
AutoMed: A BAV Data Integration System
for Heterogeneous Data Sources

Michael Boyd, Sasivimol Kittivoravitkul, Charalambos Lazanitis,
Peter McBrien, and Nikos Rizopoulos

Dept. of Computing, Imperial College, London SW7 2AZ
{mboyd,sk297,cl201,pjm,nr600}@doc.ic.ac.uk

http://www.doc.ic.ac.uk/automed/

Abstract. This paper describes the AutoMed repository and some asso-
ciated tools, which provide the first implementation of the both as view
(BAV) approach to data integration. Apart from being a highly expres-
sive data integration approach, BAV in additional provides a method to
support a wide range of data modelling languages, and describes transfor-
mations between those data modelling languages. This paper documents
how BAV has been implemented in the AutoMed repository, and how
several practical problems in data integration between heterogeneous
data sources have been solved. We illustrate the implementation with
examples in the relational, ER, and semi-structured data models.

1 Introduction

The AutoMed project1 has developed the first implementation of a data integra-
tion technique called both-as-view (BAV) [17], which subsumes the expressive
power of other published data integration techniques global-as-view (GAV),
local-as-view (LAV), and global-local-as-view (GLAV) [9]. BAV also dis-
tinguishes itself in being an approach which has a clear methodology for handling
a wide range of data models in the integration process, as opposed to the other
approaches that assume integration is always performed in a single common data
model.

In this paper we describe the core repository of the AutoMed toolkit, and
several packages that make use of this repository. Apart from giving an overview
of this freely available software product, we describe the solutions to practical
problems of using the BAV approach to integrate large schemas from heteroge-
neous and evolving data sources.

The paper is structured as follows. Section 2 reviews the BAV approach
and demonstrates how it models a relational data source, and introduces a new
1 The AutoMed project was an British EPSRC funded research project, jointly run

by Birkbeck and Imperial Colleges, in the University of London. The Imperial Col-
lege group implemented the data integration toolkit described here, with the the
exception of the query processing component based on the IQL language, which was
developed at Birkbeck College. Software and documentation are available from the
AutoMed website http://www.doc.ic.ac.uk/automed/.

A. Persson and J. Stirna (Eds.): CAiSE 2004, LNCS 3084, pp. 82–97, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

AutoMed: A BAV Data Integration System for Heterogeneous Data Sources 83

model that allows BAV to handle semi-structured text file data sources. Section 3
then describes how the AutoMed system handles the BAV description of such
data modelling languages and their integration. We show how to divide a large
integration of data sources into a set of well defined subnetworks. Details of
how we approach the transformation between modelling languages are given in
Section 4, and the description of how to program higher level transformations
as sequences of primitive transformations in a transformation template language
are given in Section 5. Finally Section 6 addresses the problem of automating
the schema matching process in the AutoMed framework.

2 BAV Data Integration

Data integration is the process of combining several data sources such that they
may be queried and updated via some common interface. This requires that
each local schema of each data source be mapped to the global schema of
the common interface. In the GAV approach [9], this mapping is specified by
writing a definition of each global schema construct as a view over local schema
constructs. In LAV [9], this mapping is specified by defining each local schema
construct as a view over global schema constructs. GLAV [13] is a variant of
LAV that allows the head of the view definition to contain any query on the
local schema.

In the BAV approach, the mapping between schemas can be described as a
pathway of primitive transformation steps applied in sequence. For exam-
ple, suppose we want to transform the relational schema S3 in Fig. 2(a) into
the the global schema Srg in Fig. 3(a). Using the approach described in [17],
we model each table as a scheme 〈〈table name〉〉, and each column as a scheme
〈〈table name,column name,cardinality〉〉. When used in queries the cardinality of
the column need not be given.

Thus, the level column in S3 has the scheme 〈〈student,level,notnull〉〉, and may
be used to divide the table 〈〈student〉〉 into those that belong to the undergraduate
table 〈〈ug〉〉, created by transformations 1 – 3 , and those the belong to the post-
graduate table 〈〈pg〉〉 by transformations 4 – 6 . The IQL [5] query in 1 finds in
the generator 〈x, y〉 ← 〈〈student, level〉〉 the tuples 〈‘Mary’, ‘ug’〉, 〈‘John’, ‘pg’〉, . . .
and then the filter y = ‘ug’ restricts the x values returned to be only those that
had ‘ug’ in the second argument. Other IQL queries in square brackets may be
read in a similar manner. Once the specialisation tables have been created, trans-
formation 7 removes the level attribute from student, since it may be recovered
from the ug and pg tables (the IQL ++ operator appends two lists together).
Finally 8 – 9 moves the ppt attribute from student to ug, since it only takes
non-null values for undergraduate students.
S3 → Srg

1 addTable(〈〈ug〉〉, [〈x〉 | 〈x, y〉 ← 〈〈student, level〉〉; y = ‘ug’])

2 addColumn(〈〈ug, name, notnull〉〉,
[〈x, y〉 | 〈x, y〉 ← 〈〈student, name〉〉; 〈x, z〉 ← 〈〈student, level〉〉; z = ‘ug’])

3 addPK(〈〈ug pk, ug, 〈〈ug, name〉〉〉〉)

84 Michael Boyd et al.

4 addTable(〈〈pg〉〉, [〈x〉 | 〈x, y〉 ← 〈〈student, level〉〉; y = ‘pg’])

5 addColumn(〈〈pg, name, notnull〉〉,
[〈x, y〉 | 〈x, y〉 ← 〈〈student, name〉〉; 〈x, z〉 ← 〈〈student, level〉〉; z = ‘pg’])

6 addPK(〈〈pg pk, pg, 〈〈pg, name〉〉〉〉)
7 deleteColumn(〈〈student, level, notnull〉〉,

[〈x, y〉 | 〈x〉 ← 〈〈ug〉〉; y = ‘ug’] ++ [〈x, y〉 | 〈x〉 ← 〈〈pg〉〉; y = ‘pg’])

8 addColumn(〈〈ug, ppt, notnull〉〉,
[〈x, y〉 | 〈x〉 ← 〈〈ug〉〉; 〈x〉 ← 〈〈student〉〉; 〈x, y〉 ← 〈〈student, ppt〉〉]

9 deleteColumn(〈〈student, ppt, null〉〉, [〈x, y〉 | 〈x〉 ← 〈〈student〉〉; 〈x, y〉 ← 〈〈ug, ppt〉〉])
Note that the transformation Srg → S3 is automatically derivable from S3 →

Srg by taking the inverse steps 9 – 1 , formed by replacing delete for add, and
replacing add for delete, in transformations 1 – 9 .

k

lgcodelglgdeptlglgyearlg

?

lggradelg

*

{} course
k

namelg lgtutorlg lgpptlg

+

{} student

root

(a) YATTA schema

name = Mary
tutor = PJM
ppt = NR
course = DB
dept = CS
year = 1
grade = A

name = Jane
tutor = AP
ppt = SK
course = Fin
dept = CS
year = 3
grade = C

(b) text file

lg
code
‘Fin’lglg

dept
‘CS’lglg

year
3 lglg

grade
‘C’ lg

course &4

lg
name
‘Jane’lglg

tutor
‘AP’lglg

ppt
‘SK’lg

student &3

lg
code
‘DB’lglg

dept
‘CS’lglg

year
1 lglg

grade
‘A’ lg

course &2

g
name
‘Mary’lglg

tutor
‘PJM’lglg

ppt
‘NR’lg

student &1

root &0

(c) YATTA data

Fig. 1. S1: Semi-structured text file of undergraduates

2.1 Handling Semi-Structured Data

The YATTA (YAT for transformation-based approach) is a variation of the YAT
model [2] to support the handling of semistructured data in AutoMed. YATTA
provides two levels of abstraction: the schema level where the structure of data
is defined, and the data level where actual data is presented. Fig. 1(b) shows

AutoMed: A BAV Data Integration System for Heterogeneous Data Sources 85

student
name tutor ppt level
Mary PJM NR ug
John AP null pg
Jane AP SK ug
Fred PJM null pg

course
code dept
DB CS
Fin CS
Geo Maths

result
code name year grade
DB Mary 1 A
Fin Jane 3 C
Fin Fred 4 null
Geo Fred 4 A
Geo John 4 B

(a) Relational database schema and data

student

level
name

tutor
ppt?

course
code

dept

year grade

result
0:N

0:N

(b) ER model used to design relational database

Fig. 2. S3: relational database covering all students

student
name tutor
Mary PJM
John AP
Jane AP
Fred PJM

ug
name ppt
Mary NR
Jane SK

pg
name
Fred
John

course
code dept
DB CS
Fin CS
Geo Maths

result
code name year grade
DB Mary 1 A
Fin Jane 3 C
Fin Fred 4 null
Geo Fred 4 A
Geo John 4 B

(a) Srg: Global schema in the relational model

k

lgcodelglgdeptlg

+
{}course

k

lgcodelg

k

lgnamelglgyearlg

?

lggradelg

+
{}result

k

lgnamelglgtutorlg

+
{}student

k

lgnamelg

+
{}pg

k

lgnamelglgpptlg

+
{}ug

root

(b) Syg: Global schema in the YATTA model

Fig. 3. Global Schema

a semistructured text file, containing data about the undergraduate students in
Fig. 3(a), which together with a similar text file (not shown) of postgraduates,
we wish to integrate with the relational schema Srg. Fig. 1(a) gives a schema
level YATTA model S1 of the undergraduate text file (a similar model S2 exists
for postgraduates), and Fig 1(c) gives a data level YATTA model for that file.

86 Michael Boyd et al.

In the YATTA model, schemas and data are rooted labelled trees. In a
YATTA schema, each node is labelled by a tuple 〈name, type〉, where name is
a string describing what a node represents and type is the data type of a node.
Type can be either atomic e.g. string, integer, etc., or compound i.e. list (marked
‘[]’), set (marked ‘{}’), or bag (marked ‘〈〉’). Each node in a YATTA data tree
is labelled by a triple 〈name, type, value〉, where value is the value associated
with the node. If the node is of atomic type, the value is a data value of that
type. If the node is of compound type, the value is an integer identifier. Outgoing
edges of list nodes are ordered from left to right; the edges of set and bag are
unordered. The edges of a schema are labelled with cardinality constraints which
determine the number of times corresponding edges may occur in a data tree:
‘∗’ indicates zero or more occurrences, ‘+’ indicates one or more occurrences, ‘?’
indicates zero or one occurrence, and no label indicates exactly one occurrence.
A ‘k’ is used to identify the subset of child nodes, called the key nodes, which
uniquely identify the complex node with respect to its parent, all other nodes
are non-key nodes, which in the schemes we identify by writing ‘nk’, but in the
diagrams simply leave the edge unlabelled.

The YATTA model can be represented in AutoMed using two construct types.
The root of the tree r is represented as a RootNode construct with scheme 〈〈r, t〉〉
where t is one of the YATTA types. A non-root node n is represented as a
YattaNode construct with scheme 〈〈np, n, t, c〉〉 where np is a parent node that
may be a RootNode or YattaNode, t is the type of a node and c is a cardinality
constraint.

To integrate S1 with Srg, we need to transform S1 to have the same structure
as Srg. Section 4 shows how derive a YATTA schema Syg shown in Fig. 3(b)
that is equivalent to Srg. Now the task is to transform S1 and S2 to Syg. To
determine the pathway from one YATTA schema Y to another one Y ′ a three
phase methodology is used.

The conform phase uses rename transformations to conform the schemas.
In S1, the student node matches in semantics and extent the ug node in Syg,
implying:
10 renameYattaNode(〈〈root, student, set, +〉〉, 〈〈root, ug, set, +〉〉)

The growth phase conducts a search over the nodes n′ of Y ′, and for each
n′ not found in Y applies transformations to add n′ to Y :

1. If n′ is of complex type, determine if there is a query q on Y such that
there is a one to one mapping between values returned by q and values
associated to n′. If there is, then a new node n′ is added into Y by applying a
rule addYattaNode, with the special function generateId used on the values
returned by q to generate the identifiers of the complex node. This function
always returns the same identifier for the same input values, and distinct
identifiers for distinct input values.

2. If n′ is of simple type, determine if there is a query q on Y such that the
values returned by q are equal to the values associated with n′. If there is,
then a new node n′ is added into Y by applying a rule addYattaNode, with
q placed as the query part of the transformation.

AutoMed: A BAV Data Integration System for Heterogeneous Data Sources 87

In either case, if the query only returns some of the values of n′, then we
instead use extendYattaNode, with the queries set to q,Any (where Any indicates
the source places no upper bound on the extent [18]), and if no query can be
determined, then we use extendYattaNode with the queries Void,Any which states
that there is no method to determine anything about the instances of n′ in Y ′

from the information in Y .
For example, we would find that result node of Syg does not appear in S1, and

we are able to derive some instances in 11 -15 from S1, since that contains the
results of undergraduates. Step 11 generates identifiers for the new result node
by finding 〈&0,&1〉 and 〈&0,&3〉 from 〈r, u〉 ← 〈〈root, ug〉〉, then 〈&1, ‘Mary’〉
and 〈&3, ‘Jane’〉 from 〈u, n〉 ← 〈〈〈〈root, ug〉〉, name〉〉, then 〈&1,&2〉 and 〈&3,&4〉
from 〈u, c〉 ← 〈〈〈〈root, ug〉〉, course〉〉, and finally 〈&2, ‘DB’〉 and 〈&4, ‘Fin’〉 from
〈c, co〉 ← 〈〈〈〈course, 〈〈root, ug〉〉〉〉, code〉〉. This causes generateId to receive the lists
[Mary,DB] and [Jane,Fin], and generate &5 and &6 as new identifiers for result.
Note that the same identifiers will now be created in 12–15 .
11 extendYattaNode(〈〈root, result, set, +〉〉,

[〈r, re〉 | 〈r, u〉 ← 〈〈root, ug〉〉; 〈u, n〉 ← 〈〈〈〈root, ug〉〉, name〉〉;
〈u, c〉 ← 〈〈〈〈root, ug〉〉, course〉〉; 〈c, co〉 ← 〈〈〈〈course, 〈〈root, ug〉〉〉〉, code〉〉;
re ← [generateId [n, co]]], Any)

12 extendYattaNode(〈〈〈〈root, result〉〉, code, string, k〉〉,
[〈re, co〉 | 〈u, n〉 ← 〈〈〈〈root, ug〉〉, name〉〉; 〈u, c〉 ← 〈〈〈〈root, ug〉〉, course〉〉;
〈c, co〉 ← 〈〈〈〈course, 〈〈root, ug〉〉〉〉, code〉〉; re ← [generateId [n, co]]], Any)

13 extendYattaNode(〈〈〈〈root, result〉〉, name, string, k〉〉,
[〈re, n〉 | 〈u, n〉 ← 〈〈〈〈root, ug〉〉, name〉〉; 〈u, c〉 ← 〈〈〈〈root, ug〉〉, course〉〉;
〈c, co〉 ← 〈〈〈〈course, 〈〈root, ug〉〉〉〉, code〉〉; re ← [generateId [n, co]]], Any)

14 extendYattaNode(〈〈〈〈root, result〉〉, year, integer, nk〉〉,
[〈re, y〉 | 〈u, n〉 ← 〈〈〈〈root, ug〉〉, name〉〉; 〈u, c〉 ← 〈〈〈〈root, ug〉〉, course〉〉;
〈c, co〉 ← 〈〈〈〈course, 〈〈root, ug〉〉〉〉, code〉〉; 〈c, y〉 ← 〈〈〈〈course, 〈〈root, ug〉〉〉〉, year〉〉;
re ← [generateId [n, co]]], Any)

15 extendYattaNode(〈〈〈〈root, result〉〉, grade, string, ?〉〉,
[〈re, g〉 | 〈u, n〉 ← 〈〈〈〈root, ug〉〉, name〉〉; 〈u, c〉 ← 〈〈〈〈root, ug〉〉, course〉〉;
〈c, co〉 ← 〈〈〈〈course, 〈〈root, ug〉〉〉〉, code〉〉; 〈c, g〉 ← 〈〈〈〈course, 〈〈root, ug〉〉〉〉, grade〉〉;
re ← [generateId [n, co]]], Any)

Once the growth phase is completed, an analogous shrinking phase con-
ducts a search over the nodes n of Y , and for each n not in Y ′, creates either a
deleteYattaNode or a contractYattaNode transformation to remove n from Y .

3 The AutoMed Repository for BAV Data Integration

The AutoMed meta data repository forms a platform for other components of the
AutoMed Software Architecture (Fig. 4) to be implemented upon. When a data
source is wrapped, a definition of the schema for that data source is added to
the repository. The schema matching tool may then be used to identify related
objects in various data sources (accessing the query processor [5] to retrieve data
from schema objects), and the template transformation tool used to generate
transformations between the data sources. A GUI is supplied with AutoMed for

88 Michael Boyd et al.

repository

MDR

STR
persistent

store
��

SQL
wrapper

�

. . . YATTA
wrapper

� ��

SQL
data

source

�
�text file

YATTA
data
source

query
processor

schema
matching

�template
trans

�
�

� �
�

�
�

�

�
� �

GUI
� user

application

Fig. 4. AutoMed Software Architecture

these components, and it is possible for a user application to be configured to
run from this GUI, and use the APIs of the various components. For example,
work is in progress on using the repository in data warehousing [4].

The repository has two logical components. The model definitions reposi-
tory (MDR) defines how a data modelling language is represented as combina-
tions of nodes, edges and constraints in the hypergraph data model (HDM)
[19]. It is used by AutoMed ‘experts’ to configure AutoMed so that it can handle
a particular data modelling language. The schema transformation reposi-
tory (STR) defines schemas in terms of the data modelling concepts in the
MDR, and transformations to be specified between those schemas. Most tools
and users will be concerned with editing this repository, as new databases are
added to the AutoMed repository. The MDR and STR may be held in the same
or separate persistent storage. The latter approach allows many AutoMed users
to share a single MDR repository, which once configured, need not be updated
when integrating data sources that conform to a certain set of data modelling
languages.

Fig. 5 gives an overview of the key objects in the repository. The STR contains
a set of descriptions of Schemas, each of which contains a set of SchemaObject
instances, each of which must be based on a Construct instance that exists in
the MDR. This Construct describes how the SchemaObject can be constructed
in terms of strings and references to other schema objects, and the relation-
ship of the construct to the HDM. Schemas are therefore readily translatable
into HDM, and hence we have a common underlying representation of all the
data modelling languages handled in AutoMed. Note that each Schema may con-
tain SchemaObjects from more that one data modelling language. This allows
AutoMed to describe the mapping between different data modelling languages.
Schemas may be related to each other using instances of Transformation.

AutoMed: A BAV Data Integration System for Heterogeneous Data Sources 89

MDR

STR

Model
0:N

1:1
Construct

1:1
1:N

Scheme

0:N

1:1

Schema
Object 0:N

1:2

2:2

Transforma
tion

0:N

1:1
0:NObject

Scheme

1:N

1:N

Schema
1:1

0:NAccess
Method

Fig. 5. Repository Schema

We now describe in detail how the MDR may be programmed to describe a
modelling language, and then describe some features of the STR that allow it
to manage large and evolving schema integrations.

3.1 Describing a Data Modelling Language in the MDR

In [15] a general technique was proposed for the modelling of any structured
data modelling language in the HDM, which was used as the basis for the design
of the MDR. The description of the Construct is made by defining elements of
its scheme in the Scheme class, each instance of which must refer to a HDM
node, edge or constraint, or be a textual label to use on the construct. Asso-
ciating a SchemaObject to a Construct thus gives it a type definition. When a
SchemaObject is created, and its scheme details are entered into ObjectScheme,
they are checked against the corresponding Scheme of its Construct. Each mod-
elling language construct must be classified as being one of four types: nodal,
link, link-nodal, and constraint.

A nodal construct represents a simple list of values. Exactly one element of
the construct scheme must be identified as the name of the underlying HDM
node, and be of type node name. Often a nodal construct has just this one
scheme element, for example in an ER model, the construct for an entity would
be defined by:
(nodal)er:entity ::= 〈〈(node name)hdm node name〉〉
The brackets contain the type being used, so we read the above as stating that
the entity construct in the er modelling language has a scheme that contains a
single string, which is the name of the HDM node. Hence the schema objects
representing entities student and course in Fig. 2(b) would have the schemes
〈〈student〉〉 and 〈〈course〉〉.

90 Michael Boyd et al.

A link construct is one that can only be instantiated (i.e. a schema object
of its type be constructed) by referring to other schema objects. One scheme
element may be identified as the underlying HDM edge’s name, and at least
two of the instance scheme’s elements must refer to other schema objects that
have underlying HDM nodes or edges. For example we may express ER n-ary
relationships using the following construct scheme:
(link)er:relationship ::= 〈〈(edge name)name, (reference,2:N)er:entity role〉〉
(sequence)er:entity role ::= 〈〈(reference)er:entity, (string,nonkey)cardinality〉〉
The scheme relationship has first a edge name representing the name of the un-
derlying HDM edge, followed by at least two references to an entity role con-
struct. This ‘at least two’ cardinality is specified by the 2:N in the brackets;
1:1 is assumed where no explicit cardinality is given. The entity role is a se-
quence construct, which can only appear in the definition of another construct.
Its first element is a reference to the entity construct we have already defined,
and the constraint element card is used to denote the use of a constraint ex-
pression in the scheme. The scheme instance for the relationship in Fig. 2(b)
would be 〈〈result, student, 0:N, course, 0:N〉〉. Note that the use of nonkey in the
definition of the cardinality element means that this element only has to appear
in the definition of this schema object (as it appears in the first argument of a
transformation) and need not appear in queries. Hence in a query one may also
use the abbreviation 〈〈result, student, course〉〉 for the result relationship.

A link-nodal construct is a combination of a link and a node. It models a
node type which cannot exist in isolation but requires another construct with
which to be associated. The construct scheme must contain one string element for
the name of the new HDM node, an optional name for the HDM edge name, and
must contain a reference to an existing construct. For example, an ER attribute
can be defined by:
(link)er:attribute ::= 〈〈(reference)er:attribute target,

(node name)new node name, (constraint,nonkey)card〉〉
(alternation)er:attribute target ::= 〈〈(reference)er:entity, (reference)er:relationship〉〉
The alternation construct allows us to define that the existing construct that
this link-nodal refers to may be either a entity or a relationship. The last element
card corresponds to a constraint expression. With this definition, the name at-
tribute of student in Fig. 2(b) would have the scheme 〈〈student,name, notnull〉〉,
and the grade attribute on result the scheme 〈〈〈〈result, student, course〉〉,grade,null〉〉.

A constraint construct has no extent, and must be associated with at least
one other construct on which it places a constraint on its extent. For example, a
subset relationship in a ER model places a restriction on two entities such that
the extent of one is a subnet of the extent of another. This would be defined by:
(constraint)er:subset ::= 〈〈(reference)er:entity, (reference)er:entity〉〉
which would allow the scheme 〈〈student, ug〉〉 to exist.

3.2 Describing Schemas and Transformations in the STR

In a large data integration, there will be many schemas produced as intermediate
steps in the process of mapping one data source to another. At first this would

AutoMed: A BAV Data Integration System for Heterogeneous Data Sources 91

appear to make the BAV approach unworkable, since there are so many ver-
sions of schemas being kept. The AutoMed approach addresses this issue by dis-
tinguishing between extensional and intensional representations of schemas.
Each data source will be represented in the AutoMed repository by describing
its schema as a set of schema objects, which is the extensional representation
of schemas. Extensional Schemas may be associated with an AccessMethod to
describe the driver, username, password and URL of how a data source may
be accessed via its wrapper. Transformations applied to the extensional schema
produce new intensional schemas, for which the schema objects are not stored,
but which can be derived when required by applying transformation rules in
sequence to an extensional schema.

extensional
schema

intensional
schema

non ident
transformation

subnet3

subnet2

subnet1

S1 S1a S1b Syg Syga Srg′

S2 S2a S2b Syg′

S3 S3a S3b Srg

ident

ident

Fig. 6. Overview of Schemas held in AutoMed

Furthermore, a special transformation called ident is introduced, which states
that two schemas have the same logical set of schema objects, but that they are
derived from distinct extensional schemas. For example, in Fig. 6, the schema
Syg is derived from S1, and schema Syg′ (identical to Syg) is derived from S2.
The identity of these two schemas may then be stated by adding an ident trans-
formation between them, which query processing can use to retrieve data from
alternative data sources. The YATTA model Syg is then translated to its re-
lational equivalent Srg′ which can then be idented with the corresponding Srg

derived from S3

The set of schemas connected together by transformations other than ident
is called a subnet. By the nature of this arrangement, each subnet can exist
independently of other subnets. This means that a subnet can be created, edited,
connected to other subnets via ident transformations, and deleted all without
changing anything in another subnet. It also allows for the schema evolution
techniques in [16] to be supported. If say S1 has been found to evolve to S1′ ,
then a new subnet 4 can be created for S1′ , with transformations to describe

92 Michael Boyd et al.

S1′ → S1. Then S1 may have its AccessMethod removed, and query processing
will be directed to the new version of the data source.

4 Inter Model Transformations

A common task in data integration is to implement a wrapper to translate all
the component schemas into a common data model. In AutoMed, this wrapping
step can be formalised within the data integration methodology if the data mod-
elling languages used for the component schemas are described in the MDR. In
addition, this translation process may occur in the middle of the data integra-
tion (as illustrated by pathway Syg → Srg′ in Fig. 6), allowing a mixture of data
modelling languages to be used in a large integration.

To illustrate this process, consider the following rules that map relational
constructs to YATTA constructs. First, a YATTA complex node n of set type
with ‘*’ cardinality is created under the root of the YATTA model for each
table. Second, a YATTA atomic node is created under this complex node for
each column of the table, where the cardinality of the column is ‘?’ if it is a
nullable column in the relational model, and ‘k’ if it is a primary key column in
the relational model. For Srg′ , these two rules applied to the student table would
generate a pathway:
Srg′ → Syg′

16 addYattaNode(〈〈root, student, set, ∗〉〉,
[〈r, s〉 | 〈n〉 ← 〈〈student〉〉; 〈r〉 ← 〈〈root〉〉; s ← [generateId [n, r]]])

17 addYattaNode(〈〈〈〈root, student〉〉, name, string, k〉〉,
[〈s, n〉 | 〈n〉 ← 〈〈student〉〉; 〈r〉 ← 〈〈root〉〉; s ← [generateId [n, r]]])

18 addYattaNode(〈〈〈〈root, student〉〉, tutor, string, nk〉〉,
[〈s, t〉 | 〈n, t〉 ← 〈〈student, tutor〉〉; 〈r〉 ← 〈〈root〉〉; s ← [generateId [n, r]]])

19 deletePK(〈〈student pk, student, 〈〈student, name〉〉〉〉)
20 deleteColumn(〈〈student, tutor, notnull〉〉, [〈n, t〉 |

〈s, n〉 ← 〈〈〈〈root, student〉〉, name〉〉; 〈s, t〉 ← 〈〈〈〈root, student〉〉, tutor〉〉])
21 deleteColumn(〈〈student, name, notnull〉〉,

[〈n, n〉 | 〈s, n〉 ← 〈〈〈〈root, student〉〉, name〉〉])
22 deleteTable(〈〈student〉〉, [〈n〉 | 〈s, n〉 ← 〈〈〈〈root, student〉〉, name〉〉])

Note that these rules could equally well be applied in reverse as 22–16 to
generate Syg → Srg′ , which would be the method used to generate the integration
shown in Fig. 6. In general, translating a schema from a source to a target
modelling language involves using the MDR definitions to convert constructs in
the source and target language to HDM, analysing the constraint information,
and building an association between the two. One common aspect of this analysis
[1] is that constraint information will involve the cardinality constraints on edges
in the HDM, which can be represented by just two constraint templates:

1. N � E states that for each value V in the extent of node N there must be
at least one tuple in the extent of edge E that contains V .

2. N � E states that for each value V in the extent of node N there must be
no more than one tuple in the extent of edge E that contains V .

AutoMed: A BAV Data Integration System for Heterogeneous Data Sources 93

Note that if neither of these constraints applies then N has 0:N occurrences
in E; if N � E then N has 1:N occurrences in E; if N � E then N has 0:1
occurrences in E; and of N � E ∧ N � E then N has 1:1 occurrences in E.

Now we are in a position to more formally analyse the relational to YATTA
mapping. In the relational model, a column L of table T is represented by the
scheme 〈〈T,L,C〉〉. Using the methodology in Section 3.1, we model this column
as a link-nodal construct, that references an existing nodal construct 〈〈T 〉〉 that
represents table T . In the HDM, the table has node Nt, and the column has an
edge E that connects Nt to node N containing the attribute value. Now C can
be expressed over those HDM constructs as notnull=N � E ∧ Nt � E ∧ Nt � E,
and null=N � E ∧ Nt � E.

In the YATTA model, a node N is represented by the scheme 〈〈P,N, T,C〉〉,
which is again a link-nodal construct, that references a parent node P that may
be either another YATTA node, or a root node. If in addition T indicates this
is a simple type node, then we have a match between the YATTA node and the
concept of a column in the relational model. In particular, the YATTA constraint
C is expressed as nk=N �E∧Nt�E∧Nt�E (matching the relational constraint
notnull), and ?=N � E ∧ Nt � E (matching null).

5 Template Transformations

Schema integration in the AutoMed framework frequently relies on the reuse of
specific sequences of primitive transformations. These sequences are called com-
posite transformations and resemble well-known equivalences between schemas
[7, 14]. For example, the equivalence between a table with a mandatory column
and a table with specializations for each instance of the mandatory column is
found in transformations 1 – 7 in Section 2, where the 〈〈student, level〉〉 column
is used to generate new tables 〈〈ug〉〉 and 〈〈pg〉〉.

To describe such equivalences between schemas, we have created a package
around the AutoMed repository that enables the definition of parameterised
template transformations [8] which are schema and data independent. For ex-
ample, the parameters of the template transformation that decomposes a table
to its specializations are: (a) the schema that the template transformation is
going to be performed upon, (b) the existing table, (c) its mandatory column,
(d) the specialization tables that are going to be added to the schema and (e)
the instances of the mandatory column that correspond to the specializations.
These are specified as follows:

INPUTS();
OBJECT parentTable=askForObject(”Existing parent table”,table);
OBJECT mandatoryColumn=askForObject(”Mandatory column”,column);
OBJECT parentPrimaryKey=askForObject(”Primary key of parent table”,column);
NAMELIST specializationTableNames=askForNameList(”Names of specializations”);
NAMELIST descriptiveInstances=askForNameList(”Values of the column ...”,

SIZEOF(specializationTableNames));

94 Michael Boyd et al.

Note that each parameter has a description for use in a dialogue box, and
optionally a Construct, which in this example ensures that the first parameter is
a SchemaObject of type table and the second two parameters are of type column.
After the parameters, a number of statements must be defined. In our example,
since in general there are n different specialization tables to create, we require
to put statements in a loop which iterate over the LIST we have specified in the
INPUTS:

FOREACH();
NAME specializationTableName=IN(specializationTableNames)
NAME descriptiveInstance=IN(descriptiveInstances);
OBJECT parentcolumn = VARIES WITH(mandatoryColumn);
OBJECT parent = VARIES WITH(parentTable);
OBJECT primaryKey = VARIES WITH(parentPrimaryKey);
DO();

This loop may contain the instructions to create each specialization table.
For example, the transformations 1 and 4 that create the specialization Table
constructs are produced by the following template definition:

FUNCTION tableExtent=DEFINE FUNCTION(”[{x} |
{x,y} <- parentcolumn?scheme; y=’@descriptiveInstance’]”);

OBJECT newSpecialization=ADD(CONSTRUCT.IS(table),
SCHEME.IS(new Object[]my(specializationTableName)), FUNCTION.IS(tableExtent));

Similar definitions can create the Column transformations 2 and 5 and the
PK transformations 3 and 6 . Note that the rest of the transformations 8 - 9

in S3 → Srg can be produced by another template transformation that removes
a column from a table and moves it down to its specialization tables.

6 Schema Matching

In all the examples seen so far, an expert user specifies the primitive transforma-
tions to be applied on the available schemas and integrate the underlying data
sources. In practice, a key issue is the identification of the semantic relationships
between the schema objects [6], which then imply which primitive or template
transformations should be performed.

The process of discovering semantic relationships between schema objects
is called schema matching. Most of the existing methodologies are focused
on discovering equivalence relationships between schema objects [3, 10, 12], or
direct matches, but in many cases more expressive relationships exist between
schema objects, which yield indirect matches [11].

In our framework [21], we define five types of semantic relationships between
schema objects based on the comparison of their intentional domains, i.e. the
sets of real-world entities represented by the schema objects. These are: equiva-
lence, subsumption, intersection, disjointness and incompatibility. Rules

AutoMed: A BAV Data Integration System for Heterogeneous Data Sources 95

of the transformations that should be performed on the schemas based on the
discovered semantic relationships are defined in [20].

In our example, an indirect match exists between the disjoint student nodes
in S1 and S2. These nodes should be renamed in order to be distinguished, there-
fore transformation 10 renames student in S1 to ug and an equivalent transfor-
mation renames student in S2 to pg. These are equivalent to the ug and pg
nodes in Syg respectively, and can therefore be unified using ident transforma-
tions. Other indirect matches exist between the intersecting course nodes and
between ug,pg and the subsuming student node.

In our approach to the automatic discovery of these semantic relationships,
we perform a bidirectional comparison of schema objects, which has been moti-
vated by the fact that a bidirectional comparison of the schema objects’ inten-
tional domains can be used to identify equivalence, subsumption and intersection
relationships. This is depicted by the following formula:

d(X,Y) = |Domint(X)∩Domint(Y)|
|Domint(X)| ,

where X,Y are schema objects and |Z| defines the number of entities in set Z.
This formula gives d(X,Y) = d(Y,X) = 1 when X,Y are equivalent; d(X,Y) = 1
and 0 < d(Y,X) < 1 when Y subsumes X; and finally 0 < d(X,Y) < 1 and
0 < d(Y,X) < 1 when X,Y are intersecting. The problem with this approach is
that the disjointness and incompatibility relationships cannot be distinguished,
and that the bidirectional similarity degrees d(X,Y), d(Y,X) cannot be automat-
ically computed since a comparison of the schema objects’ real-world entities is
required.

We attempt to simulate the behaviour of the above formula by examining the
schema objects instances and their metadata. The equivalence, subsumption and
intersection relationships can still be discovered as explained previously. Now,
however, the similarity degrees are fuzzier, e.g. d(X,Y) and d(Y,X) are unlikely
to have values equal to 1 when X and Y are equivalent, but they will be above an
equivalence threshold. Disjointness can also be discovered since disjoint schema
objects will exhibit similarity in their instances and metadata, arising from their
relationship with the same super schema object. Thus, disjoint pairs of schema
objects will have higher similarity degrees than incompatible pairs.

This relationship discovery process is implemented by the architecture in
Fig. 7, which consists of several modules that exploit different types of informa-
tion to compute bidirectional similarity degrees of schema objects. Our currently
implemented modules compare schema object names, instances, statistical data
over the instances, data types, value ranges and lengths. There are two types of
modules: relationship identification modules attempt to discover compatible
pairs of schema objects, and relationship clarification modules attempt to
specify the type of the semantic relationship in each compatible pair.

Initially in the schema matching process, the bidirectional similarity degrees
produced by the modules are combined by the Filter, using the average aggrega-
tion strategy, to separate the compatible from the incompatible pairs of schema
objects. Then, the Aggregator component combines the similarity degrees of the
compatible schema objects using the product aggregation strategy and indicates

96 Michael Boyd et al.

�S1
�S2

m

�

. . . m

�. . .

m

�

. . . m

�. . .

partial bidirectional similarity degrees

Filter

� �. . . � �. . .
bidirectional similarity degrees of compatible objects

Aggregator

�
aggregated bidirectional

similarity degrees

Degree Combinator�thresholds

�
semantic relationships

�
�

clarification
similarity degrees

relationship identification modules
�

relationship clarification modules
�

Fig. 7. Architecture of Schema Matching Tool

their semantic relationships. The output of the Aggregator becomes the input of
the Degree Combinator, which based on the relationship clarification modules
and the previous discussion on the values of the similarity degrees, it outputs
the discovered semantic relationships. The user is then able to validate or reject
these relationships and proceed to the data integration process.

7 Conclusions

This paper details the implementation of repository for BAV transformations
produced by the AutoMed project, and illustrates how the AutoMed system
may be used to model a number of data modelling languages, and in particular
introduces the YATTA model as a method to handle semistructured text files
in the BAV approach. The paper also deals with practical issues concerned with
data integration, by providing a template system for defining common patterns of
transformations, and a schema matching system to help automate the generation
of transformations. It also introduces the notion of subnetworks into the BAV
approach, which allows complex and large integrations to be divided into clearly
identifiable independent units.

The AutoMed approach has the unique property that it does not insist that
an entire data integration system be conducted in a single data modelling lan-
guage. This gives the flexibility of integrating different domains in a modelling
language suited to each domain, and then using inter-model transformations to
connect between the domains.

AutoMed: A BAV Data Integration System for Heterogeneous Data Sources 97

References

1. M. Boyd and P.J. McBrien. Towards a semi-automated approach to intermodel
transformations. Technical Report No. 29, AutoMed, 2004.

2. S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators need data conver-
sion! SIGMOD Record, 27(2):177–188, 1998.

3. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map ontologies
on the Semantic Web. In Proceedings of the World-Wide Web Conference (WWW-
02), pages 662–673, 2002.

4. H. Fan and A. Poulovassilis. Using AutoMed metadata in data warehousing envi-
ronments. In Proc. DOLAP03, pages 86–93, New Orleans, 2003.

5. E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL queries and migrat-
ing data in the AutoMed toolkit. Technical Report No. 20, AutoMed, 2003.

6. V. Kashyap and A. Sheth. Semantic and schematic similarities between database
objects: a context-based approach. VLDB Journal, 5(4):276–304, 1996.

7. J.A. Larson, S.B. Navathe, and R. Elmasri. A theory of attribute equivalence in
databases with application to schema integration. IEEE Transactions on Software
Engineering, 15(4):449–463, April 1989.

8. C. Lazanitis. Template transformations in AutoMed. Technical Report 25, Au-
toMed, 2004.

9. M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS’02,
pages 233–246. ACM, 2002.

10. W.-S. Li and C. Clifton. SEMINT: A tool for identifying attribute correspon-
dences in heterogeneous databases using neural networks. Data and Knowledge
Engineering, 33:49–84, 2000.

11. L.Xu and D.W. Embley. Discovering direct and indirect matches for schema ele-
ments. In 8th International Conference on Database Systems for Advanced Appli-
cations (DASFAA ’03), Kyoto, Japan, March 26–28, 2003, pages 39–46, 2003.

12. J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In Proc. 27th VLDB Conference, pages 49–58, 2001.

13. J. Madhavan and A.Y. Halevy. Composing mappings among data sources. In Proc.
VLDB’03, pages 572–583, 2003.

14. P.J. McBrien and A. Poulovassilis. A formalisation of semantic schema integration.
Information Systems, 23(5):307–334, 1998.

15. P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transforma-
tions. In Proc. CAiSE’99, volume 1626 of LNCS, pages 333–348. Springer, 1999.

16. P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database ar-
chitectures, a schema transformation approach. In Advanced Information Systems
Engineering, 14th International Conference CAiSE2002, volume 2348 of LNCS,
pages 484–499. Springer, 2002.

17. P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema trans-
formation rules. In Proc. ICDE’03. IEEE, 2003.

18. P.J. McBrien and A. Poulovassilis. Defining peer-to-peer data integration using
both as view rules. In Proc. DBISP2P, at VLDB’03, Berlin, Germany, 2003.

19. A. Poulovassilis and P.J. McBrien. A general formal framework for schema trans-
formation. Data and Knowledge Engineering, 28(1):47–71, 1998.

20. N. Rizopoulos. BAV transformations on relational schemas based on semantic
relationships between attributes. Technical Report 22, AutoMed, 2003.

21. N. Rizopoulos. Automatic discovery of semantic relationships between schema
elements. In Proc. of 6th ICEIS, 2004.

	1 Introduction
	2 BAV Data Integration
	2.1 Handling Semi-Structured Data
	3 The AutoMed Repository for BAV Data Integration
	3.1 Describing a Data Modelling Language in the MDR
	3.2 Describing Schemas and Transformations in the STR

	4 Inter Model Transformations
	5 Template Transformations
	6 Schema Matching
	7 Conclusions
	References

