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Abstract

When some steps of a complex, multi-step task are automated, the demand

for human work in the remaining complementary sub-tasks goes up. In con-

trast, when the task is fully automated, the demand for human work de-

clines. Partial automatability of complex tasks leads to a bottleneck of de-

velopment (where further growth is constrained by the scarcity of essential

human work) which is removed once the tasks become fully automatable.

Theoretical analysis using a two-level nested CES production function specifi-

cation demonstrates that the shift from partial to full automation generates a

non-convexity: humans and machines switch from complementary to substi-

tutable, and the share of output accruing to human workers switches from an

upward to a downward trend. This process has implications for inequality, the

risk of technological unemployment and the likelihood of a secular stagnation.
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1 Introduction

Thinking about the long-run impact of automation on the economy, the threat of

technological unemployment or the likelihood of an upcoming secular stagnation,

it is important to account also for mechanisms that may not have been important

in the past but are likely to intensify in the future. In this paper I discuss one

such mechanism: a shift from partial to full automation of complex tasks. The

key theoretical insight of this paper is as follows: if a task is complex – that is,

requires completion of at least two complementary sub-tasks – then it makes a

crucial difference if only some or all of the sub-tasks are automatable. Automating

some but not all sub-tasks increases the relative value of (and returns to) sub-

tasks that cannot be automated. Automating all steps undoes this effect. Partial

automatability makes people and programmable machines complementary, whereas

full automatability makes them substitutable. For this reason, growing wages and

stable employment are safe only when full automation is technologically infeasible.

For the very same reason, though, achieving full automatability of complex tasks

can generate a permanent boost to output growth.

Think for example of the photography industry, represented by companies of two

technological eras: Kodak and Instagram. “Kodak was founded in 1880, and at its

peak employed nearly 145,300 people, with many more indirectly employed via sup-

pliers and retailers. Kodak’s founding family, the Eastmans, became wealthy, while

providing skilled jobs for several generations of middle-class Americans. Instagram

was founded in 2010 by a team of fifteen people. In 2012 it was sold to Facebook for

over one billion dollars. Facebook, worth far more than Kodak ever was, employs

fewer than 5,000 people. At least ten of them have a net worth ten times that of

George Eastman.”1 Gradual technological improvements and partial automation in

the photography industry have been benefiting companies like Kodak for decades,

increasing their employment and the overall wage bill. By contrast, full automation

exemplified by Instragram reversed this trend. Once the entire multi-step task of

providing the service – in this case sharing a certain visual experience with oneself

and others – could be provided to the consumer without any human input, employ-

ment and the wage bill in the protography industry plummeted. What rose instead

was the returns to the automation technology (computer software) and, in effect,

profits and shareholder value of companies like Instragram.

A similar case to consider is retail sales of books. “When Amazon.com sold its

first book 20 years ago, Borders Books & Music had a thriving retail empire gener-

ating about $1.6 billion a year in sales. Today, Borders is nothing but a memory,

ushered to the grave by an e-commerce revolution led by Amazon.”2 And again,

1https://www.newstatesman.com/politics/2014/01/kodak-vs-instagram-why-its-only-going-

get-harder-make-good-living [access: 13.12.2019]
2https://www.sfchronicle.com/business/article/How-Amazon-factor-killed-retailers-like-
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it is not that Borders did not automate at all: they adopted electronic inventory

management, invoicing systems, put up an online catalog, etc. But in their case au-

tomation was only partial, and they did not make the final step which Amazon did:

offering the entire service – putting a certain book in a certain person’s hand – with-

out any human input. Just like in the photography industry, the real game-changer

here was the shift from partial to full automation. Amazon’s new technology was

disruptive.

The key reason to believe that in the coming decades we will see many more

industries disrupted by a shift from partial to full automation is that growth in

the digital sphere, responsible for all progress in automation, is now an order of

magnitude faster than growth in the global capital stock and GDP: data volume,

processing power and bandwidth double every 2–3 years, whereas global GDP dou-

bles every 20–30 years. In particular, since the 1980s “general-purpose computing

capacity grew at an annual rate of 58%. The world’s capacity for bidirectional

telecommunication grew at 28% per year, closely followed by the increase in glob-

ally stored information (23%)” (Hilbert and López, 2011). The costs of a standard

computation have been declining by 53% per year on average since 1940 (Nordhaus,

2017). The processing, storage, and communication of information has decoupled

from the cognitive capacities of the human brain: “less than one percent of infor-

mation was in digital format in the mid-1980s, growing to more than 99% today”

(Gillings, Hilbert, and Kemp, 2016). Preliminary evidence also suggests that since

the 1980s the efficiency of computer algorithms has been improving at a pace that is

of the same order of magnitude as accumulation of digital hardware (Grace, 2013).

Corroborating this finding, in the recent decade we have witnessed a surge in AI

breakthroughs based on the methodology of deep neural networks (Tegmark, 2017),

from autonomous vehicles and simultaneous language interpretation to self-taught

superhuman performance at chess and Go (Silver, Hubert, Schrittwieser, et al.,

2018).

In the current paper I formalize the consequences of a shift from partial to full

automation with a simple model of tasks that consist of two sub-tasks. I assume that

sub-tasks within a task are complementary, whereas within each sub-task people and

machines are substitutable. I use this model to compare the “partial automation”

scenario where some of the sub-tasks can be performed only by a human against a

“full automation” scenario where all sub-tasks can be performed both by a human

and a pre-programmed machine. I assume perfect competition at factor markets and

perfect mobility of factors across the sub-tasks, so that their remuneration in both

sub-tasks is equalized. In each of the considered scenarios I compute the equilibrium

allocation of factors across sub-tasks, factor shares and wage rates. I then analyze

how these numbers change with technological progress and the accumulation of

6378619.php [access: 13.12.2019]
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programmable machines able to perform automatable tasks. (My results can be

easily generalized to tasks consisting of an arbitrary number of sub-tasks, some of

which are automatable and some are not.)

I find that when at least one sub-task is not automatable, progress in automa-

tion makes the scarce human input increasingly valuable, thereby increasing wages

and the labor share of output towards unity. Then, as the extent of automation

becomes sufficiently high, human work becomes the bottleneck of further economic

growth. When all tasks are automatable, in contrast, progress in automation makes

the scarce human input increasingly less valuable, decreasing the labor share of out-

put towards zero. As automation technology becomes sufficiently advanced, human

work becomes unimportant for production. Economic growth continues unabated,

but its fruit are increasingly captured by (owners of) pre-programmed machines and

their software, not the human workers. The shift from partial to full automatabil-

ity of tasks creates a non-convexity in economic development, where human and

machine inputs switch from complementary to substitutable (in the sense of the ag-

gregate elasticity of substitution, cf. Miyagiwa and Papageorgiou (2007); Xue and

Yip (2013)). While boosting growth, it also generates a secular upward trend in

inequality by gradually redirecting income from a wide population of workers to a

relatively narrow group of owners of programmable machines and their software.

The results obtained in the current study are helpful in answering the important

question whether automation will bring technological unemployment. Will a robot

take your job? Will humans go the way of horses? Does technological progress

destroy fewer or more jobs than it creates? (Brynjolfsson and McAfee, 2014; Frey and

Osborne, 2017; Autor and Salomons, 2018) On past evidence, the overall balance has

been positive thus far: even if routine jobs were succumbing to automation (Autor

and Dorn, 2013), these falls has been compensated – and in aggregate value terms,

more than compensated – by the rise of high-skill, non-routine cognitive tasks and

occupations (“frontier jobs”, Autor, 2019) as well as the auxiliary low-skilled ones

(“wealth work” and “last mile jobs”). However, this conclusion is not guaranteed

to persist: as more and more sectors become fully automated, even these jobs may

eventually disappear.

The current paper also informs the debate on the future of global economic

growth – whether we should expect secular stagnation (Jones, 2002; Gordon, 2016),

further exponential growth, or a technological singularity (Kurzweil, 2005). My key

point is that secular stagnation requires setting a firm limit to automatability: for

such a scenario to materialize there must exist an essential task in the economy, com-

plementary to all others, which cannot be fully automated. Otherwise, production

will get increasingly automated and aggregate output will gradually decouple from

human work, becoming instead proportional to the work done by pre-programmed

machines.
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The current study is related more broadly to studies focusing on automation

and its impacts on productivity, employment, wages and factor shares (Acemoglu

and Autor, 2011; Autor and Dorn, 2013; Graetz and Michaels, 2018; Acemoglu and

Restrepo, 2018; Andrews, Criscuolo, and Gal, 2016; Arntz, Gregory, and Zierahn,

2016; Frey and Osborne, 2017; Barkai, 2017; Autor, Dorn, Katz, Patterson, and

Van Reenen, 2017; Jones and Kim, 2018; Hemous and Olsen, 2018). It also touches

the nascent literature on macroeconomic implications of development of “digital

labor”, AI and autonomous robots (Yudkowsky, 2013; Graetz and Michaels, 2018;

Sachs, Benzell, and LaGarda, 2015; Benzell, Kotlikoff, LaGarda, and Sachs, 2015;

DeCanio, 2016; Acemoglu and Restrepo, 2018; Aghion, Jones, and Jones, 2019; Berg,

Buffie, and Zanna, 2018; Benzell and Brynjolfsson, 2019). In particular Benzell and

Brynjolfsson (2019) consider a model where automation replaces capital and labor

but is complementary to a scarce factor “genius”. The predictions of this model

are very similar to the “partial automation” scenario, with “genius” acting as the

human work necessary for carrying out the non-automatable sub-task.

Last but not least, the current paper can also be viewed in conjunction with my

other one (Growiec, 2019) in which I formalize the distinction between mechanization

and automation with the hardware–software model. What I refer to as “human and

machine work” in the current paper is equivalent to “human cognitive work and pre-

programmed software” within the software factor discussed there. Keeping this in

mind, it is straightforward to observe that mechanization initiated in the Industrial

Revolution had vastly different implications for factor shares than automation which

began with the Digital Revolution: the former featured replacement of humans with

machines in the hardware factor (brawn) whereas the latter pertains to the software

factor (brains). Mechanization raised demand for human cognitive work, automation

replaces it. Demand for human cognitive work can go up only to the extent it is

complementary to the automated tasks, i.e., only as long as automation is partial.

2 Model of Partial and Full Automation

2.1 Setup

Consider a task T consisting of two complementary sub-tasks T1 and T2,

T = T0

(

π0

(

T1
T01

)ε

+ (1− π0)

(

T2
T02

)ε) 1
ε

. (1)

Output of task T is thus modeled with a normalized CES function with constant

returns to scale (Klump and de La Grandville, 2000; Klump, McAdam, and Will-

man, 2012). The parameter ε < 0 signifies gross complementarity of the two sub-

tasks, linking to the elasticity of substitution via σ = 1
1−ε

∈ (0, 1). The parameter
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π0 ∈ (0, 1) is the share of sub-task 1 in the total output of task T at the point of

normalization. Variables with subscript 0 are (positive) normalization constants.

I would like to compare two scenarios: (i) partial automation, where sub-task 2

is not automatable and can be performed by humans only, and (ii) full automation,

where both tasks can be performed both by humans L and programmable machines

K. Taking again the normalized CES form, output of each of the subtasks can be

written as:

Ti = T0i

(

π0i

(

ψi
K

K0

)θ

+ (1− π0i)

(

ni
L

L0

)θ
) 1

θ

, i = 1, 2, (2)

where θ ∈ (0, 1] signifies gross substitutability of humans and machines in each of

the two sub-tasks. In the polar case θ = 1 both inputs are perfectly substitutable

in production. K > 0 is the total supply of machines in the economy whereas

L > 0 is total employment of people. The parameter ψi captures the productivity-

adjusted share of machines employed in performing sub-task i, with ψ1 + ψ2 = ψ

fixed. Analogously, ni captures the productivity-adjusted share of people employed

in performing sub-task i, with n1 + n2 = n fixed.

The number ψ represents the unit productivity of programmable machines K,

and thus increases in ψ represent progress in efficiency of machine work, stem-

ming e.g. from improved machine architecture or improved algorithms. The overall

progress in automation is captured by growth in the product ψK, which has both

the intensive margin (growth in ψ), and the extensive margin (growth in K, e.g.

increases in raw computing power).

In turn, n represents the number of productivity-adjusted hours worked per

worker. Increases in n may thus represent either increases in average hours worked

or in the average unit productivity of an hour worked.

In this notation, the partial automation case is a constrained variant of the full

automation case, obtained by imposing ψ2 = 0 and thus ψ1 = ψ. Moreover, it is

easily observed that the current setup can be understood as encompassing any finite

number of sub-tasks: “sub-task 1” is a catch-all term covering all sub-tasks which

are automatable.

Under perfect competition and constant returns to scale, the shares of sub-tasks

1 and 2 in output sum up to unity. The shares of humans and machines in each

of the sub-tasks sum up to unity, too. Under the normalized CES specification the

shares are computed as follows:

π = π0

(

T1
T01

T0
T

)ε

, share of sub-task 1, (3)

π1 = π01

(

ψ1K

K0

T01
T1

)θ

, machines share in sub-task 1, (4)

π2 = π02

(

ψ2K

K0

T02
T2

)θ

, machines share in sub-task 2. (5)
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The overall machines share of output is πK = ππ1+(1−π)π2, and the human labor

share is πL = 1− πK = π(1− π1) + (1− π)(1− π2).

Using normalized intensive units, k = K
K0

L0

L
, ti = Ti

T0i

L0

L
, t = T

T0

L0

L
, we obtain:

π = π0(t1/t)
ε, and for i = 1, 2, πi = π0i(ψik/ti)

θ.

In any interior solution, equalization of wages across sub-tasks 1 and 2 (w1 = w2)

yields:

w1 =
∂T

∂(n1L)
=

∂T

∂(n2L)
= w2 ⇐⇒

n1

n2

=
π

1− π

1− π1
1− π2

. (6)

Furthermore, if both sub-tasks are automatable, equalization of rental rates of ma-

chines across sub-tasks 1 and 2 (r1 = r2) yields:

r1 =
∂T

∂(ψ1K)
=

∂T

∂(ψ2K)
= r2 ⇐⇒

ψ1

ψ2

=
π

1− π

π1
π2
. (7)

If sub-task 2 is not automatable, equation (7) ceases to hold and all machines are

allocated to sub-task 1 where they are remunerated according to their marginal

product.

Dealing with the long run implications of both scenarios, I am going to be partic-

ularly concerned with the impact of progress in automation, which I will understand

as an increase in ψk keeping n constant. By the extent of automation I will conse-

quently mean the ratio ψk/n.

2.2 Results under Perfect Substitutability

I shall first assume perfect substitutability of people and machines within each sub-

task, θ = 1. This special case is particularly transparent insofar as it implies that in

equilibrium, output at the level of the whole task follows a normalized CES function,

too.

2.2.1 Partial Automation: Sub-Task 2 Not Automatable

When θ = 1, from wage equalization (6) we get:

t1
t2

=

(

π0
1− π0

1− π01
1− π02

) 1
1−ε

. (8)

Hence, the interior equilibrium requires that output from sub-tasks 1–2 must come

in a fixed proportion. In the following analysis I will denote this ratio as ξ > 0.

Equilibrium allocation. Assuming ψ2 = 0 and thus ψ1 = ψ, and therefore t1 =

π01(ψk) + (1− π01)n1 and t2 = (1− π02)n2, I obtain that employment in sub-task 1

equals:

n1 =







ξ(1−π02)n−π01(ψk)
ξ(1−π02)+(1−π01)

, if ψk
n

≤
ξ(1−π02)
π01

,

0, if ψk
n
> ξ(1−π02)

π01
.

(9)
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If the extent of automation ψk/n is low (below a certain exogenous threshold), hu-

man work is used in both sub-tasks. The economy is then in an interior equilibrium.

If the extent of automation is high, though, the economy finds itself in a corner

equilibrium and human work is used only in sub-task 2 which is not automatable.

Factor shares and substitutability. If ψ2 = 0 and thus machines are not employed in

sub-task 2, the relative factor share in the economy, i.e., the ratio of the machines

share πK to the human labor share πL equals:

Π =
πK
πL

=
ππ1

π(1− π1) + (1− π)
=

π0π01t
ε−1
1 (ψk)

π0(1− π01)t
ε−1
1 n1 + (1− π0)tε2

. (10)

Hence,

Π =







(

π01
1−π01

)

ψk
n
, if ψk

n
≤

ξ(1−π02)
π01

,
(

π01
1−π01

)(

π01ψk
(1−π02)n

)ε

, if ψk
n
> ξ(1−π02)

π01
.

(11)

Equation (11) has very important implications. It elucidates that as long as the

extent of automation is low, human and machine work are perfectly substitutable

at the level of the whole task because they are substitutable at the level of each

sub-tasks and there is a degree of freedom to keep the ratio of both tasks fixed in

equilibrium. If the extent of automation is high, though, this degree of freedom is no

longer present. When all human work is allocated to the non-automatable sub-task

2, it becomes complementary to machines because the human-operated sub-task 2

is complementary to the machine-operated sub-task 1.

It is also instructive to compute the equilibrium wage rate, which is equal to:

w = w2 = (1− π)(1− π2)
T

n2L
= (1− π0)(1− π02)

(

t2
t

)ε−1
T0
L0

, (12)

and thus is proportional to the contribution of the non-automatable sub-task 2 to

overall output, t2/t.

Inserting the equilibrium allocation of human work into final task output we

obtain that in equilibrium the normalized CES form with human and machine work

is reproduced at the level of the whole task, with an infinite elasticity of substitution

if ψk/n is low, and a low elasticity of substitution 1
1−ε

< 1 if ψk/n is high:

t =







(π0 + (1− π0)ξ
−ε)

1
ε (π01(ψk) + (1− π01)n1), if ψk

n
≤

ξ(1−π02)
π01

,

(π0(π01ψk)
ε + (1− π0)((1− π02)n)

ε)
1
ε , if ψk

n
> ξ(1−π02)

π01
.

(13)

Impact of automation. As ψk goes up (reflecting technological progress and the

accumulation of programmable machines able to perform sub-task 1), eventually

it must cross the threshold ξ(1 − π02)n/π01. From that moment on we arrive at

the corner solution where all human work is allocated to the non-automatable sub-

task 2, making human and machine work complementary (with a low elasticity of
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substitution 1
1−ε

). The human labor share of output grows, eventually to unity as

ψk → ∞. Wages grow in negative sync with the declining contribution of sub-task

2 to overall output (t2/t), mirroring the increasing scarcity of human work, but

eventually converge to a firm upper bound.

Long-run steady state. In the long run steady state (in which ψk → ∞), all human

work is allocated to the non-automatable sub-task 2 and the human labor share of

output πL is one. Output approaches the upper limit:

tmax = (1− π0)
1
ε (1− π02)n. (14)

In consequence, wages approach their respective upper limit:

wmax = (1− π0)
1
ε (1− π02)

T0
L0

. (15)

In the long run, human work is a bottleneck of development. Total output is bounded

above and further growth is impossible. The only way to circumvent this “underde-

velopment trap” is to make all sub-tasks automatable, rendering the human input

no longer essential for production.

2.2.2 Full Automation: Both Sub-Tasks Automatable

When both sub-tasks are automatable, both people and machines can be freely

allocated to either of the two sub-tasks. In any interior equilibrium, wages and

rental rates of machines must be equalized across the sub-tasks (equations (6)–(7)),

implying that
n1

n2

=
ψ1

ψ2

(

π2
π1

1− π1
1− π2

)

. (16)

However, further inspection reveals that with perfect substitutability of people and

machines within sub-tasks, equation (16) is either trivially satisfied if π01 = π02 or

otherwise leads to a contradiction. It is more constructive to concentrate on the

typical case π01 6= π02. In analyzing this case, without loss of generality we may

assume π01 > π02, so that sub-task 1 is relatively more machine-intensive than sub-

task 2. In this case there is no interior equilibrium. Instead, three types of corner

equilibria are possible: (i) with machines in both sub-tasks, humans only in sub-

task 2, (ii) with machines only in sub-task 1 and humans only in sub-task 2, and

(iii) with machines only in sub-task 1 and humans in both sub-tasks. The choice of

equilibrium will depend critically on the extent of automation, ψk/n.

Equilibrium allocation. The following allocation of human work across sub-tasks is

derived:

n1 =







ξ(1−π02)n−π01(ψk)
ξ(1−π02)+(1−π01)

, if ψk
n

≤
ξ(1−π02)
π01

,

0, if ψk
n
> ξ(1−π02)

π01
.

(17)

9



In turn, the allocation of machines is:

ψ1k =







ψk, if ψk
n

≤
ζ(1−π02)
π01

,

ζ((1−π02)n+π02(ψk))
ζπ02+π01

, if ψk
n
> ζ(1−π02)

π01
,

(18)

where ξ =
(

π0
1−π0

1−π01
1−π02

) 1
1−ε

<
(

π0
1−π0

π01
π02

) 1
1−ε

= ζ because π01 > π02.

If the extent of automation is low (ψk/n below the lower threshold), human work

is used in both sub-tasks and machines are used only in sub-task 1. For intermedi-

ate values of ψk/n there is perfect specialization, so that sub-task 1 employs only

machines, and sub-task 2 employs only people. Finally, if the extent of automation

is high (ψk/n above the higher threshold), human work is used only in sub-task 2

while machines are employed in both sub-tasks.

If π01 = π02 then ξ = ζ and the intermediate case disappears.

Factor shares and substitutability. When both tasks are automatable, the relative

factor share Π equals:

Π =
πK
πL

=
ππ1 + (1− π)π2

π(1− π1) + (1− π)(1− π2)
(19)

=
π0π01t

ε−1
1 (ψ1k) + (1− π0)π02t

ε−1
2 (ψ2k)

π0(1− π01)t
ε−1
1 n1 + (1− π0)(1− π02)t

ε−1
2 n2

. (20)

Hence,

Π =



















(

π01
1−π01

)

ψk
n
, if ψk

n
≤

ξ(1−π02)
π01

,
(

π01
1−π01

)(

π01ψk
(1−π02)n

)ε

, if ψk
n

∈
(

ξ(1−π02)
π01

, ζ(1−π02)
π01

)

,
(

π02
1−π02

)

ψk
n
, if ψk

n
≥

ζ(1−π02)
π01

.

(21)

Equation (21) signifies that when both tasks are automatable, human and machine

work are perfectly substitutable at the level of the whole task both when the extent

of automation is low and when it is high. Complementarity occurs only in the

intermediate case of full specialization, where all human work is allocated to sub-task

2 and all machines operate in sub-task 1. Unlike the partial automation scenario,

this result is however reversed once the extent of automation crosses the upper

threshold ζ(1 − π02)/π01. From that moment onwards, a new degree of freedom is

opened – machines can now be freely allocated across both tasks, and in equilibrium

they are allocated such that the contribution of each sub-task is fixed (t1/t and t2/t

are constant).

The equilibrium wage rate still follows equation (12) and thus is proportional to

the contribution of sub-task 2 to overall output, t2/t. Following the results above,

however, it is now constant regardless of factor endowments:

w = (1− π0)(1− π02) (π0ζ
ε + (1− π0))

1−ε

ε
T0
L0

. (22)
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Again, inserting the equilibrium allocation of people and machines into the final

task output we obtain that in equilibrium the normalized CES form with human and

machine work is reproduced at the level of the whole task, with an infinite elasticity

of substitution if ψk is low or high, and a low elasticity of substitution 1
1−ε

< 1 if

ψk takes intermediate values:

t =



















(π0 + (1− π0)ξ
−ε)

1
ε (π01(ψk) + (1− π01)n1), if ψk

n
≤

ξ(1−π02)
π01

,

(π0(π01ψk)
ε + (1− π0)((1− π02)n)

ε)
1
ε , if ψk

n
∈
(

ξ(1−π02)
π01

, ζ(1−π02)
π01

)

,

(π0ζ
ε + (1− π0))

1
ε (π02(ψ2k) + (1− π02)n), if ψk

n
≥

ζ(1−π02)
π01

.

(23)

Impact of automation. As ψk goes up, it will first cross the lower threshold and

eventually the upper threshold of ζ(1 − π02)n/π01. From that moment onwards all

human work is allocated in equilibrium to the relatively less machine-intensive sub-

task 2 whereas machines are used in both sub-tasks. Thanks to the new degree of

freedom – allocation of machines across sub-tasks – human and machine work are

then perfectly substitutable.

Balanced growth path. In the long run, assuming that the extent of automation ψk

will grow exogenously at an exponential rate g, so will grow the final output and

output of each sub-task:

g = gt = gt1 = gt2 . (24)

Hence, full automation unpins economic growth from the capacity of human workers

and instead pins it to the economy’s capacity to accumulate programmable machines.

As human work is no longer a growth bottleneck, the relative share of machines in

generating output will grow exponentially, too (gΠ = g), and with a fixed wage rate

the human labor share of output will decline, eventually to zero as ψk → ∞. The

fraction of machines allocated to sub-task 1 will gradually decline from 1 to the fixed

limit

lim
ψk→∞

ψ1

ψ
=

ζπ02
π01 + ζπ02

. (25)

As humans and machines will eventually become perfect substitutes, the human

input will no longer be essential for production.

2.3 Results under Imperfect Substitutability

Let me now relax the assumption of perfect substitutability of people and machines

within each sub-task, so that now θ ∈ (0, 1). This case excludes corner solutions, so

there will be smooth transitions instead of discrete jumps. However, output at the

level of the whole task in equilibrium will no longer follow a CES function and the

derived formulas will be somewhat less transparent.
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2.3.1 Partial Automation: Sub-Task 2 Not Automatable

From wage equalization across sub-tasks (6) we get:

n1

n2

=

(

π0
1− π0

1− π01
1− π02

) 1
1−θ

(

t1
t2

)
ε−θ

1−θ

. (26)

Equilibrium allocation. Assuming ψ2 = 0 and thus ψ1 = ψ, and therefore t1 =

(π01(ψk)
θ + (1 − π01)n

θ
1)

1/θ and t2 = (1 − π02)
1/θn2, I obtain that employment in

sub-task 1 solves the implicit equation:

(

π01(ψk)
θ + (1− π01)n

θ
1

)
ε−θ

θ nθ−1
1 (n− n1)

1−ε =
1− π0
π0

(1− π02)
ε

θ

(1− π01)
. (27)

As the left hand side is strictly decreasing in both n1 and ψk, from the implicit

function theorem it is easily obtained that (i) the solution to (27) is unique, and (ii)

the fraction of people employed in the automatable sub-task 1 gradually declines

with the extent of automation. As ψk → ∞, the equilibrium share n∗

1(ψk) must fall

to zero, and in the limit all employment will eventually become concentrated in the

non-automatable sector.

Factor shares and substitutability. If ψ2 = 0 and thus machines are not employed in

sub-task 2, the relative factor share in the economy Π equals:

Π =
πK
πL

=
ππ1

π(1− π1) + (1− π)
=

π0π01t
ε−θ
1 (ψk)θ

π0(1− π01)t
ε−θ
1 nθ1 + (1− π0)tε2

. (28)

Hence, after some algebra,

Π =

(

ψk

n

)θ
(n1

n

)1−θ π01
1− π01

, (29)

where n1 = n∗

1(ψk) is the solution to equation (27). Equation (29) reveals that as the

extent of automation grows, the human share of output grows, too. For sufficiently

large ψk, human and machine work become gross complements at the level of the

whole task, because the exclusively human-operated sub-task 2 is complementary

to the mostly machine-operated sub-task 1. The aggregate elasticity of substitution

(Xue and Yip, 2013) gradually declines from a high value of 1
1−θ

> 1 when ψk = 0

to a low value of 1
1−ε

< 1 as ψk → ∞, crossing unity in the process.

It is also instructive to compute the equilibrium wage rate:

w = w2 = (1− π)(1− π2)
T

n2L
= (1− π0)(1− π02)

1
θ

(

t2
t

)ε−1
T0
L0

. (30)

Thus the wage rate is proportional to the contribution of the non-automatable sub-

task 2 to overall output, t2/t.
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Impact of automation. As ψk goes up, human work is increasingly allocated to the

non-automatable sub-task 2. From a certain moment onwards, human and machine

work become gross complements (with an aggregate elasticity of substitution con-

verging to the low value of 1
1−ε

< 1 as ψk → ∞). The human labor share of output

grows, eventually to unity as ψk → ∞. Wages grow in negative sync with the de-

clining contribution of sub-task 2 to overall output (t2/t), mirroring the increasing

scarcity of human work, but eventually converge to a firm upper bound.

Long-run steady state. In the long run steady state (in which ψk → ∞), all human

work is allocated to the non-automatable sub-task 2 and the human share of output

πL is one. Output approaches the upper limit:

tmax = (1− π0)
1
ε (1− π02)

1
θn. (31)

In consequence, wages approach their respective upper limit, too:

wmax = (1− π0)
1
ε (1− π02)

1
θ

T0
L0

. (32)

In the long run, human work is a bottleneck of development: total output is bounded

above and further growth is impossible. The only way to circumvent this trap is

to make all sub-tasks automatable, so that the human input could be no longer

essential for production.

2.3.2 Full Automation: Both Sub-Tasks Automatable

When both sub-tasks are automatable, both human work and machines can be freely

allocated to either of them. In an interior equilibrium, wages and rental rates of

machines must be equalized across both sub-tasks (equation (16)). However, in

contrast to the case θ = 1, with imperfect substitutability of people and machines

within sub-tasks equation (16) leads to an interior equilibrium solution with both

humans and machines employed in both sub-tasks:

n1

n2

=
ψ1

ψ2

(

π02
π01

1− π01
1− π02

) 1
1−θ

. (33)

Hence, both factors of production are always reallocated in unison, counteracting

the complementarity between sub-tasks. We denote their ratio as
(

π02
π01

1−π01
1−π02

) 1
1−θ

=

µ > 0.

Equilibrium allocation. Assuming without loss of generality that π01 ≥ π02 so that

sub-task 1 is relatively more machine-intensive, the allocation of workers across sub-

tasks solves the implicit equation:

n1

n2

=

(

π0
1− π0

1− π01
1− π02

) 1
1−θ

(

t1
t2

)
ε−θ

1−θ

, (34)
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where

t1
t2

=

(

π01(ψ1k)
θ + (1− π01)n

θ
1

π02(ψ2k)θ + (1− π02)nθ2

)
1
θ

=
n1

n2







π01

(

ψ2k
µn2

)θ

+ (1− π01)

π02

(

ψ2k
n2

)θ

+ (1− π02)







1
θ

(35)

and
ψ2k

n2

=
ψk

n

n1

n2
+ 1

n1

µn2
+ 1

. (36)

Application of the implicit function theorem implies that (i) a unique solution n∗

1(ψk)

exists, and (ii) as long as π01 > π02, allocation of human work in the first (more

machine-intensive) sub-task n∗

1(ψk) declines with ψk. As ψk → ∞, n∗

1 converges

from above to a positive constant. With n∗

1(ψk) in hand, the allocation of machines

ψ∗

1(ψk) is calculated from (33).

The particular case π01 = π02 implies µ = 1. The division of factors across

sub-tasks then does not depend on relative factor endowments:

ψ1

n1

=
ψ2

n2

=
ψ

n
,

t1
t2

=
n1

n2

=
ψ1

ψ2

=

(

π0
1− π0

) 1
1−ε

, (37)

In such a case, the problem simplifies greatly and the aggregate production function

retains the normalized CES form with a high elasticity of substitution 1
1−θ

> 1:

t = (1− π0)
1
ε

(

(

π0
1− π0

) 1
1−ε

+ 1

)
1−ε

ε
(

π01(ψk)
θ + (1− π01)n

θ
)

1
1−θ . (38)

If ψ01 6= ψ02 then a closed form of the aggregate production function cannot be

obtained.

As the extent of automation grows, in the case π01 > π02 (where sub-task 1

is relatively more machine-intensive) human work is gradually reallocated towards

sub-task 2, and machines – towards sub-task 1. In the case π01 = π02, the division

of factors between sub-tasks is fixed. In both cases reallocation of factors across

sub-tasks helps circumvent the fact that the sub-tasks are mutually complementary.

In result, the high degree of substitutability between people and machines is passed

from the level of sub-tasks to the level of the entire task.

Factor shares and substitutability. When both tasks are automatable, the relative

factor share in the economy Π equals:

Π =
πK
πL

=
ππ1 + (1− π)π2

π(1− π1) + (1− π)(1− π2)
(39)

=
π0π01t

ε−θ
1 (ψ1k)

θ + (1− π0)π02t
ε−θ
2 (ψ2k)

θ

π0(1− π01)t
ε−θ
1 nθ1 + (1− π0)(1− π02)t

ε−θ
2 nθ2

. (40)
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Hence, after some algebra,

Π =

(

ψk

n

)θ
(

1 + n1

n2

µ+ n1

n2

)θ( n1

n2

π01
1−π01

+ π02
1−π02

µθ

n1

n2
+ 1

)

, (41)

where n1/n2 solves equation (34). If also π01 = π02, equation (41) simplifies to:

Π =

(

ψk

n

)θ
π01

1− π01
. (42)

It means that when both tasks are automatable, human and machine work are

highly substitutable at the level of the whole task. The complementarity between

both sub-tasks is counteracted by reallocating the factors accordingly.

The equilibrium wage rate is now

w = w2 = (1− π)(1− π2)
T

n2L
= (1− π0)(1− π02)

(

t2
t

)ε−1(
n2

t2

)θ−1
T0
L0

, (43)

and thus is shaped by two factors: (i) the contribution of sub-task 2 to overall output

and (ii) the labor intensity of sub-task 2.

Impact of automation. As the extent of automation goes up, the human labor

share of output declines, eventually to zero as ψk → ∞. Wages continue to grow

indefinitely, albeit slower than output because of the falling labor intensity of sub-

task 2. In the long run, total output grows proportionally to the productivity-

adjusted stock of programmable machines, ψk.

Balanced growth path. In the long run, assuming that the per capita stock of ma-

chines ψk will grow exogenously at an exponential rate g, so will grow the final

output and output of each sub-task:

g = gt = gt1 = gt2 . (44)

Hence, full automation unpins economic growth from the capacity of human workers

and instead pins it to the stock of programmable machines. As human work is no

longer a growth bottleneck, the relative share of machines in generating output will

grow exponentially, too (gΠ = g), and the human labor share of output will decline,

eventually to zero as ψk → ∞.

The fraction of people allocated to the respective sub-tasks will gradually con-

verge to a finite limit:

lim
ψk→∞

n1

n2

=

(

π0
1− π0

) 1
1−ε

(

1− π01
1− π02

) 1
1−θ

(

π01
π02

)
ε−θ

(1−ε)θ(1−θ)

, (45)

and so will the fraction of machines, ψ1

ψ2
= n1

µn2
, and the proportion t1/t2. Wages will

eventually set on an exponential growth path:

gw = (1− θ)g, (46)
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mirroring the assumption that with θ < 1, there is a little complementarity between

human and machine inputs, and thus a part of the productivity increase due to

progressing automation spills over to the workers. As ψk → ∞, overall output will

become proportional to the output of each of the two tasks t1, t2 and the elasticity

of substitution between people and machines will converge to 1
1−θ

> 1, so that

people and machines will be gross substitutes and the human input will no longer

be essential for production.

2.4 Technological Unemployment?

In the discussion so far, there was no technological unemployment because the num-

ber of productivity-adjusted hours worked in the economy nL was considered fixed.

People supplied their labor inelastically for any wage. If this assumption is relaxed,

though, leading to an upward sloping labor supply curve, results change. Under

the partial automation scenario, increases in the extent of automation increase em-

ployment in equilibrium; the full automation scenario, by contrast, implies rising

technological unemployment.

To see this, note that in the model discussed above, under full automation as

ψk → ∞ final output becomes proportional to output of either of the two tasks,

which follow a CES production function with gross substitutability between inputs

(θ > 0). In particular in the case θ = 1 final output is linear in the human and

machine input. Under partial automation, in contrast, as ψk → ∞ final output is

driven exclusively by the scarce non-automatable sub-task 2.

As a simple example illustrating how the mechanism works, consider the static

problem of a representative household which maximizes utility from consumption

and leisure subject to the constraint that all output is immediately consumed, taking

ψk as given:

max
n∈[0,n̄)

u(c, n̄− n) = α ln c+ (1− α) ln(n̄− n), α ∈ (0, 1), (47)

where

c = t = t0
(

π(ψk)θ + (1− π)nθ
)

1
θ , π ∈ (0, 1), θ ∈ (0, 1], t0 > 0. (48)

The first order condition is

(1− π)nθ−1(αn̄− n) = (1− α)π(ψk)θ. (49)

The results under partial and full automation are very different. Under full

automation, in the linear case θ = 1 we obtain an explicit solution:

n =







αn̄− (1− α) π
1−π

(ψk), if ψk
n̄

≤ α
1−α

1−π
π
,

0, if ψk
n̄
> α

1−α
1−π
π
.

(50)

16



Hence, when the extent of automation is sufficiently large, the equilibrium wage

is too low relative to the returns on programmable machines for anyone to work.

Accordingly, in the less-than-linear case θ ∈ (0, 1) labor supply is never quite zero,

but nevertheless systematically declining with progress in automation: using the

implicit function theorem it is obtained that n∗(ψk) decreases with ψk, ultimately

to 0 as ψk → ∞.

Hence, under the full automation scenario with endogenous labor supply, the

decline in labor demand following from progress in automation translates not only

into a sub-par increase in wages (when output grows at a rate g, wages grow at a

rate (1 − θ)g), but also into an overall decline in employment. Full automatability

of complex tasks begets technological unemployment.

This result is a polar opposite to the partial automation scenario, which can

be easily reproduced by taking θ < 0 in (48), so that in the long run machines

and people are complementary, not substitutable, and human work is essential for

producing final output. In such a scenario, as human work becomes increasingly

scarce, n∗(ψk) firmly increases with ψk, ultimately to αn̄ as ψk → ∞.

3 Discussion and Conclusions

The current paper has discussed a new mechanism that may strongly affect our

understanding of economic consequences of automation: a shift from partial to full

automatability of complex tasks. If tasks generating value added are complex – that

is, consist of at least two complementary sub-tasks – it makes a big difference if they

are partially or fully automatable. The critical question in this regard is whether

all sub-tasks can be automated or at least one sub-task cannot.

A shift from partial to full automatability of complex tasks is disruptive for

at least four reasons. First, once a task in fully automated, people and machines

switch from being complementary to substitutable in production and long-run trends

in factor shares are reversed.

Second, while both partial and full automation increase inequality relative to

the scenario with no automation at all, full automation does so more strongly and

through a different channel. Partial automation leads to increases in the skill pre-

mium and polarization in the labor market (Autor and Dorn, 2013; Autor and

Salomons, 2018): low- and middle-skilled routine occupations are replaced with ma-

chines and pre-programmed algorithms while high-skilled jobs complementary to the

automated routine occupations thrive and increase their output share. In contrast,

full automation leads to a declining output share of all types of human work, whether

skilled or unskilled, physical or cognitive. What rises instead is the share of out-

put accruing to (the owners of) programmable machines and their software (Barkai,

2017; Autor, Dorn, Katz, Patterson, and Van Reenen, 2017). Whether this increases
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inequality relative to the partial automation scenario, depends on the dispersion of

high cognitive skills (which benefit most under partial automation) in the popu-

lation relative to ownership of programmable machines and their software (which

benefit most under full automation). In my perception, partially corroborated by

the analysis by Benzell and Brynjolfsson (2019), ownership of programmable ma-

chines is likely to be more concentrated than ownership of human cognitive skills,

because (i) human skills are to some extent naturally dispersed (each of us has one

brain and cannot freely accumulate brainpower), (ii) in contrast, computer hard-

ware (data processing power, data storage capacity, bandwidth) is accumulable per

capita, (iii) computer software can almost costlessly scale up to the available hard-

ware, (iv) there are increasing returns to scale in the global digital economy. If

my assumptions are correct, full automation should then increase inequality more

strongly than partial automation.

Third, partial automation increases the demand for human cognitive work (in

complementary occupations) whereas full automation decreases it. Therefore only

full, but not partial automation is conducive to technological unemployment.

Fourth, full automation undoes the bottleneck of development created by the

relative scarcity of human cognitive work under partial automation. Full automation

allows economic growth to decouple from the capacity of human workers and instead

pins it to the stock of programmable hardware.
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