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1 Introduction

The description of the flavour sector of particle physics requires up to 22 independent mea-

surable parameters if neutrinos are Majorana particles. An extraordinary experimental

activity has supplied not only an accurate determination of most of them, but also many re-

dundant cross-checks, providing one of the most robust pillars of the Standard Model. The

discovery of neutrino oscillations, and the related impressive recent experimental progress

has brought also the lepton sector into a precision era, with many combinations of masses

and mixing parameters measured with an accuracy approaching the percent level. The

need of a large number of flavour input parameters and the presence of significant qual-

itative differences between the quark and the lepton sector constitute one of the major

mystery of particle physics [1], which has motivated an intense activity on the theoretical

side to solve or mitigate the flavour puzzle.

In a bottom-up perspective, most of the attempts have been based on hypothetical

flavour symmetries. The great relevance of symmetry considerations in the description of

gauge interactions and of the electroweak symmetry breaking sector has certainly played a

main role in guiding our efforts towards the solution of this puzzle. Hence, it is frustrating

to admit that so far such a powerful tool has not delivered the expected result. While there

are many working models with some degree of predictability, we still lack both a baseline

theory and a fundamental principle. A common disappointing aspect of models based

on flavour symmetries is that these have to be broken and probably realized far from the

symmetric phase. As a result, most of the existing constructions are based on ingenious but

very complicated symmetry breaking sectors, that include many scalar multiplets, whose

vacuum expectation values (VEVs) have to be selectively coupled to different matter species

and suitably oriented in flavour space to achieve the desired result.

Looking at the top-down approach offered by string theory, Yukawa couplings are not

independent input parameters, but rather field dependent quantities. Such a dependence

arises when the background over which the string propagates is chosen. Contact with our

four-dimensional universe requires several compact extra-dimensions, and a significant part

of this background is of geometrical origin. The components of the metric tensor along the

extra spatial dimensions, possibly combined with other types of background, give rise to

moduli, scalar fields taking values on a definite moduli space. Yukawa couplings depend
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on moduli and their observed value is settled once moduli acquire their VEVs. The moduli

space is often a symmetric space of the type G/K, G being some noncompact continuous

group and K a maximal compact subgroup of G [2]. A discrete subgroup Γ of G, the duality

group, realizes its natural action on the moduli space G/K [3]. Hence such a framework

is naturally equipped with a symmetry Γ and a symmetry breaking sector spanning G/K.

Moreover such a symmetry is always broken, since Γ is non-linearly realized on G/K.

Matter fields generally have non-trivial transformation properties under Γ. Thus it is very

tempting to interpret Γ as (part of) the flavour symmetry of the theory.

An important part of the theoretical activity has indeed been devoted to the study

of Yukawa couplings in realistic string theory compactifications [4–14] and their modu-

lar properties [15–34]. Nevertheless, the above considerations suggest a complementary

analysis where the flexibility of the bottom-up approach can be combined with the clues

coming from string theory. A first step in this direction has been taken with the proposal

of ref. [35] where the role of modular invariance as principle governing the lepton flavour

sector has been advocated. In terms of the previous data, this corresponds to the choice:

G = SL(2, R), K = SO(2) and Γ = SL(2, Z). The moduli space G/K is the upper half

plane and Yukawa couplings are classical modular forms. Model building [36] relies on the

classification of modular forms under the principal congruence subgroups of SL(2, Z).

In this paper we would like to widen this viewpoint and explore more general pos-

sibilities for the groups G, K and Γ. While aiming at the mathematical consistency of

our construction, we work in a bottom-up perspective and our setup does not necessarily

correspond to a specific string theory realization. As we explain in section 2, in case of a

generic triplet (G, K, Γ), Yukawa couplings become automorphic forms and model building

requires the classification of these forms under subgroups of Γ. In section 3 we develop the

formalism of global and local N = 1 automorphic supersymmetric theories. This gener-

alizes and extends the classical works of Ferrara and collaborators of the late eighties on

modular invariant supersymmetric theories [37, 38]. After defining the general context, in

section 4 we move to a specific realization representing the most direct extension of mod-

ular invariance to a theory including several moduli. Such a construction is based on the

choice G = Sp(2g, R), K = U(g) and Γ = Sp(2g, Z). The moduli space Sp(2g, R)/U(g) is

the Siegel upper half plane and the automorphic forms are related to Siegel modular forms.

In the second half of our paper we focus on the case G = Sp(4, R), the simplest non-trivial

extension of G = SL(2, R). We present in detail properties of the Siegel modular group

Γ = Sp(4, Z), the construction of the fundamental region of Sp(4, Z) in G/K and its fixed

points, the explicit form of Siegel modular forms at genus two and their restrictions on

invariant loci of the moduli space. Finally we present examples of Siegel modular invariant

models for lepton and quark masses.

2 Automorphic forms

Automorphic forms [39, 40] can be roughly regarded as generalization of periodic functions:

f(x + a) = f(x) , (2.1)
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where a is a real constant and the above relation holds for any real number x ∈ R. This

can be generalized by replacing the set R by a coset space G/K, where G is a continuous

group, and K a subgroup of G, and by substituting the discrete translation group Z with

some discrete subgroup of G.

As an introduction to the subject, it is useful to recall how automorphic forms are

related to classical modular forms and to modular invariant supersymmetric theories. In

N = 1 supersymmetric theories, modular transformations on the modulus τ and on matter

multiplets ϕ(I) are defined by

τ → γτ =
aτ + b

cτ + d
, ϕ(I) → (cτ + d)kI ρI(γ) ϕ(I) , (2.2)

where γ ∈ Γ = SL(2, Z), the homogeneous modular group, and kI is a real integer.1

The modulus τ varies in the upper half plane H.2 The parameters a, b, c and d are

integers obeying ad − bc = 1. The matrix ρI(γ) defines a unitary representation of a finite

modular group Γ/Gd, Gd being a normal subgroup of Γ of finite index. Invariance under

the transformations in eq. (2.2) requires that Yukawa couplings among matter fields ϕ(I)

are classical modular forms Y (τ), which are the building blocks of the theory. Classical

modular forms are holomorphic functions of τ transforming as:

Y (γτ) = (cτ + d)kY (τ), γ ∈ Gd . (2.3)

They form a linear space of finite dimension, thus constraining the possible Yukawa inter-

actions. We see that the data needed to specify Y (τ), up to holomorphic requirements, are

the moduli space H, the group Gd and the automorphy factor (cτ + d)k.

To make connection with the theory of automorphic forms [39], it is useful to con-

sider classical modular forms under a different perspective. For completeness we briefly

summarize here such a viewpoint, standard in the mathematical literature [42].

1. First of all, we can equivalently define the moduli space H as the quotient space

G/K, where G = SL(2, R) and K = SO(2) is a maximal compact subgroup of G.

Indeed any τ = x + iy (y > 0) can be represented as the action of g ∈ SL(2, R) on the

fixed complex number τ0 = i. This action is defined in the sense of eq. (2.2), that is:

g τ0 =

(

a b

c d

)

· τ0 =
aτ0 + b

cτ0 + d
, (ad − bc = 1) . (2.4)

We can uniquely decompose the generic element of SL(2, R) as:

SL(2, R) ∋ g =

(√
y x/

√
y

0 1/
√

y

)

k , y > 0 , k =

(

cos θ − sin θ

sin θ cos θ

)

, (2.5)

where k belongs to K = SO(2), while the first factor in the decomposition of g is an

element of the coset SL(2, R)/SO(2). Since τ0 = i is left invariant by the action of

1Extensions to non-integer weights kI are also possible [41].
2The modulus transforms under the inhomogeneous part of Γ, Γ = SL(2, Z)/{±1}.
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K = SO(2),3 we have:

g τ0 =

(√
y x/

√
y

0 1/
√

y

)

· i = x + i y = τ . (2.6)

This shows the one-to-one correspondence between the elements of H and those of

SL(2, R)/SO(2).

2. Second, we can relate a modular form Y (τ) to a periodic function Ψ(g) under the

action of the discrete group Gd. We define:

Ψ(g) = j(g, τ0)−1 Y (g τ0) , (2.7)

where j(g, τ) is the automorphy factor:

j(g, τ) = (cτ + d)k , (2.8)

satisfying the so-called cocycle condition:

j(g1g2, τ) = j(g1, g2τ)j(g2, τ) . (2.9)

The function Ψ(g) is called automorphic form and satisfies:

Ψ(γg) = Ψ(g) , γ ∈ Gd ,

Ψ(g k) = j(k, τ0)−1 Ψ(g) , k ∈ K . (2.10)

The second relation in eq. (2.10) follows from the invariance of Y (τ) under the action

of the group K. Conversely, we can also start from Ψ(g) satisfying (2.10) and define

Y (τ) through:

Y (τ) = j(g, τ0) Ψ(g) . (2.11)

From eqs. (2.6), (2.9) and (2.10) we see that

Y (γτ) = j(γ, τ) Y (τ) , (2.12)

which reproduces the property (2.3).

3. Third, being holomorphic, the classical modular form Y (τ) satisfies the obvious dif-

ferential relation ∂Y (τ)/∂τ̄ = 0. After observing that Ψ(g) = e−ikθyk/2Y (x + iy), we

can equivalently express the holomorphy of Y (τ) through the relation:

e+2iθ
(

−iy
∂

∂x
+ y

∂

∂y
− i

2

∂

∂θ

)

Ψ(g) = 0 . (2.13)

The differential operator of the above equation can be regarded as an element of

the SL(2, R) algebra, whose generators are (E, F, H) satisfying [E, F ] = H, [H, E] =

3
k i =

(

cos θ − sin θ
sin θ cos θ

)

· i = i.
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+2E, [H, F ] = −2F . These generators can be realized in terms of operators acting

on functions Ψ(g) = Ψ(x, y, θ). We have:

E = e−2iθ
(

iy
∂

∂x
+ y

∂

∂y
+

i

2

∂

∂θ

)

,

F = e+2iθ
(

−iy
∂

∂x
+ y

∂

∂y
− i

2

∂

∂θ

)

,

H = i
∂

∂θ
. (2.14)

Thus we can formulate the requirement of holomorphy of Y (τ) by saying that Ψ(g) is

annihilated by the lowering operator F of the SL(2, R) algebra. Within this algebra,

the Casimir operator ∆, commuting with all the other elements, can be conventionally

chosen as:

∆ = H2 − 2H + 4EF = 4y
∂2

∂x∂θ
+ 4y2

(

∂2

∂x2
+

∂2

∂y2

)

. (2.15)

To make contact with the general properties of automorphic forms, we observe that

Ψ(g) is an eigenfunction of ∆:

∆ Ψ(g) = k(k − 2)Ψ(g) . (2.16)

Conversely, by requiring eq. (2.16) to hold for a function Ψ(g) = e−ikθyk/2Y (x, y) we

find that Y (x, y) should satisfy:

[

iyk

(

∂

∂x
+ i

∂

∂y

)

− y2

(

∂2

∂x2
+

∂2

∂y2

)]

Y (x, y) = 0 , (2.17)

or equivalently ∂
∂τ yk ∂

∂τ Y (x, y) = 0. This represents a weaker constraint than holo-

morphy, eq. (2.13). Indeed, while holomorphic functions Y (x + iy) are solutions

of eq. (2.17), non-holomorphic solutions are also allowed. The general solution

Y (x, y) of eq. (2.17), a harmonic weak Maaß form, admits the unique decompo-

sition Y = Y + + Y −, where Y + is the holomorphic part and Y − represents the

non-holomorphic completion. The holomorphic part Y + lacks modularity and is a

mock modular form.

4. Classical modular forms Y (τ) are also required to be holomorphic when τ → ∞, and,

more general, at cusps. Since Ψ(g) = e−ikθyk/2Y (x + iy), such property translates

into a suitable grow condition on Ψ(g).

This example shows that there are different ways of dealing with a modular form. We can

see Y (τ) as a function on G invariant under K, satisfying the transformation property of

eq. (2.12) under Gd. Equivalently we can exchange Y (τ) for an automorphic form Ψ(g)

which is invariant under Gd, possessing suitable transformation property under K. The

groups G and its maximal compact subgroup K define the moduli space G/K, while the

discrete subgroup Gd of G and the automorphy factor j(g, τ) specify the transformation

properties of the automorphic form.
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The definition of automorphic form relies on the choice of a Lie group G, a maxi-

mal compact subgroup K of G, a discrete subgroup Gd of G. Moreover, as shown by

the previous example, it is useful to introduce an automorphy factor j(g, τ) satisfying a

cocycle condition:

j(g1g2, τ) = j(g1, g2τ)j(g2, τ) , g1,2 ∈ G, τ ∈ G/K . (2.18)

An automorphic form for Gd is a smooth complex function Ψ(g) that

1. is invariant under the action of the discrete group Gd:

Ψ(γg) = Ψ(g), γ ∈ Gd , (2.19)

2. is K-finite: Ψ(g k), with k varying in K, span a finite dimensional vector space [40].

In all cases of interest discussed in this paper, such a condition is realized through

the relation:

Ψ(g k) = j(k, τ0)−1 Ψ(g) , k ∈ K , kτ0 = τ0 , (2.20)

which defines the transformation property of Ψ(g) under K. In all such cases the

space obtained by Ψ(g k), varying k in K, is one-dimensional.

3. Ψ(g) is required to be an eigenfunction of the algebra D of invariant differential

operators on G, that is an eigenfunction of all the Casimir operators of G.

4. The definition is completed by suitable growth conditions [39, 40].

By varying G, K, Gd and j(g, τ) we have access to generalizations of classical modular

forms. In particular we are interested in a framework naturally embedding more moduli

fields. Such a framework is the common denominator of many string compactifications

and provides an interesting setup for the description of fermion masses. Moreover, for a

general choice of G, K, Gd and j(g, τ), we can always move from automorphic forms to

their counterparts Y (τ), defined by:

Y (τ) = j(g, τ0) Ψ(g) , (2.21)

and obeying:

Y (γτ) = j(γ, τ) Y (τ) . (2.22)

Indeed when discussing the general framework of automorphic supersymmetric theories we

prefer to make use of the forms Y (τ), which, with a slight abuse of language, we will refer

to as automorphic or modular forms.

There is an important point that is worth stressing. As we have seen in our example,

the differential condition mentioned in point 3. is strictly related to the holomorphy of the

forms Y (τ). Nevertheless, the condition of being an eigenvalue of all Casimir operators of

G does not inevitably imply holomorphy of Y (τ) and the theory of automorphic forms Ψ(g)

– 6 –
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embraces also non-holomorphic forms Y (τ).4 Thus, at least in principle, the framework of

automorphic forms might not necessarily require a supersymmetric theory where Yukawa

couplings are described by an holomorphic superpotential, and could open the way to more

general possibilities, in particular non-supersymmetric realizations. It is not the purpose

of this paper to explore this interesting direction and, in the present discussion, we will

restrict our attention to holomorphic Y (τ) and supersymmetric theories.

3 Automorphic supersymmetric theory

Here we generalize the well-known framework of modular invariant supersymmetry theo-

ries [37, 38]. The construction, naturally involving more moduli τ , is based on the follow-

ing data:

1. A continuous group G and a maximal compact subgroup K of G.

2. A discrete, in general noncompact, subgroup Γ of G and a normal subgroup Gd of Γ

of finite index in Γ. The quotient Γ/Gd is a finite group, whose unitary representations

are exploited to define the transformations of matter supermultiplets.

3. A family of cocycles j(g, τ)k where j(g, τ) satisfies the condition in eq. (2.18) and

k is an integer. We require that the dependence of j(g0, τ)k on τ , g0 being a fixed

element of G, is holomorphic.

The resulting theory, which we define in the next subsections, is a (global or local) su-

persymmetric σ model, where moduli parametrize the coset G/K and transformations

of matter fields are specified by Γ, Gd and j(g, τ). The theory is required to be invari-

ant under Γ, the “duality” or modular group, identified as part of the flavour symmetry

group. Among all coset spaces G/K, of special interest are those of noncompact type,

first appeared in various supergravity theories in the 70s and then in string theory where

moduli spaces of toroidal compactification are given by noncompact groups modded out by

their maximal compact subgroups and discrete duality groups. Other moduli spaces have

analogous descriptions [2]. A well-defined class of coset spaces G/K that are also Kähler

manifolds, and are suitable to the supersymmetric setup of our interest, are the hermitian

symmetric spaces. Hermitian symmetric spaces are manifolds equipped with a Riemannian

metric and an integrable, almost complex, structure which preserves the metric. At each

point p of an hermitian symmetric space there is a reflection sp (s2
p = 1) preserving the

hermitian structure and having p as unique fixed point, spp = p. Every hermitian sym-

metric space M is a Kähler manifold and is a coset space of the type M = G/K for some

connected Lie group G and a compact subgroup K of G. We provide a brief description of

4The holomorphic part of such forms, mock modular forms, lack modularity but play an important role in

recent developments, being related to the degeneracies of quantum black holes in string theories [43]. Non-

holomorphic forms arise in the leading-order low-energy correction to the four-graviton scattering amplitude

in ten-dimensional type IIB string theory [44–48]. For a brief overview of how this part of Ramanujan’s

work has influenced physics see ref. [49] and ref. [42].
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these spaces in the appendix A. They have been completely classified. In particular, the

noncompact irreducible ones fall in this list [50]:

U(m, n)

U(m) × U(n)
,

SO∗(2m)

U(m)
,

Sp(2m)

U(m)
,

SO(m, 2)

SO(m) × SO(2)
,

E6,−14

SO(10) × SO(2)
,

E7,−25

E6 × U(1)
. (3.1)

Any other noncompact hermitian symmetric space contains one of the previous spaces as a

factor. Our general construction applies, in particular, to all such manifolds, as we discuss

in the next subsections.

3.1 Moduli space and transformation laws of the fields

We define as moduli space the coset H = G/K.5 The generic element of H is denoted by

τ , and it can also be represented by the action of g ∈ G on an element τ0 left invariant

by K:

τ = g τ0 , k τ0 = τ0 , k ∈ K . (3.2)

We look for an N = 1 supersymmetric theory invariant under transformations of Γ and

depending on a set Φ = (τ, ϕ) of chiral supermultiplets of the theory, including the moduli

τ , here taken as dimensionless and gauge-singlet. Canonical dimensions can be recovered

by the definition σ = Λτ , Λ denoting some convenient mass scale. The other chiral su-

permultiplets ϕ are in general separated into sectors ϕ(I). Neglecting the VEVs of the

chiral supermultiplets ϕ, the vacua of the theory are parametrized by the moduli space H,

modded out by the duality group Γ. The quotient H/Γ can be described by a fundamental

domain F for Γ, which is a connected region of H such that each point of H can be mapped

into F by a Γ transformation, but no two points in the interior of F are related under Γ.

The space H/Γ is represented by F with certain boundary points identified.

In the case of global supersymmetry, the action for Yukawa interactions reads:

S =
w

d4xd2θd2θ̄ K(Φ, Φ̄) +
w

d4xd2θ w(Φ) + h.c. , (3.3)

where K(Φ, Φ̄), the Kähler potential, is a real gauge-invariant function of the chiral su-

perfields Φ and their conjugates and w(Φ), the superpotential, is a holomorphic gauge-

invariant function of the chiral superfields Φ. To ensure invariance under transformations

of the group Γ we should specify how τ and ϕ transform.

1. The group Γ acts on τ as:

τ
γ−→ γ τ , γ ∈ Γ . (3.4)

5In the simplest string theory compactifications, such as for instance a toroidal compactification, the

duality group Γ is part of the diffeomorphisms of the theory. As a consequence, the moduli space is the

quotient between G/K and Γ and it classifies inequivalent complex structures of the compactified space. In

the present bottom-up approach we adhere to a more physical — yet equivalent — picture and we define the

moduli space as the whole G/K. The duality group Γ can be interpreted as a gauge symmetry related to

the redundancy of the description. The quotient between G/K and Γ is characterized by the fundamental

domain for Γ, describing the set of inequivalent vacua.
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2. To define the action of Γ on the matter multiplets ϕ we resort to the quotient

Γ/Gd, a finite group, and to the family of cocycles j(g, τ)k. There is a natural homo-

morphism between Γ and Γ/Gd and any element γ ∈ Γ corresponds to a well-defined

element of Γ/Gd. Being finite, the group Γ/Gd admits unitary representations ρ(γ).

The supermultiplets ϕ(I) of each sector are assumed to transform in a representation

ρ(I) of Γ/Gd, with a weight kI :

ϕ(I) γ−→ j(γ, τ)kI ρ(I)(γ)ϕ(I) , γ ∈ Γ . (3.5)

Eqs. (3.4) and (3.5) generalize the transformation laws (2.2) of modular invariant super-

symmetric theories.

3.2 Kähler potential

Minimal kinetic terms for moduli and matter fields can be introduced as follows. We define

the function Z(τ, τ̄):

Z(τ, τ̄) = [j†(g, τ0)j(g, τ0)]−1 , (3.6)

where the dependence on τ is through the element g via the correspondence in eq. (3.2). We

have required that j(g0, τ), with g0 fixed, is an holomorphic function of τ , but in general

j(g, τ0) depends through g both on τ and τ̄ . Under the group Γ, this function transforms as:

Z(τ, τ̄)
γ−→ [j†(γg, τ0)j(γg, τ0)]−1 = [j†(γ, τ)j(γ, τ)]−1Z(τ, τ̄) . (3.7)

A candidate Kähler potential for moduli is:

K(τ, τ̄) = −h log Z(τ, τ̄) , (3.8)

where h is a real constant whose sign is chosen to guarantee local positivity of the metric

for the moduli τ . Up to a Kähler transformation K(τ, τ̄) is invariant under Γ:

K(τ, τ̄)
γ−→ K(τ, τ̄) + h log j(γ, τ) + h log j†(γ, τ) . (3.9)

We observe that the minimal Kähler potential K(τ, τ̄) is also invariant under the full

continuous group G. Notice that, for G = SL(2, R), K = SO(2) and j(g, τ0) = cτ0 + d,

we get Z(τ, τ̄) = −i(τ − τ̄)/2 and we recover the well-known minimal kinetic term of the

single modulus formalism. A minimal Kähler potential for the matter multiplets, invariant

under Γ, can be defined as:

K(ϕ, ϕ̄) =
∑

I

Z(τ, τ̄)kI |ϕ(I)|2 . (3.10)

A candidate minimal Kähler potential is given by:

Kmin(Φ, Φ̄) = −h log Z(τ, τ̄) +
∑

I

Z(τ, τ̄)kI |ϕ(I)|2 . (3.11)

By construction, the above potential is invariant under Γ up to a Kähler transformation for

a general choice of G, K, Γ, Gd and j(g, τ), nonetheless the positivity of the metric for the
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moduli τ evaluated from Z(τ, τ̄) should be explicitly checked case by case. We also stress

that this is not the most general Kähler potential invariant under Γ. Invariance under Γ

allows to add to Kmin(Φ, Φ̄) many more terms, that cannot be excluded or constrained in

a pure bottom-up approach. In general these terms can modify the flavour properties of

the theory such as physical fermion masses and mixing angles. Additional assumptions

or inputs from a top-down approach are needed in order to reduce the arbitrariness of

the predictions.

3.3 Superpotential

To analyze the requirements for the invariance of the superpotential under Γ, we expand

w(Φ) in powers of the supermultiplets ϕ(I):

w(Φ) =
∑

n

YI1...In(τ) ϕ(I1) . . . ϕ(In) . (3.12)

To guarantee invariance of the n-th order term, the functions YI1...In(τ) should obey:

YI1...In(γτ) = j(γ, τ)kY (n)ρ(Y )(γ) YI1...In(τ) , (3.13)

with kY (n) and ρ(Y ) such that:

1. The weight kY (n) compensates the total weight of the product ϕ(I1) . . . ϕ(In):

kY (n) + kI1
+ . . . + kIn = 0 . (3.14)

2. The product ρ(Y ) × ρ(I1) × . . . × ρ(In) contains an invariant singlet.

When we restrict to transformation γ of the group Gd in eq. (3.13), we obtain:

YI1...In(γτ) = j(γ, τ)kY (n) YI1...In(τ) , γ ∈ Gd . (3.15)

Thus the function

Ψ(g) = j(g, τ0)−kY (n)YI1...In(gτ0) (3.16)

is an automorphic form for Gd and the Yukawa couplings of the theory are strictly related

to such automorphic forms.

3.4 Local supersymmetry

This setup can be easily extended to the case of N = 1 local supersymmetry where Kähler

potential and superpotential are not independent functions since the theory depends on

the combination

G(Φ, Φ̄) = K(Φ, Φ̄) + log w(Φ) + log w(Φ̄) . (3.17)

The modular invariance of the theory can be realized in two ways. Either K(Φ, Φ̄) and

w(Φ) are separately modular invariant or the transformation of K(Φ, Φ̄) under the modular

group is compensated by that of w(Φ). An example of this second possibility is given by

the Kahler potential of eq. (3.11), with the superpotential w(Φ) transforming as

w(Φ) → eiα(γ)j(γ, τ)−hw(Φ) (3.18)
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In the expansion (3.12) the Yukawa couplings YI1...In(τ) should now transform as

YI1...In(γτ) = eiα(γ)j(γ, τ)kY (n)ρ(Y )(γ) YI1...In(τ) , (3.19)

with kY (n)+kI1
+ . . .+kIn = −h and the representation ρ(Y ) subject to the requirement 2.

When we have kI1
+ . . . + kIn = −h, we get kY (n) = 0 and the functions YI1...In(τ) are

τ -independent constants. This occurs for supermultiplets belonging to the untwisted sector

in the orbifold compactification of the heterotic string.

4 Siegel modular forms

Having defined the general framework of automorphic supersymmetric theories, it is useful

to illustrate it by discussing a specific realization. Varying the choice of G, K, Γ, Gd and

j(g, τ), many possibilities can be explored. In the remaining part of this work we will

exemplify the general formalism outlined above by choosing G = Sp(2g, R), K = U(g) =

Sp(2g, R) ∩ O(2g, R) and Γ = Sp(2g, Z), where g is a generic positive integer. This is

the third case of the list (3.1), denoted as IIIg in table 3 of appendix A. The related

automorphic forms are provided by Siegel modular forms.6 Choosing g = 2, the moduli

space G/K modded out by the discrete group Sp(4, Z), parametrizes Riemann surfaces of

genus 2 [61], offering a simple generalization of the choice G = SL(2, R) and K = SO(2),

where G/K, modded out by the discrete group SL(2, Z), parametrizes complex structures

on a torus.

4.1 Moduli space

The moduli space of Siegel modular forms, that will be denoted as Hg, arises by choosing

G = Sp(2g, R) and K = Sp(2g, R) ∩ O(2g, R), (g = 1, 2, . . .). It corresponds to the case

IIIg in table 3 of appendix A. The group Sp(2g, R) is the symplectic group. Its elements

are 2g × 2g real matrices of the type

g =

(

A B

C D

)

, (4.1)

leaving invariant the symplectic form J :

J =

(

0 1g

−1g 0

)

. (4.2)

Asking gt J g = J , where the superscript t denotes the transpose, we have the following

conditions on the g × g matrices A, B, C and D:

AtC = CtA , BtD = DtB , AtD − CtB = 1g . (4.3)

6The Siegel modular group arises as the duality group in string Calabi-Yau compactifications [51–58].

Siegel modular forms are relevant in the context of string one-loop corrections [59, 60].
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The matrix J has determinant +1 and has an inverse given by J−1 = J t = −J . Both J and

identity matrix are symplectic matrices. The inverse of the element g is also a symplectic

matrix with

g−1 =

(

Dt −Bt

−Ct At

)

. (4.4)

The symplectic group Sp(2g, R) has a maximal compact subgroup, K = Sp(2g, R) ∩
O(2g, R), the group of orthogonal symplectic matrices k ∈ K of the type:7

k =

(

A B

−B A

)

, AtA + BtB = 1g , AtB = BtA . (4.5)

An element g of Sp(2g, R) can be uniquely decomposed as:

g =

(√
Y X

√
Y −1

0
√

Y −1

)

k , (4.6)

where X and Y are real symmetric g × g matrices, Y is positive definite (Y > 0) and k

is an element of Sp(2g, R) ∩ O(2g, R). The matrices X and Y offer a parametrization of

the moduli space Hg = G/K. An element τ of the moduli space Hg is described by a

symmetric complex g × g matrix τ with positive definite imaginary part:

Hg =
{

τ ∈ GL(g, C)
∣

∣

∣ τ t = τ, Im(τ) > 0
}

. (4.7)

The space Hg is called Siegel upper half plane, a natural generalization of the well-known

complex upper half plane H.8 The integer g is called genus. Similarly to the case of classical

modular forms we define the action of Sp(2g, R) on τ as:

τ → gτ = (Aτ + B)(Cτ + D)−1 . (4.8)

We recover the one-to-one correspondence between the elements of Hg and those of the

coset G/K by acting with the generic element g ∈ Sp(2g, R) in eq. (4.6) on the fixed element

i1g ∈ Hg:

g i1g =

(√
Y X

√
Y −1

0
√

Y −1

)

k · i1g = X + iY = τ , (4.9)

where we have exploited the fact that k · i1g = i1g, for any k ∈ K. The complex dimension

of Hg is g(g + 1)/2. Choosing g = 1 we go back to H.

4.2 Automorphy factor

In analogy with classical modular forms we can define a class of automorphy factors for

the G = Sp(2g, R) and Hg = Sp(2g, R)/Sp(2g, R) ∩ O(2g, R):

jk(g, τ) = [det(Cτ + D)]k , (4.10)

where k, an integer number, is called the weight. It can be readily checked that jk(g, τ) in

eq. (4.10) satisfies the cocycle condition of eq. (2.18).

7Sp(2g, R) ∩ O(2g, R) is isomorphic to U(g), as follows from (A + iB) being a unitary g × g matrix.
8Hg is analytically equivalent to the bounded symmetric domain D of Sp(2g, R)/U(g), shown in table 3,

appendix A. They are explicitly related by the generalized Cayley transformation: τ 7→ z = (τ − i1g)(τ +

i1g)−1, z 7→ τ = i(1g + z)(1g − z)−1.
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4.3 Siegel modular group

As modular group Γ we can choose a discrete subgroup of G = Sp(2g, R). A reference

choice is the Siegel modular group Γg = Sp(2g, Z). A set of generators is provided by:

S =

(

0 1g

−1g 0

)

, Ti =

(

1g Bi

0 1g

)

, (4.11)

where {Bi} is a basis for the g × g integer symmetric matrices and S coincides with the

invariant symplectic form J satisfying S2 = −12g. Other discrete subgroups of G =

Sp(2g, R), relevant to our purposes are the principal congruence subgroups Γg(n) of level

n, defined as:

Γg(n) =
{

γ ∈ Γg

∣

∣

∣ γ ≡ 12g mod n
}

, (4.12)

where n is a generic positive integer, and Γg(1) = Γg. The group Γg(n) is a normal subgroup

of Γg, and the quotient group Γg,n = Γg/Γg(n), which is known as finite Siegel modular

group, has finite order [62, 63]:

|Γg,n| = ng(2g+1)
∏

p|n

∏

1≤k≤g

(

1 − 1

p2k

)

, (4.13)

where the product is over the prime divisors p of n. For the simplest case, g = 1, we have

|Γ1,n| = n3
∏

p|n

(

1 − 1

p2

)

. (4.14)

This is consistent with the dimension formula of SL(2, Zn) [64, 65].

4.4 Fundamental domain

Two symplectic matrices g1, g2 ∈ Sp(2g, R) have the same action on Hg if and only if

g1 = ±g2 [66, 67], therefore only the group Sp(2g, R)/{±1} acts effectively on Hg. A

fundamental domain Fg in Hg for the Siegel modular group Γg is a connected region of

Hg such that each point of Hg can be mapped into Fg by a Γg transformation, but no two

points in the interior of Fg are related under Γg. It is considerably more complicated than

the g = 1 case. Siegel provided an explicit description of Fg, which we report in appendix B.

In section 6 we show the explicit form of a fundamental domain F2, at genus 2.

4.5 Siegel modular forms

Siegel modular forms f(τ) of integral weight k and level n at genus g are holomorphic

functions on the Siegel half upper half plane Hg transforming under Γg(n) as

f(γτ) = det(Cτ + D)kf(τ) , γ =

(

A B

C D

)

∈ Γg(n) . (4.15)

When n = 1, 2, we have −12g ∈ Γg(n) and the above definition gives:

f(−12gτ) = f(τ) = (−1)kgf(τ) . (4.16)
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Therefore Siegel modular forms at genus g of weight k and level n = 1, 2 vanish if kg is

odd. The elements T n
i , where {Ti} are the generators of eq. (4.11), belong to Γg(n). From

eq. (4.15), we see that

f(T n
i τ) = f(τ + nBi) = f(τ) , (4.17)

and f(τ) admits an expansion as a Fourier series:

f(τ) =
∑

N∈Syms
g(Q),N≥0

a(N)e
2πi
n

Tr(Nτ) , (4.18)

where the sum extends to Syms
g(Q), the set of half-integral matrices,9 and N ≥ 0 means

that N is positive semi-definite. The complex linear space Mk(Γg(n)) of Siegel modular

forms of given weight k, level n and genus g is finite dimensional [68] and there are no

non-vanishing forms of negative weight [68].

Similarly to the case g = 1 [35], it is possible to choose a basis {fi(τ)} in the space

Mk(Γg(n)) such that the action of Γg on the elements of the basis is described by a unitary

representation ρr of the finite Siegel modular group Γg,n = Γg/Γg(n):

fi(γτ) = det(Cτ + D)kρr(γ)ijfj(τ), γ =

(

A B

C D

)

∈ Γg . (4.19)

At variance with eq. (4.15), where only transformations of Γg(n) were considered, in the

previous equation the full Siegel modular group Γg is acting. Eq. (4.19) shows that the

forms {fi(τ)} of given weight, level and genus have good transformation properties also

with respect to Γg. We prove this relation in the appendix C. The full set of Siegel modular

forms with respect to Γg(n) form a positive graded ring M(Γg(n)) =
⊕

k≥0 Mk(Γg(n)).

5 Siegel modular invariant supersymmetric theory

We apply the general formalism of section 3 to the case G = Sp(2g, R), K = Sp(2g, R) ∩
O(2g, R), Γ = Sp(2g, Z), Gd = Γg(n) and j(g, τ) = det(Cτ + D). We first consider the

case of rigid supersymmetry where we focus on Yukawa interactions. The action:

S =
w

d4xd2θd2θ̄ K(Φ, Φ̄) +
w

d4xd2θ w(Φ) + h.c. , (5.1)

is required to be invariant under transformations of the Siegel modular group Γg. To

define the action of Γg on the matter multiplets ϕ we choose a particular level n. Thus,

throughout the whole construction, both the genus g and the level n are kept fixed. The

supermultiplets ϕ(I) of each sector I are assumed to transform in a representation ρ(I) of

the finite Siegel modular group Γg,n, with a weight kI :







τ → γτ = (Aτ + B)(Cτ + D)−1 ,

ϕ(I) → [det(Cτ + D)]kI ρ(I)(γ)ϕ(I) ,
γ =

(

A B

C D

)

∈ Γg . (5.2)

9A symmetric g×g matrix N is called half-integral if 2N is an integral matrix with even diagonal entries.
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Due to the cocycle condition in eq. (2.18) and the properties of ρ(I), the above definition

satisfies the group law. The supermultiplets ϕ(I) are not modular forms and real values

of kI are a priori allowed. The invariance of the action S under eq. (5.2) requires the

invariance of the superpotential w(Φ) and the invariance of the Kahler potential up to a

Kahler transformation:






w(Φ) → w(Φ)

K(Φ, Φ̄) → K(Φ, Φ̄) + f(Φ) + f(Φ̄)
. (5.3)

The requirement of invariance of the Kähler potential can be easily satisfied. We find that

the combination Z(τ, τ̄) of eq. (3.6) is equal to det[(−iτ + iτ †)/2]. Thus a minimal Kähler

potential for the moduli τ is:

Kτ = −h Λ2 log det(−iτ + iτ †), h > 0 , (5.4)

where h is a dimensionless constant and Λ is some reference mass scale. Notice that

the above minimal Kähler potential Kτ exactly matches the Kähler potential K(z, z∗) of

eq. (A.2) after performing the Cayley transformation. This generalizes the Kähler potential

of the case g = 1. Under g ∈ Sp(2g, R) the combination (τ − τ †) transforms as:

(τ − τ †) → (Cτ † + D)−1T (τ − τ †) (Cτ + D)−1, g =

(

A B

C D

)

, (5.5)

and we find:

Kτ → Kτ + h Λ2 log det(Cτ † + D)T + h Λ2 log det(Cτ + D) , (5.6)

which shows the invariance of K under the full symplectic group Sp(2g, R) up to a Kähler

transformation. A minimal Kähler potential for matter multiplets ϕ(I) transforming under

Γg as in eq. (5.2) is given by:

Kϕ =
∑

I

[det(−iτ + iτ †)]kI |ϕ(I)|2 . (5.7)

It is invariant under transformations of Γg. The overall Kähler potential is minimally

described by:

K = Kτ + Kϕ . (5.8)

To study the invariance of the superpotential w(Φ) under the Siegel modular group, we

closely follow the steps outlined in section 3.3. We consider the expansion of w(Φ) in

power series of the supermultiplets ϕ(I) given in eq. (3.12). For the p-th order term to be

modular invariant the functions YI1...Ip(τ) should transform as Siegel modular forms with

weight kY (p) in the representation ρ(Y ) of Γg,n:

YI1...Ip(γτ) = [det(Cτ + D)]kY (p)ρ(Y )(γ) YI1...Ip(τ) , (5.9)

with kY (p) and ρ(Y ) such that:

1. The weight kY (p) should compensate the overall weight of the product ϕ(I1) . . . ϕ(Ip):

kY (p) + kI1
+ . . . + kIp = 0 . (5.10)

2. The product ρ(Y ) × ρI1 × . . . × ρIp contains an invariant singlet.
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The case of local supersymmetry follows straightforwardly from the discussion in sec-

tion 3.4.

5.1 Invariant loci in moduli space

In a generic point τ of the moduli space Hg the discrete symmetry Γg is completely broken

(i.e. γτ = γ has no solution for γ ∈ Γg), but there can be regions where a part of Γg is

preserved. When we consider genus 1, the modular group SL(2, Z) is always broken in

the upper half of the complex plane, except for points possessing some residual symmetry.

In the standard fundamental domain of SL(2, Z), the inequivalent fixed points are τ =

i, −1/2 + i
√

3/2, i∞, which are left invariant by the subgroups generated by S, ST and T ,

respectively.10 In Hg we have a richer variety of possibilities, with the qualitatively new

feature that the regions possessing residual symmetries can be points, lines, surfaces or

even spaces of higher dimensions. We define a region Ω whose points τ are individually

left invariant by some element h of Γg:

h τ = τ . (5.11)

Since h1 τ = τ and h2 τ = τ imply h1h2 τ = τ , the elements h satisfying eq. (5.11) form

a subgroup H of Γg and we can write Hτ = τ . Moreover, a trivial element of Γg leaving

τ invariant is −12g and we also consider the group H̄ = H/{±12g}. Both H and H̄ are

called stabilizers. In our theory we can consistently restrict the domain of moduli to this

region Ω. The group N(H) that, as a whole, leaves the region Ω invariant includes the

elements γ of Γg such that:

γτ = τ ′ , (5.12)

where τ and τ ′ are both in Ω:

Hτ = τ , Hτ ′ = τ ′ . (5.13)

By combining eqs. (5.12) and (5.13), we get

γ−1Hγ = H , (5.14)

which shows that the searched-for group N(H) is the normalizer of H. The condition

defining the normalizer is weaker than the one concerning the stabilizer and, in general, H

is a proper subgroup of N(H). When the region Ω consists of a single isolated point τ0,

as is the case for the fixed points of SL(2, Z) in H, H and N(H) coincide, since both τ

and τ ′ are equal to τ0 in eq. (5.12). Thus the distinction between stabilizer and normalizer

is a new feature of the multidimensional moduli space Hg. As a consequence, in our

supersymmetric action we can restrict the moduli τ to the region Ω, which supersedes the

full moduli space Hg, and replace the group Γg with N(H). An element γ of N(H) induces

the transformation laws






τ → γτ = (Aτ + B)(Cτ + D)−1

ϕ(I) → [det(Cτ + D)]kI ρ(I)(γ)ϕ(I) .
γ =

(

A B

C D

)

∈ N(H) , (5.15)

10S =
(

0 1

−1 0

)

, T = ( 1 1

0 1
) .
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where ρ(I)(γ) is now a unitary representation of a finite group Nn(H) obtained through the

same steps leading to the Siegel finite modular groups Γg,n in section 4.3. We can define

the principal congruence subgroup of N(H), denoted as N(H, n):

N(H, n) =
{

γ̂ ∈ N(H)
∣

∣

∣ γ̂ = 12g mod n
}

. (5.16)

Obviously N(H, n) is a subgroup of Γg(n), and it is also a normal subgroup of N(H).

The finite modular subgroup Nn(H) corresponding to the modular subgroup N(H) is the

quotient group Nn(H) = N(H)/N(H, n), and it is a subgroup of finite Siegel modular

group Γg,n. In summary, we can consistently truncate the moduli space to the subspace Ω,

and substitute Γg and Γg,n with N(H) and Nn(H), respectively.

6 Genus 2 Siegel modular invariant theories

In this section we analyze in detail the case g = 2, which offers the simplest non trivial

generalization of modular invariant supersymmetric theories studied in [37, 38]. The moduli

space H2 has complex dimension 3 and describes 3 moduli:

τ =

(

τ1 τ3

τ3 τ2

)

, det(Im(τ)) > 0 , Tr(Im(τ)) > 0 . (6.1)

A set of generators of the Siegel modular group Γ2 is given by

T1 =

(

12 B1

0 12

)

, T2 =

(

12 B2

0 12

)

, T3 =

(

12 B3

0 12

)

, S =

(

0 12

−12 0

)

, (6.2)

with

B1 =

(

1 0

0 0

)

, B2 =

(

0 0

0 1

)

, B3 =

(

0 1

1 0

)

. (6.3)

The fundamental domain F2 = H2/Γ2 can be defined by the following inequalities [69, 70]:

F2 =































τ ∈ H2

∣

∣

∣

∣

∣































|Re(τ1)| ≤ 1/2, |Re(τ3)| ≤ 1/2. |Re(τ2)| ≤ 1/2,

Im(τ2) ≥ Im(τ1) ≥ 2Im(τ3) ≥ 0

|τ1| ≥ 1, |τ2| ≥ 1, |τ1 + τ2 − 2τ3 ± 1| ≥ 1

| det(τ + Ei)| ≥ 1































, (6.4)

where the set {Ei} includes the following 15 matrices:

(

0 0

0 0

)

,

(

±1 0

0 0

)

,

(

0 0

0 ±1

)

,

(

±1 0

0 ±1

)

,

(

±1 0

0 ∓1

)

,

(

0 ±1

±1 0

)

,

(

±1 ±1

±1 0

)

,

(

0 ±1

±1 ±1

)

. (6.5)

Gottschling found that F2 has 28 boundary pieces [69].
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T1 T2 T3 S

(12) (45) (12)(36)(45) (26)(35)

F2 F 3
1 F2F 3

1 F2F1F2(F −1
1 F2F −1

1 )2(F2F1)2F 2
1 F2F1F2(F −1

1 F2F −1
1 )2(F2F1)2F1

Table 1. The relationship between the two sets of generators T1,2,3, S and F1,2 of the finite Seigel

modular group S6.

6.1 Finite modular groups of genus 2

The dimension of the finite Siegel modular groups Γ2,n is

|Γ2,n| = n10
∏

p|n

(1 − 1

p2
)(1 − 1

p4
) ,

where the product is over the prime divisors p of n. |Γ2,n| rapidly grows with n: for example

|Γ2,2| = 720, |Γ2,3| = 51840. The group Γ2,2 is isomorphic to S6, and Γ2,3 is Sp(4, F3) or the

double covering of Burkhardt group. In the rest of our paper we will focus on level n = 2.

The finite Siegel modular group Γ2,2 = S6 can be regarded as the permutation group of six

objects. It can be generated by two permutations F1 ≡ (123456) and F2 ≡ (12) which obey

F 2
2 = F 6

1 = (F2F1)5 = (F2F 3
1 )4 = (F2F 4

1 F2F 2
1 )2 = 1 . (6.6)

The finite Siegel modular group Γ2,2 = S6 can also be obtained from the Sp(4, Z) generators

S, T1, T2 and T3 in eq. (6.2) by imposing the following conditions,

S2 = T 2
1 = T 2

2 = T 2
3 = 1 , T1T2 = T2T1 , T1T3 = T3T1 , T2T3 = T3T2 ,

(ST1)6 = (ST2T3)5 = ((ST1)2T3)3T2 = ((ST2)2T3)3T1 = 1 . (6.7)

The two generators F1 and F2 can be expressed in terms of T1,2,3 and S as:

F1 = ST3 F2 = T1 . (6.8)

The relation between the two set of generators are summarized in table 1.

The S6 group has two one-dimensional, four five-dimensional, two nine-dimensional,

two ten-dimensional and one sixteen-dimensional irreducible representations [71]. It would

be desirable to assign left-handed lepton fields to a three-dimensional irreducible representa-

tion of the finite modular group. This assignment has been shown to lead to the strongest

and most predictive constraints on neutrino masses and mixing parameters. From this

point of view, the simplest choice n = 2 would seem inadequate, since S6 does not possess

three-dimensional irreducible representations. However, as discussed in section 5.1, we can

consistently restrict our theory to a subregion Ω of the moduli space H2 left invariant

by a subgroup N(H) of Γ2, H being the stabilizer of Ω. In the restricted theory Γ2 and

Γ2,2 are replaced by N(H) and the finite group N2(H), respectively. If N2(H) has three-

dimensional irreducible representations, we have the necessary ingredient to construct a

predictive model. We proceed by inspecting the classification of the fixed points of Γ2 in

H2 and their residual symmetries.
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Fixed points τ
Stabilizer

Normalizer N(H) N2(H)
H̄ H

(

τ1 0

0 τ2

)

Z2 Z2 × Z2 Eq. (E.3) (S3 × S3) ⋊ Z2

(

τ1 τ3

τ3 τ1

)

Z2 Z2 × Z2 Eq. (6.12) S4 × Z2

(

i 0

0 τ2

)

Z4 Z4 × Z2 Eq. (D.10) D12

(

ω 0

0 τ2

)

Z6 Z6 × Z2 Eq. (D.13) S3 × Z3

(

τ1 0

0 τ1

)

Z2 × Z2 D8 Eq. (D.16) D12

(

τ1 1/2

1/2 τ1

)

Z2 × Z2 D8 Eq. (D.19) D8 × Z2

(

τ1 τ1/2

τ1/2 τ1

)

S3 D12 Eq. (D.22) S3 × S3

(

ζ ζ + ζ−2

ζ + ζ−2 −ζ−1

)

Z5 Z10 Z10 Z5

(

η 1
2(η − 1)

1
2(η − 1) η

)

S4 GL(2, 3) GL(2, 3) S4

(

i 0

0 i

)

(Z4 × Z2) ⋊ Z2 (Z4 × Z4) ⋊ Z2 (Z4 × Z4) ⋊ Z2 D8

(

ω 0

0 ω

)

S3 × Z6 [72, 30] [72, 30] Z3 × S3

i
√

3

3

(

2 1

1 2

)

D12 (Z6 × Z2) ⋊ Z2 (Z6 × Z2) ⋊ Z2 D12

(

ω 0

0 i

)

Z12 Z12 × Z2 Z12 × Z2 Z6

Table 2. All inequivalent fixed points of Sp(4, Z) in the Siegel upper half plane H2. They are

divided into three classes according to the dimension of the region they live in. The complex

moduli are denoted by τ1 , τ2 , τ3, and ζ = e2πi/5, η = 1

3
(1 + i2

√
2), ω = e2πi/3. The generators

of the normalizers N(H) of the two-dimensional, one-dimensional and zero-dimensional cases are

listed in the corresponding equations of appendix D. Note that the group with GAP id [72,30] is

isomorphic to Z3 × ((Z2 × Z6) ⋊ Z2).

6.2 Invariant loci in H2

The fixed points of Γ2 in Siegel upper half plane H2 have been classified by Gottschling [72–

74]. In table 2 we show the inequivalent fixed points of the fundamental domain F2 and

their stabilizers H̄ and normalizers N(H). In appendix D we list the generators of H̄
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and N(H). We see that the fixed points come in three classes, depending on the complex

dimension of the region Ω contained in H2. There are two inequivalent sets of fixed points

filling two-dimensional regions. The restriction of the theory to either of these regions

results in Yukawa couplings depending on two moduli. There are five inequivalent sets of

fixed points filling one-dimensional regions. The corresponding theory depends on a single

modulus. Finally, there are six independent isolated fixed points, thus all moduli are frozen

in the related theory. Equivalent invariant loci in the Siegel upper plane H2 can be found

by applying modular transformations to those of the fundamental domain F2. For the case

of g = 1, a complete analysis of the fixed points and the phenomenological implications in

neutrino mass models can be found in [75, 76]. Since F2 parametrizes Riemann surfaces of

genus 2, the above invariant loci correspond to genus 2 Riemann surfaces of special type.

For instance, the modular subspace with τ3 = 0 describes surfaces that factorize into two

tori with moduli τ1 and τ2. Such a limiting case helps us to understand how our general

framework includes and extends factorizable moduli spaces. For the interested reader, we

describe the locus τ3 = 0 in appendix E.

6.2.1 The modular subspace with τ1 = τ2

From table 2, we see that among the regions with complex dimension one and two, there

is a single choice allowing for three-dimensional irreducible representations. It is the one

defined by the condition τ1 = τ2:

Ω =

{

τ =

(

τ1 τ3

τ3 τ1

) ∣

∣

∣

∣

∣

τ ∈ H2

}

. (6.9)

The requirement that the imaginary part of τ is positive definite implies Im(τ1) > 0 and

Im(τ1) > |Im(τ3)|. The stabilizer H of the generic point τ of Ω is Z2 × Z2 = {±14, ±h}:

h =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













. (6.10)

The elements of the normalizer N(H) of H in Sp(4, Z) fulfill:

γ̂+h = hγ̂+ or γ̂−h = −hγ̂− , (6.11)

resulting in

γ̂+ =













a1 a2 b1 b2

a2 a1 b2 b1

c1 c2 d1 d2

c2 c1 d2 d1













, γ̂− =













a1 a2 b1 b2

−a2 −a1 −b2 −b1

c1 c2 d1 d2

−c2 −c1 −d2 −d1













, (6.12)

with

a1d1 + a2d2 − b1c1 − b2c2 = 1, a1d2 + a2d1 − b1c2 − b2c1 = 0 . (6.13)
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We can choose as generators of N(H) the elements:

G1 = T1T2 =













1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1













, G2 = T3 =













1 0 0 1

0 1 1 0

0 0 1 0

0 0 0 1













,

G3 = S =













0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0













, G4 =













1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1













. (6.14)

By the procedure of canonical projection and group quotient, we find the finite modular

subgroup N2(H) is isomorphic to S4 ×Z2 with GAP Id [48,48] [77]. When referred to N2(H),

the generators G1,2,3 obey the relations:

G2
1 = G2

2 = G2
3 = (G1G2)2 = (G1G3)3 = (G1G2G3)4 = 1 . (6.15)

The element G4 is indistinguishable from the identity of N2(H), since G4 = 14 (mod 2).

It is convenient to work with another set of generators: S = G1, T = (G3G2)4 and

V = (G3G2)3, which satisfy the following multiplication rules

S2 = T 3 = (ST )4 = 1, V2 = 1, SV = VS, T V = VT . (6.16)

The group has four singlet representations 1, 1′, 1̂, 1̂′, two doublet representations 2, 2̂,

and four triplet representations 3, 3′, 3̂ and 3̂′. The elements S and T generate the S4

subgroup, and V generates Z2. More details about the group S4 × Z2 can be found in the

appendix F.

In the remaining part of our work we focus on a theory whose moduli space is the

region Ω of eq. (6.9), the modular group is N(H) and the finite modular group is N2(H).

As we can see from table 2, while the generic point in Ω is invariant under the element h

in eq. (6.10) (and its opposite), there are complex lines and points of enhanced symmetry.

For example, the points of the line τ3 = 0 in Ω are also invariant under G4, those of the

line τ3 = 1/2 are invariant under G2G4 and so on.

6.3 Modular forms of genus 2 and level 2

For g = n = 2 and even weight k, the dimension of the complex linear space Mk(Γ2(2))

is [78]

dim Mk(Γ2(2)) =
(k + 1)(k2 + 2k + 12)

12
= 1, 5, 15, 35, . . . (k = 0, 2, 4, 6, . . .) . (6.17)

Modular forms of vanishing weight are constant. There are five linearly independent mod-

ular forms of weight 2. They can be expressed in terms of polynomials of the second

Theta constant Θ[σ](τ) and are explicitly given in appendix G, where we show that they

transform according to one of the irreducible five-dimensional representation of Γ2,2 = S6.
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Higher weight modular forms can be obtained from polynomials of modular forms of lower

weight. Consider any set f
(k)
i (τ) forming a basis of Mk(Γ2(2)). We have

f
(k)
i (γτ) = [det(Cτ + D)]k f

(k)
i (τ) , (6.18)

for any τ in H2 and γ of Γ2(2). When we restrict the moduli space to Ω of eq. (6.9) and

the transformations to N(H, 2) ⊂ N(H), the previous equality still holds. Indeed N(H, 2)

is a subgroup of Γ2(2) and Ω is closed under the action of the whole N(H) ⊃ N(H, 2).

This means that the modular forms of genus 2, level 2, weight k with support in Ω can be

obtained by restricting f (k)(τ) to Ω and replacing Γ2(2) with N(H, 2). Moreover, exactly

as discussed in appendix C, when considering a transformation γ ∈ N(H) we have

f
(k)
i (γτ) = [det(Cτ + D)]k ρ(γ)ij f

(k)
j (τ) , (6.19)

where, up to a change of basis, ρ(γ) is a unitary representation of the finite modular

group N2(H) = N(H)/N(H, 2). When we restrict τ to Ω, the five linearly independent

modular forms of weight 2 given in appendix G collapse to four. They can be organized

into an invariant singlet and an irreducible triplet of the finite Siegel modular subgroup

N2(H) = S4 × Z2:

1 : Y1(τ) = p0(τ) + 3p3(τ) ≡ Y4(τ) ,

3′ : Y3′(τ) =







p0(τ) + 4p1(τ) − p3(τ)

p0(τ) − 2p1(τ) − p3(τ) − 2i
√

3p4(τ)

p0(τ) − 2p1(τ) − p3(τ) + 2i
√

3p4(τ)






≡







Y1(τ)

Y2(τ)

Y3(τ)






. (6.20)

The unitary matrix ρ3′(γ) is given in appendix F, while the forms {pi(τ)} (i = 0, 1, 3, 4)

are given by:

p0 = Θ[00]4(τ) + 2Θ[01]4(τ) + Θ[11]4(τ) ,

p1 = 2 Θ[01]2(τ)
(

Θ[00]2(τ) + Θ[11]2(τ)
)

,

p3 = 2
(

Θ[00]2(τ)Θ[11]2(τ) + Θ[01]4(τ)
)

,

p4 = 4Θ[00](τ)Θ[01]2(τ)Θ[11](τ) , (6.21)

in terms of the relevant second Theta constant Θ[σ](τ) that can be found in appendix G.

In the same appendix we present the q-expansion of Yi(τ) (i = 1, 2, 3, 4) and higher-weight

modular forms.

As can be seen from table 2, there are only four independent fixed points of zero

dimension in the region Ω of eq. (6.9). If the moduli τ1 and τ3 are stabilized by some

mechanism to these fixed points, the normalizer is enhanced and the Siegel modular forms

at these points are completely fixed. Concretely, the alignments of the weight 2 modular
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multiplets Y3′(τ) are of the following type:

τ =

(

η 1
2(η − 1)

1
2(η − 1) η

)

: Y3′(τ) ∝







1

(− 3
17 + i 6

17)ω2

(− 3
17 + i 6

17)ω






, (6.22)

τ =

(

i 0

0 i

)

: Y3′(τ) ∝







1

−1
5ω

−1
5ω2






, (6.23)

τ =

(

ω 0

0 ω

)

: Y3′(τ) ∝







1

ω

−1
2ω2






, (6.24)

τ =
i
√

3

3

(

2 1

1 2

)

: Y3′(τ) ∝







1

−1
3ω

−1
3ω2






. (6.25)

Moreover, we see from table 2 that there are three independent sets of fixed points spanning

a region of dimension one in Ω of eq. (6.9). From the relations in eq. (G.21), in each fixed

point the four modular forms Y1,2,3,4(τ) are found to satisfy the following constraints:

τ =

(

τ1 0

0 τ1

)

: Y1(τ) = 2ω2Y2(τ) + 2ωY3(τ) + 3Y4(τ) ,

τ =

(

τ1 1/2

1/2 τ1

)

: Y2(τ) = Y3(τ) ,

τ =

(

τ1 τ1/2

τ1/2 τ1

)

: Y1(τ) = Y4(τ) . (6.26)

Notice that a Z2 × Z2 subgroup generated by V and (T ST )2S is preserved at the second

fixed point above.

6.4 Kähler potential for moduli

For the case of g = 2, the minimal Kähler potential of eq. (5.8) reads:

K = −h Λ2 log
(

(τ3 − τ̄3)2 − (τ1 − τ̄1)(τ2 − τ̄2)
)

+
∑

I

(

(τ3 − τ̄3)2 − (τ1 − τ̄1)(τ2 − τ̄2)
)kI |ϕ(I)|2 . (6.27)

Observe that when τ3 = 0, the dependence on Im(τ1,2) factorizes, reproducing the Kähler

potential expected in compactification on two independent tori. From K we can derive the

kinetic terms. For instance, in the moduli sector we obtain:

Lkin = Ki
j ∂µτi∂

µτ̄ j , (6.28)

where the matrix Ki
j is given by:

Ki
j = ξ







Im(τ2)2
Im(τ3)2 −2Im(τ2)Im(τ3)

Im(τ3)2
Im(τ1)2 −2Im(τ1)Im(τ3)

−2Im(τ2)Im(τ3) −2Im(τ1)Im(τ3) 2
(

Im(τ3)2 + Im(τ1)Im(τ2)
)






, (6.29)
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with

ξ =
h Λ2

4 (−Im(τ3)2 + Im(τ1)Im(τ2))2 . (6.30)

When Im(τ3) 6= 0, the Kähler matrix Ki
j is not diagonal and the moduli are coupled, a

feature not present in factorized tori.

7 Explicit models

In this last section we present some concrete examples of models for fermion masses, sep-

arately in the leptonic and in the quark sectors. These are models invariant under rigid

supersymmetry, where we restrict to Ω of eq. (6.9) as moduli space and where the role of

flavour symmetry is played by the discrete group N(H) generated by the elements given in

eq. (6.14). The Yukawa couplings depend on Siegel modular forms of genus 2 and level 2

restricted to Ω. We will adopt minimal Kähler potentials, aware of the fact that this choice

implicitly set to zero additional input parameters related to non-minimal choices. We ne-

glect corrections coming from the breaking of supersymmetry and from the renormalization

group flow. In models with modular invariance, both have been shown to be negligible in

ample portions of the parameter space [79]. In our models the flavons are the four fields

Re(τ1), Im(τ1), Re(τ3), Im(τ3), which will be treated as free parameters, varied to maximize

the agreement between data and theory, by a χ-square-based minimization procedure. Ad-

ditional parameters are related to the number of independent invariants allowed by the

symmetry. In this respect, we have selected our matter multiplets in such a way that only

weight 2 and weight 4 Siegel modular forms enter the Yukawa couplings. If weight 6 or

higher modular forms were used, more independent couplings would be involved because

of the presence of additional modular forms in the representations 1 and 3′. So far we have

not tried to optimize the predictability of our models, which are meant to provide only a

general test of our construction. In particular, the model dealing with quark masses and

mixing angles involves twelve free parameters, thus exceeding the number of the physical

quantities to be reproduced. In more predictive models the number of independent param-

eters could be reduced by imposing CP invariance, spontaneously broken by the choice of

τ [80].

7.1 Lepton model I

In the first model, we assume that neutrino masses arises from the type-I seesaw mechanism.

The left-handed lepton L, right-handed neutrinos N c and right-handed charged leptons Ec

all transform as triplet 3′ under the finite Siegel modular group S4 × Z2. This assignment

is of particular interest in view of its compatibility with the embedding in a grand unified

theory. The modular transformation properties and weights for the fields are:

ρEc = ρNc = ρL = 3′, ρHu = ρHd
= 1 ,

kHu = kHd
= 0, kEc = kNc = 0, kL = −2 . (7.1)
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Hence the superpotential for charged leptons and neutrinos can be written as

we = α(EcLY3′)1Hd + β(EcLY1)1Hd ,

wν = g1(N cLY3′)1Hu + g2(N cLY1)1Hu + Λ(N cN c)1 . (7.2)

Using the Clebsch-Gordon coefficients of the S4 ×Z2 symmetry group listed in appendix F,

we get the charged lepton and neutrino mass matrices:

Me =







2αY1 + βY4 −αY3 −αY2

−αY3 2αY2 −αY1 + βY4

−αY2 −αY1 + βY4 2αY3






vd ,

MD =







2g1Y1 + g2Y4 −g1Y3 −g1Y2

−g1Y3 2g1Y2 −g1Y1 + g2Y4

−g1Y2 −g1Y1 + g2Y4 2g1Y3






vu , MN = Λ







1 0 0

0 0 1

0 1 0






. (7.3)

The light neutrino mass matrix mν is given by the seesaw formula

Mν = −MT
DM−1

N MD . (7.4)

Besides the complex moduli τ1 and τ3, the charged lepton mass matrix Me depends only on

a dimensionless parameter β/α and the overall scale αvd. Analogously the neutrino mass

matrix Mν depends on the parameter g2/g1 and the overall scale g2
1v2

u/Λ. We can get rid

of the phases of α and g1 through field redefinitions. At low energies we are left with 6

real Lagrangian parameters plus the 2 complex VEV of τ1 and τ3. The best fit values of

the input parameters are determined to be:

τ1 = 0.04017 + 0.89185i , τ3 = 0.49053 + 0.00792i , β/α = 2.10415 − 0.14380i ,

g2/g1 = −0.96942 − 3.32507i , αvd = 136.26910 MeV , g2
1v2

u/Λ = 2.71970 meV , (7.5)

where τ1 and τ3 are treated as random complex numbers varying in the fundamental do-

main. The lepton mixing parameters and neutrino masses are predicted to be

sin2 θ12 = 0.3068 , sin2 θ13 = 0.02219 , sin2 θ23 = 0.5753 , δCP = 1.09π ,

α21 = 0.05π , α31 = 0.03π , me/mµ = 0.00476 , mµ/mτ = 0.06071 ,

m1 = 120.75 meV , m2 = 121.06 meV , m3 = 130.69 meV , (7.6)

which are compatible with the experimental data at 1σ level [81]. The light neutrino

masses are quasi-degenerate, and the sum of neutrino masses is m1 + m2 + m3 = 372.5

meV, this is marginally compatible with the latest bound
∑

i mi < (120 ∼ 600) meV

given by Planck [82]. From the values of neutrino masses and mixing parameters given

in eq. (7.6), one can extract the predictions for the effective neutrino masses mβ in beta

decay and mββ neutrinoless double beta decay:

mβ = 121.07 meV , mββ = 120.43 meV , (7.7)
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which are below the present most stringent upper limits mβ < 1.1 eV from KATRIN [83]

and mββ < (61 ∼ 165) meV from KamLAND-Zen [84]. The prediction for mββ is within

the reach of future neutrinoless double beta decay experiments.

We see that the value of τ3 preferred by data, eq. (7.5), is very close to 1/2, and

the moduli τ are near the fixed point
(

τ1 1/2
1/2 τ1

)

of table 2, where a Z2 × Z2 subgroup

generated by the elements V and (T ST )2S is preserved. Indeed, at this fixed point we have

Y2(τ) = Y3(τ) and both Me and mν become µ − τ symmetric.11 This specific arrangement

does not allow to faithfully reproduce the data: for instance, we get θ13 = 0. Both the

values of θ13 and δCP matching the experimental data arise from a small deviation of τ

from the fixed point, an intriguing feature already observed for other parameters in the

context of modular flavour symmetries. An interesting property of this model is that the

observed hierarchy among charged lepton masses is achieved with Lagrangian parameters

α and β of the same order. All the dimensionless parameters of the model are of order one,

a significant result in the context of the flavour puzzle.

7.2 Lepton model II

The neutrino masses are described by the Weinberg operator in this model. The first

two generations of the right-handed charged leptons Ec
D = (Ec

1, Ec
2)T are assumed to

transform as a doublet 2 under S4 × Z2, and the third generation Ec
3 transforms as 1. The

representation and weight assignments of the fields are:

ρEc = 2 ⊕ 1, ρL = 3′, ρHu = ρHd
= 1 ,

kHu = kHd
= 0, kEc

D
= −3, kEc

3
= kL = −1 . (7.8)

The superpotential of the lepton sector includes:

we = α(Ec
DLY

(4)
3′a )1Hd + β(Ec

DLY
(4)

3′b )1Hd + γ(Ec
3LY3′)1Hd ,

wν =
g1

Λ
(LLY3′)1HuHu +

g2

Λ
(LLY1)1HuHu . (7.9)

We can assume real α, γ and g1 parameters, since their phases can be absorbed by the lepton

fields, while the phases of β and g2 cannot be removed by exploiting field redefinitions. The

charged lepton and neutrino mass matrices read:

Me =









αY
(4)

3′a,2 + βY
(4)

3′b,2 αY
(4)

3′a,1 + βY
(4)

3′b,1 αY
(4)

3′a,3 + βY
(4)

3′b,3

αY
(4)

3′a,3 + βY
(4)

3′b,3 αY
(4)

3′a,2 + βY
(4)

3′b,2 αY
(4)

3′a,1 + βY
(4)

3′b,1

γY1 γY3 γY2









vd ,

Mν =







2g1Y1 + g2Y4 −g1Y3 −g1Y2

−g1Y3 2g1Y2 −g1Y1 + g2Y4

−g1Y2 −g1Y1 + g2Y4 2g1Y3







v2
u

Λ
. (7.10)

The predictions depend on seven Lagrangian parameters plus the complex values of τ1

and τ3. A good agreement between the model predictions and the experimental data can

11For a review of the µ − τ symmetry, see for instance ref. [85] and references therein.
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be achieved for the following choice of parameter values:

τ1 = 0.25861 + 1.04092i , τ3 = −0.49800 + 0.49265i ,

β/α = 0.13339 + 0.48532i , γ/α = 0.00431 , g2/g1 = 0.78219 + 2.61802i ,

αvd = 171.32533 MeV , g2
1v2

u/Λ = 6.95550 meV . (7.11)

Accordingly the lepton mixing parameters and neutrino masses are determined to be:

sin2 θ12 = 0.3040 , sin2 θ13 = 0.02219 , sin2 θ23 = 0.5699 , δCP = 1.50π ,

α21 = 0.16π , α31 = 0.70π , me/mµ = 0.00480, mµ/mτ = 0.05646 ,

m1 = 14.51 meV , m2 = 16.87 meV , m3 = 52.21 meV ,

mβ = 16.98 meV , mββ = 15.03 meV . (7.12)

It is notable that the Dirac CP phase δCP is approximately 3π/2. The neutrino masses

are of normal hierarchy type and they are quite tiny. All the experimental bounds in

neutrino oscillation, tritium beta decays, neutrinoless double decay and cosmology are

nicely fulfilled.

Unfortunately, treating the moduli as free parameters considerably reduces the pre-

dictive power of the model. It would be of great help to supplement the approach with

some mechanism able to limit the freedom in moduli space. We explore such possibility by

restricting the complex moduli to the fixed points of table 2, compatible with the condition

τ1 = τ2. We found that by setting τ3 = 0 the observed lepton masses and mixing angles

can still be accommodated. The best fit values of the remaining nine input parameters are

given by:

τ1 = 0.01541 + 1.00011i , β/α = −0.49134 + 0.00224i , γ/α = 0.00227 ,

g2/g1 = 1.58430 − 2.16369i , αvd = 259.61745 MeV , g2
1v2

u/Λ = 6.97565 meV ,

(7.13)

giving rise to the following predictions for lepton masses and mixing parameters:

sin2 θ12 = 0.3037 , sin2 θ13 = 0.02219 , sin2 θ23 = 0.5708 , δCP = 1.53π ,

α21 = 0.25π , α31 = 1.70π , me/mµ = 0.00480 , mµ/mτ = 0.05747 ,

m1 = 22.23 meV , m2 = 23.84 meV , m3 = 54.88 meV ,

mβ = 23.92 meV , mββ = 20.57 meV . (7.14)

All the mixing angles as well as the neutrino squared mass differences are in the experimen-

tally preferred 1σ range [81], and the Dirac CP phase δCP is around 3π/2. Furthermore,

we have comprehensively explored the parameter space of this model. Requiring the three

lepton mixing angles and neutrino squared mass splittings ∆m2
21, ∆m2

31 to lie in the exper-

imentally allowed 3σ regions [81], we get the correlations between the free parameters and

observable quantities shown in figure 1. We observe that the atmospheric mixing angle is

predicted to be in the narrow range 0.569 ≤ sin2 θ23 ≤ 0.588.

Furthermore, the phenomenologically viable region in the τ1 plane is around τ1 = i so

that the realistic values of the moduli τ are close to the zero-dimensional fixed point
(

i 0
0 i

)

.
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Figure 1. The predicted correlations among the input free parameters, neutrino mixing angles

and CP violating phases in the Model II, where the moduli are restricted to the subspace with

τ1 = τ2 and τ3 = 0. The last panel shows the prediction for the effective Majorana neutrino

mass mββ in neutrinoless double decay. The vertical black dashed lines denote the 3σ regions of

sin2 θ23 [81]. The most general allowed regions expected for normal ordering and inverted ordering

neutrino masses are indicated by red and blue dashed lines respectively. The horizontal grey band

denote the current experimental bound mββ < (61 ∼ 165) meV from KamLAND-Zen [84], and the

vertical grey exclusion band denotes the current bound
∑

i mi < 120 meV at 95% confidence level

obtained by the Planck collaboration [82].
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7.3 A quark model

In this section, we apply our framework to the quark sector. The left-handed quarks Q

are assumed to transform as a triplet 3′ under the finite modular group S4 × Z2, both

right-handed up quarks and right-handed down quarks are assigned to the direct sum of a

doublet 2 and a singlet 1:

ρuc
D

= ρdc
D

= 2, ρuc
3

= ρdc
3

= 2 = 1, ρQ = 3′, ρHu = ρHd
= 1 ,

kHu = kHd
= 0, kQ = 4 − kuc

D
= 4 − kdc

D
= 2 − kuc

3
= 2 − kdc

3
, (7.15)

where uc
D = (uc

1, uc
2)T , dc

D = (dc
1, dc

2)T , and kQ is a generic real number. With this

assignment the superpotentials wu and wd have the same structure:

wu = αu(uc
DQY

(4)
3′a )1Hu + βu(uc

DLY
(4)

3′b )1Hu + γu(uc
3QY3′)1Hu ,

wd = αd(dc
DQY

(4)
3′a )1Hd + βd(dc

DLY
(4)

3′b )1Hd + γd(dc
3QY3′)1Hd , (7.16)

where the parameters αu, γu, αd and γd can be assumed real since their phases are unphys-

ical. On the contrary, the phases of βu and βd cannot be removed by a field redefinition.

From eq. (7.16), we obtain the up and down quark mass matrices:

Mu =









αuY
(4)

3′a,2 + βuY
(4)

3′b,2 αuY
(4)

3′a,1 + βuY
(4)

3′b,1 αuY
(4)

3′a,3 + βuY
(4)

3′b,3

αuY
(4)

3′a,3 + βuY
(4)

3′b,3 αuY
(4)

3′a,2 + βuY
(4)

3′b,2 αuY
(4)

3′a,1 + βuY
(4)

3′b,1

γuY1 γuY3 γuY2









vu ,

Md =









αdY
(4)

3′a,2 + βdY
(4)

3′b,2 αdY
(4)

3′a,1 + βdY
(4)

3′b,1 αdY
(4)

3′a,3 + βdY
(4)

3′b,3

αdY
(4)

3′a,3 + βdY
(4)

3′b,3 αdY
(4)

3′a,2 + βdY
(4)

3′b,2 αdY
(4)

3′a,1 + βdY
(4)

3′b,1

γdY1 γdY3 γdY2









vd . (7.17)

We find that the agreement between model predictions and experimental data is optimized

by the following values of the free parameters

τ1 = −0.41097+2.03917i , τ3 = 0.01711+1.19070i , βu/αu = −0.18760−0.03857i ,

γu/αu = 20.75350 , βd/αd = −0.15847−0.02620i , γd/αd = 0.15466 ,

αuvu = 2.39972 GeV , αdvd = 0.40724 GeV . (7.18)

The predictions for the quark masses and quark mixing parameters are given by

θq
12 = 0.2275 , θq

13 = 0.0031 , θq
23 = 0.0388 , δq

CP = 68.4◦ ,

mu/mc = 0.00197 , mc/mt = 0.00272 , md/ms = 0.05042, ms/mb = 0.02030 .

(7.19)

All these observable quantities fall in the 3σ range of the values obtained at the GUT scale

in the minimal SUSY breaking scenario with SUSY breaking scale MSUSY = 1 TeV and

tan β = 7.5, η̄b = 0.09375 [86]. Since we are treating τ1,3 as free input variables, in this

example the number of free parameters exceeds the number of observable quantities and

there is no predictive power. This shows the relevance of any dynamical mechanism able

to determine the moduli and reduce the arbitrariness of the predictions.
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7.4 Towards a quark-lepton unified description

In the lepton model described in section 7.1, all matter fields transform in the 3′ repre-

sentation under the finite Siegel modular group S4 × Z2. Moreover the charged lepton

mass matrix possesses hierarchical eigenvalues for parameters α and β of the same order

of magnitude. This might be considered as a promising starting point to describe the

whole fermion spectrum in terms of a unique choice for τ1 and τ3. Nevertheless, by ex-

ploiting for quarks superfields the same assignment used for leptons in section 7.1, namely

ρuc = ρdc = ρQ = 3′, kuc = kdc = −2 − kQ, we could not find a value of the model

parameters providing a good fit of the data. However, when restricting the fit to the quark

sector alone, values of τ1 and τ3 very close to those in eq. (7.5) for the lepton sector give

rise to a picture in a qualitative agreement with the experimental values. In particular,

setting to approximately zero Vub and Vcb, the Cabibbo angle can be correctly reproduced.

At the same time, all quark mass ratios, but mc/mt, fall in the experimentally allowed

range. The predicted value of mc/mt is close to 0.02, out of the experimental range, but

exhibiting an hierarchy in the correct direction. This leaves open the possibility that addi-

tional small effects, like for instance a departure of the Kähler potential from the minimal

choice adopted here, could fix the failures of this simple scheme.

8 Discussion

If relevant to the solution of the flavour puzzle, flavour symmetries are well hidden in the

data and realized in a broken phase [36]. So far, the complete arbitrariness of the symme-

try breaking sector has represented a formidable obstacle in the realization of a predictive

framework. An interesting possibility to reduce the ambiguity of a pure bottom-up ap-

proach comes from string theory where the background over which the string propagates

provides a natural setup for the symmetry breaking sector. For instance, typical compact-

ifications of extra dimensions require the presence of moduli, four-dimensional scalar fields

transforming under discrete duality symmetries that can be part of the flavour symmetry

group. The simplest example of two extra dimensions compactified on a torus or an orbifold

gives rise to target space modular invariance, inherited by the low-energy effective theory.

Modular invariant supersymmetric theories have been shown successful in constraining

Yukawa couplings and in removing the arbitrariness related to the traditional flavon sector.

Nevertheless there are several motivations to go beyond the case of a single modulus. In a

bottom-up perspective, it is difficult to realize viable models where both the neutrino and

the charged lepton sectors are correctly reproduced by a unique modulus. In the existing

examples of this type, ad-hoc free parameters are needed to fit the charged lepton masses.

Also the simultaneous description of quarks and leptons seem to require more than one

modulus. From a top-down viewpoint, low energy theories arising from the compactification

of six extra dimensions typically display dependence on a variety of moduli, many of them

of geometrical type.

It is therefore of great interest to search for an extension of modular invariant super-

symmetric theories where several moduli can occur. The most straightforward extension

involves a product of separate one-dimensional moduli spaces, thus parametrizing a surface
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factorized into independent tori [38, 87]. In the present work we have shown that a much

more general extension exists, which has its roots in the theory of automorphic forms of

several variables. The moduli space is a coset G/K originating from a Lie group G and

a subgroup K. Automorphic forms are periodic functions under the action of a discrete

subgroup Gd of G. Classical modular forms are recovered for G = SL(2, R), K = SO(2) and

Gd the modular group or one of its subgroups. We have shown how, for a generic choice

of G, K and Gd, we can define an automorphic supersymmetric theory where moduli span

G/K and Gd is closely related to the flavour symmetry group. This picture nicely fits

the framework of various supergravity theories and string theory where moduli spaces of

the most common compactifications are given by noncompact groups modded out by their

maximal compact subgroups and discrete duality groups. Our approach is purely bottom-

up, much as the one of modular invariant supersymmetric theories discovered in the late

eighties. In particular, in the general case, we have built a minimal Kähler potential and

the most general superpotential.

We have shown how the construction specializes when G = Sp(2g, R), K = U(g) and

Gd a subgroup of Sp(2g, Z). The automorphic forms are Siegel modular forms. When g = 2

the moduli space has three, non-factorizable, complex dimensions. Its fundamental region

under Sp(2g, Z) has many invariant loci, regions with a non-trivial residual symmetry of

complex dimension two, one or zero, a feature not present when the modulus is unique.

We have exploited this fact to show how we can consistently restrict the theory to one of

these loci and build phenomenologically viable models. As a proof of principle we have

presented several models for lepton and quark masses and mixing angles.

There are several aspects that have been disregarded or only briefly mentioned in our

work. So far, moduli have mostly been treated as part of the independent free parameters

to be varied in order to match the experimental data. Moving from the single modulus to

the multi moduli case, such viewpoint is no more tenable in a setup aiming at a good degree

of predictability. Our discussion makes explicit the importance of finding some criterium

to select the correct moduli VEV. Inspired by the observation that minima of modular

invariant functionals typically occur in regions of enhanced residual symmetries, we have

explored such possibility in our explicit examples. At least in the lepton sector, the models

we have built can accomodate the data when moduli either coincide with fixed points or are

very close to them, an intriguing feature that has already appeared in the context of single

moduli models. Features like the smallness of θ13 or the non-vanishing of δCP seem to be

related to small departure of the moduli from fixed points. We also came close to a unified

model for both quark and lepton masses described in terms of a single point of enhanced

symmetry in moduli space, though additional corrections are required to achieve a realistic

description. These results represent just a first step and clearly there is a large room for

a more systematic and comprehensive analysis. Another well-known aspect which threats

predictability is the choice of a more general Kähler potential [35, 88]. As in the single

modulus case, it is reasonable to expect deviations of the most general Kähler potential

from the minimal choice postulated here. In a bottom-up approach there is no compelling

reason to give preference to the minimal option and the predictions can depend on an

additional set of parameters. In the single modulus case, finite modular invariance can be

– 31 –



J
H
E
P
0
1
(
2
0
2
1
)
0
3
7

just part of a more general symmetry, dubbed “eclectic flavour group”, which also includes

an ordinary flavour group leaving moduli invariant [89–91]. Restrictions imposed by such

bigger symmetry might result in a more constrained Kähler potential [92]. Examples of this

type have been shown to occur in low-energy realizations of string theory [93, 94]. It would

be interesting to see which eclectic flavour groups arise in the more general context studied

here. Multi-moduli can also offer new possibilities to realize hierarchical mass spectra and

to describe more efficiently the observed charged lepton and quark masses. In a specific

model, we achieved an excellent agreement in the lepton sector with all dimensionless

input parameters of order one. A much more ambitious but very interesting step would

be to build a consistent modular invariant non-supersymmetric quantum field theory. In

principle the framework of automorphic forms, not necessarily implying holomorphy of the

functions with good modular transformation properties, might provide the correct tools to

carry out such a construction.

“Are all the dimensionless parameters that characterize the physical universe calculable

in principle or are some merely determined by historical or quantum mechanical accident

and uncalculable?” [95] If fitting the general framework of automorphic forms described

above, Yukawa couplings might display at the same time both the characters of a purely

accidental event, consequence of an unknown mechanism of vacuum selection, and those of

a highly constrained and mathematical beautiful construction.

A Hermitian symmetric spaces

Well known examples of moduli spaces relevant to our construction are hermitian symmetric

spaces [96]. Hermitian spaces are manifolds equipped with a Riemannian metric and an

integrable, almost complex, structure which preserves the metric. At each point p of

an hermitian symmetric space there is a reflection sp (s2
p = 1) preserving the hermitian

structure and having p as unique fixed point, spp = p.

Every hermitian symmetric space M is a Kähler manifold and is a coset space of the

type M = G/K for some connected Lie group G and a compact subgroup K of G. The

Lie algebra G of G decomposes as G = V ⊕ A, where V is the Lie algebra of K, and V and

A are orthogonal with respect to the killing form

B(X, Y ) = tr(Ad(X)Ad(Y )) . (A.1)

We have B(V, A) = 0, for any V (A) ∈ V(A). The reflection sp induces an automorphism

of G such that V + A → V − A. As a consequence the Lie algebra satisfies [V, V] ⊂ V,

[V, A] ⊂ A and [A, A] ⊂ V. Since K is compact, with an appropriate sign convention, we

get B(V, V ) < 0 for any V ∈ V.

Depending on the sign of B(A, A) (A ∈ A), an hermitian symmetric space M can be

of compact type (B(A, A) < 0), of noncompact type (B(A, A) > 0) or of euclidean type

(B(A, A) = 0). In general none of these cases applies and M decomposes as a product

M = Mc × Mnc × Me, where the three factors are hermitian symmetric spaces of compact,

noncompact and euclidean type, respectively. A hermitian symmetric space is irreducible

if it is not the product of two hermitian symmetric spaces of lower dimension.
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Type Group G Compact subgroup K dimC G/K Symmetric domain D
Im,n U(m, n) U(m) × U(n) mn

{

z ∈ Mm,n(C) | 1n − z†z > 0
}

IIm SO∗(2m) U(m) 1
2m(m − 1)

{

z ∈ M skew
m,m (C) | 1m − z†z > 0

}

IIIm Sp(2m) U(m) 1
2m(m + 1)

{

z ∈ M sym
m,m(C) | 1m − z†z > 0

}

IVm SO(m, 2) SO(m) × SO(2) m
{

z ∈ Cm | 1 + |ztz|2 − 2z†z > 0, z†z < 1
}

V E6,−14 SO(10) × SO(2) 16 D ⊂ O2
C

VI E7,−25 E6 × U(1) 27 D ⊂ H3(OC)

Table 3. Irreducible hermitian symmetric manifolds of noncompact type, their complex dimension,

and the bounded symmetric domain. With Mm,n(C) we denote the set of m-by-n complex matrices,

and M
skew(sym)
m,m (C) refers to the subset of m-by-m antisymmetric(symmetric) complex matrices; OC

refers to the complexification of octonions (also called the complex Cayley algebra), and H3(OC) is

the Hermitian 3×3 matrices with entries in OC. The symmetric domains of the last two exceptional

types described in ref. [98].

An irreducible hermitian symmetric space is a coset space of the type G/K where

G is a simple, connected Lie group and K is a connected maximal compact subgroup of

G. Irreducible hermitian symmetric spaces has been classified [50, 97]. G/K is a finite

dimensional complex manifold. Irreducible hermitian symmetric spaces of noncompact

type are listed in table 3. Spaces I − IV are called classical, while V and VI are called

exceptional. Irreducible hermitian symmetric spaces of compact type can be obtained from

the noncompact ones, by means of a transformation on the generators of the Lie algebra G:

(V, A) → (V, iA). All the new generators X satisfy B(X, X) < 0 and the resulting space is

of compact type.

Irreducible hermitian symmetric spaces of noncompact type are complex analytically

equivalent to a bounded symmetric domain (Cartan domain) D, listed in table 3. This

observation is very useful, since all bounded symmetric domains admit an hermitian metric

of Kähler type (Bergman metric), which is explicitly known. For classical spaces, such a

metric can be derived by the following Kähler potentials [50]:

Im,n : K(z, z∗) = − log det(1n − z†z) ,

IIm : K(z, z∗) = −1

2
log det(1m − z†z) ,

IIIm : K(z, z∗) = −1

2
log det(1m − z†z) ,

IVm : K(z, z∗) = − log(1 + |ztz|2 − 2z†z) . (A.2)

We have explicitly shown that our general ansatz for the Kähler potential of τ , eq. (3.8),

coincides with the above expression in case IIIm, after relating the variables τ and z

through a Cayley transformation. There are different parameterizations of the above coset

spaces. In addition to the bounded symmetric domains, there are more commonly used
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unbounded models:

Im≤n : HU =
{

(z, u) | i(z − z†) + u†u < 0, z ∈ Mn(C), u ∈ Mn−m,n(C)
}

,

IIm : HO∗ =
{

z | i(z − z†) > 0, z ∈ Mm(H)
}

,

IIIm : Hg =
{

z | − i(z − z∗) > 0, z ∈ M sym
m (C)

}

,

IVm : HO =
{

(z, u) | i(z − z∗) + |u|2 < 0, z ∈ C, u ∈ Cm
}

. (A.3)

Note that for type Im,m, HU is the so-called hermitian upper half-space, HO∗ is the so-called

quaternion upper half-space, and Hg is the so-called Siegel upper half plane. The bounded

symmetric domain can be mapped to the unbounded model by a Cayley transformation.

For the classical cases Im,n, IIm and IIIm, the noncompact group G can be realized

by 2 × 2 block matrices:

g =

(

A B

C D

)

, (A.4)

where for the case Im,n, A is m-by-m, B is m-by-n, C is n-by-m and D is n-by-n matrices.

For cases IIm and IIIm, A, B, C, D are all m-by-m matrices. They act on the corresponding

bounded or unbounded domain through the generalized linear fractional transformations
(

A B

C D

)

z = (Az + B)(Cz + D)−1 . (A.5)

The matrices A, B, C, D satisfy appropriate conditions, that depend on the parametrization

chosen for G/K. The metric defined by the Kähler potentials of eq. (A.2) is invariant under

the action of the group G. The action of G on H induces a non-trivial factor of automorphy

(g, z) 7→ j(g, z), which satisfy eq. (2.18). Then we can define the automorphic forms

corresponding to the group G with respect to Gd, similar to eq. (2.12). Some concrete

examples of automorphic forms on these noncompact groups G with respect to certain

arithmetic subgroup Gd have been discussed by mathematicians [99–101].

B Siegel fundamental domain for Γg

A fundamental domain Fg for the action of Γg on Hg can be defined as follows [102]:

Fg =



















τ ∈ Hg

∣

∣

∣

∣

∣



















Im(τ) is reduced in the sense of Minkowski,

| det(Cτ + D)| ≥ 1 ∀γ ∈ Γg,

|Re(τij)| ≤ 1/2;



















. (B.1)

Here Minkowski reduced means that Im(τ) satisfies the two properties:

1) htIm(τ)h ≥ Im(τ)kk (∀h = (h1, . . . , hg) ∈ Zg) for 1 ≤ k ≤ g whenever h1, . . . , hg are

coprime;

2)Im(τ)k,k+1 ≥ 0 for 0 ≤ k ≤ g − 1.

It can be shown that in the case g = 1, F1 is the SL(2, Z) fundamental domain

F1 = {τ ∈ H1 | |Re(τ)| ≤ 1/2, |τ | ≥ 1}.
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C Action of Γg on Mk(Γg(n))

In the following, we shall use γ and h to denote a generic element of Γg and Γg(n) re-

spectively, that is γ ∈ Γg, h ∈ Γg(n). In the finite-dimensional complex vector space

Mk(Γg(n)) we select a multiplet of linearly independent Siegel modular forms f(τ) ≡
(f1(τ), f2(τ), . . . , fm(τ))T with m = dim Mk(Γg(n)). We define the functions Fγ(τ) =

j−1
k (γ, τ)f(γτ), where jk(γ, τ) stands for the automorphy factor det(Cτ + D)k, satisfying

the cocycle relation [66],

jk(γγ′, τ) = jk(γ, γ′τ)jk(γ′, τ) . (C.1)

Under h ∈ Γg(n), Fγ(τ) transforms as

Fγ(hτ) = jk(h, τ)Fγ(τ) , (C.2)

which implies that the holomorphic functions Fγ(τ) are actually Siegel modular forms of

Γg(n) with weight k. Therefore Fγ(τ) can be written as linear combination of fi(τ), i.e.

Fγ(τ) = ρ(γ)f(τ) , (C.3)

where the linear combination matrix ρ(γ) only depends on the modular transformation γ.

Recalling the definition of Fγ(τ) we have

f(γτ) = jk(γ, τ)ρ(γ)f(τ) = det(Cτ + D)kρ(γ)f(τ) . (C.4)

Using eq. (C.4), we get

f(γ1γ2τ) = jk(γ1γ2, τ)ρ(γ1γ2)f(τ) , (C.5)

and

f(γ1γ2τ) = jk(γ1, γ2τ)ρ(γ1)f(γ2τ) = jk(γ1γ2, τ)ρ(γ1)ρ(γ2)f(τ) . (C.6)

Comparing eq. (C.5) with eq. (C.6), we arrive at the following result,

ρ(γ1γ2) = ρ(γ1)ρ(γ2) , (C.7)

showing that ρ is a linear representation of the Siegel modular group Γg. From eq. (C.4)

and the definition of Siegel modular form in eq. (4.15), we see that ρ(h) = 1, when h

belongs to Γg(n). Therefore ρ is actually a linear representation of the quotient group

Γg,n = Γg/Γg(n). By the Maschke’s theorem [103], the representation ρ is completely

reducible and it can be decomposed into a direct sum of irreducible unitary representations.

Furthermore, applying eq. (C.4) to the element γ = S2, we have

ρ(S2) = (−1)kg , (C.8)

which is always an identity matrix for even g. This implies that S2 is identified with the

unit element in the representation ρ for even g or even k. As a consequence, the Siegel

modular forms would be arranged into multiplets of the inhomogeneous finite modular

group Γ̄g,n ≡ Γg,n/{1, S2} for n > 2. Note Γ̄g,n = Γg,n for n = 2. In the case that both g
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and k are odd numbers, we have ρ(S2) = −1 and thus Siegel form and the matter fields are

allowed to transform under S2, as can be seen from eqs. (4.19), (5.2), although the moduli

τ don’t change under the action of S2. Hence the odd weight Siegel modular forms for

odd g could be organized into multiplets of the homogeneous finite modular group Γg,n.

The general analysis of odd weight modular forms for g = 1 has been given in [104]. If the

weight k is a non-integer, the g = 1 case indicates that at least the Siegel modular group

Γg should be extended to certain covering group and a multiplier should be included in the

definition of Siegel modular form [41]. In a similar fashion, the Siegel modular forms of

N(H, n) can be decomposed into irreducible representations of the finite modular subgroup

Nn(H).

D Generators of H̄ and N(H) for fixed points in F2

D.1 Dimension two

There are two non-equivalent manifolds of complex dimension 2, i.e. parametrized by two

moduli, whose points are left fixed by subgroups of Γ2.

1. τ =

(

τ1 0

0 τ2

)

.

In this case the stabilizer H̄ = Z2 is generated by

h =













1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1













, (D.1)

while the normalizer N(H) has generators:

G1 =













1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0













, G2 =













1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1













, G′
1 =













0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1













,

G′
2 =













1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1













, G3 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













. (D.2)

The finite modular subgroup N2(H) can be generated by the generators G1,2, G′
1,2

and G3 which obey the relations

G2
1 = (G1G2)3 = G2

2 = 1, G′2
1 = (G′

1G′
2)3 = G′2

2 = 1, G2
3 = 1 ,

G1G′
1 = G′

1G1, G1G′
2 = G′

2G1, G2G′
1 = G′

1G2, G2G′
2 = G′

2G2 ,

G3G1G−1
3 = G′

1, G3G2G−1
3 = G′

2 (D.3)
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The group N2(H) is isomorphic to (S3 × S3) ⋊ Z2 which is the group Id [72, 40] in

the GAP notation [77], and the two S3 subgroups are generated by G1,2 and G′
1,2 re-

spectively. It has four singlet irreducible representations, one doublet representation

and four quartet representations but without triplet representation.

2. τ =

(

τ1 τ3

τ3 τ1

)

.

In the original ref. [74] the equivalent fixed point

(

τ1 1/2

1/2 τ2

)

is discussed. The two

are related by:













1 0 0 0

1 0 0 −1

0 −1 1 0

0 1 0 0













(

τ1 1/2

1/2 τ2

)

=











τ1 − 1

4τ2
τ1 +

1

4τ2

τ1 +
1

4τ2
τ1 − 1

4τ2











. (D.4)

The stabilizer H̄ = Z2 is generated by

h =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













. (D.5)

The generators of the normalizer N(H) can be chosen to be

G1 = T1T2 =













1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1













, G2 = T3 =













1 0 0 1

0 1 1 0

0 0 1 0

0 0 0 1













,

G3 = S =













0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0













, G4 =













1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1













. (D.6)

The finite modular subgroup N2(H) is isomorphic to S4 × Z2, Id [48,48] in GAP, and

the generators G1,2,3,4 obey the relations:

G2
1 = G2

2 = G2
3 = (G1G2)2 = (G1G3)3 = (G1G2G3)4 = 1 . (D.7)

We also have G4 = 14 (mod 2) and G4 represents the unit element of N2(H). It is

convenient to express S4 × Z2 in terms of the three generators S = G1, T = (G3G2)4

and V = (G3G2)3 which satisfy the multiplication rules:

S2 = T 3 = (ST )4 = 1, V2 = 1, SV = VS, T V = VT . (D.8)

The elements S and T generate the S4 subgroup, and V generates Z2.
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D.2 Dimension one

There are five non-equivalent fixed point manifolds of complex dimension 1.

1. τ =

(

i 0

0 τ2

)

.

In this case the stabilizer H̄ = Z4 is generated by:

h =













0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1













, (D.9)

and the normalizer N(H) by:

G1 =













1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0













, G2 =













1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1













, R =













0 0 −1 0

0 1 0 0

1 0 0 0

0 0 0 1













. (D.10)

The finite normalizer N2(H) is S3 × Z2 = D12, its group Id is [12, 4] in GAP and has

four singlet irreducible representations, two doublet representation. The generators

G1,2 and R of the finite normalizer N2(H) obey the relations

G2
1 = G2

2 = (G1G2)3 = R2 = 1, G1R = RG1, G2R = RG2 . (D.11)

2. τ =

(

ω 0

0 τ2

)

with ω = e2πi/3 .

The stabilizer H̄ = Z6 is generated by:

h =













1 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1













, (D.12)

and the normalizer N(H) by:

G1 =













1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0













, G2 =













1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1













, R =













0 0 −1 0

0 1 0 0

1 0 1 0

0 0 0 1













(D.13)

The finite normalizer N2(H) is S3 × Z3, its group Id is [18, 3] in GAP and has six

singlet irreducible representations, three doublet representation. The generators G1,2

and R of the finite normalizer N2(H) obey the relations:

G2
1 = G2

2 = (G1G2)3 = R3 = 1, G1R = RG1, G2R = RG2 . (D.14)
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3. τ =

(

τ1 0

0 τ1

)

.

In this case the stabilizer H = D8 is generated by:

h1 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













, h2 =













0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0













, (D.15)

satisfying h2
1 = h4

2 = (h2h1)2 = 14. We have H̄ = D8/{±14} ∼= D4. The normalizer

N(H) has generators:

G1 =













0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0













, G2 =













1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1













,

R1 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













, R2 =













1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1













. (D.16)

The finite normalizer N2(H) = S3 × Z2. The generators G1,2 and R1,2 of the finite

normalizer N2(H) obey the relations:

G2
1 = G2

2 = (G1G2)3 = R2
1 = 1, G1R1 = R1G1, G2R1 = R1G2 . (D.17)

Note that the generator R2 is essentially the identity element in N2(H).

4. τ =

(

τ1 1/2

1/2 τ1

)

.

In this case the stabilizer H = D8 is generated by:

h1 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













, h2 =













0 1 −1 0

−1 0 0 1

0 0 0 1

0 0 −1 0













, (D.18)

satisfying h2
1 = h4

2 = (h2h1)2 = 14. We have H̄ = D8/{±14} ∼= D4. The normalizer

N(H) has generators:

G1 =













1 0 0 −1

0 −1 1 0

0 0 1 0

0 0 0 −1













, G2 =













1 0 1 0

−1 0 −1 1

−1 −1 0 0

1 −1 1 −1













, R =













1 0 −1 −1

0 −1 1 1

0 0 1 0

0 0 0 −1













. (D.19)

Thus the finite normalizer N2(H) is D8 × Z2, its group Id is [16, 11] in GAP and it has

eight singlet irreducible representations, two doublet representations. The generators

G1,2 and R in the finite normalizer N2(H) obey the relations:

G2
1 = G4

2 = (G1G2)2 = R2 = 1, G1R = RG1, G2R = RG2 . (D.20)
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5. τ =

(

τ1 τ1/2

τ1/2 τ1

)

.

In this case the stabilizer H̄ = S3 is generated by:

h1 =













−1 1 0 0

0 1 0 0

0 0 −1 0

0 0 1 1













, h2 =













1 0 0 0

1 −1 0 0

0 0 1 1

0 0 0 −1













, (D.21)

satisfying h2
1 = h2

2 = (h1h2)3 = 14. The generators of group N(H) can be chosen to

be:

G1 =













0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0













, G2 =













1 0 0 0

0 1 0 0

2 −1 1 0

−1 2 0 1













,

G′
1 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













, G′
2 =













1 0 0 0

1 −1 0 0

0 0 1 1

0 0 0 −1













. (D.22)

The finite normalizer N2(H) is isomorphic to S3 × S3. The generators G1,2 and G′
1,2

of the finite normalizer N2(H) satisfy the following relations

G2
1 = G2

2 = (G1G2)3 = 1, G′2
1 = G′2

2 = (G′
1G′

2)3 = 1 ,

G1G′
1 = G′

1G1, G2G′
2 = G′

2G2, G1G′
2 = G′

2G1, G2G′
1 = G′

1G2 . (D.23)

D.3 Dimension zero

There are six non-equivalent isolated fixed points. We recall that in this case N(H) = H,

while H̄ = H/{±14}.

1. τ =

(

ζ ζ + ζ−2

ζ + ζ−2 −ζ−1

)

with ζ = e2πi/5 .

In this case the stabilizer H̄ is the cyclic group Z5, generated by:

h =













0 −1 −1 −1

0 0 −1 0

0 0 0 −1

1 0 0 1













. (D.24)

2. τ =

(

η 1
2(η − 1)

1
2(η − 1) η

)

with η =
1

3
(1 + i2

√
2) .

In this case the stabilizer H̄ is group S4, generated by:

h1 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













, h2 =













−1 1 1 0

1 0 0 1

−1 0 0 0

1 −1 0 1













, (D.25)

obeying the relations: h2
1 = h4

2 = (h1h2)3 = 1.
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3. τ =

(

i 0

0 i

)

.

In this case the stabilizer H̄ is group (Z4 × Z2) ⋊ Z2 generated by:

h1 =













0 0 1 0

0 −1 0 0

−1 0 0 0

0 0 0 −1













, h2 =













0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0













, h3 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













. (D.26)

The generators obey the relations:

h4
1 = h2

2 = h2
3 = 1, h1h2 = h2h1, h2h3 = h3h2, h3h1h−1

3 = h1h2 . (D.27)

4. τ =

(

ω 0

0 ω

)

with ω = e2πi/3 .

In this case the stabilizer H̄ is group S3 × Z6 generated by:

h1 =













0 0 0 −1

1 0 1 0

0 1 0 1

−1 0 0 0













, h2 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













, h3 =













0 0 1 0

0 0 0 −1

−1 0 −1 0

0 1 0 1













, (D.28)

satisfying the relations:

h6
3 = h2

1 = h2
2 = (h1h2)3 = 1 , h1h3 = h3h1 , h2h3 = h3h2 . (D.29)

5. τ =
i
√

3

3

(

2 1

1 2

)

.

In this case the stabilizer is group S3 × Z2, and are generated by:

h1 =













0 0 0 1

0 0 1 1

1 −1 0 0

−1 0 0 0













, h2 =













0 0 1 1

0 0 1 0

0 −1 0 0

−1 1 0 0













, h3 =













0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0













, (D.30)

that obey the relations:

h2
3 = h2

1 = h2
2 = (h1h2)3 = 1 , h1h3 = h3h1 , h2h3 = h3h2 . (D.31)

6. τ =

(

ω 0

0 i

)

with ω = e2πi/3 .

In this case the stabilizer H̄ is cyclic group Z12, generated by

h =













0 0 1 0

0 0 0 1

−1 0 −1 0

0 −1 0 0













. (D.32)
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E The modular subspace with τ3 = 0

In this case, the modular subspace is of the form Ω =

(

τ1 0

0 τ2

)

with Im(τ1) > 0 and

Im(τ2) > 0. The stabilizer of this modular subspace space is H = {±14, ±h} with

h =













1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1













. (E.1)

It is straightforward to check that H = {±14, ±h} is the most general modular transfor-

mations which leaves τ =

(

τ1 0

0 τ2

)

invariant. The modular subgroup N(H) acting on Ω is

determined by eq. (5.14), then we find the element γ̂ ∈ N(H) fulfills the following identities

γ̂+h = hγ̂+ or γ̂−h = −hγ̂− , (E.2)

which gives rise to the most general form of γ̂ as

γ̂+ =













a1 0 b1 0

0 a4 0 b4

c1 0 d1 0

0 c4 0 d4













or γ̂− =













0 a4 0 b4

a1 0 b1 0

0 c4 0 d4

c1 0 d1 0













, (E.3)

with

a1d1 − b1c1 = 1, a4d4 − b4d4 = 1, a1,4, b1,4, c1,4, d1,4 ∈ Z . (E.4)

Notice that γ̂+ and γ̂− are related with each other,

γ̂+ =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













γ̂− . (E.5)

It is easy to check that action of γ̂+ and γ̂− on Ω is

γ̂+

(

τ1 0

0 τ2

)

=









a1τ1 + b1

c1τ1 + d1
0

0
a4τ2 + b4

c4τ2 + d4









,

γ̂−

(

τ1 0

0 τ2

)

=









a4τ2 + b4

c4τ2 + d4
0

0
a1τ1 + b1

c1τ1 + d1









. (E.6)

Therefore the action of γ̂+ is equivalent to two independent SL(2, Z) transformations τ1 →
a1τ1 + b1

c1τ1 + d1
and τ2 → a4τ2 + b4

c4τ2 + d4
, and consequently the group formed by γ̂+ is isomorphic to
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SL(2, Z)×SL(2, Z). Another kind of element γ̂− maps τ1 → a4τ2 + b4

c4τ2 + d4
and τ2 → a1τ1 + b1

c1τ1 + d1
,

it relates the complex modulus τ1 with τ2. From the well-known generators of SL(2, Z):

S =

(

0 1

−1 0

)

, T =

(

1 1

0 1

)

, we can construct the generators of N(H) as:

G1 =













1 0 0 0

0 0 0 1

0 0 1 0

0 −1 0 0













, G2 =













1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1













, G′
1 =













0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1













,

G′
2 =













1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1













, G3 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0













. (E.7)

The finite modular subgroup N2(H) can be generated by the generators G1,2, G′
1,2 and G3

which obey the relations

G2
1 = (G1G2)3 = G2

2 = 1, G′2
1 = (G′

1G′
2)3 = G′2

2 = 1, G2
3 = 1 ,

G1G′
1 = G′

1G1, G1G′
2 = G′

2G1, G2G′
1 = G′

1G2, G2G′
2 = G′

2G2 ,

G3G1G−1
3 = G′

1, G3G2G−1
3 = G′

2 (E.8)

The elements G1,2 and G′
1,2 are generators of two S3 groups which are commutable with

each other, consequently G1,2 and G′
1,2 generate S3 × S3. The element G3 is of order 2, the

last line of eq. (E.8) define a homomorphism of G3 on S3 ×S3. As a consequence, the finite

Siegel modular subgroup generated by G1,2, G′
1,2 and G3 is isomorphic to (S3×S3)⋊Z2 with

group Id [72, 40] in GAP [77]. It has four singlet irreducible representations, one doublet

representation and four quartet representations but without triplet representation. If we

only focus on the group of γ̂+, the finite modular subgroup N2(H) would be generated

by G1,2 and G′
1,2, it is isomorphic to S3 × S3. Accordingly the two moduli τ1 and τ2

are independent from each other, and the geometry of the region Ω+ is a factorizable

torus T 2 × T 2.

F The finite Siegel modular group S4 × Z2

The finite modular group S4 × Z2 with GAP Id [48,48] can be generated by three elements

S, T and V with the presentation:

S2 = T 3 = (ST )4 = 1, V2 = 1, SV = VS, T V = VT . (F.1)

The elements S, T generate the S4 subgrop, and Z2 is generated by V. This group is a

subgroup of Γ2,2 = S6, and the three generators S, T and V can be expressed in terms

of permutations S = (12)(45), T = (153)(264) and V = (14)(25)(36). This group has 10

– 43 –



J
H
E
P
0
1
(
2
0
2
1
)
0
3
7

conjugacy classes which can be expressed in terms of S, T and V as follows:

1C1 = {1} ,

1C2 = {V} ,

3C2 =
{

(ST )2, (T S)2, (T ST )2
}

,

3C ′
2 =

{

(ST )2V, (T S)2V, (T ST )2V} ,

6C2 =
{S, T 2ST , T ST 2, ST (T S)2, (ST )2T S, (T ST )2S} ,

6C ′
2 =

{SV, T 2ST V, T ST 2V, ST (T S)2V, (ST )2T SV, (T ST )2SV} ,

6C4 =
{ST 2, ST , T 2S, T S, T 2ST 2, T ST } ,

6C ′
4 =

{ST 2V, ST V, T 2SV, T SV, T 2ST 2V, T ST V} ,

8C3 =
{T , T 2, ST 2S, ST S, (T S)2T 2, (ST )2T , T (T S)2, T 2(ST )2

}

,

8C6 =
{T V, T 2V, ST 2SV, ST SV, (T S)2T 2V, (ST )2T V, T (T S)2V, T 2(ST )2V} ,

(F.2)

where nCk denotes a conjugacy class with n elements and the subscript k refers to the

order of the elements. The group has four singlet representations 1, 1′, 1̂, 1̂′, two doublet

representations 2, 2̂, and four triplet representations 3, 3′, 3̂ and 3̂′. The explicit form of

the generators S, T and V in each irreducible representations ate given by

ρ(S) ρ(T ) ρ(V)

1 1 1 1

1′ − 1 1 1

1̂ 1 1 −1

1̂′ − 1 1 −1

2

(

0 1

1 0

) (

ω 0

0 ω2

)

12

2̂

(

0 1

1 0

) (

ω 0

0 ω2

)

− 12

3 − 1

3







−1 2 2

2 2 −1

2 −1 2













1 0 0

0 ω2 0

0 0 ω






13

3′ 1

3







−1 2 2

2 2 −1

2 −1 2













1 0 0

0 ω2 0

0 0 ω






13

3̂ − 1

3







−1 2 2

2 2 −1

2 −1 2













1 0 0

0 ω2 0

0 0 ω






− 13

3̂′ 1

3







−1 2 2

2 2 −1

2 −1 2













1 0 0

0 ω2 0

0 0 ω






− 13
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with ω = e2πi/3. We report below the multiplication rules between different irreducible

representation of S4 × Z2,

1′ ⊗ 1′ = 1̂ ⊗ 1̂ = 1̂′ ⊗ 1̂′ = 1, 1′ ⊗ 1̂ = 1̂′, 1′ ⊗ 1̂′ = 1̂, 1̂ ⊗ 1̂′ = 1′ ,

1′ ⊗ 2 = 1̂′ ⊗ 2̂ = 1̂ ⊗ 2̂ = 2, 1′ ⊗ 2̂ = 1̂′ ⊗ 2 = 1̂ ⊗ 2 = 2̂ ,

1′ ⊗ 3′ = 1̂ ⊗ 3̂ = 1̂′ ⊗ 3̂′ = 3, 1′ ⊗ 3 = 1̂ ⊗ 3̂′ = 1̂′ ⊗ 3̂ = 3′,

1′ ⊗ 3̂′ = 1̂ ⊗ 3 = 1̂′ ⊗ 3′ = 3̂, 1′ ⊗ 3̂ = 1̂ ⊗ 3′ = 1̂′ ⊗ 3 = 3̂′ ,

2 ⊗ 2 = 2̂ ⊗ 2̂ = 1 ⊕ 1′ ⊕ 2, 2 ⊗ 2̂ = 1̂ ⊕ 1̂′ ⊕ 2̂ ,

2 ⊗ 3 = 2 ⊗ 3′ = 3 ⊕ 3′, 2 ⊗ 3̂ = 2 ⊗ 3̂′ = 3̂ ⊕ 3̂′,

2̂ ⊗ 3 = 2̂ ⊗ 3′ = 3̂ ⊕ 3̂′, 2̂ ⊗ 3̂ = 2̂ ⊗ 3̂′ = 3 ⊕ 3′ ,

3 ⊗ 3 = 3′ ⊗ 3′ = 3̂ ⊗ 3̂ = 3̂′ ⊗ 3̂′ = 1 ⊕ 2 ⊕ 3 ⊕ 3′,

3 ⊗ 3′ = 3̂ ⊗ 3̂′ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′,

3 ⊗ 3̂ = 3′ ⊗ 3̂′ = 1̂ ⊕ 2̂ ⊕ 3̂ ⊕ 3̂′,

3 ⊗ 3̂′ = 3′ ⊗ 3̂ = 1̂′ ⊕ 2̂ ⊕ 3̂ ⊕ 3̂′ . (F.3)

We list the Clebsch-Gordan coefficients in the basis defined above in table 4. We use αi

to denote the elements of the first representation of the product and βi to denote those of

the second representation.

G Siegel modular forms of genus g = 2 at level n = 2

Theta constant plays an essential role in the construction of classical Siegel modular forms

on Sp(2g, Z) [105]. A Theta constant on the Siegel space Hg is given by [63, 106]:

θ[ab ](τ) :=
∑

m∈Zg

eπi[(m+a/2)τ (m+a/2)t+(m+a/2) bt] , (G.1)

where a = (a1, a2, . . . , ag), b = (b1, b2, . . . , bg) are row vectors with ai, bi = 0, 1 and
∑

aibi ≡
0 mod 2, and m is a g-dimensional row vector with integral elements. The matrix ∆ ≡
[

a1 a2 . . . ag

b1 b2 . . . bg

]

=

[

a

b

]

is called a characteristic. The action of siegel modular group Γg on

the characteristic is:

γ ·
[

a

b

]

=

[

c

d

]

,

(

ct

dt

)

=

[(

D −C

−B A

)(

at

bt

)

+

(

diagt(CDt)

diagt(ABt)

)]

(mod 2) , (G.2)

where the symbol diag represents a row vector whose elements are the diagonal entries

of the matrix, i.e. diag(A) = (A11, A22, . . . ). The Theta constant fulfills the following

transformation rule [63]:

θ[γ · ∆](γτ) = κ(γ)χ∆(γ) det(Cτ + D)1/2θ[∆](τ), γ ∈ Γg, τ ∈ Hg , (G.3)

with

χ∆(γ) = e2πiφ∆(γ), φ∆(γ) = −1

8
(aBtDat +bAtCbt −2aBtCbt)+

1

4
(aDt −bCt)diagt(ABt) .

(G.4)
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1 ⊗ 2 = 1̂ ⊗ 2̂ = 2 1 ⊗ 2̂ = 1̂ ⊗ 2 = 2̂ 1′ ⊗ 2 = 1̂′ ⊗ 2̂ = 2 1′ ⊗ 2̂ = 1̂′ ⊗ 2 = 2̂

2 ∼




αβ1

αβ2



 2̂ ∼




αβ1

αβ2



 2 ∼




−αβ1

αβ2



 2̂ ∼




−αβ1

αβ2





1 ⊗ 3 = 1′ ⊗ 3′ = 1̂ ⊗ 3̂ = 1̂′ ⊗ 3̂′ = 3 1 ⊗ 3′ = 1′ ⊗ 3 = 1̂ ⊗ 3̂′ = 1̂′ ⊗ 3̂ = 3′

3 ∼











αβ1

αβ2

αβ3











3′ ∼











αβ1

αβ2

αβ3











1 ⊗ 3̂ = 1′ ⊗ 3̂′ = 1̂ ⊗ 3 = 1̂′ ⊗ 3′ = 3̂ 1 ⊗ 3̂′ = 1′ ⊗ 3̂ = 1̂ ⊗ 3′ = 1̂′ ⊗ 3 = 3̂′

3̂ ∼











αβ1

αβ2

αβ3











3̂′ ∼











αβ1

αβ2

αβ3











2 ⊗ 2 = 1s ⊕ 1′
a

⊕ 2s 2 ⊗ 2̂ = 1̂ ⊕ 1̂′ ⊕ 2̂ 2̂ ⊗ 2̂ = 1s ⊕ 1′
a

⊕ 2s

1s ∼ α1β2 + α2β1

1′
a

∼ α1β2 − α2β1

2s ∼




α2β2

α1β1





1̂ ∼ α1β2 + α2β1

1̂′ ∼ α1β2 − α2β1

2̂ ∼




α2β2

α1β1





1s ∼ α1β2 + α2β1

1′
a

∼ α1β2 − α2β1

2s ∼




α2β2

α1β1





2 ⊗ 3 = 2̂ ⊗ 3̂ = 3 ⊕ 3′ 2 ⊗ 3′ = 2̂ ⊗ 3̂′ = 3 ⊕ 3′ 2 ⊗ 3̂ = 2̂ ⊗ 3 = 3̂ ⊕ 3̂′ 2 ⊗ 3̂′ = 2̂ ⊗ 3′ = 3̂ ⊕ 3̂′

3 ∼











α2β3 + α1β2

α2β1 + α1β3

α2β2 + α1β1











3′ ∼











α2β3 − α1β2

α2β1 − α1β3

α2β2 − α1β1











3 ∼











α2β3 − α1β2

α2β1 − α1β3

α2β2 − α1β1











3′ ∼











α2β3 + α1β2

α2β1 + α1β3

α2β2 + α1β1











3̂ ∼











α2β3 + α1β2

α2β1 + α1β3

α2β2 + α1β1











3̂′ ∼











α2β3 − α1β2

α2β1 − α1β3

α2β2 − α1β1











3̂ ∼











α2β3 − α1β2

α2β1 − α1β3

α2β2 − α1β1











3̂′ ∼











α2β3 + α1β2

α2β1 + α1β3

α2β2 + α1β1











3 ⊗ 3 = 3′ ⊗ 3′ = 3̂ ⊗ 3̂ = 3̂′ ⊗ 3̂′ = 1 ⊕ 2 ⊕ 3 ⊕ 3′ 3 ⊗ 3′ = 3̂ ⊗ 3̂′ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′

1 ∼ α1β1 + α2β3 + α3β2

2 ∼




α2β2 + α1β3 + α3β1

α3β3 + α1β2 + α2β1





3 ∼











α3β2 − α2β3

α2β1 − α1β2

α1β3 − α3β1











3′ ∼











2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1











1′ ∼ α1β1 + α2β3 + α3β2

2 ∼




−(α2β2 + α1β3 + α3β1)

α3β3 + α1β2 + α2β1





3 ∼











2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1











3′ ∼











α3β2 − α2β3

α2β1 − α1β2

α1β3 − α3β1











3 ⊗ 3̂ = 3′ ⊗ 3̂′ = 1̂ ⊕ 2̂ ⊕ 3̂ ⊕ 3̂′ 3 ⊗ 3̂′ = 3′ ⊗ 3̂ = 1̂′ ⊕ 2̂ ⊕ 3̂ ⊕ 3̂′

1̂ ∼ α1β1 + α2β3 + α3β2

2̂ ∼




α2β2 + α1β3 + α3β1

α3β3 + α1β2 + α2β1





3̂ ∼











α3β2 − α2β3

α2β1 − α1β2

α1β3 − α3β1











3̂′ ∼











2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1











1̂′ ∼ α1β1 + α2β3 + α3β2

2̂ ∼




−(α2β2 + α1β3 + α3β1)

α3β3 + α1β2 + α2β1





3̂ ∼











2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1











3̂′ ∼











α3β2 − α2β3

α2β1 − α1β2

α1β3 − α3β1











Table 4. The Kronecker products and Clebsch-Gordan coefficients of the S4 × Z2 group.
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The factor κ(γ) is an eight-root of unity that only depends on γ, and has the following

properties:

κ8(γ) = 1 , ∀γ ∈ Γg ,

κ4(γ) = eπiTr(BtC) , ∀γ =

(

A B

C D

)

∈ Γg ,

κ2(γ) = κ2((γ−1)t) = det(D) , ∀γ =

(

A B

0 D

)

∈ Γg . (G.5)

The second order Theta constant is frequently used to construct classical Siegel modular

forms, and it is defined as:

Θ[σ](τ) = θ[σ0 ](2τ) =
∑

m∈Zg

e2πi(m+σ/2)τ (m+σ/2)t

. (G.6)

It satisfies the following identities:

Θ[σ](τ + B) = eπi[σdiagt(B)− 1

2
σBσt]Θ[σ](τ) ,

Θ[σ](−τ−1) = κ(J)−1 det(τ/2)
1

2

∑

ρ∈Z
g
2

(−1)ρσt

Θ[ρ](τ) . (G.7)

G.1 Modular forms at genus 2

The Siegel modular group Γ2 = Sp(4, Z) can be generated by four elements T1, T2, T3 and

S in eq. (6.2) which act on the modulus τ as

τ
Ti−→ τ + Bi , τ

S−→ −τ−1 . (G.8)

At weight k = 2 and level n = 2, the Seigel modular forms space M2(Γ2(2)) is spanned by

five linearly independent polynomials p0, p1, p2, p3 and p4 [106, 107]:

p0 = Θ[00]4(τ) + Θ[01]4(τ) + Θ[10]4(τ) + Θ[11]4(τ) ,

p1 = 2
(

Θ[00]2(τ)Θ[01]2(τ) + Θ[10]2(τ)Θ[11]2(τ)
)

,

p2 = 2
(

Θ[00]2(τ)Θ[10]2(τ) + Θ[01]2(τ)Θ[11]2(τ)
)

,

p3 = 2
(

Θ[00]2(τ)Θ[11]2(τ) + Θ[01]2(τ)Θ[10]2(τ)
)

,

p4 = 4Θ[00](τ)Θ[01](τ)Θ[10](τ)Θ[11](τ) . (G.9)

Using eq. (G.7), we can find the transformation rules of the above five Siegel modular form

polynomials under the Ti and S:

T1 : p0 → p0, p1 → p1, p2 → −p2, p3 → −p3, p4 → −p4 ,

T2 : p0 → p0, p1 → −p1, p2 → p2, p3 → −p3, p4 → −p4

T3 : p0 → p0, p1 → p1, p2 → p2, p3 → p3, p4 → −p4 ,

S : p0 → 1

4
det(τ)2[p0 + 3p1 + 3p2 + 3p3 + 6p4] ,
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S : p1 → 1

4
det(τ)2[p0 − p1 + 3p2 − p3 − 2p4],

S : p2 → 1

4
det(τ)2[p0 + 3p1 − p2 − p3 − 2p4],

S : p3 → 1

4
det(τ)2[p0 − p1 − p2 + 3p3 − 2p4],

S : p4 → 1

4
det(τ)2[p0 − p1 − p2 − p3 + 2p4] . (G.10)

The five modular forms pi can be arranged into a quintet Y T
5

= (Y1, Y2, Y3, Y4, Y5) which

form a five-dimensional representation 5 of Γ2,2 = S6. If we choose the unitary representa-

tion matrices in 5 as follows:

ρ(T1) =

















1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

















, ρ(T2) =
1

2

















−1
√

3 0 0 0√
3 1 0 0 0

0 0 −1
√

3 0

0 0
√

3 1 0

0 0 0 0 −2

















,

ρ(T3) =
1

3

















3 0 0 0 0

0 3 0 0 0

0 0 0
√

3
√

6

0 0
√

3 2 −
√

2

0 0
√

6 −
√

2 1

















, ρ(S) =
1

12

















3 3
√

3 3
√

3 9 0

3
√

3 −3 −3
√

3 4
√

6

3
√

3 −3 9 −3
√

3 0

9
√

3 −3
√

3 −1 −4
√

2

0 4
√

6 0 −4
√

2 4

















,

(G.11)

then, up to an overall normalization, the quintet Siegel form Y5 is given by:

Y1(τ) = p0(τ) + 3p1(τ) ,

Y2(τ) =
√

3 [p0(τ) − p1(τ)] ,

Y3(τ) =
√

3 [p2(τ) + p3(τ) − 2p4(τ)] ,

Y4(τ) = 3p2(τ) − p3(τ) + 2p4(τ) ,

Y5(τ) = 2
√

2 [p3(τ) + p4(τ)] . (G.12)

G.2 Restriction to the modular subspace with τ3 = 0

In this case, the elements of the modular subgroup N(H) are of the form γ̂+ and γ̂− in

eq. (E.3). Since the diagonal entries of γ̂− are zero, γ̂− doesn’t belong to the principal

congruence modular subgroup N(H, 2). The elements of N(H, 2) is of the form of γ̂+ with

a1,4, d1,4 odd and b1,4, c1,4 even, and consequently it is isomorphic to Γ1(2)×Γ1(2). Taking

τ3 = 0 in the expressions of p0,1,2,3,4 in eq. (G.9), we can obtain the weight 2 modular forms

of N(H, 2) as follow,

p0(τ) = e1(τ1)e1(τ2), p1(τ) = e1(τ1)e2(τ2) ,

p2(τ) = e2(τ1)e1(τ2), p3(τ) = e2(τ1)e2(τ2), p4(τ) = e2(τ1)e2(τ2) , (G.13)

where e1(τi) = Θ[0]4(τi) + Θ[1]4(τi), e2(τi) = 2Θ[0]2(τi)Θ[1]2(τi) are the weight 2 modular

forms of Γ1(2), and they form a doublet of the finite Siegel modular group Γ1,2
∼= S3. The
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q-expansions of e1,2(τ) read as

e1(τ) = 1 + 24q + 24q2 + 96q3 + 24q4 + 144q5 + . . . ,
√

3 e2(τ) = 8
√

3q1/2(q + 4q + 6q2 + 8q3 + 13q4 + 12q5 + . . . ), q = e2πiτ , (G.14)

which are exactly the same as those given in [108] up to a overall constant. Moreover,

we see p3(τ) = p4(τ) in this modular subspace so that the Siegel modular form space

M2(N(H, 2)) is a four-dimensional subspace of M2(Γ2(2)). Actually eq. (G.13) implies

that M2(N(H, 2)) is a tensor product of two M2(Γ1(2)):













p0(τ)

p1(τ)

p2(τ)

p3(τ)













=













e1(τ1)e1(τ2)

e1(τ1)e2(τ2)

e2(τ1)e1(τ2)

e2(τ1)e2(τ2)













=

(

e1(τ1)

e2(τ1)

)

⊗
(

e1(τ2)

e2(τ2)

)

. (G.15)

It is quite straightforward to check pi(γ̂+τ) = (c1τ1 + d1)2(c4τ2 + d4)2pi(τ) = det(Ĉ+τ +

D̂+)2pi(τ), consequently pi(τ) are really weight 2 Siegel modular forms of N(H, 2). Fur-

thermore, we find that the above 4 linearly independent Siegel modular forms p0,1,2,3 fur-

nish a four-dimensional irreducible representation of the finite Siegel modular subgroup

N2(H) ∼= (S3 × S3) ⋊ C2.

G.3 Restriction to the modular subspace with τ1 = τ2

When we restrict τ to Ω of eq. (6.9), the relation p1(τ) = p2(τ) is fulfilled, thus the five

linearly independent modular forms of weight 2 collapse to four. They can be organized

into an invariant singlet and an irreducible triplet of the finite Siegel modular subgroup

N2(H) ∼= S4 × Z2:

3′ : Y3′(τ) =







p0(τ) + 4p1(τ) − p3(τ)

p0(τ) − 2p1(τ) − p3(τ) − 2i
√

3p4(τ)

p0(τ) − 2p1(τ) − p3(τ) + 2i
√

3p4(τ)






≡







Y1(τ)

Y2(τ)

Y3(τ)






,

1 : Y1(τ) = p0(τ) + 3p3(τ) ≡ Y4(τ) . (G.16)

The Fourier expansions of Y1,2,3,4 are:

Y1(τ) = 1+32q
1

2

1 −q1(8q−1
3 +8q3)+q

3

2

1 (512+192q−1
3 +192q3)+q2

1(64+24q−2
3 +24q2

3)

+q
5

2

1 (1152+416q−2
3 +1024q−1

3 +1024q3+416q2
3)+q3

1(−32q−3
3 −192q−1

3 +192q3−32q3
3)

+q
7

2

1 (2048+448q−3
3 +1536q−2

3 +2496q−1
3 +2496q3+1536q2

3 +448q3
3)+. . .

Y2(τ) = 1−16q
1

2

1 −q1(8q−1
3 +64i

√
3q

− 1

2

3 +64i
√

3q
1

2

3 +8q3)−q
3

2

1 (256+96q−1
3 +96q3)+q2

1(64

+24q−2
3 −128i

√
3q

− 3

2

3 −384i
√

3q
− 1

2

3 −384i
√

3q
1

2

3 −128i
√

3q
3

2

3 +24q2
3)−q

5

2

1 (576+208q−2
3

+512q−1
3 +512q3+208q2

3)−q
7

2

1 (1024+224q−3
3 +768q−2

3 +1248q−1
3 +1248q3+768q2

3

+224q3
3)+. . .
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Y3(τ) = 1−16q
1

2

1 −q1(8q−1
3 −64i

√
3q

− 1

2

3 −64i
√

3q
1

2

3 +8q3)−q
3

2

1 (256+96q−1
3 +96q3)+q2

1(64

+24q−2
3 +128i

√
3q

− 3

2

3 +384i
√

3q
− 1

2

3 +384i
√

3q
1

2

3 +128i
√

3q
3

2

3 +24q2
3)−q

5

2

1 (576+208q−2
3

+512q−1
3 +512q3+208q2

3)−q
7

2

1 (1024+224q−3
3 +768q−2

3 +1248q−1
3 +1248q3+768q2

3

+224q3
3)+. . . ,

Y4(τ) = 1+q1(192+24q−1
3 +24q3)+q2

1(576+24q−2
3 +768q−1

3 +768q3+24q2
3)+q3

1(3072

+96q−3
3 +1152q−2

3 +576q−1
3 +576q3+1152q2

3 +96q3
3)+q4

1(576+24q−4
3 +1536q−3

3

+2304q−2
3 +4608q−1

3 +4608q3+2304q2
3 +1536q3

3 +24q4
3)+. . . , (G.17)

with q1 = e2πiτ1 and q3 = e2πiτ3 .

The higher weight Siegel modular forms can be constructed from the tensor product of

the weight two modular forms Y1(τ) and Y3′(τ) in eq. (G.16). Using the Clebsch-Gordan

coefficients in appendix F, we find

1 :

{

Y
(4)

1a = Y1Y1 = Y 2
4 ,

Y
(4)

1b = (Y3′Y3′)1 = Y 2
1 + 2Y2Y3 ,

2 : Y
(4)

2
= (Y3′Y3′)2 =

(

Y 2
2 + 2Y1Y3

Y 2
3 + 2Y1Y2

)

,

3 : Y
(4)

3
= (Y3′Y3′)3 = (0, 0, 0)T ,

3′ :























Y
(4)

3′a = Y1Y3′ = Y4(Y1, Y2, Y3)T ,

Y
(4)

3′b = (Y3′Y3′)3′ = 2







Y 2
1 − Y2Y3

Y 2
3 − Y1Y2

Y 2
2 − Y1Y3






.

(G.18)

Hence the weight four Siegel modular forms decompose as 1⊕1⊕2⊕3′ ⊕3′ under S4 ×Z2.

The weight 6 Siegel modular forms in the subspace with τ1 = τ2 can be generated from

the tensor products of weight 2 Siegel modular forms in eq. (G.16) and weight 4 Siegel

modular forms in eq. (G.18):

1 :



























Y
(6)

1a = Y1Y
(4)

1a = Y 3
4 ,

Y
(6)

1b = Y1Y
(4)

1b = Y4Y 2
1 + 2Y2Y3Y4 ,

Y
(6)

1c = (Y3′Y
(4)

3′b )1 = 2(Y 3
1 + Y 3

2 + Y 3
3 − 3Y1Y2Y3) ,

Y
(6)

1d = (Y3′Y
(4)

3′a )1 = Y4Y 2
1 + 2Y2Y3Y4 ,

2 :































Y
(6)

2a = (Y3′Y
(4)

3′a )2 = Y4

(

Y 2
2 + 2Y1Y3

Y 2
3 + 2Y1Y2

)

,

Y
(6)

2b = (Y3′Y
(4)

3′b )2 = (0, 0, 0)T ,

Y
(6)

2c = Y1Y
(4)

2
= Y4

(

Y 2
2 + 2Y1Y3

Y 2
3 + 2Y1Y2

)

,

– 50 –



J
H
E
P
0
1
(
2
0
2
1
)
0
3
7

3 :



















































Y
(6)

3a = (Y3′Y
(4)

3′b )3 = 2







Y 3
3 − Y 3

2

2Y 2
1 Y2 − Y 2

2 Y3 − Y 2
3 Y1

Y 2
2 Y1 + Y 2

3 Y2 − 2Y 2
1 Y3






,

Y
(6)

3b = (Y3′Y
(4)

3′a )3 = (0, 0, 0)T ,

Y
(6)

3c = (Y3′Y
(4)

2
)3 =







Y 3
3 − Y 3

2

2Y 2
1 Y2 − Y 2

2 Y3 − Y 2
3 Y1

Y 2
2 Y1 + Y 2

3 Y2 − 2Y 2
1 Y3






,

3′ :







































































































































Y
(6)

3′a = Y1Y
(4)

3′a = Y 2
4 (Y1, Y2, Y3)T ,

Y
(6)

3′b = Y1Y
(4)

3′b = 2Y4







Y 2
1 − Y2Y3

Y 2
3 − Y1Y2

Y 2
2 − Y1Y3






,

Y
(6)

3′c = (Y ′
3
Y

(4)
3′b )3′ = 2







2Y 3
1 − Y 3

2 − Y 3
3

3Y 2
2 Y3 − 3Y 2

3 Y1

3Y 2
3 Y2 − 3Y 2

2 Y1






,

Y
(6)

3′d = (Y ′
3
Y

(4)
2

)3′ =







Y 3
2 + Y 3

3 + 4Y1Y2Y3

3Y 2
3 Y1 + 2Y 2

1 Y2 + Y 2
2 Y3

3Y 2
2 Y1 + 2Y 2

1 Y3 + Y 2
3 Y2






,

Y
(6)

3′e = (Y3′Y
(4)

3′a )3′ = 2Y4







Y 2
1 − Y2Y3

Y 2
3 − Y1Y2

Y 2
2 − Y1Y3






,

Y
(6)

3′f = Y3′Y
(4)

1a = Y 2
4 (Y1, Y2, Y3)T ,

Y
(6)

3′g = Y3′Y
(4)

1b = (Y 2
1 + 2Y2Y3)(Y1, Y2, Y3)T ,

We see that these weight 6 Siegel modular forms are not all linearly independent from each

other, and the following relations are satisfied

Y
(6)

1b = Y
(6)

1d , Y
(6)

2a = Y
(6)

2c , Y
(6)

3a = 2Y
(6)

3c ,

Y
(6)

3′e = Y
(6)

3′b , Y
(6)

3′f = Y
(6)

3′a , Y
(6)

3′g = [Y
(6)

3′c + 2Y
(6)

3′d ]/4 . (G.19)

Hence the weight 6 Siegel modular forms in the subspace of τ1 = τ2 has dimension 20, they

can be decomposed into 1 ⊕ 1 ⊕ 1 ⊕ 2 ⊕ 3 ⊕ 3′ ⊕ 3′ ⊕ 3′ ⊕ 3′ under S4 × Z2, and the basis

vectors can be chosen to be

Y
(6)

1a , Y
(6)

1b , Y
(6)

1c , Y
(6)

2a , Y
(6)

3a , Y
(6)

3′a , Y
(6)

3′b , Y
(6)

3′c , Y
(6)

3′d . (G.20)

G.4 Restriction to the modular subspace with dimension one

As in the case of 2-dimensional modular subspace, the expressions of the Siegel modular

forms in the 1-dimensional modular subspace can be straightforwardly obtained, and they

can be arranged into multiplets of the corresponding finite Siegel modular subgroup N2(H).

Furthermore, we find that the following nontrivial relations between the original Siegel

– 51 –



J
H
E
P
0
1
(
2
0
2
1
)
0
3
7

modular forms p0,1,2,3,4 are satisfied:

τ =

(

i 0

0 τ1

)

: p0(τ) = 3p2(τ), p1(τ) = 3p3(τ) and p3(τ) = p4(τ) ,

τ =

(

ω 0

0 τ1

)

: p0(τ) = i
√

3 p2(τ), p1(τ) = i
√

3 p3(τ) and p3(τ) = p4(τ) ,

τ =

(

τ1 0

0 τ1

)

: p1(τ) = p2(τ) and p3(τ) = p4(τ) ,

τ =

(

τ1 1/2

1/2 τ1

)

: p1(τ) = p2(τ) and p4(τ) = 0 ,

τ =

(

τ1 τ1/2

τ1/2 τ1

)

: p1(τ) = p2(τ) = p3(τ) . (G.21)
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