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AUTOMORPHISM GROUPS, ISOMORPHIC TO GL(3, F2)9

OF COMPACT RIEMANN SURFACES
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Let X be a compact Riemann surface of genus g>2. The automorphism group
Aut(T) can be represented as a subgroup of GL(g, C), since elements of Aut(JQ act on
the g-dimensional module of abelian differentials of X. We denote the representation
by p: Aut(X)-+GL(g, C), and denote the image by p(AG; X) for a subgroup AG of
Aut(X). We have studied groups which are GL(g, C)-conjugate to p(AG; X) for some
X with fixed g and some AG. These groups are said to come from a Riemann surface
X (see Definition 1). In this connection, we have introduced the CY-, RH- and
iΐΎ-conditions (see Definitions 2, 3 and 5 in § 1). We saw in [6] that all groups which
satisfy the CY- and ^//-conditions come from Riemann surfaces except for two groups,
i.e., the dihedral group ^ 8 and the quaternion group =S8 in the case of g = 5. Recently,
on the other hand, Kimura [3], [4] studied which groups (isomorphic to ^ 8 , J 8 or
U5) come from Riemann surfaces for unspecified g (>2).

In this paper, we consider for unspecified g (>2) the CY- and ^//-conditions for
groups isomorphic to GL(3, F2) of 3 x 3 invertible matrices with entries in the field F2

with two elements. We take the group GL(3, F2) since it is the simple Hurwitz group
of the smallest order. We apply the character theory of groups and see that if
G (~GL(3, F2)) satisfies the CY- and ^//-conditions, then G comes from Riemann
surfaces except in very few cases. This phenomenon seems to be rooted in some structure
of groups although we cannot explicitly point out which.

1. Preliminaries.

DEFINITION 1 (cf. [5], [6]). A subgroup G<^GL(g, C) is said to come from a
compact Riemann surface of genus g, if there exist a compact Riemann surface of genus
g and a subgroup AG of Aut(Jf) such that p(AG; X) is GL(g, C)-conjugate to G.

DEFINITION 2 (cf. [5], [6]). GczGL(g, Q is said to satisfy the CΓ-condition if
every element of CΎ(G) = {Λ |̂nontrivial cyclic subgroup of G} comes from a compact
Riemann surface of genus g.

DEFINITION 3 (cf. [8]). Assume that G^GL{g, C) satisfies the /s-condition, i.e.,
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(Tr(σ) + Tr(σ~1)} is an integer for any σeG. For any HeCY(G) we set the following

terminology:

l/#G)Σ σ e G Tr(σ),

} for # = < σ > ,

H^κr#(K: G) (defined by descending condition)

) l

Here NG(H) means the normalizer of H in G. Then, we say that G satisfies the

^//-condition if G satisfies the is-condition and if l(H\ G) is a non-negative integer for

any ΉeCY{G).

DEFINITION 4 (cf. [8]). Assume that GczGL(#, C) satisfies the ^//-condition and

let {Hu , Hs} be a complete set of representatives of the G-conjugacy classes of

CY(G). The /?//-data RH(G) of G is defined as

lgQ(G\ #G; *Hl9- , *Hl9- , ##„• •

Here %Hi appears 1{H-X: G)-times (1 </<5 ).

REMARK 1 (cf. [8]). Assume that G^GL(g, C) satisfies the is-condition. Then we

have

2g-2 = W[2go(G)-2+ £ l(Ht: G)(l - l/*HJ] .
i = l

DEFINITION 5 (cf. [9]). Assume that G<^GL(g, C) satisfies the /?/f-condition and

let [g0, %G\mγ, ', mr~\ be the /?//-data of G. Then we can construct a Fuchsian group

Γ(G):

Γ(G) = ( α l s /Jl9- , αgo, />β0, y1?- , yr; Π 7, Π [«„ ft] = 1, 7 ? = ' • ' = 7 ^ = 1 >

We say that G satisfies the £Ύ-condition if there exists a surjective homomorphism

φ : Γ{G)-+G with *φ(γj) = mj (j= h , 0-

We remark here that 2go-2^Yj

r

j=1(\-\/mj)>0. See also [5], [11].

REMARK 2 (cf. [9], [10]). If GczGL(g, C) satisfies the £Ύ-condition, there exist

a compact Riemann surface X of genus g and an injective homomorphism: G->Aut(A").

Further, we have

£ £ j { | , } ^ / £
(u, m)= 1 m\ rtij

for σ (#σ = ra>2). Here m7- is the order of y} and ζm = Qxp(2πi/m). If there exists

a surjective homomorphism φ: Γ(G)^G such that

Tr σ — Tr p(σ; A") for every σ e G ,
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then we see that G comes from the compact Riemann surface X.

We shall give a necessary and sufficient condition for a finite cyclic group

Ha GL(g, C) to come from a compact Riemann surface of genus g. Under the notation

of [10], we have:

RESULT 1 (cf. [10]). Let χt be a character of a representation of H with χ x(l) > 2.

If there exists a normal rotation datum λ of H such that χx = 1 -\-χ(λ)ί, then there exist

a compact Riemann surface X and an injective homomorphism H—»Aut(Jf) such that

for every σ e H

We also have:

RESULT 2 (cf. [7]). Let A be an element of prime order n of GL(g, C). The

following two conditions are equivalent:

(1) There is a compact Riemann surface X of genus g and an automorphism σ

of X such that p(σ; X) is conjugate to A.

(2) There are s (>0) integers v l5 , vs which are prime to n such that

s

Tr^4 = 1 + £ C7(l — C«0 (Trace formula of Eichler).
i = l

2. The fundamental properties of GX(3, F2). We consider the group GL(3, F2),

which is known to be the unique simple group of order 168. The following facts are

well known.

FACT 2.1 (cf. [13]). GL(3, F2) has no subgroups of order 28, 42, 56 or 84.

FACT 2.2 (cf. [13]). Maximal subgroups of GL(3, F2) are of orders 21 and 24.

Throughout this section, we denote by a, b and c elements of order 2, 3 and 4,

respectively, and we denote by dx and d2 elements of order 7 whose traces are 0 and

1, respectively.

FACT 2.3 (cf. [1]). GL(3, F2) has the following generators and relations:

For example,

/ I 0 1\ /I 0 0\ /I 0 1\

a = i 0 1 0 j , * = ί 1 . 1 1 j , d=i 0 0 1 I.
\0 0 1/ \0 1 0/ M 1 0/

For example,
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f. [12])
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0
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has the
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- 1
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•
/
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1

α
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_ ]
0

1

Here the second row shows the representatives of conjugacy classes of GL(3, F2).
We know that if dbelongs to the class dl9 then d3, d5 and d6 belong to the class d2. Fur-
ther,

ά = ( - l _ v Π 7 " ) / 2 , α = ( _ i + v A 3 7 ) / 2 and α = C7 + ζ7

2 + C7

4.

We shall show some simple properties of GL(3, F2).

PROPOSITION 2.1. GL(3,/r

2) = {[x,^]|x,jGGL(3, F2)}.

PROOF. It is sufficient to consider representatives of conjugacy classes of GL(3, F2)
since we have the relation:

g

for0eGL(3,F2).
(1) order 2. Put

o
0

1

Then we have

la,bj = a-1b-1ab =

Hence [α, b~] is of order 2.
(2) order 3. Put
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0

0

1

Then we have

Ic,d2-] = c

Hence [c, d2~\ is of order 3.
(3) order 4. Put

/0 0

dA\ o
\0 1

Then we have

Hence [ί/l5 a] is of order 4.
(4) order 7 of trace 0. Put

Then we have

1
1

\

/°
= 0

Vl

(\
1

0

1

0

0
1

1

0

1
1

1

1 0\ /I 0

0 1 1, c2 = ί 1 0
1 0 / Vθ 1

Hence [cu c2] is of order 7 and Tr[c l 9 c2] = 0.
(5) order 7 of trace 1. Put

Then we have

/ i

Vo

0
0

1

°\1
1

/ i
c 2 = 0

Vo

1

0

1

0
1

0
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, ! I" ' '\
" 2 ' 2 ' 2 Vi i o/

Hence [c l 9 c 2] is of order 7 and Tr[c 1 ? c2] = \. q.e.d.

We get easily the following:

PROPOSITION 2.2.

(1) Neither dx d2 nor d2 - dx can be of order 2.

(2) Neither d1 d2 nor d2 -dx can be of order 1, except when d2 is a power of dx.

(3) Neither dx d[ nor d2-d2 can be of order 4. Here, dt and d[ (i= 1, 2) belong to

the same conjugacy class.

(4) If C'c' is of order 2, then c = c'.

PROPOSITION 2.3. There exist x and y in GL(3, F2) such that

with [x, y] having order 3, 4 or 7. However there do not exist x, y such that

<x? yy = GL(3, F2) with [x, y~] having order 2.

PROOF. In the cases of order 3, order 4 and order 7, we see that the x and y in

Proposition 2.1 are generators of GL(3, F2) by considering Fact 2.1 and Fact 2.2. We

shall prove the case #[x, y] = 2, where we denote by # the order of an element.

1. Id, x] = d~~ 1x~1dx. Since x~ ιdx and d~1 belong to different conjugacy classes,

Id, x] cannot be of order 2 by Proposition 2.2, (1).

2. Assume that #[c, ά] = 2. By Proposition 2.2, (4), we see that a~1ca = c~1. Put

S = c and T= a. Then S*=T2 = (ST)2 = E, which define the group ^ 8 of order 8 (cf. [2]).

3. Assume that #[c, b~] = 2. By Proposition 2.2, (4), we see that b~1cb = c~1, and

(cb)2 = b2. Hence #(cb) = 3 or #(cb) = 6. This is absurd since GL(3, F2) has no element

of order 6 and cφe.

4. Assume that #[c, c'~\ = 2. By Proposition 2.2, (4), we see that c'~1cc' = c~1. Put

S = c, T=c'. Then S4=T* = E, T~ιST=S-\ which define the group <2, 2|4; 2> of

order 16 (cf. [2]).

5. Assume that #[^ 1 ? Z? 2 ]=2. Assume that #b1b2 = 2 or #&j~162 = 2. Put S = b1,

T=b2. Then 5 3 = T3 = (ST)2 = E, which define the group U 4. Assume that

the group (3, 313, 3) of order 27. Assume that %bφ2 = 4. We have U2b1 = # ( * 2 * i ) " 1 = 4

since b1b2^b2b1. From #[&!, &2] = 2, we see by Proposition 2.2, (4) that {bφ^Y 1=b1b2.

Hence bx=b\ and so <Z?1? b2} cannot be GL(3, F2). Assume that #6 j ^
1 6 2 =4. Then we

see that §bγb2

 1=4. From ^[b^, ^ 2 ] = 2, we see that ^[b^1, b2~\ = 2. Hence by Proposition

2.2, (4) we have b1=b2. This is absurd. Assume that %b1b2 = Ί. Similarly as above, we

see that b2b1~b1b2 and in this case (^2Z?1)"1 is not conjugate to b1b2. So [Z>1? b2~\ cannot
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be of order 2 by Proposition 2.2, (1). In the case %b^xb2 = Ί, we have the same result.

Thus, all cases have been checked.

6. Assume that # [ M ] = 2 . If #ba = 3, put S=(ba)-\ T=b. Then, S3 = T3 =

(ST)2 = E, which define the group U4. If %ba = 2, put S=b, T=a. Then, S3 =

T2 = (ST)2 = E, which define the group S 3 . If %ba = A, put S=ba, T=a. Then, S* =

T2 = (ST)3 = E, which define the group S 4 . If %ba = Ί, we see that b~1a~1~(ba)~ι.

On the other hand (ba)'1 is not conjugate to ba. Hence [&, α] cannot be of order 2 by

Proposition 2.2, (1).

7. Assume that #[a1,a2] = 2. Then («1^2)
4 = e. Put S = aίa2, T=a1. Then,

S 4 = τ2 = (ST)2 = £, which define the group ®8. q.e.d.

3. Automorphism groups of Riemann surfaces. Let G be a finite subgroup of

GL(g, C) with a fixed isomorphism i: GL(3, F2)-+G. We denote the images of <2, b, c,

^ and ί/2 under i by A, B, C, D1 and Z>2, respectively. Throughout this section we

keep this notation.

PROPOSITION 3.1. Let χG be the character of the natural representation

G->GL(g, C) and let χG = nίχ1 + . . . +n6χ6 («j£Z>0, /= 1,..., 6) be the decomposition

into irreducible characters ofχG. Then G satisfies the CY- and RH-conditions if and only

ifrii's satisfy the following five relations:

(1) « 2 + « 3 - « 4 > 0 ,

(2) \-{n^n5-n6)>0,

(3) 1 — (w! + « 2 + « 3 — ΛZ5) > 0,

(4) p = {\ —n1+2n2 — n3+n4. — n6)/3 is a non-negative integer,

(5) q = (\—n1—n2 + 2n3+n4. — n6)/3 is a non-negative integer.

PROOF. The "only if" part is trivial. We shall prove the "if" part. First, we shall

show that G satisfies the /^//-condition. To see this, it is sufficient to consider <v4>,

<2?>, <C> and <Z>>. Here <Z>> is a cyclic subgroup of order 7. We see that

2 2 : G)

Hence by considering [NG((A}): <Λ>] = 4, we see that

/(04>:G) = «2 + «3-« 4 .

Similarly,

l«B):G)=l-(n1+n5-n6),

/

For /«/)>: G) we have
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and [N G «Z>»: <Z)>] = 3. Hence we see that

G) (22

By assumption, all /'s are non-negative integers. Thus G satisfies the ^//-condition. We

denote l((A}: G) by l(A) and so on.

Second, we shall show that G satisfies the CΎ-condition. To see this it is sufficient

to consider <£>, <C> and <Z)>.

As for </?>, weseethatχG(5) = «1 +n5— n6. Puts = 2 — 2χG(B). Putv x = =vs/2= 1,

vs/2 + ί = = vs = 2 in the trace formula. Then we have

r r 2

Hence <5> comes from a compact Riemann surface of genus g by Result 2.

As for <C>, since its order is not prime, we use Result 1. (See [9] for notation

and terminology.) Result 1 works well for the case <i?> proved above. Define a rotation

datum λc of <C> as follows:

C2^(2-2(n1-n2-n3+2n4-n5))λ21

Then Red λc is given by

I c, c3^>

and

/(C, λc) = 2 — 2(n1 +n2-\-n3 —

We see that λc is a normal rotation datum, since we have

and
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RecU c (C 2 )

Hence we see that

+ /ι3-;ι4)

)I and = 1 +χ(λ A)1 .

Thus <C> and <Λ> come from a compact Riemann surface of genus g by Result 1.
As for <£>> ( = <!>!», if we put

Vi = =vp= 1 , vp+1= - = v 2 p = 2 , v 2 p + 1 = =v3p = 4 ,
V 3 p + 1 = ' " ' = V 3 p + ^ = 3 , 5

then we have, with ( = C7,

Hence </)> comes from a compact Riemann surface of genus g by Result 2.
Thus we see that G satisfies the CΎ-condition. q.e.d.

The conditions in Proposition 3.1 are rewritten as follows:

Here we note that
(i) go(G) = nu

(ii) g = nγ + 3n2 + 3« 3 + 6« 4 + 7« 5 + 8« 6 > 2.
N o w we recall the Fuchsian group Γ(G), considered in § 1 . We rewrite Γ(G) as

follows:

Γ(G) = <α 1 ? / ? ! , . . . , αΠ l, /?Π1, y 1 ? . . ., y i M ), δ l 9 . . ., δm, εu . . . , β l (C), ηl9..., ηp, ξu . . ., ^

Π y M Λ Π { . Π f e /»J = i' y'=*l=<=^=K = 1 >
We wish to find out which groups come from Riemann surfaces by means of the

5-tuple (I(A), l(B), l(C),p, q). For this purpose we use the following lemma:

REDUCTION LEMMA. For an arbitrary element Ξ of GL(3, F2) and any positive
integer N, there exist Ξί9 ..., ΞN which are GL(3, F2)-conjugate to Ξ such that Ξ =
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PROOF. If #Ξ= 1, there is nothing to prove. Assume that #Ξ = 2. We have

/ I

sJo
Vo

0
1

0

1\
0

\>
w°; Vo

1
1

0

*\ /o V
1/ ̂

M
0

^0

1
1

0

0
0

1

If N=O (mod2), put Ξu Ξ2 to be the first, the second matrices on the right hand

side and put Ξ3= = ΞN = Ξ2. Then we have

If N= 1 (mod 2), it is sufficient to set Ξ = Ξ1 = = S N . In the cases #Ξ = 3, 4 and
7, the proofs are similar. q.e.d

Let P = (rι,..., r5) and Q = (su . . . , s5). P\Q means that r f >j f (/= 1,..., 5) and
that if Γj>Sj for some j , then ^ >0. We say Q to be minimal if Q is one of the last ones
through operations of the reduction.

REMARK. By the Reduction Lemma, we see that, for example,
(1) (3, 2, 0, 0, 0)\(2, 2, 0, 0, 0),
(2) (2, 3, 0, 0, 0)χ(2, 2, 0, 0, 0),
(3) (l,0,4,0,0)X(l,0,3,0,0),
(4) (3, 0, 0, 0, 2)X(3, 0, 0, 0, 1).
Indeed, we can find Ξ[9 Ξr

2, Ξ'3 so that Ξ[=Ξ1, Ξ2Ξ3 = Ξ2, in (1). The proofs of
(2), (3) and (4) are similar to (1).

PROPOSITION 3.2. Assume thai n1>2. If G satisfies the CY- and RH-conditions,
then G comes from a Riemann surface.

PROOF. We shall construct a sujective homomorphism φ: Γ(G)^G as follows:

γj^A(j=l, ..,l(A))9 δk-+BU=U. ,l(B)), ε ^ C 0 = 1,...,/(C)),

ηm^D1 (m=\, ...,/?), ξn^D2 (n=\,...,q).

Here X, Y are elements of GL(3, F2) so that GL(3, F2) = (X, Y} and U, V are
elements of GL(3, F2) so that [ί/, K] = [X ^ " ' { Π ^ Π ^ Π ^ Π ^ m Π ^ } " 1 - τ h e s e a r e

possible by Fact 2.3 and by Proposition 2.1.
Now, we shall prove the GL(g, C)-conjugacy of the group. It is sufficient'to check

for A, B, C and Du D2.

_ 1

- 1 }
l-(-l)

-1

i-(-i)
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Indeed, we see that both #{ } are 8 from the character table in §2. Hence

= Ίrp(A; X) .

KB) r

73 ' J J 1 - C 3

KB) i r2

We see that both #{ } are 3 from the character table in §2. Hence Tr(B) =

Trp(B X).

For the Trp(C; X), ΎrpiD^ X) and Tr p(D2; X), the proofs are similar. So we

can omit them. q.e.d.

PROPOSITION 3.3. Assume thai n1 = \. If G satisfies the CY- and RH-conditions,

then G comes from a Riemann surface except in the case of the 5-tuple (1, 0, 0, 0, 0).

PROOF. It is sufficient to consider the following 5-tuples.

(1)
(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
(10)

l(A)
1

0

0

0

0

1

2

0

0

0

KB)
0

1

0

0

0

0

0

0

0

0

l(C)
0

0

1

0

0

1

0

0

0

0

P
0

0

0

1

0

0

0

1

2

0

q
0

0

0

0

1

0

0

1

0

2

Except in (1), we can define homomorphisms φ easily. For the GL(g, C)-conjugacy

of the group, the proof is similar to Proposition 3.2. q.e.d.

REMARK. We have a Riemann surface for (2, 0, 0, 0, 0).

PROPOSITION 3.4. Assume that nx=0. Considering (*) we get a table of minimal 5

tuples'.

[I]

[Π]

/(

(1)

(1)

[A) l(B) l(C
1 1 1

1 1 1

-) P
1

1

q
1

0
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(2)
(3)
(4)
(5)

[III] (1-a)
(1-b)
(1-c)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

[IV] (1-a)
(1-b)
(1-c)
(2-a)
(2-b)
(2-c)
(3-a)
(3-b)
(4-a)
(4-b)
(5-a)
(5-b)
(6-a)
(6-b)
(7-a)
(7-b)
(8-a)
(8-b)
(9-a)
(9-b)
(10-a)
(10-b)

[V] (1)
(2)
(3)

1
1
1
0
2

0
0
0
0
4
2
1
4
2
1
3
3
1
1
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0

1
1
0
1
1
2
1
1
1
0
0
0
1
1
1
0
1
2
3
0
0
0
0
0
0
0
2
1
2
2
1
1
0
0
0
0
0
0
0
4
0

1
0
1
1
1
1
2
0
0
1
1
0
1
1
0
1
0
0
0
1
2
3
0
0
0
0
1
2
0
0
0
0
2
2
1
1
0
0
0
0
3

0
1
1
1
0
0
0
1
0
1
0
1
1
0
1
1
0
0
0
0
0
0
1
0
2
0
0
0
1
0
2
0
1
0
2
0
2
1
0
0
0

1
1
1
1
0
0
0
0
1
0

0
0
0
0
0
0
0
1
0
2
0
0
0
1
0
2
0
1
0
2
1
2
0
0
0
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(4)
(5)

0
0

0
0

0
0

3
0

0
3

In the above table, some of them are easily induced from the other. Let us denote
P [-» Q when Q is induced from P. That is;

[I](l) H» [Π](l) by considering DX-D\ = D\.
[II](2) h-» [Π](l) by considering the inverse.
[Π](3), (4), (5) H> [IΠ](3), (4), (7) respectively, by DX D\ = D\.
[IΠ](3), (5), (8) H* [IΠ](2), (4), (7) respectively, by considering the inverse of

each member.
[IV](3-b), (4-b), (6-b), (7-b), (8-b), (9-b), (10-b) h~ [IV](3-a), (4-a), (6-a), (7-a),

(8-a), (9-a), (10-a) respectively, by considering the inverse of each member.
[V](5) h-» [V](4), by considering the inverse.
We see that [III](6), [IV](9-a) and (10-a) cannot come from Riemann surfaces by

Proposition 2.2, (1), (3) and (2). We see also that [IV](9-b) and [IV](10-b) cannot come
from Riemann surfaces. Indeed, we see that [IV](9-b) H> [IV](9-a) and [IV](10-
b) h-» [IV](10-a). However, the following five cases come from Riemann surfaces as we
can see in the proof of the next Theorem:

(1) (2,0,0,1,1), (1,0,0,2,1).
(2) (0,0,2,2,0), (0,0,1,3,0).
(3) (0,0,0,2,2), (0,0,0,3,1).
Thus we have determined all cases which do not come from Riemann surfaces.

We shall express this fact in terms of (w l 5 . . . , n6) in (*), because it is more directly
related to the group G.

THEOREM. Assume that G satisfies the CY- and RH-conditions. If G does not come
from a Riemann surface of genus g then (w1? . . . , n6) is equal to one of the following:

(1) (1,1,1,1,2,2) (g = 43),
(2) (0,1,1,1,1,0) (0=19),
(3) (0,2,0,2,2,1) (0 = 40),
(4) (0,0,2,2,2,1) (of = 40),
(5) (0,2,1,3,2,1) (3 = 49),
(6) (0,1,2,3,2,1) (0 = 49).

PROOF. By Propositions 3.2, 3.3 and 3.4 it is sufficient to prove that the reduced
members in Proposition 3.4 come from Riemann surfaces except in the five cases (2)-
(6). Further, the surjectivity is easy to show and so we shall show only the relation.
Here, for example, in [II](1) we mean A B C D = E and {A, B, C, £>> = GL(3, F2).

[II] (1) A= 0 1 0 , B= 0 1 0 , C =
0
0
1

1
1

1

1
0

1

0
1

0

1
0

0

1
0
1
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(1-c)

(2)

/I 0 0\ /O 0 1\

(4) A= 0 1 0 , C= 1 0 1 ,

Vi o l / Vo i i /

/I 0 OX , 1 1 IX

(7) 5 = 1 0 0 1 , C=( 1 0 1 j ,

Vo l i / Vi l o/

/O 1 0\ /O 0 1\

(9) B= 1 1 1 , D= 1 0 1 ,

Vo o l / Vo l o /

/O 1 1\ /O 0 1\

(10) C=i 1 0 1 j , D = ( 1 0 1 j ,
Vl 1 1 / Vθ 1 0 / M 0 1
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(2-c)

, 0 .
1 0 '

/0 1 0
(3-a) Put Au A2, A3 as in (1-a) and put Dι = ( 0 1 1

Vl 0 1
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(4-a)

(5-a)

(5-b) In (5-a), put Bu Cι=B1B2 and C2 = B2

iB1.

1 0 Ox /0 0 1

(6-a) Bi=( 0 0 1 ), B2 = [ 0 1 0

0 1

(7-a)

(8-a)

[V] (1) A1 = A6 = l 0

We see easily what we stated just before the Theorem.

(1) (2, 0, 0, 1, 1) H - (0, 0, 1, 1, 1); (1, 0, 0, 2, 1) ι— (1, 1, 0, 0, 1).

(2) (0, 0, 2, 2, 0) H» (0, 1, 0, 2, 0); (0, 0, 1, 3, 0) h^ (0, 1,1,1, 0).

(3) (0, 0, 0, 2, 2) h^ (0, 1, 0, 2, 0); (0, 0, 0, 3, 1) h^ (0, 1, 0, 1, 1).

Finally, for the GL(g, C)-conjugacy of the groups the proof is the same as that of

Proposition 3.2. q.e.d.
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