, V.; Joshi, H.D. Study of digital image processing techniques for leaf disease detection and classification.

Multimedia Tools Appl. 2018, 77, 19951–20000. [CrossRef]
3. Singh, V.; Sharma, N.; Singh, S. A review of imaging techniques for plant disease detection. Artif. Intell. Agric. 2020, 4, 229–242.

[CrossRef]
4. Mojjada, R.K.; Kumar, K.K.; Yadav, A.; Prasad, B.S.V. WITHDRAWN: Detection of plant leaf disease using digital image processing.

Mater. Today Proc. 2020. [CrossRef]
5. Vishnoi, V.K.; Kumar, K.; Kumar, B. Plant disease detection using computational intelligence and image processing. J. Plant Dis.

Prot. 2021, 128, 19–53. [CrossRef]

https://www.plantvillage.org/
http://doi.org/10.1038/s41559-018-0793-y
http://www.ncbi.nlm.nih.gov/pubmed/30718852
http://doi.org/10.1007/s11042-017-5445-8
http://doi.org/10.1016/j.aiia.2020.10.002
http://doi.org/10.1016/j.matpr.2020.11.115
http://doi.org/10.1007/s41348-020-00368-0

Agriculture 2023, 13, 352 33 of 35

6. Applalanaidu, M.V.; Kumaravelan, G. A Review of Machine Learning Approaches in Plant Leaf Disease Detection and Classifica-
tion. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile
Networks (ICICV), Tirunelveli, India, 4–6 February 2021.

7. Prathusha, P.; Murthy, K.; Srinivas, K. Plant Disease Detection Using Machine Learning Algorithms. In International Conference on
Computational and Bio Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2019.

8. Pradhan, S.S.; Patil, R. Comparison of Deep Learning Approaches for Plant Disease Detection. In Proceedings of International
Conference on Wireless Communication; Springer: Singapore, 2020. [CrossRef]

9. Sachdeva, G.; Singh, P.; Kaur, P. Plant leaf disease classification using deep Convolutional neural network with Bayesian learning.
Mater. Today Proc. 2021, 45, 5584–5590. [CrossRef]

10. Devaraj, A.; Rathan, K.; Jaahnavi, S.; Indira, K. Identification of plant disease using image processing technique. In Proceedings
of the 2019 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 4–6 April 2019.

11. Iniyan, S.; Jebakumar, R.; Mangalraj, P.; Mohit, M.; Nanda, A. Plant Disease Identification and Detection Using Support Vector
Machines and Artificial Neural Networks. In Artificial Intelligence and Evolutionary Computations in Engineering Systems; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 15–27. [CrossRef]

12. Orchi, H.; Sadik, M.; Khaldoun, M. A General Survey on Plants Disease Detection Using Image Processing, Deep Transfer
Learning and Machine Learning Techniques. In International Symposium on Ubiquitous Networking; Springer: Cham, Switzerland,
2021; pp. 210–224. [CrossRef]

13. Argüeso, D.; Picon, A.; Irusta, U.; Medela, A.; San-Emeterio, M.G.; Bereciartua, A.; Alvarez-Gila, A. Few-Shot Learning approach
for plant disease classification using images taken in the field. Comput. Electron. Agric. 2020, 175, 105542. [CrossRef]

14. Pantazi, X.; Moshou, D.; Tamouridou, A. Automated leaf disease detection in different crop species through image features
analysis and One Class Classifiers. Comput. Electron. Agric. 2019, 156, 96–104. [CrossRef]

15. Arora, J.; Agrawal, U.; Sharma, P. Classification of Maize leaf diseases from healthy leaves using Deep Forest. J. Artif. Intell. Syst.
2020, 2, 14–26. [CrossRef]

16. Tang, Z.; Yang, J.; Li, Z.; Qi, F. Grape disease image classification based on lightweight convolution neural networks and
channelwise attention. Comput. Electron. Agric. 2020, 178, 105735. [CrossRef]

17. Bhatia, A.; Chug, A.; Singh, A.P. Application of extreme learning machine in plant disease prediction for highly imbalanced
dataset. J. Stat. Manag. Syst. 2020, 23, 1059–1068. [CrossRef]

18. Shamsudin, H.; Yusof, U.K.; Jayalakshmi, A.; Khalid, M.N.A. Combining oversampling and undersampling techniques for
imbalanced classification: A comparative study using credit card fraudulent transaction dataset. In Proceedings of the 2020 IEEE
16th International Conference on Control & Automation (ICCA), Singapore, 9–11 October 2020. [CrossRef]

19. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

20. Faust, J.; Hanelt, P.H.P.; Bhat, S.A. PlantVillage Dataset: A Dataset of 5539 Training and Validation Images for 26 Crop Species.
2016. Available online: https://www.plantvillage.org/ (accessed on 20 October 2022).

21. Carneiro, T.; Da Nobrega, R.V.M.; Nepomuceno, T.; Bian, G.-B.; De Albuquerque, V.H.C.; Filho, P.P.R. Performance Analysis of
Google Colaboratory as a Tool for Accelerating Deep Learning Applications. IEEE Access 2018, 6, 61677–61685. [CrossRef]

22. Lukic, M.; Tuba, E.; Tuba, M. Leaf recognition algorithm using support vector machine with Hu moments and local binary
patterns. In Proceedings of the 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics
(SAMI), Herl’any, Slovakia, 26–28 January 2017; pp. 000485–000490. [CrossRef]

23. Hu, M.-K. Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theory 1962, 8, 179–187. [CrossRef]
24. Basavaiah, J.; Anthony, A.A. Tomato Leaf Disease Classification using Multiple Feature Extraction Techniques. Wirel. Pers.

Commun. 2020, 115, 633–651. [CrossRef]
25. Karthickmanoj, R.; Sasilatha, T.; Padmapriya, J. Automated machine learning based plant stress detection system. Mater. Today

Proc. 2021, 47, 1887–1891. [CrossRef]
26. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973,

SMC-3, 610–621. [CrossRef]
27. Bankar, S.; Dube, A.; Kadam, P.; Deokule, S. Plant disease detection techniques using canny edge detection & color histogram in

image processing. Int. J. Comput. Sci. Inf. Technol 2014, 5, 1165–1168.
28. Koranne, S. Hierarchical data format 5: HDF5. In Handbook of Open Source Tools; Springer: Berlin/Heidelberg, Germany, 2011;

pp. 191–200.
29. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
30. Hsu, W.-C.; Lin, L.-F.; Chou, C.-W.; Hsiao, Y.-T.; Liu, Y.-H. EEG Classification of Imaginary Lower Limb Stepping Movements

Based on Fuzzy Support Vector Machine with Kernel-Induced Membership Function. Int. J. Fuzzy Syst. 2017, 19, 566–579.
[CrossRef]

31. Cunningham, P.; Delany, S.J. k-Nearest Neighbour Classifiers—A Tutorial. ACM Comput. Surv. 2021, 54, 1–25. [CrossRef]
32. Liu, Y.; Wang, Y.; Zhang, J. New machine learning algorithm: Random forest. In International Conference on Information Computing

and Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 246–252.
33. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

http://doi.org/10.1007/978-981-15-1002-1_58
http://doi.org/10.1016/j.matpr.2021.02.312
http://doi.org/10.1007/978-981-15-0199-9_2
http://doi.org/10.1007/978-3-030-86356-2_18
http://doi.org/10.1016/j.compag.2020.105542
http://doi.org/10.1016/j.compag.2018.11.005
http://doi.org/10.33969/AIS.2020.21002
http://doi.org/10.1016/j.compag.2020.105735
http://doi.org/10.1080/09720510.2020.1799504
http://doi.org/10.1109/icca51439.2020.9264517
http://doi.org/10.1613/jair.953
https://www.plantvillage.org/
http://doi.org/10.1109/ACCESS.2018.2874767
http://doi.org/10.1109/sami.2017.7880358
http://doi.org/10.1109/tit.1962.1057692
http://doi.org/10.1007/s11277-020-07590-x
http://doi.org/10.1016/j.matpr.2021.03.651
http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.1007/BF00994018
http://doi.org/10.1007/s40815-016-0259-9
http://doi.org/10.1145/3459665
http://doi.org/10.1023/A:1010933404324

Agriculture 2023, 13, 352 34 of 35

34. Rish, I. An empirical study of the naive Bayes classifier. In IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence; IBM
Research: New York, NY, USA, 2001; pp. 41–46.

35. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
36. Trendowicz, A.; Jeffery, R. Classification and regression trees. In Software Project Effort Estimation; Springer: Berlin/Heidelberg,

Germany, 2014; pp. 295–304.
37. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
38. Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
39. Mercioni, M.A.; Holban, S. The most used activation functions: Classic versus current. In Proceedings of the 2020 International

Conference on Development and Application Systems (DAS), Suceava, Romania, 21–23 May 2020.
40. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation functions: Comparison of trends in practice and research for

deep learning. arXiv 2018, arXiv:1811.03378, 124–133. [CrossRef]
41. Szandała, T. Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks. In Bio-Inspired

Neurocomputing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 203–224.
42. Ramachandran, P.; Zoph, B.; Le, Q.V. Searching for activation functions. arXiv 2017, arXiv:1710.05941.
43. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the ICML,

Atlanta, GA, USA, 16–21 June 2013.
44. Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Unterthiner, and S. Hochreiter, Fast and accurate deep network learning by

exponential linear units (elus). arXiv Preprint 2015, arXiv:1511.07289.
45. Trottier, L.; Giguere, P.; Chaib-Draa, B. Parametric exponential linear unit for deep convolutional neural networks. In Proceedings

of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December
2017.

46. Shin, H.-C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural
Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med.
Imaging 2016, 35, 1285–1298. [CrossRef]

47. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
48. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res.

2011, 12, 2121–2159.
49. Hinton, G.; Srivastava, N.; Swersky, K. Neural Networks for Machine Learning. 5 October 2020. Available online: http:

//www.cs.toronto.edu/~{}hinton/coursera/lecture6/lec6.pdf (accessed on 20 October 2022).
50. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
51. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
52. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
53. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International

Conference on Machine Learning; PMLR: London, UK, 2015.
54. Brahimi, M.; Arsenovic, M.; Laraba, S.; Sladojevic, S.; Boukhalfa, K.; Moussaoui, A. Deep Learning for Plant Diseases: Detection

and Saliency Map Visualisation. In Human and Machine Learning, Human–Computer Interaction Series; Springer: Cham, Switzerland,
2018; pp. 93–117.

55. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25. [CrossRef]

56. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.;
Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8,
1–74. [CrossRef]

57. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016.

58. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In European Conference on Computer Vision;
Springer: Cham, Switzerland, 2016; pp. 630–645.

59. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016.

60. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
61. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020,

arXiv:2010.16061.
62. Sasaki, Y. The truth of the F-measure. Teach Tutor Mater 2007, 1, 5.
63. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
64. Brown, C.D.; Davis, H.T. Receiver operating characteristics curves and related decision measures: A tutorial. Chemom. Intell. Lab.

Syst. 2006, 80, 24–38. [CrossRef]
65. Niu, X.-X.; Suen, C.Y. A novel hybrid CNN–SVM classifier for recognizing handwritten digits. Pattern Recognit. 2012, 45,

1318–1325. [CrossRef]
66. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27,

294–300. [CrossRef]

http://doi.org/10.1038/nature14539
http://doi.org/10.1016/j.neunet.2014.09.003
http://doi.org/10.48550/arXiv.1811.03378
http://doi.org/10.1109/TMI.2016.2528162
http://www.cs.toronto.edu/~{}hinton/coursera/lecture6/lec6.pdf
http://www.cs.toronto.edu/~{}hinton/coursera/lecture6/lec6.pdf
http://doi.org/10.1145/3065386
http://doi.org/10.1186/s40537-021-00444-8
http://doi.org/10.1016/j.patrec.2005.10.010
http://doi.org/10.1016/j.chemolab.2005.05.004
http://doi.org/10.1016/j.patcog.2011.09.021
http://doi.org/10.1016/j.patrec.2005.08.011

Agriculture 2023, 13, 352 35 of 35

67. Guo, L.; Ma, Y.; Cukic, B.; Singh, H. Robust prediction of fault-proneness by random forests. In Proceedings of the 15th
International Symposium on Software Reliability Engineering, Washington, DC, USA, 2–5 November 2004.

68. Orchi, H.; Sadik, M.; Khaldoun, M. On Using Artificial Intelligence and the Internet of Things for Crop Disease Detection:
A Contemporary Survey. Agriculture 2021, 12, 9. [CrossRef]

69. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/agriculture12010009
http://doi.org/10.1145/3422622

	Introduction
	Materials and Methods
	Dataset
	Experimental Setup
	Machine Learning Approach
	Image Preprocessing
	Background Removal and Segmentation of the Diseased Region
	Feature Extraction
	Classification

	Deep Learning Approach
	Image Preprocessing
	Convolutional Neural Networks CNN
	ResNet50
	InceptionV3
	VGG16
	VGG19

	Experimental Results
	Performance Measures
	Improvement in Classification Outcomes by DL Optimizers
	Effectiveness of Deep Learning with Different Activation Functions
	Computational Time Spent for Building Each Model

	Discussion
	Conclusions
	References

