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AUTOMORPHISM GROUPS AND UNIQUENESS OF HOLOMORPHIC
VERTEX OPERATOR ALGEBRAS OF CENTRAL CHARGE 24

KOICHI BETSUMIYA, CHING HUNG LAM, AND HIROKI SHIMAKURA

Abstract. We describe the automorphism groups of all holomorphic vertex operator

algebras of central charge 24 with non-trivial weight one Lie algebras by using their

constructions as simple current extensions. We also confirm a conjecture of G. Höhn on

the numbers of holomorphic vertex operator algebras of central charge 24 obtained as

inequivalent simple current extensions of certain vertex operator algebras, which gives

another proof of the uniqueness of holomorphic vertex operator algebras of central charge

24 with non-trivial weight one Lie algebras.

1. Introduction

The classification of (strongly regular) holomorphic vertex operator algebras (VOAs)

of central charge 24 has been completed except for the characterization of the moonshine

VOA; more precisely, the following are proved:

(a) The weight one Lie algebra of a holomorphic VOA of central charge 24 is 0, 24-

dimensional abelian or one of the 69 semisimple Lie algebras in [Sc93]; the list of

these 71 Lie algebras is called Schellekens’ list.

(b) For any Lie algebra g in Schellekens’ list, there exists a holomorphic VOA of central

charge 24 whose weight one Lie algebra is isomorphic to g.

(c) The isomorphism class of a holomorphic VOA V of central charge 24 with V1 6= 0 is

uniquely determined by the weight one Lie algebra structure on V1.

Item (a) was proved in [Sc93, EMS20] (see [ELMS21] for another proof). Items (b)

and (c) were proved by using case by case analysis (see [LS19] and [LS20b, Introduction]);

several uniform approaches for (b) and (c) are also discussed in [Hö, MS22+, MS, HM22+,

CLM22, LM].

For our purpose, we first recall a uniform approach proposed by [Hö] briefly. Let V be a

holomorphic VOA of central charge 24. Then V1 is a reductive Lie algebra of rank at most
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24 ([DM04b]); if rankV1 = 24, then V is isomorphic to a Niemeier lattice VOA ([DM04b])

and that if rankV1 = 0, equivalently, V1 = 0, then it is conjectured in [FLM88] that V

is isomorphic to the moonshine VOA. In this article, we assume that 0 < rankV1 < 24.

Then V1 is semisimple and the subVOA 〈V1〉 generated by V1 has central charge 24, that

means 〈V1〉 is a full subVOA of V ([DM04a]). Let h be a Cartan subalgebra of V1. The

following item (d) was essentially proved in [Hö]; the necessary assumptions are confirmed

in [La20a] (see also [ELMS21] for another proof):

(d) The commutantW = ComV (h) of h in V is isomorphic to the fixed-point subVOA V ĝ
Λg

of the lattice VOA VΛg
with respect to a (standard) lift ĝ ∈ Aut (VΛg

) of an isometry

g|Λg
of Λg, where g is an isometry of the Leech lattice Λ in one of the following 10

conjugacy classes (as the notations in [ATLAS])

2A, 2C, 3B, 4C, 5B, 6F, 6G, 7B, 8E and 10F,

and Λg is the coinvariant lattice of g (see Definition 2.1). In addition, the conjugacy

class of g is uniquely determined by the Lie algebra structure of V1.

The commutant ComV (W ) of W in V is isomorphic to a lattice VOA VL. In fact, the

lattice L = Lg, called the orbit lattice in [Hö], is also uniquely determined by the Lie

algebra structure of g = V1. Note that some non-isomorphic Lie algebras in Schellekens’

list give isometric orbit lattices. Since both VL and W have group-like fusion ([Do93,

La20a]), V is a simple current extension of VL ⊗W . In order to prove (b), it suffices

to construct all holomorphic VOAs of central charge 24 as simple current extensions of

VL ⊗ W , which was discussed in [Hö, Theorem 4.4] under some assumptions (see also

[La20a]). In order to prove (c), it suffices to classify all holomorphic VOAs of central

charge 24 as simple current extensions of VL ⊗ W up to isomorphism, which can be

proved by confirming the conjecture [Hö, Conjecture 4.8] on the number of inequivalent

simple current extensions of VL ⊗W that form holomorphic VOAs of central charge 24.

Another question is to determine the automorphism groups of holomorphic VOAs of

central charge 24. Our strategy is to describe the automorphism group of a VOA via its

weight one Lie algebra. Let T be a VOA of CFT-type. Set

K(T ) := {g ∈ Aut (T ) | g = id on T1},

the subgroup of Aut (T ) which acts trivially on T1. Let Aut (T )|T1 denote the restriction

of Aut (T ) to T1. Then

Aut (T )|T1
∼= Aut (T )/K(T ) ⊂ Aut (T1).

Recall that Aut (T ) contains the inner automorphism group Inn (T ), the normal sub-

group generated by inner automorphisms {exp(a(0)) | a ∈ T1}. Let Inn (T )|T1 denote the
2



restriction of Inn (T ) to T1, that is,

Inn (T )|T1
∼= Inn (T )/(K(T ) ∩ Inn (T )).

Clearly, Inn (T )|T1 is isomorphic to the inner automorphism group Inn (T1) of T1.

Define

Out (T ) := Aut (T )/Inn (T ).

In Proposition 3.10, we will show that

K(T ) ⊂ Inn (T )

when T is a holomorphic VOA of central charge 24 with T1 6= 0. For these cases,

Out (T ) = Aut (T )/Inn (T ) ∼= Aut (T )|T1/Inn (T )|T1,

and Out (T ) is a subgroup of the outer automorphism group Out (T1) ∼= Aut (T1)/Inn (T1)

of the weight one Lie algebra T1. Note that the inclusion K(T ) ⊂ Inn (T ) does not hold

in general; for example, the moonshine VOA V ♮ satisfies K(V ♮) = Aut (V ♮) 6= 1 and

Inn (V ♮) = 1. Therefore, for a holomorphic VOA T of central charge 24 with T1 6= 0, we

have

Aut (T ) ∼= K(T ).(Inn (T )|T1.Out (T )),

where A.B means a group G that contains a normal subgroup A with G/A ∼= B. Hence

Aut (T ) is roughly described by the groups Inn (T )|T1, K(T ) and Out (T ). Note that

Inn (T )|T1(
∼= Inn (T1)) is well-studied.

For a holomorphic lattice VOA VN associated with a Niemeier lattice N , the groups

K(VN) and Out (VN) can be easily determined by the description of Aut (VN) in [DN99]

(see Remark 3.1). For the 14 holomorphic VOAs V
orb(θ)
N obtained by applying the Z2-

orbifold construction to VN and a lift θ of the −1-isometry of N , the groups K(V
orb(θ)
N )

and Out (V
orb(θ)
N ) are determined in [Sh20] by using the explicit constructions. For some

holomorphic VOAs V of central charge 24, K(V ) is determined in [LS20b] by using the

module structure of V over the simple affine VOA generated by V1 and its fusion product.

In this article, we assume (a), (b) and (d) and describe the orbit lattice L for each

semisimple Lie algebra g in Schellekens’ list of rank less than 24; this shows that the

orbit lattice L = Lg is uniquely determined by g, up to isometry. Note that the orbit

lattices have been described in [Hö] by using Niemeier lattices. In addition, we determine

the groups K(V ) and Out (V ) for all holomorphic VOAs V of central charge 24 with

0 < rankV1 < 24 by using O(L), Aut (W ) and the constructions of V as simple current

extensions of VL⊗W . Note that the automorphism groups Aut (W ) for all 10 VOAsW in

(d) have been determined in [Gr98, Sh04, CLS18, La20b, La22+, BLS22+]. In particular,

we prove the following (see Remark 3.1, Proposition 3.10 and Tables 6, 8, 10, 12, 13, 14,

16, 18, 22, 20 and 24):
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Theorem 1.1. Let V be a strongly regular holomorphic VOA of central charge 24 with

V1 6= 0. Then K(V ) ⊂ Inn (V ). Moreover, the group structures of K(V ) and Out (V ) are

given as in Table 1. Here the genus symbol A,B, . . . , K in the table are used in [Hö]

Table 1: K(V ) and Out (V ) for holomorphic VOAs V of central

charge 24 with V1 6= 0

No. Genus V1 Out (V ) K(V ) No. Genus V1 Out (V ) K(V )

1 A U(1)24 Co0 C24 48 B C2
6,1B4,1 Z2 Z2

15 A24
1,1 M24 Z12

2 50 D9,2A7,1 Z2 Z8

24 A12
2,1 Z2.M12 Z6

3 52 C8,1F
2
4,1 Z2 1

30 A8
3,1 Z2.AGL3(2) Z4

4 53 E7,2B5,1F4,1 1 Z2

37 A6
4,1 Z2.S5 Z3

5 56 C10,1B6,1 1 Z2

42 D6
4,1 Z3.S6 Z6

2 62 B8,1E8,2 1 Z2

43 A4
5,1D4,1 Z2.S4 Z3

2 × Z2
3 6 C A6

2,3 S6 Z3

46 A4
6,1 Z2.A4 Z2

7 17 A5,3D4,3A
3
1,1 S3 Z3

2

49 A2
7,1D

2
5,1 Z2.Z

2
2 Z4 × Z8 27 A8,3A

2
2,1 Z2 Z2

3

51 A3
8,1 Z2.S3 Z9 × Z3 32 E6,3G2,1

3 S3 1

54 D4
6,1 S4 Z4

2 34 D7,3A3,1G2,1 1 Z4

55 A2
9,1D6,1 Z2.Z2 Z2

2 × Z5 45 E7,3A5,1 1 Z6

58 E4
6,1 Z2.S4 Z2

3 2 D A12
1,4 M12 Z2

59 A11,1D7,1E6,1 Z2 Z3 × Z4 12 B6
2,2 S5 Z2

60 A2
12,1 Z2.Z2 Z13 23 B4

3,2 A4 Z2

61 D3
8,1 S3 Z3

2 29 B3
4,2 S3 Z2

63 A15,1D9,1 Z2 Z8 41 B2
6,2 Z2 Z2

64 D10,1E
2
7,1 Z2 Z2

2 57 B12,2 1 Z2

65 A17,1E7,1 Z2 Z2 × Z3 13 D4,4A
4
2,2 2.S4 Z2

3

66 D2
12,1 Z2 Z2

2 22 C4,2A
2
4,2 Z4 Z5

67 A24 Z2 Z5 36 A8,2F4,2 Z2 Z3

68 E3
8,1 S3 1 7 E A3

3,4A1,2 Z2
2:S3 Z2

69 D16,1E8,1 1 Z2 18 A7,4A
3
1,1 Z2 Z3

2

70 D24,1 1 Z2 19 D5,4C3,2A
2
1,1 Z2 Z3

2

5 B A16
1,2 AGL4(2) Z5

2 28 E6,4A2,1B2,1 1 Z6

16 A4
3,2A

4
1,1 W (D4) Z3

2 × Z4 35 C7,2A3,1 1 Z2
2

25 D2
4,2C

4
2,1 Z2 ×S4 Z3

2 9 F A2
4,5 Z2

2 1

26 A2
5,2C2,1A

2
2,1 Dih8 Z3 × Z6 20 D6,5A

2
1,1 1 Z2

2

31 D2
5,2A

2
3,1 Dih8 Z2

4 8 G A5,6B2,3A1,2 Z2 Z2

33 A7,2C
2
3,1A3,1 Z2

2 Z2 × Z4 21 C5,3G2,2A1,1 1 Z2

38 C4
4,1 S4 Z2 11 H A6,7 1 1

39 D6,2C4,1B
2
3,1 Z2 Z2

2 10 I D5,8A1,2 1 Z2

40 A9,2A4,1B3,1 Z2 Z10 3 J D4,12A2,6 S3 1

44 E6,2C5,1A5,1 Z2 Z6 14 F4,6A2,2 1 Z3

47 D8,2B
2
4,1 Z2 Z2

2 4 K C4,10 1 1
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Remark 1.2. The former assertion K(V ) ⊂ Inn (V ) of Theorem 1.1 is proved in Propo-

sition 3.10 by using the fact that for W in (d), Aut (W ) acts faithfully on the set of

isomorphism classes of irreducible W -modules (see Theorem 3.4).

Remark 1.3. We do not describe the embedding of Out (V ) into Out (V1). However, in

Appendix A, we describe the subgroup Out 1(V ) of Out (V ) which preserves every simple

ideal of V1, and the quotient Out 2(V ) := Out (V )/Out 1(V ), which is a permutation group

on the set of simple ideals of V1.

By using O(L) and Aut (W ), we also prove the following (see Propositions 4.3, 5.7,

5.15, 5.18, 5.24 and 5.29). In particular, we confirm [Hö, Conjecture 4.8].

Theorem 1.4. Let g ∈ O(Λ) in one of the 10 conjugacy classes in (d). Set W = V ĝ
Λg
.

Let L be an even lattice such that there exists a simple current extension of VL ⊗ W

which forms a holomorphic VOA V of central charge 24; in addition, VL = ComV (W )

and W = ComV (VL). Then, we have the following results.

(1) Assume that the conjugacy class of g is 2A, 3B, 4C, 5B, 6F, 7B, 8E or 10F . Then,

there exists a unique holomorphic VOA of central charge 24 obtained as an inequivalent

simple current extension of VL ⊗W , up to isomorphism, for each possible L.

(2) Assume that the conjugacy class of g is 2C. Then L ∼=
√
2D12 or

√
2E8

√
2D4. In

addition, there exist exactly 6 (resp. 3) semisimple Lie algebras in Schellekens’ list

such that the associated orbit lattices are isometric to
√
2D12 (resp.

√
2E8

√
2D4),

and there exist exactly 6 (resp. 3) holomorphic VOAs of central charge 24 obtained

as inequivalent simple current extensions of V√2D12
⊗W (resp. V√2E8

√
2D4

⊗W ), up

to isomorphism.

(3) Assume that the conjugacy class of g is 6G. Then L ∼=
√
6D4

√
2A2, and there exist

exactly 2 semisimple Lie algebras in Schellekens’ list such that the associated orbit

lattices are isometric to
√
6D4

√
2A2. In addition, there exist exactly 2 holomor-

phic VOAs of central charge 24 obtained as inequivalent simple current extensions

of V√6D4

√
2A2

⊗W , up to isomorphism.

Remark 1.5. The assumption on L and W in Theorem 1.4 is equivalent to the conditions

that (D(L), qL) ∼= (Irr (W ),−qW ) as quadratic spaces and the sum of the rank of L and

the central charge of W is 24 (see Section 3.1).

It follows that a semisimple Lie algebra g in Schellekens’ list of rank less than 24

determines a unique equivalence class of a simple current extension of VL ⊗ W which

forms a holomorphic VOA V of central charge 24 with V1 ∼= g. Hence Theorem 1.4 and

the characterization of Niemeier lattice VOAs in [DM04b] give another proof of (c) (see

[Hö, Section 4.3]).
5



Let us explain the main ideas for determining the groups K(V ) and Out (V ) for holo-

morphic VOAs V of central charge 24 with 0 < rankV1 < 24. As we mentioned above,

V is a simple current extension of VL ⊗ W . Recall from [Do93] (resp. [La20a]) that

all irreducible VL-modules (resp. irreducible W -modules) are simple current modules.

Hence the set Irr (VL) (resp. Irr (W )) of their isomorphism classes has group-like fusion,

that is, it forms an abelian group under the fusion product. In addition, the map qVL
(resp. qW ) from Irr (VL) (resp. Irr (W )) to Q/Z defined by conformal weights modulo

Z is a quadratic form ([EMS20]). It is well-known that (Irr (VL), qVL) is isometric to the

quadratic space (D(L), qL) on the discriminant group D(L) = L∗/L with the quadratic

form qL(v + L) = 〈v|v〉/2 + Z. Since V is holomorphic, there exists a bijection ϕ from

D(L) to Irr (W ) such that for any λ+ L ∈ D(L), Vλ+L ⊗ ϕ(λ+ L) appears as a VL ⊗W -

submodule of V . Note that ϕ is an isometry from (D(L), qL) to (Irr (W ),−qW ). Then

Sϕ = {(Vλ+L, ϕ(λ + L)) | λ + L ∈ D(L)} is a maximal totally isotropic subspace of

(Irr (VL), qVL)⊕ (Irr (W ), qW ).

Since the group K(V ) acts trivially on the (fixed) Cartan subalgebra h, it preserves

VL ⊗W and Sϕ. In addition, the restriction of K(V ) to VL is a subgroup of the inner

automorphisms associated with h and preserves every element in Irr (VL). Hence the

restriction of K(V ) to W also preserves every element in Irr (W ) via the isometry ϕ;

since the action of Aut (W ) on Irr (W ) is faithful, the restriction of K(V ) to W must be

the identity. Note that the subgroup which acts trivially on VL ⊗W is the dual S∗
ϕ of

Sϕ, which is contained in Inn (V ). Hence K(V ) is contained in Inn (V ). In addition, we

describe K(V ) in terms of L and the root lattice of V1 (Proposition 3.12).

By the transitivity of Inn (V ) on Cartan subalgebras of V1, Out (V ) can be obtained as

the quotient of the stabilizer StabAut (V )(h) of the (fixed) Cartan subalgebra h in Aut (V )

by the normal subgroup StabInn (V )(h) = StabAut (V )(h) ∩ Inn (V ). Since StabAut (V )(h)

preserves VL ⊗ W and normalizes S∗
ϕ, the restriction of StabAut (V )(h) to VL ⊗ W is

StabAut (VL⊗W )(h) ∩ StabAut (VL⊗W )(Sϕ). By using Aut (VL) and Sϕ, we see that it acts

on (D(L), qL) as O(L) ∩ ϕ∗(Aut (W )), where µL : O(L) → O(D(L), qL) (resp. µW :

Aut (W ) → O(Irr (W ), qW )) is the canonical group homomorphism, O(L) (resp. Aut (W ))

is the image of µL (resp. µW ) and ϕ∗(Aut (W )) = ϕ−1Aut (W )ϕ. Then StabAut (V )(h)

acts on h as µ−1
L (O(L)∩ϕ∗(Aut (W ))). Clearly, StabInn (V )(h) acts on h as the Weyl group

W (V1) of V1. Thus Out (V ) ∼= µ−1
L (O(L) ∩ ϕ∗(Aut (W )))/W (V1) (Proposition 3.17). For

each g in Schellekens’ list with 0 < rank g < 24, we describe L = Lg and O(L) explicitly.

In addition, by using the structures of the groups O(L), ϕ∗(Aut (W ))(∼= Aut (W )) and

O(D(L), qL), we determine O(L) ∩ ϕ∗(Aut (W )), which gives the shape of Out (V ). In

our calculations, we use the fact that except for the case 2C, the index |O(Irr (W ), qW ) :

6



Aut (W )| is at most 4, which implies that Out (V ) has small index in O(L)/W (V1) (see

(3.15) and Lemma 3.18).

Our strategy for the uniqueness has been discussed in [Hö] (see Proposition 4.2); we

compute the number |ϕ∗(Aut (W ))\O(D(L), qL)/O(L)| of double cosets for given W and

L, which gives the number of holomorphic VOAs obtained as inequivalent simple current

extensions of VL ⊗W . In fact, we verify that this number is 1 if the conjugacy class is

neither 2C nor 6G, and compute the numbers for 2C and 6G by using the group structures

of O(L), Aut (W ) and O(D(L), qL). Then we obtain Theorem 1.4.

The organization of the article is as follows. In Section 2, we review some basic notions

for integral lattices and vertex operator algebras. In Section 3, we view holomorphic VOAs

as simple current extensions of VL⊗W and study some stabilizers. We will also describe

the groups Out (V ) and K(V ). In Section 4, we discuss the number of inequivalent simple

current extensions of VL ⊗W that form holomorphic VOAs. In Section 5, for each W

mentioned in (d) and the semisimple Lie algebra g in Schellekens’ list with 0 < rank g <

24, we describe the orbit lattice L = Lg and determine the groups K(V ) and Out (V )

explicitly. In Appendix A, we describe the subgroup Out 1(V ) of Out (V ) and the quotient

Out 2(V ) := Out (V )/Out 1(V ).

Some calculations on lattices and finite groups are done by MAGMA ([BCP97]).
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Notations.

21+2n
+ an extra special 2-group of order 21+2n of plus type.

A.B a group G that contains a normal subgroup A with G/A ∼= B.

Aut (T ) the subgroup of O(Irr (T ), qT ) induced by Aut (T ), i.e, Aut (T ) = ImµT .

Aut 0(T ) the subgroup of Aut (T ) which acts trivially on Irr (T ).

ComT (X) the commutant of a subset X in a VOA T .

D(H) the discriminant group of an even lattice H, i.e., D(H) = H∗/H.

Inn (T ) the inner automorphism group of a VOA T of CFT-type, i.e.,

the subgroup generated by {exp(a(0)) | a ∈ T1}.
Irr (T ) the set of the isomorphism classes of irreducible modules over a VOA T .

K(T ) the subgroup of Aut (T ) which acts trivially on T1 for a VOA T of CFT-type.

Hg the fixed-point sublattice of a lattice H by an isometry g.

Hg the coinvariant lattice of g ∈ O(H), i.e., Hg = {x ∈ H | 〈x|Hg〉 = 0}.
7



L = Lg the orbit lattice associated with g, i.e., VLg

∼= ComV (ComV (h)), where V is

a holomorphic VOA of c = 24 with V1
∼= g and h is a Cartan subalgebra of g.

µH the group homomorphism µH : O(H) → O(D(H), qH) for an even lattice H.

µT the group homomorphism µT : Aut (T ) → O(Irr (T ), qT ) for certain VOA T .

O(H) the isometry group of a lattice H.

O(X, q) the isometry group of a quadratic space (X, q).

Out (g) Out (g) = Aut (g)/Inn (g), the group of outer automorphisms of a Lie algebra g.

Out (T ) Out (T ) := Aut (T )/Inn (T ) for a VOA T of CFT-type.

O(H) the subgroup of O(D(H), qH) induced by O(H), i.e., O(H) = ImµH

O0(H) the subgroup of O(H) which acts trivially on D(H) for an even lattice H.

pn an elementary abelian p-group of order pn.

pn+m a p-group G that contains a normal subgroup pn with G/pn ∼= pm.

Pg Pg =
⊕s

i=1

√
ℓ√
ki
Qi ⊂ Ug =

√
ℓL∗

g, where g =
⊕s

i=1 gi is the direct sum of simple

ideals, ki is the level of gi, Q
i is the root lattice of gi and ℓ is the level of Lg.

qH the quadratic form on D(H), qH(v +H) = 〈v|v〉/2 + Z.

qT the quadratic form on Irr (T ) defined as conformal weights modulo Z.

Qg Qg =
⊕s

i=1

√
kiQ

i
long ⊂ Lg, where g =

⊕s
i=1 gi is the direct sum of simple ideals,

ki is the level of gi and Qi
long is the lattice spanned by long roots of gi.

R(H) the root system of a lattice H (see Section 2.1).

ρ(M) the conformal weight of an irreducible module M over a VOA.

Sn the symmetric group of degree n.

StabG(X) the stabilizer of X in a group G.

U = Ug U =
√
ℓL∗, where ℓ is the level of the orbit lattice L = Lg.

T σ the set of fixed-points of an automorphism σ of a VOA T .

W (R), W (g) the Weyl group of a root system R or a semisimple Lie algebra g.

Xn,k (the type of) a simple Lie algebra whose type is Xn and level is k.

2. Preliminary

In this section, we review some basic terminology and notation for integral lattices and

vertex operator algebras.

2.1. Lattices. By a lattice, we mean a free abelian group of finite rank with a rational

valued, positive-definite symmetric bilinear form 〈 | 〉. A lattice H is integral if 〈H|H〉 ⊂ Z

and it is even if 〈x|x〉 ∈ 2Z for any x ∈ H . Note that an even lattice is integral. Let H∗

denote the dual lattice of a lattice H , that is, H∗ = {v ∈ Q ⊗Z H | 〈v|H〉 ⊂ Z}. If H is

integral, then H ⊂ H∗; D(H) denotes the discriminant group H∗/H .
8



An isometry of a lattice H is a linear isomorphism g ∈ GL(Q⊗ZH) such that g(H) = H

and 〈gx|gy〉 = 〈x|y〉 for all x, y ∈ H . Let O(H) denote the group of all isometries of H ,

which we call the isometry group of H . Note that O(H) = O(H∗).

Let H be an even lattice. Let qH : D(H) → Q/Z denote the quadratic form on D(H)

defined by qH(v +H) = 〈v|v〉/2 + Z for v +H ∈ D(H), and let

µH : O(H) → O(D(H), qH)

denote the canonical group homomorphism, where

O(D(H), qH) = {g ∈ Aut (D(H)) | qH(gx) = qH(x) for all x ∈ D(H)}.

The group O(H) denotes the subgroup of O(D(H), qH) induced by O(H), and O0(H)

denotes the subgroup of O(H) which acts trivially on D(H), that is,

O(H) = ImµH , O0(H) = KerµH .

Definition 2.1. Let H be a lattice and g ∈ O(H). Let Hg denote the fixed-point

sublattice of g, that is, Hg = {x ∈ H | gx = x}. The coinvariant lattice of g is defined to

be

Hg = {x ∈ H | 〈x|y〉 = 0 for all y ∈ Hg}.
Clearly, the restriction of g to Hg is fixed-point free on Hg.

Next we recall the definition of a root system from [Hum72]. A subset Φ of Rn is called

a root system in Rn if Φ satisfies (R1)–(R4) below:

(R1) |Φ| <∞ and Φ spans Rn;

(R2) If α ∈ Φ, then Zα ∩ Φ = {±α};
(R3) If α ∈ Φ, then the reflection σα : β 7→ β − 2(〈β|α〉/〈α|α〉)α leaves Φ invariant;

(R4) If α, β ∈ Φ, then 〈β|α〉/〈α|α〉 ∈ Z.

The root lattice LΦ of Φ is the lattice spanned by roots. If Φ is irreducible, of type An,

Dn or En and 〈α|α〉 = 2 for all α ∈ Φ, then we often denote LΦ just by Φ.

Let L be a positive-definite rational lattice. An element α ∈ L is primitive if L/Zα

has no torsion. A primitive element α ∈ L is called a root of L if the reflection σα in the

ambient space of L is in O(L). The set R(L) of roots is an abstract root system in the

ambient space of the sublattice LR(L) of L spanned by R(L). Hence the general theory of

root system applies to R(L) and R(L) decomposes into irreducible components of type

An, Bn, Cn, Dn or G2, F4, E6, E7, E8.

For ℓ ∈ Z>0 and a lattice H , we denote
√
ℓH = {

√
ℓx | x ∈ H}. The level of an even

lattice H is defined to be the smallest positive integer ℓ such that
√
ℓH∗ is again even.

The following can be obtained from [Sch06, Propositions 2.1 and 2.2].

Lemma 2.2. Let H be an even lattice of level ℓ.
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(1) Let α be a root of H with 〈α|α〉 = 2k. Then k | ℓ and α ∈ H ∩ kH∗.

(2) Assume that ℓ is prime. Then

R(H) = {v ∈ H | 〈v|v〉 = 2} ∪ {v ∈ ℓH∗ | 〈v|v〉 = 2ℓ}.

For a root system Φ, the Weyl group W (Φ) is the subgroup of O(LΦ) generated by

reflections associated with elements in Φ. The following lemma is well-known:

Lemma 2.3. There are isomorphisms of the Weyl groups of root systems and the isometry

groups of the root lattices:

W (B4) ∼= W (C4) ∼= W (D4).2, W (Bn) ∼= W (Cn) ∼= O(Dn), (n ≥ 2, n 6= 4),

W (F4) ∼= O(D4) ∼= W (D4).S3, W (G2) ∼= O(A2),

where D2 = A2
1 and D3 = A3.

2.2. Vertex operator algebras. Throughout this article, all VOAs are defined over the

field C of complex numbers.

A vertex operator algebra (VOA) (T, Y,1, ω) is a Z-graded vector space T =
⊕

m∈Z Tm

over the complex field C equipped with a linear map

Y (a, z) =
∑

i∈Z
a(i)z

−i−1 ∈ (End (T ))[[z, z−1]], a ∈ T,

the vacuum vector 1 ∈ T0 and the conformal vector ω ∈ T2 satisfying certain axioms

([Bo86, FLM88]). Note that the operators L(m) = ω(m+1), m ∈ Z, satisfy the Virasoro

relation:

[L(m), L(n)] = (m− n)L(m+ n) +
1

12
(m3 −m)δm+n,0c idT ,

where c ∈ C is called the central charge of T , and L(0) acts by the multiplication of scalar

m on Tm.

A linear automorphism σ of a VOA T is called a (VOA) automorphism of T if

σω = ω and σY (v, z) = Y (σv, z)σ for all v ∈ T.

The group of all (VOA) automorphisms of T is denoted by Aut (T ).

A vertex operator subalgebra (or a subVOA) of a VOA T is a graded subspace of T

which has a structure of a VOA such that the operations and its grading agree with the

restriction of those of T and they share the vacuum vector. In addition, if they also share

the conformal vector, then the subVOA is said to be full. For an automorphism σ of a

VOA T , let T σ denote the fixed-point set of σ, i.e.,

T σ = {v ∈ T | σv = v},
10



which is a full subVOA of T . For a subset X of a VOA T , the commutant ComT (X) of

X in T is the subalgebra of T which commutes with X ([FZ92]). Note that the double

commutant ComT (ComT (X)) contains X .

Let M =
⊕

m∈CMm be a module over a VOA T (see [FHL93] for the definition). If M

is irreducible, then there exists unique ρ(M) ∈ C such that M =
⊕

m∈Z≥0
Mρ(M)+m and

Mρ(M) 6= 0. The number ρ(M) is called the conformal weight of M . Let Irr (T ) denote

the set of isomorphism classes of irreducible T -modules. We often identify an irreducible

module with its isomorphism class without confusion.

A VOA is said to be rational if the admissible module category is semisimple. (See

[DLM00] for the definition of admissible modules.) A rational VOA is said to be holo-

morphic if it itself is the only irreducible module up to isomorphism. A VOA T is of

CFT-type if T0 = C1 (note that Ti = 0 for all i < 0 if T0 = C1), and is C2-cofinite if

the co-dimension in T of the subspace spanned by {u(−2)v | u, v ∈ T} is finite. If T is

rational and C2-cofinite, then ρ(M) ∈ Q for any M ∈ Irr (T ) ([DLM00, Theorem 1.1]). A

module over a VOA is said to be self-contragredient if it is isomorphic to its contragredient

module (see [FHL93]). A VOA is said to be strongly regular if it is rational, C2-cofinite,

self-contragredient and of CFT-type. Note that a strongly regular VOA is simple. A

simple VOA T of CFT-type is said to satisfy the positivity condition if ρ(M) ∈ R>0 for

all M ∈ Irr (T ) with M 6∼= T .

Let T be a VOA and let M be a T -module. For σ ∈ Aut (T ), let M ◦ σ denote

the σ-conjugate module, i.e., M ◦ σ = M as a vector space and its vertex operator is

YM◦σ(u, z) = YM(σu, z) for u ∈ T . If M is irreducible, then so is M ◦ σ. Hence Aut (T )

acts on Irr (T ) as follows: for σ ∈ Aut (T ), M 7→M ◦ σ. Note that ρ(M) = ρ(M ◦ σ) for
σ ∈ Aut (T ) and M ∈ Irr (T ).

Let T be a strongly regular VOA. Then the fusion products ⊠ are defined on irreducible

T -modules ([HL95]). Note that the action of Aut (T ) on Irr (T ) above also preserves the

fusion products. An irreducible T -module M1 is called a simple current module if for any

irreducible T -module M2, the fusion product M1
⊠M2 is also an irreducible T -module.

If all irreducible T -modules are simple current modules, then Irr (T ) has an abelian group

structure under the fusion products; in this case, we say that T has group-like fusion.

Theorem 2.4 ([EMS20, Theorem 3.4, Proposition 3.5]). Let T be a strongly regular VOA.

Assume that T has group-like fusion and satisfies the positivity condition. Let

qT : Irr (T ) → Q/Z, M 7→ ρ(M) mod Z.

Then qT is a quadratic form on the abelian group Irr (T ) and the associated bilinear form

is non-degenerate.

Remark 2.5. We call a finite abelian group with a quadratic form a quadratic space.
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Let T be a strongly regular VOA satisfying the assumption of Theorem 2.4. Then, we

obtain the canonical group homomorphism

(2.1) µT : Aut (T ) → O(Irr (T ), qT ),

where O(Irr (T ), qT ) = {f ∈ Aut (Irr (T )) | qT (W ) = qT (f(W )) for all W ∈ Irr (T )} is

the orthogonal group of the quadratic space (Irr (T ), qT ). The group Aut (T ) denotes

the subgroup of O(Irr (T ), qT ) induced by Aut (T ), and Aut 0(T ) denotes the subgroup of

Aut (T ) which acts trivially on Irr (T ), that is,

Aut (T ) = ImµT , Aut 0(T ) = KerµT .

Let T 0 be a strongly regular VOA. Let {T α | α ∈ D} be a set of inequivalent irreducible

T 0-modules indexed by a finite abelian group D. A simple VOA TD =
⊕

α∈D T
α is

called a simple current extension of T 0 if every T α is a simple current module. Note that

T α⊠T 0 T β ∼= T α+β and that the simple VOA structure of TD is uniquely determined by its

T 0-module structure, up to isomorphism ([DM04b, Proposition 5.3]). Two simple current

extensions TD and TE of T 0 are equivalent if there exists an isomorphism σ : TD → TE

such that σ(T 0) = T 0, equivalently, there exists τ ∈ Aut (T 0) such that TD ∼= TE ◦ τ as

T 0-modules.

2.3. Automorphisms of lattice VOAs. Let H be an even lattice and let VH be the

lattice VOA associated with H (see [FLM88] for detail). It is well-known ([Do93]) that VH

is strongly regular, has group-like fusion and satisfies the positivity condition. In addition,

Irr (VH) = {Vλ+H | λ+H ∈ D(H)} and (Irr (VH), qVH )
∼= (D(H), qH) as quadratic spaces

(see [Do93]).

Let Ĥ = {±eα | α ∈ H} be a central extension of H by {±1} satisfying eαeβ =

(−1)〈α|β〉eβeα for α, β ∈ H . Note that such a central extension is unique up to isomor-

phism. Let Aut (Ĥ) be the set of all automorphisms of Ĥ. For ϕ ∈ Ĥ , we define the

element ι(ϕ) ∈ Aut (H) by ϕ(eα) ∈ {±eι(ϕ)(α)}, α ∈ H . Set O(Ĥ) = {ϕ ∈ Aut (Ĥ) |
ι(ϕ) ∈ O(H)}. It was proved in [FLM88, Proposition 5.4.1] that there exists an exact

sequence:

(2.2) 1 → Hom(H,Z2) → O(Ĥ)
ι−→ O(H) → 1.

We also identify O(Ĥ) as a subgroup of Aut (VH) as in [DN99, Section 2.4]. Note that

Hom(H,Z2) = {exp(2π
√
−1α(0)) | α ∈ (H∗/2)/H∗} in Aut (VH).

For g ∈ O(H), an element τ ∈ O(Ĥ) with ι(τ) = g is called a standard lift of g if τ acts

trivially on the subVOA VHg . Note that a standard lift of g always exists and standard

lifts of g are conjugate in Aut (VH) ([EMS20, Proposition 7.1] or [LS20a, Proposition

4.6]); we often denote a standard lift of g by ĝ. If g is fixed-point free on H , then we have

|ĝ| = |g| ([EMS20, Proposition 7.4]).
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Recall from [DN99, Theorem 2.1] that

(2.3) Aut (VH) = Inn (VH)O(Ĥ).

Set h = SpanC{h(−1)1 | h ∈ H}. Then h is a Cartan subalgebra of the reductive Lie

algebra (VH)1. By [DN99, Lemmas 2.3 and 2.5], we have

(2.4) {σ ∈ Aut (VH) | σ = id on h} = {exp(a(0)) | a ∈ h}

and

(2.5) StabAut (VH )(h) = {σ ∈ Aut (VH) | σ(h) = h} = {exp(a(0)) | a ∈ h}O(Ĥ).

It follows from (2.4), (2.5) and ker ι ⊂ {exp(a(0)) | a ∈ h} (cf. (2.2)) that

(2.6) StabAut (VH )(h)|h ∼= StabAut (VH )(h)/{exp(a(0)) | a ∈ h} ∼= O(H).

The explicit action of Aut (VH) on Irr (VH) via the conjugation in Section 2.2 is well-known

(cf. [LS20a, Lemma 2.11] and [Sh04, Proposition 2.9]):

Lemma 2.6. (1) For σ ∈ Inn (VH) and M ∈ Irr (VH), we have M ◦ σ ∼= M , that is,

Inn (VH) ⊂ Aut 0(VH).

(2) For σ ∈ O(Ĥ), we have Vλ+H ◦ σ ∼= V(ισ)−1(λ)+H for any λ+H ∈ D(H).

By (2.2), (2.3) and Lemma 2.6, we have the following.

Lemma 2.7. Aut 0(VH) = Inn (VH)ι
−1(O0(H)) and Aut (VH) ∼= O(H)/O0(H) ∼= O(H).

3. Holomorphic VOAs of central charge 24 as simple current extensions

Let V be a (strongly regular) holomorphic VOA of central charge 24. By [DM04a,

DM04b], V satisfies one of the following:

(i) V1 = 0;

(ii) V is isomorphic to a Niemeier lattice VOA;

(iii) V1 is a semisimple Lie algebra whose Lie rank rankV1 is less than 24.

Note that in (ii) and (iii), the subVOA generated by V1 is a full subVOA ([DM04a,

Proposition 4.1]). In this section, we assume (iii), i.e., 0 < rankV1 < 24, and explain how

to determine K(V ) and Out (V ).

Remark 3.1. It is conjectured that if (i) holds, then V is isomorphic to the moonshine VOA

V ♮ ([FLM88]). Note that K(V ♮)(= Aut (V ♮)) is the Monster simple group and Inn (V ♮) =

1, which shows K(V ♮) 6⊂ Inn (V ♮) and Out (V ♮) = Aut (V ♮)/Inn (V ♮) ∼= Aut (V ♮).

If (ii) holds, then K(V ) and Out (V ) are easily determined by (2.3); indeed, K(VΛ) ∼=
C24 and Out (VΛ) = O(Λ) for the Leech lattice Λ and K(VN) ∼= N/Q and Out (VN) ∼=
O(N)/W (Q) for a Niemeier lattice N with the root lattice Q 6= {0}. By (2.4), K(VN) ⊂
Inn (VN) for any Niemeier lattice N .
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3.1. Commutant of a Cartan subalgebra. Let V be a holomorphic VOA of central

charge 24 with 0 < rankV1 < 24. Set g = V1 and let h be a Cartan subalgebra of V1.

Set W = ComV (h). Then W1 = 0. Recall from [DM06a, Corollary 5.8] that the double

commutant of a Cartan subalgebra in a simple affine VOA at positive level is a lattice

VOA. Since the subVOA generated by V1 is a tensor product of simple affine VOAs at

positive level ([DM06a, Theorem 1.1]), the double commutant ComV (ComV (h)) contains

a lattice VOA as a full subVOA; there exists an even lattice L such that

ComV (ComV (h)) ∼= VL.

In fact, L is uniquely determined by the Lie algebra structure of g, which will be verified

by the explicit description of L in Section 5 (cf. [Hö, ELMS21]); L = Lg is called the orbit

lattice in [Hö]. Hence V contains VL ⊗W as a full subVOA, which shows

(3.1) rankL+ cW = 24,

where cW is the central charge of W . Note that the injective map from VL ⊗W to V is

given by a ⊗ b 7→ a(−1)b for a ∈ VL and b ∈ W . By [Mi15, CM] and [CKLR19, Section

4.3], W is also strongly regular. In addition, by [ELMS21, Lemma 5.2], W satisfies the

positivity condition; indeed, W contains a full subVOA isomorphic to the tensor product

of parafermion VOAs ([DR17]), which satisfies the positivity condition.

It then follows from [Lin17, CKM22] that W has group-like fusion and

(3.2) (Irr (VL), qVL)
∼= (Irr (W ),−qW )

as quadratic spaces. Note that O(Irr (W ), qW ) = O(Irr (W ),−qW ) as groups. The VOA

W was essentially identified in [Hö, Theorem 4.7] (cf. [HM22+, Theorem 4.2]) as follows;

note that the necessary assumptions are confirmed in [La20a].

Theorem 3.2. The VOA W is isomorphic to the orbifold VOA V ĝ
Λg

for an isometry g of

the Leech lattice Λ, where g belongs to one of 10 conjugacy classes 2A, 2C, 3B, 4C, 5B, 6F ,

6G, 7B, 8E and 10F , and ĝ is a (standard) lift of g|Λg
∈ O(Λg). In addition, the conjugacy

class g is uniquely determined by the structure of V1.

Remark 3.3. Theorem 3.2 can also be proved by using the fact that any holomorphic

VOA of central charge 24 is constructed from the Leech lattice VOA by a cyclic orbifold

construction ([ELMS21, Theorem 6.3]).

Theorem 3.4. [Gr98, Sh04, La20b, La22+, BLS22+] Let g ∈ O(Λ) whose conjugacy

class is one of 10 cases in Theorem 3.2. Then the automorphism group of W ∼= V ĝ
Λg

has

the shape as in Table 3 (see [Wi09] for the notation of classical groups). In addition, the

group homomorphism µW in (2.1) is injective and the index of Aut (W )(∼= Aut (W )) in

O(Irr (W ), qW ) is given as in Table 3.
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Remark 3.5. The shapes of some groups in Table 3 are recalculated by MAGMA; they

are more precise than the original shapes in the references. We adopt the genus symbol

B,C, . . . , K of (Irr (W ),−qW ) and quadratic space structures from [Hö, Table 4].

Table 3: VOAs W = V ĝ
Λg

for g ∈ O(Λ)

Genus Class rankΛg (Irr (W ),−qW ) Aut (W )(∼= Aut (W )) O(Irr (W ), qW ) index

B 2A 8 2+10
II

GO+
10(2) GO+

10(2) 1

C 3B 12 3−8 PΩ−
8 (3).2 GO−

8 (3) 2

D 2C 12 2−10
II

4−2
II

21+20
+ .(S12 ×S3) 21+20

+ .(GO−
10(2) ×S3) 211 · 3 · 17

E 4C 14 2+2
2

4+6
II

221.GO7(2) 222.GO7(2) 2

F 5B 16 5+6 2.PΩ+
6 (5).2 GO+

6 (5) 2

G 6E 16 2+6
II

3−6 GO+
6 (2) ×GO+

6 (3) GO+
6 (2) ×GO+

6 (3) 1

H 7B 18 7−5 PΩ5(7).2 GO5(7) 2

I 8E 18 2+1
5 4+1

1 8+4
II

211+9.S6 212+9.S6 2

J 6G 18 2+4
II

4−2
II

3+5 21+8
+ :(S3

3)× PΩ5(3).2. 21+8
+ :(GO+

4
(2) ×S3)×GO5(3) 4

K 10F 20 2−2
II

4−2
II

5+4 21+4
+ :(2×S3)×GO+

4 (5) 21+4
+ :(S3 ×S3)×GO+

4 (5) 3

The following properties of Aut (W )(∼= Aut (W )) will be used later.

Lemma 3.6. Assume that g ∈ O(Λ) belongs to one of 10 conjugacy classes in Theorem

3.2. Set W = V ĝ
Λg
.

(1) If the conjugacy class of g is neither 2C, 6G nor 10F , then Aut (W ) is a normal

subgroup of O(Irr (W ), qW ).

(2) If the conjugacy class of g is 3B, 4C, 6G, 7B or 8E, then Aut (W ) does not contain

the −1-isometry of the abelian group Irr (W ).

Proof. (1) is obvious from the indexes in Table 3.

Assume that Aut (W ) contains the −1-isometry σ; we view σ as an element of Aut (W ).

Then for any M ∈ Irr (W ), M ◦ σ is the contragredient module M ′ of M . Recall that

the fusion products in Irr (W ) are determined in [La20a]. In particular, V ′
λ+Λg

∼= V−λ+Λg

as W -modules for any λ + Λg ∈ D(Λg). Then, VΛg
◦ σ ∼= VΛg

, which shows that σ can

be lifted to an automorphism of VΛg
([Sh04, Theorem 3.3]); we fix such an automorphism

of VΛg
and use the same symbol σ. In addition, Vλ+Λg

◦ σ ∼= V−λ+Λg
as VΛg

-modules for

any λ + Λg ∈ D(Λg). By (2.2), (2.3) and Lemma 2.6, there exists f ∈ O(Λg) of order 2

such that σ ∈ Inn (VΛg
)ι−1(f) and f = −1 on D(Λg). By the fusion products in Irr (W ),

the σ-conjugate modules of irreducible ĝi-twisted VΛg
-modules are irreducible ĝ−i-twisted

VΛg
-modules. Hence fgf−1 = g−1. Then −f is an element in O0(Λg) of order 2 and

(−f)g(−f)−1 = g−1. It follows from Λ∗ = Λ that for any element λ + Λg ∈ D(Λg) there

exists ξ + Λg ∈ D(Λg) such that (λ + Λg, ξ + Λg) appears in Λ/(Λg ⊕ Λg). Since g|Λg act

trivially on D(Λg) and g ∈ O(Λ), we see that g preserves every element in Λ/(Λg ⊕ Λg).

Hence g ∈ O0(Λg). Thus, O0(Λg) contains the subgroup 〈f, g〉 isomorphic to the dihedral

group of order 2|g|.
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By using MAGMA, one can verify the following: if the conjugacy class of g is 3B, 4C

or 6G, then O0(Λg) is the cyclic group 〈g〉; if the conjugacy class of g is 7B, then O0(Λg)

has order 21; if the conjugacy class of g is 8E, then O0(Λg) has order 16 but it is not the

dihedral group of order 16. Hence we obtain (2). �

Remark 3.7. If the conjugacy class of g is 5B, then O0(Λg) is a dihedral group of order

10 ([GL11]); in fact, Aut (W ) contains the −1-isometry ([La20b]).

Lemma 3.8. Let g ∈ O(Λ) whose conjugacy class is one of the 10 cases in Theorem 3.2.

Set ℓ = 2|g| if the conjugacy class of g is 2C, 6G or 10F , and set ℓ = |g| otherwise. Set

W = V ĝ
Λg
. Let H be an even lattice satisfying (D(H), qH) ∼= (Irr (W ),−qW ) as quadratic

spaces. Then H has level ℓ. Moreover, if the conjugacy class of g is 2A, 3B, 5B, 6E or

7B and the rank of H is 24− rankΛg, then
√
ℓH∗ also has level ℓ.

Proof. By the classification of irreducible W -modules (see [La20a]), one can see that

ℓ is the minimal positive integer such that qW (Irr (W )) ⊂ (1/ℓ)Z≥0. It then follows

from (D(H), qH) ∼= (Irr (W ),−qW ) that ℓ is also the minimal positive integer satisfying

qH(D(H)) ⊂ (1/ℓ)Z≥0. Hence ℓ is the minimal positive integer so that
√
ℓH∗ is even, and

H has level ℓ.

Assume that the conjugacy class of g is 2A, 3B, 5B, 6E or 7B and the rank of H

is 24 − rankΛg. Since
√
ℓ(
√
ℓH∗)∗ = H , the latter assertion follows from the fact that

(1/
√
n)H is not even if n ∈ Z>1. Indeed, if (1/

√
n)H is even for n ∈ Z≥1, then (1/

√
n)H ⊂√

nH∗, and hence nrankH divides |H∗/H| = |Irr (W )|. By Table 3, the only possibility is

n = 1. �

Remark 3.9. In Lemma 3.8, ℓ is equal to |ĝ| for the (standard) lift ĝ ∈ O(Λ̂) of g (cf.

[EMS20, Proposition 7.4]).

3.2. The group K(V ). Let V be a holomorphic VOA of central charge 24 with 0 <

rankV1 < 24. Let h be a Cartan subalgebra of V1. Set W = ComV (h) and VL =

ComV (W ) as in Section 3.1. In this subsection, we describe the group K(V ), defined in

the introduction, in terms of V1 and L.

Recall that VL ⊗W has group-like fusion. Hence V is a simple current extension of

VL⊗W . Since V is holomorphic, for any irreducible VL-module Vλ+L, there exists a unique

irreducible W -module X such that Vλ+L⊗X appears as an irreducible VL⊗W -submodule

of V with multiplicity one; let ϕ be the bijection from D(L) to Irr (W ) defined by the

following decomposition of V as a VL ⊗W -module:

(3.3) V ∼=
⊕

λ+L∈D(L)

Vλ+L ⊗ ϕ(λ+ L).
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Then ϕ is a group isomorphism and ρ(Vλ+L) + ρ(ϕ(λ+ L)) ∈ Z, which shows that ϕ is

an isometry of quadratic spaces from (D(L), qL) to (Irr (W ),−qW ). Set

(3.4) Sϕ = {(Vλ+L, ϕ(λ+ L)) | λ+ L ∈ D(L)} ⊂ Irr (VL)× Irr (W ).

Since V is holomorphic, Sϕ is a maximal totally isotropic subspace of (Irr (VL), qVL) ⊕
(Irr (W ), qW ). Here a vector is isotropic if the value of the form is zero and a totally

isotropic subspace is a subspace consisting of isotropic vectors. Note that Sϕ ∼= D(L)

as groups. We then view V as a simple current extension of VL ⊗ W graded by Sϕ;

V =
⊕

M∈Sϕ
M . Here (Vλ+L, ϕ(λ+L)) ∈ Sϕ is regarded as an irreducible VL⊗W -module

Vλ+L ⊗ ϕ(λ + L). Hence the dual S∗
ϕ = Hom(Sϕ,C

×) of Sϕ acts faithfully on V as an

automorphism group. More precisely, by (3.4), we have

(3.5) S∗
ϕ = {exp(2π

√
−1v(0)) | v + L ∈ D(L)}.

In addition, by [Sh04, Theorem 3.3], we obtain

S∗
ϕ = {σ ∈ Aut (V ) | σ = id on VL ⊗W}.(3.6)

Proposition 3.10. {σ ∈ Aut (V ) | σ = id on h} = {exp(a(0)) | a ∈ h}. In particular,

K(V ) ⊂ Inn (V ).

Proof. Clearly, {σ ∈ Aut (V ) | σ = id on h} ⊃ {exp(a(0)) | a ∈ h}.
Let σ ∈ Aut (V ) such that σ = id on h. Then σ preserves the commutant and the

double commutant of h, that is, σ preserves both VL and W . Since σ|VL acts trivially

on h ⊂ (VL)1, we have σ|VL ∈ {exp(a(0)) | a ∈ h} by (2.4). By Lemma 2.6 (1), σ|VL acts

trivially on Irr (VL), and hence σ(Vλ+L⊗ϕ(λ + L)) = Vλ+L⊗ϕ(λ + L) for all λ+L ∈ D(L).

Since ϕ is a bijection from D(L) to Irr (W ), σ|W ∈ Aut (W ) also acts trivially on Irr (W ).

By Theorem 3.4, the action of Aut (W ) on Irr (W ) is faithful. Hence we have σ|W = id.

It follows from (3.6) that σ ∈ S∗
ϕ{exp(a(0)) | a ∈ h}. By (3.5), we have σ = exp(u(0)) for

some u ∈ h. �

Remark 3.11. If V is isomorphic to a Niemeier lattice VOA, then K(V ) ⊂ Inn (V ) by

Remark 3.1. Hence for any holomorphic VOA V of central charge 24 with V1 6= 0, we

have K(V ) ⊂ Inn (V ), which proves the first assertion of Theorem 1.1.

Let V1 = g =
⊕s

i=1 gi, where gi are simple ideals, and let ki be the level of gi. Note

that ki ∈ Z>0 ([DM06a]). The norm of roots in g is normalized so that 〈α|α〉 = 2 for any

long roots α.

Proposition 3.12. Let Qi be the root lattice of gi and set Q̃ =
⊕s

i=1
1√
ki
Qi. Then

K(V ) = {exp(2π
√
−1v(0)) | v + L ∈ Q̃∗/L}

and it is isomorphic to L∗/Q̃ as a group.
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Proof. By (3.3) and h ⊂ (VL)1, for x ∈ h, exp(2π
√
−1x(0)) = id on V if and only if x ∈ L.

By Proposition 3.10, we have K(V ) ⊂ {exp(2π
√
−1v(0)) | v + L ∈ h/L}.

Recall from [DM06a] that the subVOA generated by V1 is isomorphic to
⊗s

i=1 Lĝi(ki, 0),

where Lĝi(ki, 0) is the simple affine VOA associated with gi at level ki. It was proved in

[DR17] that Lĝi(ki, 0) is a simple current extension of V√kiQi
long

⊗K(gi, ki) as follows:

Lĝi(ki, 0)
∼=

⊕

λ∈(1/
√
ki)Qi/

√
kiQi

long

Vλ+
√
kiQi

long
⊗M0,λ,(3.7)

where Qi
long is the sublattice of the root lattice Qi spanned by long roots, K(gi, ki) is the

parafermion VOA and M0,λ are certain irreducible K(gi, ki)-modules.

By (3.7), for v ∈ h, exp(2π
√
−1v(0)) = id on V1 if and only if v ∈ Q̃∗. Hence K(V ) =

{exp(2π
√
−1v(0)) | v + L ∈ Q̃∗/L}. Clearly, this group is isomorphic to the dual L∗/Q̃ of

Q̃∗/L. �

Remark 3.13. For a short root β in the root lattice Qi of gi, we have 〈β|β〉 = 2/ri, where

ri is the lacing number of gi. Hence Q
i is not necessarily even.

Later, we use the sublattice

(3.8) Qg =

s
⊕

i=1

√

kiQ
i
long ⊂ L.

Note that the ranks of both Qg and L are equal to dim h.

3.3. The group Out (V ). Let V be a holomorphic VOA of central charge 24 with 0 <

rankV1 < 24. Let h be a Cartan subalgebra of V1. SetW = ComV (h) and VL = ComV (W )

as in Section 3.1. In this subsection, we describe Out (V ), defined in the introduction, in

terms of V1 and L.

As discussed in the previous section, V is a simple current extension V =
⊕

M∈Sϕ
M .

Hence the fixed-point subVOA of S∗
ϕ is

(3.9) V S∗
ϕ = {v ∈ V | σv = v for all σ ∈ S∗

ϕ} = VL ⊗W.

It follows that the normalizer of S∗
ϕ in Aut (V ) is given by

NAut (V )(S
∗
ϕ) = {σ ∈ Aut (V ) | σ(VL ⊗W ) = VL ⊗W}.(3.10)

By [Sh04, Theorem 3.3], we obtain

NAut (V )(S
∗
ϕ)/S

∗
ϕ
∼= StabAut (VL⊗W )(Sϕ) = {σ ∈ Aut (VL ⊗W ) | Sϕ ◦ σ = Sϕ}.(3.11)

Recall that h is the fixed Cartan subalgebra of V1. Set

StabAut (V )(h) = {σ ∈ Aut (V ) | σ(h) = h}, StabInn (V )(h) = StabAut (V )(h) ∩ Inn (V ).

Lemma 3.14. (1) Aut (V ) = Inn (V )StabAut (V )(h);
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(2) Out (V ) ∼= StabAut (V )(h)/StabInn (V )(h);

(3) NAut (V )(S
∗
ϕ) = Inn (VL)StabAut (V )(h).

Proof. Let σ ∈ Aut (V ). Since all Cartan subalgebras of V1 are conjugate under Inn (V1),

there exists τ ∈ Inn (V ) such that τσ(h) = h. Hence τσ ∈ StabAut (V )(h), which proves

(1). Clearly, the assertion (1), Lemma 3.10 and the definition of Out (V ) imply (2).

It follows from ComV (h) =W and ComV (W ) = VL that StabAut (V )(h) preserves VL⊗W .

Hence by (3.10), StabAut (V )(h) ⊂ NAut (V )(S
∗
ϕ). In addition, by Lemma 2.6, Inn (VL) pre-

serves Sϕ. Hence by (3.11), we have Inn (VL) ⊂ NAut (V )(S
∗
ϕ). Thus Inn (VL)StabAut (V )(h) ⊂

NAut (V )(S
∗
ϕ).

Let σ ∈ NAut (V )(S
∗
ϕ). By (3.10), σ preserves VL ⊗W , and therefore also (VL ⊗W )1 =

(VL)1 ⊗ 1. Since h is a Cartan subalgebra of (VL)1, there exists τ ∈ Inn (VL) such that

τσ(h) = h. Hence σ ∈ Inn (VL)StabAut (V )(h). �

Lemma 3.15. StabAut (V )(h)/S
∗
ϕ
∼= StabAut (VL⊗W )(Sϕ) ∩ StabAut (VL⊗W )(h).

Proof. By Lemma 3.14 (3), StabAut (V )(h) ⊂ NAut (V )(S
∗
ϕ). By (3.11), StabAut (V )(h)/S

∗
ϕ ⊂

StabAut (VL⊗W )(Sϕ). Hence StabAut (V )(h)/S
∗
ϕ ⊂ StabAut (VL⊗W )(Sϕ) ∩ StabAut (VL⊗W )(h).

For σ ∈ StabAut (VL⊗W )(Sϕ) ∩ StabAut (VL⊗W )(h), by (3.6) and (3.11), there exists σ̃ ∈
NAut (V )(S

∗
ϕ) such that σ̃|VL⊗W = σ and σ̃(h) = h. Hence σ ∈ StabAut (V )(h)/S

∗
ϕ. �

It follows from (VL ⊗W )1 = (VL)1 ⊗ 1 and ComVL⊗W ((VL)1 ⊗ 1) = 1⊗W that

Aut (VL ⊗W ) ∼= Aut (VL)×Aut (W ).

Hence we obtain the group homomorphism

(3.12) Aut (VL⊗W ) → O(Irr (VL), qVL)×O(Irr (W ),−qW ), σ 7→ (µVL(σ|VL), µW (σ|W )).

Here we view µW (σ|W ) ∈ O(Irr (W ),−qW ) via O(Irr (W ), qW ) = O(Irr (W ),−qW ). By

the injectivity of µW (Theorem 3.4),

Aut 0(W ) = 1, Aut (W ) ∼= Aut (W );

we often identify Aut (W ) with Aut (W ). Hence the kernel of the homomorphism (3.12)

is Aut 0(VL)× 1. By (3.4) and (3.11), we have

StabAut (VL⊗W )(Sϕ) ∼= (Aut 0(VL)× 1).{(k, ϕkϕ−1) | k ∈ Aut (VL), ϕkϕ
−1 ∈ Aut (W )}.

We now identify (Irr (VL), qVL) with (D(L), qL). Note that Aut (VL) ∼= O(L) (see Lemma

2.7). Considering the restriction of StabAut (VL⊗W )(Sϕ) to VL, we have

(3.13) StabAut (VL⊗W )(Sϕ) ∼= Aut 0(VL).(O(L) ∩ ϕ∗(Aut (W ))),

where

ϕ∗(Aut (W )) = ϕ−1(Aut (W ))ϕ ⊂ O(D(L), qL).
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By Lemma 2.7, (2.5) and (3.13), we have

StabAut (VL⊗W )(Sϕ) ∩ StabAut (VL⊗W )(h)

∼={exp(a(0)) | a ∈ h}ι−1(O0(L)).(O(L) ∩ ϕ∗(Aut (W ))).

By (2.2) and (2.6),
(

StabAut (VL⊗W )(Sϕ) ∩ StabAut (VL⊗W )(h)
)

|h
∼= O0(L).(O(L) ∩ ϕ∗(Aut (W )))

∼= µ−1
L (O(L) ∩ ϕ∗(Aut (W ))).

(3.14)

Let W (V1) denote the Weyl group of the semisimple Lie algebra V1.

Lemma 3.16. (1) StabInn (V )(h)/{exp(a(0)) | a ∈ h} ∼= W (V1).

(2) StabAut (V )(h)/{exp(a(0)) | a ∈ h} ∼= µ−1
L (O(L) ∩ ϕ∗(Aut (W ))).

Proof. Since V1 is a semisimple Lie algebra, StabInn (V )(h) acts on h as W (V1). Hence (1)

follows from Proposition 3.10. Combining Proposition 3.10 and (3.14), we obtain (2). �

By Lemmas 3.14 (2) and 3.16, we obtain the following:

Proposition 3.17. Out (V ) ∼= µ−1
L (O(L) ∩ ϕ∗(Aut (W )))/W (V1).

As a corollary, we obtain

|O(L)/W (V1) : Out (V )| = |O(L) : µ−1
L (O(L) ∩ ϕ∗(Aut (W )))|

= |O(L) : (O(L) ∩ ϕ∗(Aut (W )))|.
(3.15)

Moreover, we obtain the following:

Lemma 3.18. Assume that the conjugacy class of g ∈ O(Λ) is neither 2C, 6G nor 10F

and that O(L) and ϕ∗(Aut (W )) generate O(D(L), qL). Then

|O(L)/W (V1) : Out (V )| = |O(Irr (W ), qW ) : Aut (W )|.

In particular,

(1) if the conjugacy class of g is 2A or 6E, then Out (V ) ∼= O(L)/W (V1);

(2) if the conjugacy class of g is 3B, 4C, 7B or 8E, then Out (V ) ∼= O(L)/〈W (V1),−1〉.

Proof. By Lemma 3.6 (1), Aut (W ) is normal in O(Irr (W ), qW ). The equation (3.15) and

the group isomorphism theorem show

|O(L)/W (V1) : Out (V )| = |O(D(L), qL) : ϕ
∗(Aut (W ))| = |O(Irr (W ), qW ) : Aut (W )|.

The assertion (1) follows from O(Irr (W ), qW ) = Aut (W ) in Table 3. The assertion (2)

follows from Lemma 3.6 (2), Table 3 and the fact that the −1-isometry in O(L) gives the

−1-isometry in O(L). �
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3.4. Weight one Lie algebra structures and orbit lattices. Let V be a strongly

regular holomorphic VOA of central charge 24 with 0 < rankV1 < 24. Then g = V1 is

semisimple. Let g =
⊕s

i=1 gi,ki, where gi,ki is a simple ideal with level ki ∈ Z>0.

Remark 3.19. The level ki of a simple ideal gi of V1 is determined by the following formula

in [Sc93, DM04a]:

(3.16)
h∨i
ki

=
dimV1 − 24

24
,

where h∨i is the dual Coxeter number of gi.

Let h be a Cartan subalgebra of V1. By Theorem 3.2, W = ComV (h) ∼= V ĝ
Λg

for some

g ∈ O(Λ) belonging to the 10 conjugacy classes. In addition, ComV (W ) ∼= VL for some

even lattice L. In this subsection, we describe some properties of L by using g = V1.

Set ℓ = 2|g| if g ∈ 2C, 6G, 10F and ℓ = |g| otherwise (cf. Remark 3.9). By Lemma 3.8,

L has level ℓ, and
√
ℓL∗ is an even lattice.

Proposition 3.20. Let Qi be the root lattice of gi; here the norm of roots in gi is nor-

malized so that 〈α|α〉 = 2 for any long roots α (cf. Remark 3.13). Then the even lattice

U =
√
ℓL∗ contains

(3.17) Pg =

s
⊕

i=1

√
ℓ√
ki
Qi

and rankU = rankPg. Moreover, if the vector v =

√
ℓ√
ki
β associated with a root β of gi is

primitive in U , then v is a root of U .

Proof. Recall that the ratio of the normalized killing form on gi and the bilinear form

〈 | 〉 on L ⊂ h is ki. Hence
⊕s

i=1(1/
√
ki)Q

i is the set of weights for h of the subVOA

generated by V1 with respect to the bilinear form 〈 | 〉 (see also (3.7)). By (3.3), we have

(1/
√
ki)Q

i ⊂ L∗, which shows the former assertion (cf. the proof of Proposition 3.12).

Set rβ = 1 (resp. rβ = ri) if β is long (resp. short), where ri is the lacing number

of gi. Then rββ belongs to the even lattice Qi
long generated by long roots of Qi, and√

kirββ ∈
√
kiQ

i
long ⊂ L (see (3.8)). In addition, 〈v|v〉/2 = ℓ/(kirβ). Hence

v =
ℓ

kirβ

1√
ℓ

√

kirββ ∈ 〈v|v〉
2

1√
ℓ
L =

〈v|v〉
2

U∗.

Thus the reflection σv preserves U , and v is a root of U . �

Remark 3.21. The lattice Pg is equal to
√
ℓQ̃, where Q̃ is defined in Proposition 3.12.

By the classification of irreducible W -modules (cf. [La20a]), we obtain the following

lemma:
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Lemma 3.22. (cf. [La20a]) Assume that the conjugacy class of g is 2A, 3B, 5B or 7B.

Let M be an irreducible W -module. If M is not isomorphic to W , then ρ(M) ≥ (ℓ− 1)/ℓ

and ρ(M) ∈ (1/ℓ)Z. Moreover, if ρ(M) ∈ (ℓ− 1)/ℓ+ Z, then ρ(M) = (ℓ− 1)/ℓ.

Proposition 3.23. Assume that the conjugacy class of g is 2A, 3B, 5B or 7B. Then

U =
√
ℓL∗ is a level ℓ lattice. Moreover, the root system of U and the root system of

the semisimple Lie algebra V1 = g have the same type. In particular, the sublattice Pg in

(3.17) of U is generated by roots of U .

Proof. By Lemma 3.8, U has level ℓ. Since W1 = 0 and ℓ is prime, by (3.3) and Lemma

3.22, we have

(3.18) V1 = (VL)1 ⊗ 1⊕
⊕

min(λ+L)=2/ℓ

(Vλ+L)1/ℓ ⊗ ϕ(λ+ L)1−1/ℓ,

where min(λ+ L) = min{〈x|x〉 | x ∈ λ + L}. Then the roots of V1 with respect to h are

given by

{α ∈ L | 〈α|α〉 = 2} ∪ {α ∈ L∗ | 〈α|α〉 = 2/ℓ}.
We can rewrite it as follows:

{α ∈ ℓU∗ ⊂ U | 〈α|α〉 = 2ℓ} ∪ {α ∈ U | 〈α|α〉 = 2}.

By Lemma 2.2, this set is R(U). Since ℓ is prime, for any root β ∈ Qi, the vector

(
√
ℓ/
√
ki)β is primitive in U =

√
ℓL∗. Hence by Proposition 3.20, the root systems of V1

and R(U) have the same type. The last assertion also follows from Proposition 3.20. �

3.5. Schellekens’ list and isometries of the Leech lattice. Let V be a holomorphic

VOA of central charge 24 such that 0 < rankV1 < 24. Set g = V1. Then g is one of

46 semisimple Lie algebras in Schellekens’ list ([Sc93]). Let h be a Cartan subalgebra

of g. By Theorem 3.2, W = ComV (h) ∼= V ĝ
Λg

for some g ∈ O(Λ) belonging to the 10

conjugacy classes. In addition, the conjugacy class of g is uniquely determined by g,

which is summarized in Table 4 (see also [Hö, Tables 6–15] and [ELMS21, Table 2]). Here

the symbol Xn,k denotes (the type of) a simple Lie algebra whose type is Xn and level is

k.

Table 4: Weight one Lie algebras of holomorphic VOAs of

central charge 24 associated with V ĝ
Λg

for g ∈ O(Λ)

Genus Class # of L # of V1 Weight one Lie algebra structures

B 2A 17 17 A16
1,2, A

4
3,2A

4
1,1, D

2
4,2B

4
2,1, A

2
5,2C2,1A

2
2,1, D

2
5,2C2,1A

2
2,1, A7,2C

2
3,1A3,1,

C4
4,1, D6,2C4,1B

2
3,1, A9,2A4,1B3,1, E6,2C5,1A5,1, D8,2B

2
4,1, C

2
6,1B4,1,

D9,2A7,1, C8,1F
2
4,1, E7,2B5,1F4,1, C10,1B6,1, B8,1E8,2

22



C 3B 6 6 A6
2,3, A5,3D4,3A

3
1,1, A8,3A

2
2,1, E6,3G

3
2,1, D7,3A3,1G2,1, E7,3A5,1

D 2C 2 9 A12
1,4, B

6
2,2, B

4
3,2, B

3
4,2, B

2
6,2, B12,2, D4,4A

4
2,2, C4,2A

2
4,2, A8,2F4,2

E 4C 5 5 A3
3,4A1,2, D5,4C3,2A

2
1,1, A7,4A

3
1,1, E6,4A2,1B2,1, C7,2A3,1

F 5B 2 2 A2
4,5, D6,5A

2
1,1

G 6E 2 2 A5,6B2,3A1,2, C5,3G2,2A1,1

H 7B 1 1 A6,7

I 8E 1 1 D5,8A1,2

J 6G 1 2 D4,12A2,6, F4,6A2,2

K 10F 1 1 C4,10

Remark 3.24. It would be possible to classify orbit lattices by the rank and the quadratic

space structure on the discriminant group; in fact, the number of isometric classes of orbit

lattices is given in [Hö, Table 4] (see Table 4). We will explicitly describe the orbit lattice

Lg corresponding to g in Section 5. Note that the orbit lattices have been described in

[Hö] by using Niemeier lattices.

Remark 3.25. By Table 4, we observe

ℓ = lcm({r1k1, r2k2, . . . , rsks}),

where ri is the lacing number of gi and ℓ = 2|g| if g ∈ 2C, 6G, 10F and ℓ = |g| otherwise
(See also Remark 3.9).

4. Inequivalent simple current extensions

Let W be one of the 10 VOAs in Theorem 3.2 and let L be an even lattice satisfying

(3.1) and (3.2). In this subsection, we determine the number of holomorphic VOAs of

central charge 24 obtained as inequivalent simple current extensions of VL ⊗W based on

the arguments in [Hö].

Let O be the set of all isometries from (D(L), qL) to (Irr (W ),−qW ). For ψ ∈ O,

Vψ =
⊕

λ+L∈D(L)

Vλ+L ⊗ ψ(λ+ L)

has a holomorphic VOA structure of central charge 24 as a simple current extension of

VL ⊗W ([EMS20, Theorem 4.2]). Define Sψ = {(Vλ+L, ψ(λ + L)) | λ + L ∈ D(L)} as in

(3.4).

Let f ∈ Aut (W ), h ∈ O(L) and ψ ∈ O. Then f ◦ ψ ◦ h also belongs to O and

Sf◦ψ◦h ◦ (h, f−1) = Sψ. Hence (h, f−1) induces an isomorphism between the holomorphic

VOAs Vψ and Vf◦ψ◦h. Conversely, we assume that ψ, ψ′ ∈ O satisfy Vψ ∼= Vψ′ as simple

current extensions of VL⊗W , that is, there exists an isomorphism ξ : Vψ → Vψ′ such that

ξ(VL ⊗W ) = VL ⊗W . Then Sψ and Sψ′ are conjugate by the restriction of ξ to VL ⊗W .
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Note that Aut (VL ⊗ W ) ∼= Aut (VL) × Aut (W ) and Aut (VL) is identified with O(L)

(see Lemma 2.7). Therefore, the number of holomorphic VOAs obtained by inequivalent

simple current extensions {Vϕ | ϕ ∈ O} of VL⊗W is equal to the number of double cosets

in

Aut (W )\O/O(L).

Remark 4.1. In general, inequivalent simple current extensions may become isomorphic

VOAs. Fortunately, in our cases, this does not happen; see Propositions 4.3, 5.7, 5.15,

5.18, 5.24 and 5.29.

Now fix an isometry i ∈ O. Then i∗(h) = i−1 ◦ h ◦ i ∈ O(D(L), qL) for any h ∈
O(Irr (W ),−qW ). We consider the double cosets in i∗(Aut (W ))\O(D(L), qL)/O(L). Note

that i◦ f ∈ O for any f ∈ O(D(L), qL). Conversely, i
−1 ◦ψ ∈ O(D(L), qL) for any ψ ∈ O.

Therefore, i induces a bijective map between O andO(D(L), qL), which gives the following:

Proposition 4.2. [Hö, Theorem 2.7] Let ψ, ψ′ ∈ O. Then ψ and ψ′ are in the same

double coset of Aut (W )\O/O(L) if and only if i−1 ◦ψ and i−1 ◦ψ′ are in the same double

coset of i∗(Aut (W ))\O(D(L), qL)/O(L). In particular, the number of inequivalent simple

current extensions in {Vϕ | ϕ ∈ O} is equal to |i∗(Aut (W ))\O(D(L), qL)/O(L)|.

The following proposition proves the conjecture [Hö, Conjecture 4.8] for six conjugacy

classes. The other four cases will be discussed in Section 5. Some cases were discussed in

[Hö, Remark 4.9].

Proposition 4.3. Let g ∈ O(Λ) such that W ∼= V ĝ
Λg
. Assume that the conjugacy class of

g is 2A, 3B, 4C, 6E, 7B or 8E. Then, for each L satisfying (3.1) and (3.2), there exists

exactly one holomorphic VOA of central charge 24 obtained as a simple current extension

of VL ⊗W , up to isomorphism.

Proof. By Proposition 4.2, it suffices to show that |i∗(Aut (W ))\O(D(L), qL)/O(L)| = 1,

that is, i∗(Aut (W ))O(L) = O(D(L), qL).

If the conjugacy class of g is 2A or 6E, then the assertion is obvious since i∗(Aut (W )) ∼=
Aut (W ) ∼= O(D(L), qL) by Table 3.

If the conjugacy class of g is 3B, 4C, 7B or 8E, then |O(D(L), qL) : i
∗(Aut (W ))| = 2

by Table 3. In addition, the −1-isometry of D(L) belongs to O(L) but it does not belong

to i∗(Aut (W )) by Proposition 3.6 (2). Hence we obtain the desired result. �

The following lemma, which will be used to determine the number of double cosets, is

probably well-known.

Lemma 4.4. Let G be a finite group and let G1, G2 be subgroups of G. Suppose NG(G2) =

G2. Then a, a′ are in the same double coset of G2\G/G1 if and only if b−1a−1G2ab =

a′−1G2a
′ for some b ∈ G1.

24



Proof. Suppose a′ ∈ G2aG1. Then a′ = a2aa1 for some a1 ∈ G1 and a2 ∈ G2. Then

a′−1G2a
′ = a−1

1 a−1a−1
2 G2a2aa1 = a−1

1 (a−1G2a)a1.

Conversely, we suppose a′−1G2a
′ = a−1

1 a−1G2aa1 for some a1 ∈ G1. Then G2 =

a′a−1
1 a−1G2aa1a

′−1. Since NG(G2) = G2, we have aa1a
′−1 = a2 ∈ G2 and a′ = a−1

2 aa1 as

desired. �

Remark 4.5. Under the same assumptions as in Lemma 4.4, the number of double cosets

of G2\G/G1 is equal to the number of G1-orbits on the set {a−1G2a | a ∈ G} of all

subgroups of G conjugate to G2 by conjugation.

5. Automorphism groups of holomorphic VOAs of central charge 24

Let V be a (strongly regular) holomorphic VOA of central charge 24 with 0 < rankV1 <

24. Fix a Cartan subalgebra h of V1. By Theorem 3.2, W = ComV (h) ∼= V ĝ
Λg

for some

g ∈ O(Λ) belonging to the 10 conjugacy classes. Note that ComV (W ) is a lattice VOA

VL and the conjugacy class of g is uniquely determined by the Lie algebra structure of V1

(see Table 4). In addition, V is a simple current extension of VL ⊗W .

In this section, by using the Lie algebra structure of g = V1 in Schellekens’ list, we

describe the orbit lattice L explicitly, which implies that L = Lg is uniquely determined

by g, up to isometry. For each g, we also determine the group structures of K(V ) and

Out (V ) based on the case-by-case analysis on W and Lg. For the conjugacy classes

of g that we have not dealt with in Proposition 4.3, we also determine the number of

holomorphic VOAs obtained as inequivalent simple current extensions of VL ⊗W .

Remark 5.1. Based on a similar method, some partial results for the conjugacy classes

2A, 3B, 5B and 7B and 2C were obtained in [LS17] and [HS14], respectively.

Remark 5.2. In the tables of this section, Sn, An and Dihn denote the symmetric group of

degree n, the alternating group of degree n and the dihedral group of order n, respectively.

5.1. Conjugacy class 2A (Genus B). Assume that g belongs to the conjugacy class 2A

of O(Λ). Then O(Irr (W ), qW ) ∼= GO+
10(2)

∼= Ω+
10(2).2. By Table 3, Aut (W )(∼= Aut (W ))

has the shape GO+
10(2), which is the full orthogonal group O(Irr (W ), qW ).

Since the central charge ofW is 8, L is an even lattice of rank 16 such that (D(L), qL) ∼=
(Irr (W ),−qW ). Then D(L) ∼= Z10

2 . Set U =
√
2L∗. Then D(U) ∼= Z6

2, and by Proposition

3.23, U is a level 2 lattice. Such lattices U were classified in [SV01]. Furthermore that can

now be verified easily using MAGMA. More precisely, it was proved in [SV01, Theorem 2]

(see also [HS14, Remark 3.12]) that there exist exactly 17 level 2 lattices of rank 16 with

determinant 26 up to isometry and they are uniquely determined by their root system (see

Table 5). Their isometry groups are determined by MAGMA as in Table 5. Hence there
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are 17 possible lattices for L =
√
2U∗; indeed, they satisfy (D(L), qL) ∼= (Irr (W ),−qW ).

Note that O(L) = O(U).

Table 5: Level 2 lattices of rank 16 for the case 2A

R(Ug) Ug/Pg O(Ug)/W (R(Ug)) O(Ug)

A16
1 Z5

2 AGL4(2) W (A1) ≀ AGL4(2)

A4
3(
√
2A1)

4 Z3
2 × Z4 W (D4) (W (A3)

4 ×W (A1)
4).W (D4)

D2
4C

4
2 Z3

2 2×S4 (W (D4)
2 ×W (C2)

4).(2×S4)

A2
5(
√
2A2)

2C2 Z3 × Z6 Dih8 (W (A5)
2 ×W (A2)

2 ×W (C2)).Dih8

A7(
√
2A3)C

2
3 Z2 × Z4 Z2

2 (W (A7)×W (A3)×W (C3)
2).Z2

2

D2
5(
√
2A3)

2 Z2
4 Dih8 (W (D5)

2 ×W (A3)
2).Dih8

C4
4 Z2 S4 W (C4) ≀S4

D6C4B
2
3 Z2

2 Z2 (W (D6)×W (C4)×W (B3)
2).Z2

A9(
√
2A4)B3 Z10 Z2 (W (A9)×W (A4)×W (B3)).Z2

E6(
√
2A5)C5 Z6 Z2 (W (E6)×W (A5)×W (C5)).Z2

D8B
2
4 Z2

2 Z2 W (D8)×W (B4) ≀ Z2

C2
6B4 Z2 Z2 W (C6) ≀ 2×W (B4)

D9(
√
2A7) Z8 Z2 (W (D9)×W (A7)).Z2

C8F
2
4 1 Z2 W (C8)×W (F4) ≀ Z2

E7B5F4 Z2 1 W (E7)×W (B5)×W (F4)

C10B6 Z2 1 W (C10)×W (B6)

E8B8 Z2 1 W (B8)×W (E8)

Let g be one of the 17 Lie algebras in Table 4 corresponding to 2A. By Proposition

3.23, the root system R(U) of U =
√
2L∗ is uniquely determined by g as in Table 6. As

we mentioned, U is also uniquely determined by g; we set Lg = L and Ug = U . Let Pg be

the sublattice of Ug generated by R(Ug) as in (3.17) (see also Proposition 3.23).

Proposition 5.3. Assume that the conjugacy class of g is 2A.

(1) K(V ) ∼= Ug/Pg.

(2) Out (V ) ∼= O(Ug)/W (R(Ug)).

Proof. By Proposition 3.12, we have K(V ) ∼= L∗
g/Q̃. It follows from the definition of Pg

that Pg
∼=

√
2Q̃ (cf. Remark 3.21), which proves (1). By Proposition 3.23, we obtain

W (V1) ∼= W (R(Ug)). Hence (2) follows from Lemma 3.18 (1). �

By the proposition above and Table 5, we obtain the group structures of K(V ) and

Out (V ) for all 17 cases, which are summarized in Table 6.
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Table 6: K(V ) and Out (V ) for the case 2A

Genus No. g = V1 R(Ug) Out (V1) Out (V ) K(V )

B 5 A16
1,2 A16

1 S16 AGL4(2) Z5
2

16 A4
3,2A

4
1,1 A4

3(
√
2A1)

4 (Z2 ≀S4)×S4 W (D4) Z3
2 × Z4

25 D2
4,2C

4
2,1 D2

4C
4
2 (S3 ≀S2)×S4 Z2 ×S4 Z3

2

26 A2
5,2C2,1A

2
2,1 A2

5C2(
√
2A2)

2 (Z2 ≀S2)× (Z2 ≀S2) Dih8 Z3 × Z6

31 D2
5,2A

2
3,1 D2

5(
√
2A3)

2 (Z2 ≀S2)× (Z2 ≀S2) Dih8 Z2
4

33 A7,2C
2
3,1A3,1 A7C

2
3(
√
2A3) Z2 ×S2 × Z2 Z2

2 Z2 × Z4

38 C4
4,1 C4

4 S4 S4 Z2

39 D6,2C4,1B
2
3,1 D6C4B

2
3 Z2 ×S2 Z2 Z2

2

40 A9,2A4,1B3,1 A9(
√
2A4)B3 Z2 × Z2 Z2 Z10

44 E6,2C5,1A5,1 E6C5(
√
2A5) Z2 × Z2 Z2 Z6

47 D8,2B
2
4,1 D8B

2
4 Z2 ×S2 Z2 Z2

2

48 C2
6,1B4,1 C2

6B4 S2 Z2 Z2

50 D9,2A7,1 D9(
√
2A7) Z2 × Z2 Z2 Z8

52 C8,1F
2
4,1 C8F

2
4 Z2 Z2 1

53 E7,2B5,1F4,1 E7B5F4 Z2 1 Z2

56 C10,1B6,1 C10B6 1 1 Z2

62 B8,1E8,2 B8E8 1 1 Z2

Remark 5.4. The groups K(V ) and Out (V ) have been determined in [Sh20] if

g ∈ {A16
1,2, A

4
3,2A

4
1,1, D

2
4,2B

4
2,1, D

2
5,2A

2
3,1, C

4
4,1, D6,2B

2
3,1C4,1, D8,2B

2
4,1, D9,2A7,1}

by using the explicit construction of V .

5.2. Conjugacy class 3B (Genus C). Assume that g belongs to the conjugacy class

3B of O(Λ). Then O(Irr (W ), qW ) ∼= GO−
8 (3)

∼= 2 × PΩ−
8 (3).2. By Table 3, Aut (W )(∼=

Aut (W )) has the shape PΩ−
8 (3).2, which is an index 2 subgroup of O(Irr (W ), qW ).

Since the central charge ofW is 12, L is an even lattice of rank 12 such that (D(L), qL) ∼=
(Irr (W ),−qW ). Then D(L) ∼= Z8

3. Set U =
√
3L∗. Then D(U) ∼= Z4

3, and by Proposition

3.23, U is a level 3 lattice. Such lattices U were classified in [SV01]. Furthermore that can

now be verified easily using MAGMA. More precisely, it was proved in [SV01, Theorem 3]

that there exist exactly 6 level 3 lattices of rank 12 with determinant 34 up to isometry,

and they are uniquely determined by their root system (see Table 7). Since O(U) is

a subgroup of the automorphism group of the root system R(U), its shape is easily

determined as in Table 7. Hence there are 6 possible lattices for L =
√
3U∗; indeed, they

satisfy (D(L), qL) ∼= (Irr (W ),−qW ). Note that O(L) = O(U).
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Table 7: Level 3 lattices of rank 12 for the case 3B

R(Ug) Ug/Pg O(Ug)/W (R(Ug)) O(Ug)

A6
2 Z3 Z2 ×S6 (W (A2) ≀S6).Z2

A5D4(
√
3A1)

3 Z3
2 Dih12 (W (A5)×W (D4)×W (A1)

3).Dih12

A8(
√
3A2)

2 Z2
3 Z2

2 (W (A8)×W (A2)
2).Z2

2

E6G
3
2 1 Z2 ×S3 (W (E6)×W (G2) ≀S3).Z2

D7(
√
3A3)G2 Z4 Z2 (W (D7)×W (A3)×W (G2)).Z2

E7(
√
3A5) Z6 Z2 (W (E7)×W (A5)).Z2

Let g be one of the 6 Lie algebras in Table 4 corresponding to 3B. By Proposition

3.23, the root system of U =
√
3L∗ is uniquely determined by g as in Table 8. As we

mentioned, U is also uniquely determined by g; we set Lg = L and Ug = U . Let Pg be

the sublattice of Ug generated by R(Ug) as in (3.17) (see also Proposition 3.23).

Proposition 5.5. Assume that the conjugacy class of g is 3B.

(1) K(V ) ∼= Ug/Pg.

(2) Out (V ) ∼= O(Ug)/〈W (R(Ug)),−1〉.

Proof. By Proposition 3.12, we have K(V ) ∼= L∗
g/Q̃. It follows from the definition of Pg

that Pg
∼=

√
3Q̃ (cf. Remark 3.21), which proves (1). By Proposition 3.23, we obtain

W (V1) = W (R(Ug)). Hence (2) follows from Proposition 3.17 and Lemma 3.18 (2). �

The group structures of K(V ) and Out (V ) are summarized in Table 8.

Table 8: K(V ) and Out (V ) for the case 3B

Genus No. g = V1 R(Ug) Out (V1) Out (V ) K(V )

C 6 A6
2,3 A6

2 Z2 ≀S6 S6 Z3

17 A5,3D4,3A
3
1,1 A5D4(

√
3A1)

3 Z2 ×S3 ×S3 S3 Z3
2

27 A8,3A
2
2,1 A8(

√
3A2)

2 Z2 × (Z2 ≀S2) Z2 Z2
3

32 E6,3G2,1
3 E6G

3
2 Z2 ×S3 S3 1

34 D7,3A3,1G2,1 D7(
√
3A3)G2 Z2 × Z2 1 Z4

45 E7,3A5,1 E7(
√
3A5) Z2 1 Z6

5.3. Conjugacy class 5B (Genus F ). Assume that g belongs to the conjugacy class

5B of O(Λ). Then O(Irr (W ), qW ) ∼= GO+
6 (5)

∼= 2.PΩ+
6 (5).2

2. By Table 3, Aut (W )(∼=
Aut (W )) has the shape 2.PΩ+

6 (5).2, which is an index 2 subgroup of O(Irr (W ), qW ) not

isomorphic to SO+
6 (5).
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Since the central charge ofW is 16, L is an even lattice of rank 8 such that (D(L), qL) ∼=
(Irr (W ),−qW ). Then D(L) ∼= Z6

5. Set U =
√
5L∗. Then D(U) ∼= Z2

5, and by Proposition

3.23, U is a level 5 lattice. Note that O(L) = O(U).

By Table 4, the Lie algebra structure of g = V1 is A2
4,5 or D6,5A

2
1,1. By Proposition

3.23, the root lattice Pg of U is isometric to A2
4 or D6(

√
5A2

1), respectively. It is easy to

see that U is uniquely determined as an overlattice of Pg; we set Ug = U and Lg = L.

Since O(U) is a subgroup of the automorphism group of the root system R(U), its shape

is easily determined as in Table 9.

Table 9: Level 5 lattices of rank 8 for the case 5B

g = V1 R(Ug) Ug/Pg O(Ug)/W (R(Ug)) O(Ug)

A2
4,5 A2

4 1 Dih8 (2×W (A4)) ≀S2

D6,5A
2
1,1 D6(

√
5A2

1) Z2
2 S2 (W (D6)×W (A1)

2).2

Lemma 5.6. The subgroups O(Lg) and ϕ
∗(Aut (W )) generate O(D(Lg), qLg

).

Proof. Let ϕ be the isometry from (D(Lg), qLg
) to (Irr (W ),−qW ) satisfying (3.3). Recall

that ϕ∗(Aut (W )) is an index 2 subgroup of O(Irr (W ), qW ) ∼= GO+
6 (5) not isomorphic

to SO+
6 (5) and that O(Irr (W ), qW ) ∼= O(Irr (W ),−qW ). If the root system R(Ug) is A

2
4

or D6(
√
5A1)

2, then O(Lg) ∼= (2 ×W (A4)) ≀S2
∼= GO3(5) ≀S2 or Z6

2:S6
∼= GO1(5) ≀S6,

respectively. In both cases, O(Lg) is a maximal subgroup of O(D(Lg), qLg
) (cf. [Wi09,

Theorem 3.12]), and hence O(Lg) and ϕ
∗(Aut (W )) generate O(D(Lg), qLg

). �

By Proposition 4.2 and Lemma 5.6, we obtain the following:

Proposition 5.7. Assume that the conjugacy class of g is 5B. Then, for each L, there

exists exactly one holomorphic VOA of central charge 24 obtained as a simple current

extension of VL ⊗W , up to isomorphism.

Proposition 5.8. Assume that the conjugacy class of g is 5B.

(1) K(V ) ∼= Ug/Pg.

(2) Out (V ) have the shapes in Table 10.

Proof. By Proposition 3.12, we have K(V ) ∼= L∗
g/Q̃. It follows from the definition of Pg

that Pg
∼=

√
5Q̃ (cf. Remark 3.21), which proves (1).

Next, we determine Out (V ). By Proposition 3.23, we obtain W (V1) = W (R(Ug)). By

Proposition 3.17 and Lemmas 3.18 and 5.6, we have |O(Lg)/W (R(Ug)) : Out (V )| = 2.

Hence |Out (V )| = 4 or 1 if R(Ug) ∼= A2
4 or D6(

√
5A1)

2, respectively.

Assume that R(Ug) ∼= A2
4. Note that O(Lg) ∼= O(Lg) and that O(Lg) ∩ ϕ∗(Aut (W ))

contains W (R(Ug)) ∼= S5 × S5 as a subgroup. Checking possible index 2 subgroups of
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O(Lg) obtained as O(Lg) ∩ ϕ∗(Aut (W )), one can verify that O(Lg) ∩ ϕ∗(Aut (W )) has

the shape 2× (S5 ≀S2) by using MAGMA. Hence Out (V ) ∼= Z2
2 by Proposition 3.17. �

The group structures of K(V ) and Out (V ) are summarized in Table 10.

Table 10: K(V ) and Out (V ) for the case 5B

Genus No. g = V1 R(Ug) Out (V1) Out (V ) K(V )

F 9 A2
4,5 A2

4 Z2 ≀S2 Z2
2 1

20 D6,5A
2
1,1 D6(

√
5A2

1) Z2 ×S2 1 Z2
2

Remark 5.9. The even lattice U is a level 5 lattice of rank 8 (see Proposition 3.23)

and (D(U), qU ) is a 2-dimensional quadratic space over Z5 of plus type. By using these

properties, one could prove that the root system of U is A2
4 or D6(

√
5A2

1).

5.4. Conjugacy class 7B (Genus H). Assume that g belongs to the conjugacy class

7B of O(Λ). Then O(Irr (W ), qW ) ∼= GO5(7) ∼= 2 × PΩ5(7).2. By Table 3, Aut (W )(∼=
Aut (W )) has the shape PΩ5(7).2, which is an index 2 subgroup of O(Irr (W ), qW ).

By Table 4, the Lie algebra structure of g = V1 is A6,7. Since the central charge of

W is 18, L is an even lattice of rank 6 such that (D(L), qL) ∼= (Irr (W ),−qW ). Then

D(L) ∼= Z5
7. Set U =

√
7L∗. Then D(U) ∼= Z7 and by Proposition 3.23, U is a level 7

lattice. In addition, the root system R(U) of U is A6. Hence U = Ug
∼= Pg

∼= A6, and

L = Lg
∼=

√
7A∗

6. The isometry group of Ug is summarized in Table 11.

Table 11: Level 7 lattice of rank 6 for the case 7B

g = V1 R(Ug) Ug/Pg O(Ug)/W (R(Ug)) O(Ug)

A6,7 A6 1 Z2 Z2 ×W (A6)

Proposition 5.10. Assume that the conjugacy class of g is 7B.

(1) K(V ) ∼= Ug/Pg.

(2) Out (V ) = 1

Proof. By Proposition 3.12, we have K(V ) ∼= L∗
g/Q̃. It follows from the definition of

Pg that Pg
∼=

√
7Q̃ (cf. Remark 3.21), which proves (1). By Proposition 3.23, we have

W (V1) = W (R(Ug)). Hence (2) follows from Proposition 3.17 and Lemma 3.18 (2). �

The group structures of K(V ) and Out (V ) are summarized in Table 12.

Table 12: K(V ) and Out (V ) for the case 7B

Genus No. g = V1 R(Ug) Out (V1) Out (V ) K(V )
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H 11 A6,7 A6 Z2 1 1

Remark 5.11. The lattice U is an even lattice of rank 6 with D(U) ∼= Z7. By using this

property, one could prove that U ∼= A6.

5.5. Conjugacy class 2C (Genus D). Assume that g belongs to the conjugacy class 2C

of O(Λ). Then O(Irr (W ), qW ) ∼= 21+20
+ .(GO−

10(2)×S3). By Table 3, Aut (W )(∼= Aut (W ))

has the shape 21+20
+ .(S12×S3). Since S12 is a maximal subgroup of GO−

10(2) ([ATLAS]),

Aut (W ) is also a maximal subgroup of O(Irr (W ), qW ) and it is self-normalizing.

Remark 5.12. Set Ω = {1, 2, . . . , 12} and X = {A ⊂ Ω | |A| ≡ 0 (mod 2)}/{∅,Ω}. Then
X is a 10-dimensional vector space over F2 by the symmetric difference. In addition,

X has the quadratic form of minus type defined by A 7→ |A|/2 (mod 2) (cf. [ATLAS,

page 147]). Since S12 naturally acts on X and it preserves the quadratic form, we obtain

S12 ⊂ GO−
10(2).

It was proved in [HS14, Theorem 2.8] that (Irr (W ), qW ) ∼= (D(
√
2D12), q√2D12

). Since

the central charge ofW is 12, the rank of L is 12. Note that (Irr (W ),−qW ) ∼= (Irr (W ), qW )

and that (D(L), qL) ∼= (Irr (W ),−qW ).

Lemma 5.13. Let H be an even lattice of rank 12 such that (D(H), qH) ∼= (D(
√
2D12), q√2D12

)

as quadratic spaces. Then H ∼=
√
2D12 or

√
2E8

√
2D4.

Proof. It follows from D(H) ∼= Z10
2 ×Z2

4 and rankH = 12 that (1/2)H ⊂ H∗. In addition,

it also follows from q√2D12
((1/2)(

√
2D12)) ⊂ Z that qH((1/2)H) ⊂ Z. Hence (1/

√
2)H is

even. Since D((1/
√
2)H) ∼= Z2

2 and the rank of (1/
√
2)H is 12, there exists an odd uni-

modular lattice of rank 12 whose even sublattice is (1/
√
2)H . Since any odd unimodular

lattice of rank 12 is isometric to Z12 or E8Z
4 (cf. [CS99]), we have (1/

√
2)H ∼= D12 or

E8D4 �

By this lemma, we have L ∼=
√
2D12 or L ∼=

√
2E8

√
2D4. We will discuss each case in

the following subsections.

5.5.1. Case L ∼=
√
2D12. In this case, µL is injective, that is, O(L) ∼= O(L) ∼= 212.S12.

Recall that O(D(L), qL) ∼= O(Irr (W ), qW ) ∼= 21+20
+ .(GO−

10(2) × S3). Note that O(L) ∩
O2(O(D(L), qL)) ∼= 211, where O2(O(D(L), qL)) ∼= 21+20

+ is the maximal normal 2-subgroup

of O(D(L), qL). Fix an isometry i : (D(L), qL) → (Irr (W ),−qW ). By Lemma 4.4 and

Remark 4.5, the number of double cosets of

i∗(Aut (W ))\O(D(L), qL)/O(L)

is equal to the number of 212.S12-orbits on the set of all O(Irr (W ), qW )-conjugates of the

subgroup 21+20
+ .(S12 × S3). Since 21+20

+ .S3 is a normal subgroup of O(Irr (W ), qW ) and
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the quotient of O(Irr (W ), qW ) by this normal subgroup is GO−
10(2), this number is also

equal to the number of S12-orbits on its conjugates in GO−
10(2). By Remark 5.12, there is

a natural embedding S12 ⊂ GO−
10(2), and by [ATLAS, page 147] (cf. [HS14, Remark 2.9]),

there exist six S12-orbits on its conjugates in GO−
10(2). Hence we obtain the following

lemma.

Lemma 5.14. There exist exactly 6 double cosets in i∗(Aut (W ))\O(D(L), qL)/O(L).

By Proposition 4.2 and the lemma above, we obtain 6 holomorphic VOAs of central

charge 24 as inequivalent simple current extensions. In fact, their weight one Lie algebras

are non-isomorphic, which is discussed in [HS14, Remark 2.12] and [Hö, Table 8] (see

Table 13 for the Lie algebra structures). Hence we obtain the following:

Proposition 5.15. Assume that the conjugacy class of g is 2C and that L ∼=
√
2D12.

Then there exist exactly 6 holomorphic VOAs of central charge 24 obtained as inequivalent

simple current extensions of VL ⊗W , up to isomorphism.

In [ATLAS, Page 147], the shapes of the 6 subgroups of GO−
10(2) obtained as the

intersection of two maximal subgroups isomorphic to S12 are described. These groups

appear as the quotient of O(L) ∩ ϕ∗(Aut (W )) by O2(O(L)) ∼= 212 for isometries ϕ from

(D(L), qL) to (Irr (W ),−qW ). By Proposition 3.17, we obtain Out (V ) as in Table 13. For

any weight one Lie algebra structure in Table 13, we have Q̃ ∼= (1/
√
2)Z12. By Proposition

3.12 and L∗ ∼= (1/
√
2)D∗

12, we have K(V ) ∼= Z2.

Table 13: K(V ) and Out (V ) for the case 2C and L ∼=√
2D12

Genus No. V1 O(L) ∩ ϕ∗(Aut (W )) W (V1) Out (V1) Out (V ) K(V )

D 2 A12
1,4 212.M12 W (A1)

12 S12 M12 Z2

12 B6
2,2 212.(Z6

2 : S5) W (B2)
6 S6 S5 Z2

23 B4
3,2 212.(S3 ≀ A4) W (B3)

4 S4 A4 Z2

29 B3
4,2 212.(S4 ≀S3) W (B4)

3 S3 S3 Z2

41 B2
6,2 212.(S6 ≀ 2) W (B6)

2 S2 Z2 Z2

57 B12,2 212.S12 W (B12) 1 1 Z2

Remark 5.16. For the cases in Table 13, the groups K(V ) and Out (V ) have been deter-

mined in [Sh20] by using the explicit construction of V .

5.5.2. Case L ∼=
√
2E8

√
2D4. In this case, O(L) ∼= O(D4) × O(E8) ∼= ((21+4.S3):S3) ×

2.GO+
8 (2). In addition, O0(L) is generated by the −1-isometry of

√
2E8 and O(L) ∼=
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O(D4)×(O(E8)/〈−1〉) ∼= ((21+4.S3):S3)×GO+
8 (2). We can rewrite as O(L) ∼= 21+4.((S3×

GO+
8 (2))×S3), which corresponds to the shape of O(Irr (W ), qW ) ∼= 21+20

+ .(GO−
10(2)×S3).

Fix an isometry i : (D(L), qL) → (Irr (W ),−qW ). By Lemma 4.4, the number of double

cosets is equal to the number of 21+4.((S3×GO+
8 (2))×S3)-orbits on the set of conjugates

of 21+20
+ .(S12 ×S3). It follows from O2(O(Irr (W ), qW )) ∼= 21+20

+ that the number is also

equal to the number of (S3 × GO+
8 (2))-orbits on the set of conjugates of the subgroup

S12 ⊂ GO−
10(2).

Lemma 5.17. There exist exactly 3 double cosets in i∗(Aut (W ))\O(D(L), qL)/O(L).

Proof. Recall from Remark 5.12 the construction of a 10-dimensional quadratic space X
over F2 of minus type with natural embedding S12 ⊂ GO−

10(2). It is well-known (cf.

[ATLAS, Wi09]) that the stabilizer in GO−
10(2) of a non-singular 2-space of minus-type is

a maximal subgroup of the shape S3 ×GO+
8 (2). By the definition of the quadratic form

in Remark 5.12, non-singular vectors of X are 2-sets or 6-sets modulo {∅,Ω}. Then there

exist exactly three orbits Qi (i = 1, 2, 3) of non-singular 2-spaces of minus type in X under

the action of S12. Here the non-zero vectors of Q1, Q2, Q3 are three 2-sets, three 6-sets,

or one 2-set and two 6-sets, respectively. One can then deduce that there exist exactly 3

(S3 ×GO+
8 (2))-orbits on the set of conjugates of the subgroup S12 ⊂ GO−

10(2). �

By Proposition 4.2 and this lemma, we obtain 3 holomorphic VOAs of central charge

24 as inequivalent simple current extensions. In fact, their weight one Lie algebras are

non-isomorphic, which is discussed in [HS14, Remark 2.12] and [Hö, Table 8] (see Table

14 for the Lie algebra structures.) Hence we obtain the following:

Proposition 5.18. Assume that the conjugacy class of g is 2C and that L ∼=
√
2E8

√
2D4.

Then there exist exactly 3 holomorphic VOAs of central charge 24 obtained as inequivalent

simple current extensions of VL ⊗W , up to isomorphism.

Table 14: K(V ) and Out (V ) for case 2C and L ∼=
√
2E8

√
2D4

Genus No. V1 µ−1
L

(O(L) ∩ ϕ∗(Aut (W ))) W (V1) Out (V1) Out (V ) K(V )

D 13 D4,4A4
2,2 2.((W (D4)×W (A2)4).S4) W (D4)×W (A2)4 S3 × Z2 ≀S4 2.S4 Z2

3

22 C4,2A2
4,2 W (C4)× 2.(W (A4)2).2 W (C4)×W (A4)2 Z2 ≀S2 Z4 Z5

36 A8,2F4,2 2.(W (A8)×W (F4)) W (A8)×W (F4) Z2 Z2 Z3

Let Qi (i = 1, 2, 3) be non-singular 2-spaces of minus type in X given in the proof of

Lemma 5.17. Then the stabilizers of Q1, Q2 and Q3 in S12 are S3×S9, S3 ≀S4 and S2×
S5 ≀S2, respectively. Let ϕi be an isometry from (D(L), qL) to (Irr (W ),−qW ) associated

with Qi. Then O(L)∩ϕ∗
i (Aut (W )) has the shapes 21+4.(S3 ×S9).S3, 2

1+4.(S3 ≀S4).S3

and 21+4.(S2×S5 ≀S2).S3, respectively. By the shapes of these groups, the corresponding
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Lie algebra structures of V1 are A8,2F4,2, D4,4A
4
2,2 and C4,2A

2
4,2, respectively. Note that the

Weyl groups of the simple ideals of type F4,2, D4,4 and C4,2 act as the diagram automor-

phism group S3 on
√
2D4 ⊂ L, respectively. The group µ−1

L (O(L)∩ϕ∗
i (Aut (W ))) is a cen-

tral extension of O(L)∩ϕ∗
i (Aut (W )) by O0(L) ∼= Z2. Since µ

−1
L (O(L)∩ϕ∗

i (Aut (W ))) con-

tainsW (V1), we can rewrite the shapes of µ−1
L (O(L)∩ϕ∗

i (Aut (W ))) as 2.(W (A8)×W (F4)),

2.(W (D4) × W (A2)
4).S4 and 2.(W (C4) × (W (A4)

2).2), respectively. Note that for the

case C4,2A
2
4,2, the subgroup 2.(W (A4)

2).2 is the stabilizer in O(E8) of the sublattice A2
4

of E8, and its quotient by W (A4)
2 is isomorphic to Z4. Hence we obtain the shape of

Out (V ) as in Table 14 by Proposition 3.17.

Recall that L∗ ∼= (1/
√
2)D∗

4(1/
√
2)E8. If the Lie algebra structure of V1 is A8,2F4,2,

C4,2A
2
4,2 or D4,4A

4
2,2, then Q̃ is isometric to (1/

√
2)A8(1/

√
2)D∗

4, (1/2)D4(1/
√
2)A2

4 and

(1/2)D4(1/
√
2)A4

2, respectively. Note that (1/
√
2)D∗

4
∼= (1/2)D4. By Proposition 3.12,

we obtain K(V ) ∼= L∗/Q̃ as in Table 14.

Proposition 5.19. Assume that g belongs to the conjugacy class 2C. The shapes of the

groups K(V ) and Out (V ) are given as in Tables 13 and 14.

5.6. Conjugacy class 4C (Genus E). Assume that g belongs to the conjugacy class

4C of O(Λ). Then O(Irr (W ), qW ) ∼= 222.GO7(2). By Table 3, Aut (W ))(∼= Aut (W )) has

the shape 221.GO7(2), which is an index 2 subgroup of O(Irr (W ), qW ). Note also that the

Lie algebra structure of g = V1 is given as in Table 4.

Since the central charge of W is 14, the rank of L is 10. By (3.8) and Proposition

3.20, we have Qg ⊂ L ⊂
√
4P ∗

g . It follows from Table 3 and D(L) ∼= Irr (W ) that

D(L) ∼= Z2
2 × Z6

4. For each g, its Lie algebra structure gives the lattices Qg and
√
4P ∗

g

as in Table 15. Then one can easily see that there exists a unique even lattice L up to

isometry satisfying D(L) ∼= Z2
2 × Z6

4 and Qg ⊂ L ⊂
√
4P ∗

g ; see Table 15 for the explicit

description. We set Lg = L. The isometry groups of Lg are also summarized in Table 16.

Remark 5.20. Let us explain the meaning of “Glue” in the tables. Let Qg =
⊕s

i=1 ciRi,

where ci ∈ R and Ri are irreducible root lattices. In our cases, Lg is a sublattice of
⊕s

i=1 ciR
∗
i ; we associate Lg/Qg to a subgroup of

⊕s
i=1(R

∗
i /Ri) via the inclusion Lg/Qg ⊂

(
⊕s

i=1 ciR
∗
i )/(

⊕s
i=1 ciRi) ∼=

⊕s
i=1(R

∗
i /Ri). In the tables, based on the isomorphisms

A∗
m/Am

∼= Zm+1, D
∗
2m+1/D2m+1

∼= Z4, D
∗
2m/D2m

∼= Z2
2 = 〈b, c〉 and E∗

6/E6
∼= Z3, the

generators of Lg/Qg is described as a subgroup of
⊕s

i=1(R
∗
i /Ri) in “Glue”. Here b, c are

chosen so that they are permuted by the diagram automorphism of order 2.

By Proposition 3.17 and Lemma 3.18 (2), we have Out (V ) ∼= O(Lg)/〈W (V1),−1〉. The
group K(V ) is determined by Proposition 3.12. These structures are summarized in Table

16.
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Proposition 5.21. Assume that g belongs to the conjugacy class 4C. Then the shapes of

the groups K(V ) and Out (V ) are given as in Table 16.

Table 15: Even lattices of rank 10 for the case 4C.

g = V1 Qg

√
4P ∗

g
Lg/Qg Glue O(Lg)

A3
3,4A1,2 (2A3)3

√
2A1 (2A∗

3)
3
√
2A∗

1 Z3
4 (100; 1), (010; 1) O(A3) ≀S3 ×W (A1)

(001; 1)

A7,4A3
1,1 2A7A3

1 2A∗
7(A

∗
1)

3 Z8 (1; 100) O(A7)×W (A1)×W (A1) ≀S2

D5,4C3,2A2
1,1 2D5

√
2A3

1A
2
1 2D∗

52A
∗
3(A

∗
1)

2 Z4 × Z2 (1; 111; 00) O(D5)× O(A3)×W (A1) ≀S2

(0; 111; 11)

E6,4A2,1B2,1 2E6A2A2
1 2E∗

6A
∗
2A

2
1 Z3 (1; 1; 00) (W (E6)×W (A1)).2×W (B2)

C7,2A3,1

√
2A7

1A3 2D∗
7A

∗
3 Z2 (17; 2) O(D7)× O(A3)

Table 16: K(V ) and Out (V ) for the case 4C

No. g = V1 W (V1) Out (V1) Out (V ) K(V )

7 A3
3,4A1,2 W (A3)

3 ×W (A1) Z2 ≀S3 Z2
2 : S3 Z2

18 A7,4A
3
1,1 W (A7)×W (A1)

3 Z2 ×S3 Z2 Z3
2

19 D5,4C3,2A
2
1,1 W (D5)×W (C3)×W (A1)

2 Z2 ×S2 Z2 Z3
2

28 E6,4A2,1B2,1 W (E6)×W (A2)×W (B2) Z2 × Z2 1 Z6

35 C7,2A3,1 W (C7)×W (A3) Z2 1 Z2
2

5.7. Conjugacy class 6E (Genus G). Assume that g belongs to the conjugacy class 6E

of O(Λ). Then O(Irr (W ), qW ) ∼= GO+
6 (2) × GO+

6 (3). By Table 3, Aut (W )(∼= Aut (W ))

is isomorphic to the full orthogonal group O(Irr (W ), qW ). Note also that the Lie algebra

structure of g = V1 is given as in Table 4.

Since the central charge ofW is 16, the rank of L is 8. By (3.8) and Proposition 3.20, we

have Qg ⊂ L ⊂
√
6P ∗

g . It follows from Table 3 and D(L) ∼= Irr (W ) that D(L) ∼= Z6
2 ×Z6

3.

For each g, its Lie algebra structure gives the lattices Qg and
√
6P ∗

g as in Table 17. Then

one can easily see that there exists a unique even lattice L up to isometry satisfying

D(L) ∼= Z6
2 × Z6

3 and Qg ⊂ L ⊂
√
6P ∗

g ; see Table 17 for the explicit description. Set

Lg = L. The isometry groups of Lg are also summarized in Table 17.

The group Out (V ) is determined by Lemma 3.18 (1), and the groupK(V ) is determined

by Proposition 3.12. These structures are summarized in Table 18.

Proposition 5.22. Assume that g belongs to the conjugacy class 6E. Then the shapes of

the groups K(V ) and Out (V ) are given as in Tables 18.

Table 17: Even lattices of rank 8 for the case 6E

g = V1 Qg

√
6P ∗

g
Lg/Qg Glue O(Lg)
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A5,6B2,3A1,2

√
6A5

√
3A2

1

√
2A1

√
6A∗

5(
√
3A∗

1)
2
√
2A∗

1 Z6 × Z2 (1; 00; 1) O(A5) ×O(A2
1)×W (A1)

(0; 11; 1)

C5,3G2,2A1,1

√
3A5

1

√
2A2A1

√
6D∗

5

√
2A∗

2A
∗
1 Z2 (15; 0; 1) O(A5)× O(A2

1)× O(A1)

Table 18: K(V ) and Out (V ) for the case 6E

No. g = V1 W (V1) Out (V1) Out (V ) K(V )

8 A5,6B2,3A1,2 W (A5)×W (B2)×W (A1) Z2 Z2 Z2

21 C5,3G2,2A1,1 W (C5)×W (G2)×W (A1) 1 1 Z2

5.8. Conjugacy class 6G (Genus J). Assume that g belongs to the conjugacy class

6G of O(Λ). Then O(Irr (W ), qW ) ∼= 21+8
+ :(GO+

4 (2) × S3) × GO5(3). Here GO+
4 (2)

∼=
S3 ≀ Z2 and GO5(3) ∼= 2 × PΩ5(3).2. By Table 3, Aut (W )(∼= Aut (W )) has the shape

21+8
+ :(S3 ×S3 ×S3)× PΩ5(3).2, which is an index 4 subgroup of O(Irr (W ), qW ).

Remark 5.23. Let O2(Irr (W )) be the Sylow 2-subgroup of Irr (W ) of shape 24.42. Then

O(O2(Irr (W )), qW ) ∩ Aut (W ) ∼= 21+8
+ :(3 × S3 × S3), which is computed by MAGMA.

Hence we can rewrite Aut (W ) ∼= (21+8
+ :(3 ×S3 ×S3)× PΩ5(3).2).2 with respect to the

shape of O(Irr (W ), qW ). In fact, Aut (W ) is not normal in O(Irr (W ), qW ) by MAGMA.

By Table 4, the Lie algebra structure of g = V1 is F4,6A2,2 or D4,12A2,6 . By (3.8) and

Proposition 3.20, we have Qg ⊂ L ⊂
√
12P ∗

g . It follows from Table 3 and D(L) ∼= Irr (W )

that D(L) ∼= Z4
2 × Z2

4 × Z5
3. In both cases, we have L ∼=

√
6D4

√
2A2

∼=
√
12D∗

4

√
6A∗

2 and

O(L) ∼= O(D4)× O(A2) (see Table 19). Note that O(L) ∼= O(L).

Let i : (D(L), qL) → (Irr (W ),−qW ) be an isometry. By the possible Lie algebra struc-

tures of g, there exist at least two non-isomorphic holomorphic VOAs obtained as inequiv-

alent extensions of VL ⊗W . Since Aut (W ) is an index 4 subgroup of O(Irr (W ), qW ), we

have

2 ≤ |i∗(Aut (W )) \O(D(L), qL)/O(L)| ≤ 4

by Proposition 4.2. By Lemma 3.6 (2), the −1-isometry is not in i∗(Aut (W )). Clearly it

is in O(L). Hence,

|i∗(Aut (W )) \O(D(L), qL)/O(L)| = 2.

By Proposition 4.2, we obtain the following:

Proposition 5.24. Assume that the conjugacy class of g is 6G. Then there exist ex-

actly two holomorphic VOAs of central charge 24 obtained as inequivalent simple current

extensions of VL ⊗W , up to isomorphism.

By the argument above, i∗(Aut (W )) is an index 2 subgroup of the group generated by

i∗(Aut (W )) and O(L). Thus O(L)∩ i∗(Aut (W )) is an index 2 subgroup of O(L), and by
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Lemma 3.6 (2), O(L)∩i∗(Aut (W )) ∼= O(L)/〈−1〉. By Proposition 3.17 and O(L) ∼= O(L),

we have Out (V ) ∼= O(L)/〈W (V1),−1〉. The group K(V ) is determined by Proposition

3.12. These group structures are summarized in Table 20.

Proposition 5.25. Assume that g belongs to the conjugacy class 6G. Then the shapes of

the groups K(V ) and Out (V ) are given as in Table 20.

Table 19: Even lattice of rank 6 for the case 6G

g = V1 Qg

√
12P ∗

g L/Qg Glue O(L)

D4,12A2,6

√
12D4

√
6A2

√
12D∗

4

√
6A∗

2 Z2
2 × Z3 (b; 0), (c; 0), (0; 1) O(D4)×O(A2)

F4,6A2,2

√
6D4

√
2A2

√
12D∗

4

√
2A∗

2 1 1 O(D4)×O(A2)

Table 20: K(V ) and Out (V ) for the case 6G

No. g = V1 W (V1) Out (V1) Out (V ) K(V )

3 D4,12A2,6 W (D4)×W (A2) S3 × Z2 S3 1

14 F4,6A2,2 W (F4)×W (A2) Z2 1 Z3

5.9. Conjugacy class 8E (Genus I). Assume that g belongs to the conjugacy class

8E of O(Λ). Then O(Irr (W ), qW ) ∼= 212+9.S6. By Table 3, Aut (W )(∼= Aut (W )) has the

shape 211+9.S6, which is an index 2 subgroup of O(Irr (W ), qW ). Note also that the Lie

algebra structure of g = V1 is D5,8A1,2 by Table 4.

Since the central charge of W is 18, the rank of L is 6. By (3.8) and Proposition

3.20, we have Qg ⊂ L ⊂
√
8P ∗

g . It follows from Table 3 and D(L) ∼= Irr (W ) that

D(L) ∼= Z2×Z4×Z4
8. Hence, we have Lg = L ∼=

√
8D∗

5

√
2A1 and O(Lg) ∼= O(D5)×W (A1)

(see Table 21).

By Proposition 3.17 and Lemma 3.18 (2), we have Out (V ) ∼= O(Lg)/〈W (V1),−1〉. The
group K(V ) is determined by Proposition 3.12. See Table 22 for the structures.

Proposition 5.26. Assume that g belongs to the conjugacy class 8E. Then the shapes of

the groups K(V ) and Out (V ) are given as in Table 22.

Table 21: Even lattice of rank 6 for the case 8E

V1 = g Qg

√
8P ∗

g Lg/Qg Glue O(Lg)

D5,8A1,2

√
8D5

√
2A1

√
8D∗

5

√
2A∗

1 Z4 (1; 0) O(D5)×W (A1)
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Table 22: K(V ) and Out (V ) for the case 8E

No. g = V1 W (V1) Out (V1) Out (V ) K(V )

10 D5,8A1,2 W (A5)×W (A1) Z2 1 Z2

5.10. Conjugacy class 10F (Genus K). Assume that g belongs to the conjugacy

class 10F of O(Λ). Then O(Irr (W ), qW ) ∼= 21+4
+ :(S3 × S3) × GO+

4 (5). By Table 3,

Aut (W )(∼= Aut (W )) has the shape 21+4
+ :(2 × S3) × GO+

4 (5), which is an index 3 sub-

group of O(Irr (W ), qW ). By Table 4, the Lie algebra structure of g = V1 is C4,10.

Since the central charge of W is 20, the rank of L is 4. By (3.8) and Proposition

3.20, we have Qg ⊂ L ⊂
√
20P ∗

g . It follows from Table 3 and D(L) ∼= Irr (W ) that

D(L) ∼= Z2
2 × Z2

4 × Z4
5. Then we have Lg = L ∼=

√
10D4 and O(Lg) ∼= O(D4) (see Table

23).

Remark 5.27. For U =
√
20L∗, we have D(U) = Z2

2 and rank(U) = 4. It is easy to show

that U ∼= D4 and thus L =
√
20U∗ ∼=

√
20D∗

4
∼=

√
10D4.

Since V1 ∼= C4,10, we have Out (V1) = 1, and Out (V ) = 1. The group K(V ) is trivial

by Proposition 3.12. These group structures are summarized in Table 24.

Proposition 5.28. Assume that g belongs to the conjugacy class 10F . Then the shapes

of the groups K(V ) and Out (V ) are given as in Table 24.

Table 23: Even lattice of rank 4 for the case 10F

g = V1 Qg

√
20P ∗

g Lg/Qg Glue O(Lg)

C4,10

√
10A4

1

√
20D∗

4 Z2 (1111) O(D4)

Table 24: K(V ) and Out (V ) for the case 10F

No. V1 W (V1) Out (V1) Out (V ) K(V )

4 C4,10 W (C4) 1 1 1

It is easy to see that µL is injective, that is, O(L) ∼= O(L). Let ϕ be an isome-

try from (D(L), qL) to (Irr (W ),−qW ). By Proposition 3.17 and Out (V ) = 1, we have

O(L) ∩ ϕ∗(Aut (W )) = W (V1). Since W (V1)(∼= W (C4)) is an index 3 subgroup of O(L)

(see Lemma 2.3), so is O(L) ∩ ϕ∗(Aut (W )). Hence ϕ∗(Aut (W )) and O(L) generate

O(D(L), qL). By Proposition 4.2, we obtain the following:
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Proposition 5.29. Assume that the conjugacy class of g is 10F . Then, there exists

exactly one holomorphic VOA of central charge 24 obtained as inequivalent simple current

extensions of VL ⊗W , up to isomorphism.

As a consequence of our calculations, we have proved Theorem 1.4 and confirmed

[Hö, Conjecture 4.8]. Combining with the characterization of Niemeier lattice VOAs in

[DM04b], it provides another proof for the uniqueness of holomorphic vertex operator

algebras of central charge 24 with non-trivial weight one Lie algebras.

Appendix A. Actions of automorphism groups on the weight one spaces

In this appendix, for holomorphic VOAs V of central charge 24 whose weight one Lie

algebras are semisimple, we describe the subgroup Out 1(V ) of Out (V ) which preserves

every simple ideal of V1 and the quotient group Out 2(V ) = Out (V )/Out 1(V ).

A.1. Simple current modules over Lĝ(k, 0). Let g be a simple Lie algebra and let k

be a positive integer. Let Lĝ(k, 0) be the simple affine VOA associated with g at level k.

Let Sg be the set of isomorphism classes of simple current Lĝ(k, 0)-modules. Then Sg has

an abelian group structure under the fusion product. The structures of Sg are well-known

(see [Li01, Remark 2.21] and reference therein), which are summarized in Table 25. Here

Γ(g) is the diagram automorphism group of g and [Λ] is the irreducible Lĝ(k, 0)-module

Lĝ(k,Λ). Note that the notations [i](= i[1]), [s] and [c] are used in [Sc93].

Table 25: Simple current Lĝ(k, 0)-modules

Type level Sg Γ(g) generators of Sg

A1 k Z2 1 [1] = [kΛ1]

An (n ≥ 2) k Zn+1 Z2 [1] = [kΛ1]

Bn (n ≥ 2) k Z2 1 [1] = [kΛ1]

Cn (n ≥ 2) k Z2 1 [1] = [kΛn]

D4 k Z2 × Z2 S3 [s] = [kΛn−1], [c] = [kΛn]

D2n (n ≥ 3) k Z2 × Z2 Z2 [s] = [kΛn−1], [c] = [kΛn]

D2n+1 (n ≥ 2) k Z4 Z2 [s] = [kΛn−1]

E6 k Z3 Z2 [1] = [kΛ1]

E7 k Z2 1 [1] = [kΛ6]

E8 2 Z2 1 [1] = [Λ7]

E8 k 6= 2 1 1

F4 k 1 1

G2 k 1 1
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A.2. Glue codes of holomorphic VOAs of central charge 24. Let V be a holomor-

phic VOA of central charge 24 with 0 < rankV1 < 24. Let Out 1(V ) be the subgroup of

Out (V ) which preserves every simple ideal of V1 and set Out 2(V ) = Out (V )/Out 1(V ).

Then Out 2(V ) is the permutation group on the set of simple ideals of V1 induced from

Out (V ).

Let V1 =
⊕s

i=1 gi be the direct sum of simple ideals. Let Si(= Sgi) be the set of (the

isomorphism classes of) simple current Lĝi(ki, 0)-modules, where ki is the level of gi in V .

Then Si has an abelian group structure under the fusion product.

Let Sg =
∏s

i=1 Si be the direct product of the groups Si. We often view a simple

current 〈V1〉-module as an element of Sg via the map
⊗s

i=1M
i 7→ (M1, . . . ,Ms). Let

{1, 2, . . . , s} =
⋃

b∈B Ib be the partition such that gi ∼= gj if and only if i, j ∈ Ib for some

b ∈ B, where B is an index set. The automorphism group Aut (Sg) of Sg is defined to be

(
∏s

i=1 Γ(gi)) : (
∏

b∈BS|Ib|), where the symmetric group S|Ib| acts naturally on
∏

i∈Ib Si.

Let GV be the subgroup of Sg consisting of all (isomorphism classes of) simple current

〈V1〉-submodules of V , which we call the Glue code of V . The automorphism group

Aut (GV ) of GV is defined to be the subgroup of Aut (Sg) stabilizing GV . Let Aut 1(GV ) =

(
∏s

i=1 Γ(gi)) ∩ Aut (GV ) and Aut 2(GV ) = Aut (GV )/Aut 1(GV ). Then Aut 1(GV ) is the

subgroup of Aut (GV ) stabilizing every Si, and Aut 2(GV ) acts faithfully on {Si | 1 ≤ i ≤
s}, or {gi | 1 ≤ i ≤ s}, as a permutation group. Clearly Aut (V ) preserves Sg. Hence

Out i(V ) ⊂ Aut i(GV ) for i = 1, 2.

By using the generators of the glue codes GV in [Sc93], we can easily determine

Aut 1(GV ) and Aut 2(GV ) explicitly. We also determine the shapes of Out 1(V ) and

Out 2(V ); see Tables 26.

Table 26: Aut i(GV ) and Out i(V )

No. Genus g = V1 Aut 1(GV ) Out 1(V ) Aut 2(GV ) Out 2(V )

15 A A24
1,1 1 1 M24 M24

24 A12
2,1 Z2 Z2 M12 M12

30 A8
3,1 Z2 Z2 AGL3(2) AGL3(2)

37 A6
4,1 Z2 Z2 S5 S5

42 D6
4,1 Z3 Z3 S6 S6

43 A4
5,1D4,1 Z2 Z2 S4 S4

46 A4
6,1 Z2 Z2 A4 A4

49 A2
7,1D

2
5,1 Z2 Z2 Z2

2 Z2
2

51 A3
8,1 Z2 Z2 S3 S3

54 D4
6,1 1 1 S4 S4

55 A2
9,1D6,1 Z2 Z2 Z2 Z2
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58 E4
6,1 Z2 Z2 S4 S4

59 A11,1D7,1E6,1 Z2 Z2 1 1

60 A2
12,1 Z2 Z2 Z2 Z2

61 D3
8,1 1 1 S3 S3

63 A15,1A9,1 Z2 Z2 1 1

64 D10,1E
2
7,1 1 1 Z2 Z2

65 A17,1E7,1 1 1 1 1

66 D2
12,1 1 1 Z2 Z2

67 A24,1 Z2 Z2 1 1

68 E3
8,1 1 1 S3 S3

69 D16,1E8,1 1 1 1 1

70 D24,1 1 1 1 1

5 B A16
1,2 1 1 AGL4(2) AGL4(2)

16 A4
3,2A

4
1,1 Z2 Z2 Z4

2 : S3 Z4
2 : S3

25 D2
4,2C

4
2,1 1 1 S2 ×S4 S2 ×S4

26 A2
5,2C2,1A

2
2,1 Z2 Z2 S2 ×S2 S2 ×S2

31 D2
5,2A

2
3,1 Z2 Z2 S2 ×S2 S2 ×S2

33 A7,2C
2
3,1A3,1 Z2 Z2 S2 S2

38 C4
4,1 1 1 S4 S4

39 D6,2C4,1B
2
3,1 1 1 S2 S2

40 A9,2A4,1B3,1 Z2 Z2 1 1

44 E6,2C5,1A5,1 Z2 Z2 1 1

47 D8,2B
2
4,1 1 1 S2 S2

48 C2
6,1B4,1 1 1 S2 S2

50 D9,2A7,1 Z2 Z2 1 1

52 C8,1F
2
4,1 1 1 S2 S2

53 E7,2B5,1F4,1 1 1 1 1

56 C10,1B6,1 1 1 1 1

62 B8,1E8,2 1 1 1 1

6 C A6
2,3 Z2 1 S6 S6

17 A5,3D4,3A
3
1,1 Z2 1 S3 S3

27 A8,3A
2
2,1 Z2 1 S2 S2

32 E6,3G2,1
3 Z2 1 S3 S3

34 D7,3A3,1G2,1 Z2 1 1 1

45 E7,3A5,1 Z2 1 1 1

2 D A12
1,4 1 1 S12 M12

12 B6
2,2 1 1 S6 S5
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23 B4
3,2 1 1 S4 A4

29 B3
4,2 1 1 S3 S3

41 B2
6,2 1 1 S2 S2

57 B12,2 1 1 1 1

13 D4,4A
4
2,2 S3 × Z2 Z2 S4 S4

22 C4,2A
2
4,2 Z2 Z2 S2 S2

36 A8,2F4,2 Z2 Z2 1 1

7 E A3
3,4A1,2 Z3

2 Z2
2 S3 S3

18 A7,4A
3
1,1 Z2 1 Z2 Z2

19 D5,4C3,2A
2
1,1 Z2 1 Z2 Z2

28 E6,4A2,1B2,1 Z2 1 1 1

35 C7,2A3,1 Z2 1 1 1

9 F A2
4,5 Z2

2 Z2 S2 S2

20 D6,5A
2
1,1 1 1 S2 1

8 G A5,6B2,3A1,2 Z2 Z2 1 1

21 C5,3G2,2A1,1 1 1 1 1

11 H A6,7 Z2 1 1 1

10 I D5,8A1,2 Z2 1 1 1

3 J D4,12A2,6 S3 × Z2 S3 1 1

14 F4,6A2,2 Z2 1 1 1

4 K C4,10 1 1 1 1
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[Hö] G. Höhn, On the Genus of the Moonshine Module; arXiv:1708.05990.
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