AUTOMORPHISM GROUPS, ISOMORPHIC TO $G L\left(3, F_{2}\right)$, OF COMPACT RIEMANN SURFACES

Akikazu Kuribayashi and Hideyuki Kimura*

(Received May 19, 1990 and revised December 21, 1990)

Let X be a compact Riemann surface of genus $g \geq 2$. The automorphism group $\operatorname{Aut}(X)$ can be represented as a subgroup of $G L(g, C)$, since elements of $\operatorname{Aut}(X)$ act on the g-dimensional module of abelian differentials of X. We denote the representation by $\rho: \operatorname{Aut}(X) \rightarrow G L(g, C)$, and denote the image by $\rho(A G ; X)$ for a subgroup $A G$ of $\operatorname{Aut}(X)$. We have studied groups which are $G L(g, C)$-conjugate to $\rho(A G ; X)$ for some X with fixed g and some $A G$. These groups are said to come from a Riemann surface X (see Definition 1). In this connection, we have introduced the $C Y$-, $R H$ - and $E X$-conditions (see Definitions 2, 3 and 5 in §1). We saw in [6] that all groups which satisfy the $C Y$ - and $R H$-conditions come from Riemann surfaces except for two groups, i.e., the dihedral group \mathscr{D}_{8} and the quaternion group $\mathscr{2}_{8}$ in the case of $g=5$. Recently, on the other hand, Kimura [3], [4] studied which groups (isomorphic to $\mathscr{D}_{8}, \mathscr{Q}_{8}$ or \mathfrak{u}_{5}) come from Riemann surfaces for unspecified $g(\geq 2)$.

In this paper, we consider for unspecified $g(\geq 2)$ the $C Y$ - and $R H$-conditions for groups isomorphic to $G L\left(3, F_{2}\right)$ of 3×3 invertible matrices with entries in the field \boldsymbol{F}_{2} with two elements. We take the group $G L\left(3, F_{2}\right)$ since it is the simple Hurwitz group of the smallest order. We apply the character theory of groups and see that if $G\left(\simeq G L\left(3, F_{2}\right)\right)$ satisfies the $C Y$ - and $R H$-conditions, then G comes from Riemann surfaces except in very few cases. This phenomenon seems to be rooted in some structure of groups although we cannot explicitly point out which.

1. Preliminaries.

Definition 1 (cf. [5], [6]). A subgroup $G \subset G L(g, C)$ is said to come from a compact Riemann surface of genus g, if there exist a compact Riemann surface of genus g and a subgroup $A G$ of $\operatorname{Aut}(X)$ such that $\rho(A G ; X)$ is $G L(g, C)$-conjugate to G.

Definition 2 (cf. [5], [6]). $G \subset G L(g, C)$ is said to satisfy the $C Y$-condition if every element of $C Y(G)=\{K \mid$ nontrivial cyclic subgroup of $G\}$ comes from a compact Riemann surface of genus g.

Definition 3 (cf. [8]). Assume that $G \subset G L(g, C)$ satisfies the E-condition, i.e.,

[^0]$\left\{\operatorname{Tr}(\sigma)+\operatorname{Tr}\left(\sigma^{-1}\right)\right\}$ is an integer for any $\sigma \in G$. For any $H \in C Y(G)$ we set the following terminology:
\[

$$
\begin{aligned}
& g_{0}(G)=(1 / \# G) \sum_{\sigma \in G} \operatorname{Tr}(\sigma), \\
& r(H)=2-\left\{\operatorname{Tr}(\sigma)+\operatorname{Tr}\left(\sigma^{-1}\right)\right\} \quad \text { for } \quad H=\langle\sigma\rangle, \\
& r_{*}(H: G)=r(H)-\sum_{K \in C Y(G), H \text { ¢K }} r_{*}(K: G) \quad \text { (defined by descending condition) } \\
& l(H: G)=r_{*}(H: G) /\left[N_{G}(H): H\right] .
\end{aligned}
$$
\]

Here $N_{G}(H)$ means the normalizer of H in G. Then, we say that G satisfies the $R H$-condition if G satisfies the E-condition and if $l(H: G)$ is a non-negative integer for any $H \in C Y(G)$.

Definition 4 (cf. [8]). Assume that $G \subset G L(g, C)$ satisfies the $R H$-condition and let $\left\{H_{1}, \cdots, H_{s}\right\}$ be a complete set of representatives of the G-conjugacy classes of $C Y(G)$. The $R H$-data $R H(G)$ of G is defined as

$$
R H(G)=\left[g_{0}(G), \# G ; \# H_{1}, \cdots, \# H_{1}, \cdots, \# H_{s}, \cdots, \# H_{s}\right] .
$$

Here $\# H_{i}$ appears $l\left(H_{i}: G\right)$-times $(1 \leq i \leq s)$.
Remark 1 (cf. [8]). Assume that $G \subset G L(g, C)$ satisfies the E-condition. Then we have

$$
2 g-2=\# G\left[2 g_{0}(G)-2+\sum_{i=1}^{s} l\left(H_{i}: G\right)\left(1-1 / \# H_{i}\right)\right] .
$$

Definition 5 (cf. [9]). Assume that $G \subset G L(g, C)$ satisfies the $R H$-condition and let $\left[g_{0}, \# G ; m_{1}, \cdots, m_{r}\right]$ be the $R H$-data of G. Then we can construct a Fuchsian group $\Gamma(G)$:

$$
\Gamma(G)=\left\langle\alpha_{1}, \beta_{1}, \cdots, \alpha_{g_{0}}, \beta_{g_{0}}, \gamma_{1}, \cdots, \gamma_{r} ; \prod_{j=1}^{r} \gamma_{j} \prod_{i=1}^{g_{0}}\left[\alpha_{i}, \beta_{i}\right]=1, \gamma_{1}^{m_{1}}=\cdots=\gamma_{r}^{m_{r}}=1\right\rangle .
$$

We say that G satisfies the $E X$-condition if there exists a surjective homomorphism $\varphi: \Gamma(G) \rightarrow G$ with $\# \varphi\left(\gamma_{j}\right)=m_{j}(j=1, \ldots, r)$.

We remark here that $2 g_{0}-2+\sum_{j=1}^{r}\left(1-1 / m_{j}\right)>0$. See also [5], [11].
Remark 2 (cf. [9], [10]). If $G \subset G L(g, C)$ satisfies the $E X$-condition, there exist a compact Riemann surface X of genus g and an injective homomorphism : $G \rightarrow \operatorname{Aut}(X)$. Further, we have

$$
\operatorname{Tr} \rho(\sigma ; X)=1+\sum_{(u, m)=1} \sum_{m \mid m_{j}}\left(1 / m_{j}\right) \#\left\{\alpha \in G \mid \sigma=\alpha \varphi\left(\gamma_{j}\right)^{u m_{j} / m} \alpha^{-1}\right\} \zeta_{m}^{u} /\left(1-\zeta_{m}^{u}\right)
$$

for $\sigma(\# \sigma=m \geq 2)$. Here m_{j} is the order of γ_{j} and $\zeta_{m}=\exp (2 \pi i / m)$. If there exists a surjective homomorphism $\varphi: \Gamma(G) \rightarrow G$ such that

$$
\operatorname{Tr} \sigma=\operatorname{Tr} \rho(\sigma ; X) \quad \text { for every } \quad \sigma \in G,
$$

then we see that G comes from the compact Riemann surface X.
We shall give a necessary and sufficient condition for a finite cyclic group $H \subset G L(g, C)$ to come from a compact Riemann surface of genus g. Under the notation of [10], we have:

Result 1 (cf. [10]). Let χ_{1} be a character of a representation of H with $\chi_{1}(1) \geq 2$. If there exists a normal rotation datum λ of H such that $\chi_{1}=1+\chi(\lambda)_{1}$, then there exist a compact Riemann surface X and an injective homomorphism $H \rightarrow \operatorname{Aut}(X)$ such that for every $\sigma \in H$

$$
\chi_{1}(\sigma)=\operatorname{Tr} \rho(\sigma ; X) .
$$

We also have:
Result 2 (cf. [7]). Let A be an element of prime order n of $G L(g, C)$. The following two conditions are equivalent:
(1) There is a compact Riemann surface X of genus g and an automorphism σ of X such that $\rho(\sigma ; X)$ is conjugate to A.
(2) There are $s(\geq 0)$ integers v_{1}, \cdots, v_{s} which are prime to n such that

$$
\operatorname{Tr} A=1+\sum_{i=1}^{s} \zeta_{n}^{v_{i}} /\left(1-\zeta_{n}^{v_{i}}\right) \quad \text { (Trace formula of Eichler) }
$$

2. The fundamental properties of $G L\left(3, \boldsymbol{F}_{2}\right)$. We consider the group $G L\left(3, \boldsymbol{F}_{2}\right)$, which is known to be the unique simple group of order 168. The following facts are well known.

FACT 2.1 (cf. [13]). $G L\left(3, \boldsymbol{F}_{2}\right)$ has no subgroups of order $28,42,56$ or 84.
FACt 2.2 (cf. [13]). Maximal subgroups of $G L\left(3, F_{2}\right)$ are of orders 21 and 24.
Throughout this section, we denote by a, b and c elements of order 2,3 and 4, respectively, and we denote by d_{1} and d_{2} elements of order 7 whose traces are 0 and 1 , respectively.

FACT 2.3 (cf. [1]). $\quad G L\left(3, F_{2}\right)$ has the following generators and relations:
(1) $a^{2}=b^{3}=d^{7}=a b d=(d b a)^{4}=e$.

For example,

$$
a=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad b=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right), \quad d=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) .
$$

(2) $b_{1}^{3}=b_{2}^{3}=\left(b_{1} b_{2}\right)^{4}=\left(b_{1}^{-1} b_{2}\right)^{4}=e$.

For example,

$$
b_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right), \quad b_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

FACT 2.4 (cf. [12]). $\quad G L\left(3, \boldsymbol{F}_{2}\right)$ has the following character table:

$\|C\|$	168	8	3	4	7	7
	e	a	b	c	d_{1}	d_{2}
χ_{1}	1	1	1	1	1	1
χ_{2}	3	-1	0	1	α	$\bar{\alpha}$
χ_{3}	3	-1	0	1	$\bar{\alpha}$	α
χ_{4}	6	2	0	0	-1	-1
χ_{5}	7	-1	1	-1	0	0
χ_{6}	8	0	-1	0	1	1

Here the second row shows the representatives of conjugacy classes of $G L\left(3, \boldsymbol{F}_{2}\right)$. We know that if d belongs to the class d_{1}, then d^{3}, d^{5} and d^{6} belong to the class d_{2}. Further,

$$
\bar{\alpha}=(-1-\sqrt{-7}) / 2, \quad \alpha=(-1+\sqrt{-7}) / 2 \quad \text { and } \quad \alpha=\zeta_{7}+\zeta_{7}^{2}+\zeta_{7}^{4} .
$$

We shall show some simple properties of $G L\left(3, F_{2}\right)$.
Proposition 2.1. $G L\left(3, \boldsymbol{F}_{2}\right)=\left\{[x, y] \mid x, y \in G L\left(3, \boldsymbol{F}_{2}\right)\right\}$.
Proof. It is sufficient to consider representatives of conjugacy classes of $G L\left(3, \boldsymbol{F}_{2}\right)$ since we have the relation:

$$
g^{-1}[x, y] g=\left[g^{-1} x g, g^{-1} y g\right]
$$

for $g \in G L\left(3, F_{2}\right)$.
(1) order 2. Put

$$
a=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad b=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Then we have

$$
[a, b]=a^{-1} b^{-1} a b=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Hence $[a, b]$ is of order 2.
(2) order 3. Put

$$
c=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad d_{2}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Then we have

$$
\left[c, d_{2}\right]=c^{-1} d_{2}^{-1} c d_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Hence $\left[c, d_{2}\right]$ is of order 3 .
(3) order 4. Put

$$
d_{1}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad a=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then we have

$$
\left[d_{1}, a\right]=d_{1}^{-1} a^{-1} d_{1} a=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) .
$$

Hence $\left[d_{1}, a\right]$ is of order 4.
(4) order 7 of trace 0 . Put

$$
c_{1}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad c_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Then we have

$$
\left[c_{1}, c_{2}\right]=c_{1}^{-1} c_{2}^{-1} c_{1} c_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) .
$$

Hence $\left[c_{1}, c_{2}\right]$ is of order 7 and $\operatorname{Tr}\left[c_{1}, c_{2}\right]=0$.
(5) order 7 of trace 1. Put

$$
c_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad c_{2}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

Then we have

$$
\left[c_{1}, c_{2}\right]=c_{1}^{-1} c_{2}^{-1} c_{1} c_{2}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

Hence $\left[c_{1}, c_{2}\right]$ is of order 7 and $\operatorname{Tr}\left[c_{1}, c_{2}\right]=1$.
q.e.d.

We get easily the following:
Proposition 2.2.
(1) Neither $d_{1} \cdot d_{2}$ nor $d_{2} \cdot d_{1}$ can be of order 2 .
(2) Neither $d_{1} \cdot d_{2}$ nor $d_{2} \cdot d_{1}$ can be of order 7 , except when d_{2} is a power of d_{1}.
(3) Neither $d_{1} \cdot d_{1}^{\prime}$ nor $d_{2} \cdot d_{2}^{\prime}$ can be of order 4 . Here, d_{i} and $d_{i}^{\prime}(i=1,2)$ belong to the same conjugacy class.
(4) If $c \cdot c^{\prime}$ is of order 2 , then $c=c^{\prime}$.

Proposition 2.3. There exist x and y in $G L\left(3, F_{2}\right)$ such that

$$
G L\left(3, \boldsymbol{F}_{2}\right)=\langle x, y\rangle
$$

with $[x, y]$ having order 3, 4 or 7. However there do not exist x, y such that $\langle x, y\rangle=G L\left(3, F_{2}\right)$ with $[x, y]$ having order 2.

Proof. In the cases of order 3, order 4 and order 7, we see that the x and y in Proposition 2.1 are generators of $G L\left(3, \boldsymbol{F}_{2}\right)$ by considering Fact 2.1 and Fact 2.2. We shall prove the case $\#[x, y]=2$, where we denote by $\#$ the order of an element.

1. $[d, x]=d^{-1} x^{-1} d x$. Since $x^{-1} d x$ and d^{-1} belong to different conjugacy classes, $[d, x]$ cannot be of order 2 by Proposition 2.2, (1).
2. Assume that $\#[c, a]=2$. By Proposition 2.2, (4), we see that $a^{-1} c a=c^{-1}$. Put $S=c$ and $T=a$. Then $S^{4}=T^{2}=(S T)^{2}=E$, which define the group \mathscr{D}_{8} of order 8 (cf. [2]).
3. Assume that $\#[c, b]=2$. By Proposition 2.2, (4), we see that $b^{-1} c b=c^{-1}$, and $(c b)^{2}=b^{2}$. Hence $\#(c b)=3$ or $\#(c b)=6$. This is absurd since $G L\left(3, \boldsymbol{F}_{2}\right)$ has no element of order 6 and $c \neq e$.
4. Assume that $\#\left[c, c^{\prime}\right]=2$. By Proposition 2.2, (4), we see that $c^{\prime-1} c c^{\prime}=c^{-1}$. Put $S=c, T=c^{\prime}$. Then $S^{4}=T^{4}=E, T^{-1} S T=S^{-1}$, which define the group $\langle 2,2 \mid 4 ; 2\rangle$ of order 16 (cf. [2]).
5. Assume that $\#\left[b_{1}, b_{2}\right]=2$. Assume that $\# b_{1} b_{2}=2$ or $\# b_{1}^{-1} b_{2}=2$. Put $S=b_{1}$, $T=b_{2}$. Then $S^{3}=T^{3}=(S T)^{2}=E$, which define the group \mathfrak{U}_{4}. Assume that $\# b_{1} b_{2}=\# b_{1}^{-1} b_{2}=3$. Put $S=b_{1}, T=b_{2}$. Then $S^{3}=T^{3}=(S T)^{3}=\left(S^{-1} T\right)^{3}=E$, which define the group $(3,3 \mid 3,3)$ of order 27. Assume that $\# b_{1} b_{2}=4$. We have $\# b_{2} b_{1}=\#\left(b_{2} b_{1}\right)^{-1}=4$ since $b_{1} b_{2} \sim b_{2} b_{1}$. From \# $\left[b_{1}, b_{2}\right]=2$, we see by Proposition 2.2, (4) that $\left(b_{2} b_{1}\right)^{-1}=b_{1} b_{2}$. Hence $b_{1}=b_{2}^{2}$ and so $\left\langle b_{1}, b_{2}\right\rangle$ cannot be $G L\left(3, \boldsymbol{F}_{2}\right)$. Assume that $\# b_{1}^{-1} b_{2}=4$. Then we see that $\# b_{1} b_{2}^{-1}=4$. From $\#\left[b_{1}, b_{2}\right]=2$, we see that $\#\left[b_{1}^{-1}, b_{2}\right]=2$. Hence by Proposition 2.2, (4) we have $b_{1}=b_{2}$. This is absurd. Assume that $\# b_{1} b_{2}=7$. Similarly as above, we see that $b_{2} b_{1} \sim b_{1} b_{2}$ and in this case $\left(b_{2} b_{1}\right)^{-1}$ is not conjugate to $b_{1} b_{2}$. So $\left[b_{1}, b_{2}\right]$ cannot
be of order 2 by Proposition 2.2, (1). In the case $\# b_{1}^{-1} b_{2}=7$, we have the same result. Thus, all cases have been checked.
6. Assume that $\#[b, a]=2$. If $\# b a=3$, put $S=(b a)^{-1}, T=b$. Then, $S^{3}=T^{3}=$ $(S T)^{2}=E$, which define the group \mathfrak{U}_{4}. If $\# b a=2$, put $S=b, T=a$. Then, $S^{3}=$ $T^{2}=(S T)^{2}=E$, which define the group \mathfrak{G}_{3}. If $\# b a=4$, put $S=b a, T=a$. Then, $S^{4}=$ $T^{2}=(S T)^{3}=E$, which define the group \mathfrak{S}_{4}. If $\# b a=7$, we see that $b^{-1} a^{-1} \sim(b a)^{-1}$. On the other hand $(b a)^{-1}$ is not conjugate to $b a$. Hence $[b, a]$ cannot be of order 2 by Proposition 2.2, (1).
7. Assume that $\#\left[a_{1}, a_{2}\right]=2$. Then $\left(a_{1} a_{2}\right)^{4}=e$. Put $S=a_{1} a_{2}, T=a_{1}$. Then, $S^{4}=T^{2}=(S T)^{2}=E$, which define the group \mathscr{D}_{8}. q.e.d.
8. Automorphism groups of Riemann surfaces. Let G be a finite subgroup of $G L(g, C)$ with a fixed isomorphism $t: G L\left(3, F_{2}\right) \rightarrow G$. We denote the images of a, b, c, d_{1} and d_{2} under \imath by A, B, C, D_{1} and D_{2}, respectively. Throughout this section we keep this notation.

Proposition 3.1. Let χ_{G} be the character of the natural representation $G \rightarrow G L(g, C)$ and let $\chi_{G}=n_{1} \chi_{1}+\ldots+n_{6} \chi_{6}\left(n_{i} \in Z_{\geq 0}, i=1, \ldots, 6\right)$ be the decomposition into irreducible characters of χ_{G}. Then G satisfies the $C Y$ - and $R H$-conditions if and only if n_{i} 's satisfy the following five relations:
(1) $n_{2}+n_{3}-n_{4} \geq 0$,
(2) $1-\left(n_{1}+n_{5}-n_{6}\right) \geq 0$,
(3) $1-\left(n_{1}+n_{2}+n_{3}-n_{5}\right) \geq 0$,
(4) $p=\left(1-n_{1}+2 n_{2}-n_{3}+n_{4}-n_{6}\right) / 3$ is a non-negative integer,
(5) $\quad q=\left(1-n_{1}-n_{2}+2 n_{3}+n_{4}-n_{6}\right) / 3$ is a non-negative integer.

Proof. The "only if" part is trivial. We shall prove the "if" part. First, we shall show that G satisfies the $R H$-condition. To see this, it is sufficient to consider $\langle A\rangle$, $\langle B\rangle,\langle C\rangle$ and $\langle D\rangle$. Here $\langle D\rangle$ is a cyclic subgroup of order 7. We see that

$$
\begin{aligned}
r_{*}\left(\left\langle C^{2}\right\rangle: G\right) & =r\left(\left\langle C^{2}\right\rangle\right)-r_{*}(\langle C\rangle: G) \\
& =\left\{2-2\left(n_{1}-n_{2}-n_{3}+2 n_{4}-n_{5}\right)\right\}-\left\{2-2\left(n_{1}+n_{2}+n_{3}-n_{5}\right)\right\} \\
& =4\left(n_{2}+n_{3}-n_{4}\right) .
\end{aligned}
$$

Hence by considering $\left[N_{G}(\langle A\rangle):\langle A\rangle\right]=4$, we see that

$$
l(\langle A\rangle: G)=n_{2}+n_{3}-n_{4} .
$$

Similarly,

$$
\begin{gathered}
l(\langle B\rangle: G)=1-\left(n_{1}+n_{5}-n_{6}\right), \\
l(\langle C\rangle: G)=1-\left(n_{1}+n_{2}+n_{3}-n_{5}\right) .
\end{gathered}
$$

For $l(\langle D\rangle: G)$ we have

$$
\begin{aligned}
r_{*}(\langle D\rangle: G) & =2-\left(\chi_{G}\left(D_{1}\right)+\chi_{G}\left(D_{1}^{-1}\right)\right) \\
& =2-2\left(n_{1}-\frac{n_{2}}{2}-\frac{n_{3}}{2}-n_{4}+n_{6}\right)
\end{aligned}
$$

and $\left[N_{G}(\langle D\rangle):\langle D\rangle\right]=3$. Hence we see that

$$
l(\langle D\rangle: G)=\frac{1}{3}\left(2-2 n_{1}+n_{2}+n_{3}+2 n_{4}-2 n_{6}\right)=p+q .
$$

By assumption, all l's are non-negative integers. Thus G satisfies the $R H$-condition. We denote $l(\langle A\rangle: G)$ by $l(A)$ and so on.

Second, we shall show that G satisfies the $C Y$-condition. To see this it is sufficient to consider $\langle B\rangle,\langle C\rangle$ and $\langle D\rangle$.

As for $\langle B\rangle$, we see that $\chi_{G}(B)=n_{1}+n_{5}-n_{6}$. Put $s=2-2 \chi_{G}(B)$. Put $v_{1}=\cdots=v_{s / 2}=1$, $v_{s / 2+1}=\cdots=v_{s}=2$ in the trace formula. Then we have

$$
\operatorname{Tr}(B)=1+\left\{1-\left(n_{1}+n_{5}-n_{6}\right)\right\} \cdot\left(\frac{\zeta_{3}}{1-\zeta_{3}}+\frac{\zeta_{3}^{2}}{1-\zeta_{3}^{2}}\right)
$$

Hence $\langle B\rangle$ comes from a compact Riemann surface of genus g by Result 2 .
As for $\langle C\rangle$, since its order is not prime, we use Result 1. (See [9] for notation and terminology.) Result 1 works well for the case $\langle B\rangle$ proved above. Define a rotation datum λ_{c} of $\langle C\rangle$ as follows:

$$
\left\{\begin{array}{l}
C, C^{3} \rightarrow\left(1-\left(n_{1}+n_{2}+n_{3}-n_{5}\right)\right)\left(\lambda_{41}+\lambda_{43}\right) \\
C^{2} \rightarrow\left(2-2\left(n_{1}-n_{2}-n_{3}+2 n_{4}-n_{5}\right)\right) \lambda_{21} \\
E \rightarrow(2-2 g) \lambda_{11} .
\end{array}\right.
$$

Then Red λ_{C} is given by

$$
\left\{\begin{array}{l}
C, C^{3} \rightarrow \lambda_{c}(C) \\
C^{2} \rightarrow 4\left(n_{2}+n_{3}-n_{4}\right) \lambda_{21}
\end{array}\right.
$$

and

$$
l\left(C, \lambda_{c}\right)=2-2\left(n_{1}+n_{2}+n_{3}-n_{5}\right), \quad l\left(C^{2}, \lambda_{c}\right)=2\left(n_{2}+n_{3}-n_{4}\right) .
$$

We see that λ_{c} is a normal rotation datum, since we have

$$
\frac{\operatorname{Red} \lambda_{c}(C)}{[\langle C\rangle:\langle C\rangle]}=\frac{l\left(C, \lambda_{c}\right)}{2}\left(\lambda_{41}+\lambda_{43}\right)
$$

and

$$
\frac{\operatorname{Red} \lambda_{c}\left(C^{2}\right)}{\left[\langle C\rangle:\left\langle C^{2}\right\rangle\right]}=\frac{4\left(n_{2}+n_{3}-n_{4}\right)}{2} \lambda_{21}=l\left(C^{2}, \lambda_{c}\right) \lambda_{21}
$$

Hence we see that

$$
\left.\chi_{G}\right|_{\langle c\rangle}=1+\chi\left(\lambda_{c}\right)_{1} \quad \text { and }\left.\quad \chi_{G}\right|_{\langle A\rangle}=1+\chi\left(\lambda_{A}\right)_{1} .
$$

Thus $\langle C\rangle$ and $\langle A\rangle$ come from a compact Riemann surface of genus g by Result 1 .
As for $\langle D\rangle\left(=\left\langle D_{1}\right\rangle\right)$, if we put

$$
\begin{aligned}
& v_{1}=\cdots=v_{p}=1, \quad v_{p+1}=\cdots=v_{2 p}=2, \quad v_{2 p+1}=\cdots=v_{3 p}=4, \\
& v_{3 p+1}=\cdots=v_{3 p+q}=3, \quad v_{3 p+q+1}=\cdots=v_{3 p+2 q}=5, \\
& v_{3 p+2 q+1}=\cdots=v_{3 p+3 q}=6,
\end{aligned}
$$

then we have, with $\zeta=\zeta_{7}$,

$$
\operatorname{Tr} D_{1}=1+p\left(\frac{\zeta}{1-\zeta}+\frac{\zeta^{2}}{1-\zeta^{2}}+\frac{\zeta^{4}}{1-\zeta^{4}}\right)+q\left(\frac{\zeta^{3}}{1-\zeta^{3}}+\frac{\zeta^{5}}{1-\zeta^{5}}+\frac{\zeta^{6}}{1-\zeta^{6}}\right)
$$

Hence $\langle D\rangle$ comes from a compact Riemann surface of genus g by Result 2 .
Thus we see that G satisfies the $C Y$-condition.
q.e.d.

The conditions in Proposition 3.1 are rewritten as follows:

$$
(*)\left\{\begin{array}{l}
n_{2}=l(A)+l(B)+l(C)+2 p+q-3+3 n_{1}, \\
n_{3}=l(A)+l(B)+l(C)+p+2 q-3+3 n_{1}, \\
n_{4}=l(A)+2 l(B)+2 l(C)+3 p+3 q-6+6 n_{1}, \\
n_{5}=2 l(A)+2 l(B)+3 l(C)+3 p+3 q-7+7 n_{1}, \\
n_{6}=2 l(A)+3 l(B)+3 l(C)+3 p+3 q-8+8 n_{1} .
\end{array}\right.
$$

Here we note that
(i) $g_{0}(G)=n_{1}$,
(ii) $g=n_{1}+3 n_{2}+3 n_{3}+6 n_{4}+7 n_{5}+8 n_{6} \geq 2$.

Now we recall the Fuchsian group $\Gamma(G)$, considered in $\S 1$. We rewrite $\Gamma(G)$ as follows:

$$
\begin{gathered}
\Gamma(G)=\left\langle\alpha_{1}, \beta_{1}, \ldots, \alpha_{n_{1}}, \beta_{n_{1}}, \gamma_{1}, \ldots, \gamma_{l(A)}, \delta_{1}, \ldots, \delta_{l(B)}, \varepsilon_{1}, \ldots, \varepsilon_{l(C)}, \eta_{1}, \ldots, \eta_{p}, \xi_{1}, \ldots, \xi_{q} ;\right. \\
\left.\prod \gamma_{j} \prod \delta_{k} \prod \varepsilon_{l} \prod \eta_{m} \prod \xi_{n} \prod\left[\alpha_{i}, \beta_{i}\right]=1, \gamma_{j}^{2}=\delta_{k}^{3}=\varepsilon_{l}^{4}=\eta_{m}^{7}=\xi_{n}^{7}=1\right\rangle .
\end{gathered}
$$

We wish to find out which groups come from Riemann surfaces by means of the 5 -tuple $(l(A), l(B), l(C), p, q)$. For this purpose we use the following lemma:

Reduction Lemma. For an arbitrary element Ξ of $G L\left(3, \boldsymbol{F}_{2}\right)$ and any positive integer N, there exist Ξ_{1}, \ldots, Ξ_{N} which are $G L\left(3, F_{2}\right)$-conjugate to Ξ such that $\Xi=$ $\Xi_{1} \cdots \Xi_{N}$.

Proof. If $\# \Xi=1$, there is nothing to prove. Assume that $\# \Xi=2$. We have

$$
\Xi=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

If $N \equiv 0(\bmod 2)$, put Ξ_{1}, Ξ_{2} to be the first, the second matrices on the right hand side and put $\Xi_{3}=\cdots=\Xi_{N}=\Xi_{2}$. Then we have

$$
\Xi=\Xi_{1} \Xi_{2} \Xi_{3} \cdots \Xi_{N}
$$

If $N \equiv 1(\bmod 2)$, it is sufficient to set $\Xi=\Xi_{1}=\cdots=\Xi_{N}$. In the cases $\# \Xi=3,4$ and 7 , the proofs are similar.
q.e.d

Let $P=\left(r_{1}, \ldots, r_{5}\right)$ and $Q=\left(s_{1}, \ldots, s_{5}\right) . P \backslash Q$ means that $r_{i} \geq s_{i}(i=1, \ldots, 5)$ and that if $r_{j}>s_{j}$ for some j, then $s_{j}>0$. We say Q to be minimal if Q is one of the last ones through operations of the reduction.

Remark. By the Reduction Lemma, we see that, for example,
(1) $(3,2,0,0,0)\rangle_{\star}(2,2,0,0,0)$,
(2) $(2,3,0,0,0) \searrow_{\searrow}(2,2,0,0,0)$,
(3) $(1,0,4,0,0) \backslash(1,0,3,0,0)$,
(4) $(3,0,0,0,2)\rangle_{\searrow}(3,0,0,0,1)$.

Indeed, we can find $\Xi_{1}^{\prime}, \Xi_{2}^{\prime}, \Xi_{3}^{\prime}$ so that $\Xi_{1}^{\prime}=\Xi_{1}, \Xi_{2}^{\prime} \Xi_{3}^{\prime}=\Xi_{2}$, in (1). The proofs of (2), (3) and (4) are similar to (1).

Proposition 3.2. Assume that $n_{1} \geq 2$. If G satisfies the $C Y$ - and $R H$-conditions, then G comes from a Riemann surface.

Proof. We shall construct a sujective homomorphism $\varphi: \Gamma(G) \rightarrow G$ as follows:

$$
\begin{aligned}
& \alpha_{1} \rightarrow X, \quad \beta_{1} \rightarrow Y, \quad \alpha_{2} \rightarrow U, \quad \beta_{2} \rightarrow V, \quad \alpha_{i}, \beta_{i} \rightarrow E\left(i=3, \ldots, n_{1}\right), \\
& \gamma_{j} \rightarrow A(j=1, \ldots, l(A)), \quad \delta_{k} \rightarrow B(j=1, \ldots, l(B)), \quad \varepsilon_{l} \rightarrow C(j=1, \ldots, l(C)), \\
& \eta_{m} \rightarrow D_{1}(m=1, \ldots, p), \quad \xi_{n} \rightarrow D_{2}(n=1, \ldots, q) .
\end{aligned}
$$

Here X, Y are elements of $G L\left(3, \boldsymbol{F}_{2}\right)$ so that $G L\left(3, \boldsymbol{F}_{2}\right)=\langle X, Y\rangle$ and U, V are elements of $G L\left(3, \boldsymbol{F}_{2}\right)$ so that $[U, V]=[X, Y]^{-1}\left\{\prod \gamma_{j} \prod \delta_{k} \prod \varepsilon_{l} \prod \eta_{m} \prod \xi_{n}\right\}^{-1}$. These are possible by Fact 2.3 and by Proposition 2.1.

Now, we shall prove the $G L(g, C)$-conjugacy of the group. It is sufficient to check for A, B, C and D_{1}, D_{2}.

$$
\begin{aligned}
\operatorname{Tr} \rho(A ; X)= & 1+\sum_{j}^{l(A)} \frac{1}{2} \#\left\{\alpha \in G \mid A=\alpha \varphi\left(\gamma_{j}\right) \alpha^{-1}\right\} \frac{-1}{1-(-1)} \\
& +\sum_{j}^{l(C)} \frac{1}{4} \#\left\{\alpha \in G \mid A=\alpha \varphi\left(\gamma_{j}\right)^{2} \alpha^{-1}\right\} \frac{-1}{1-(-1)}
\end{aligned}
$$

$$
=1-2 l(A)-l(C)=n_{1}-n_{2}-n_{3}+2 n_{4}-n_{5}=\chi_{G}(A) .
$$

Indeed, we see that both $\#\{\cdots\}$ are 8 from the character table in $\S 2$. Hence $\operatorname{Tr}(A)=\operatorname{Tr} \rho(A ; X)$.

$$
\begin{aligned}
\operatorname{Tr} \rho(B ; X)= & 1+\sum_{j}^{l(B)} \frac{1}{3} \#\left\{\alpha \in G \mid B=\alpha \varphi\left(\gamma_{j}\right) \alpha^{-1}\right\} \frac{\zeta_{3}}{1-\zeta_{3}} \\
& +\sum_{j}^{l(B)} \frac{1}{3} \#\left\{\alpha \in G \mid B=\alpha \varphi\left(\gamma_{j}\right)^{2} \alpha^{-1}\right\} \frac{\zeta_{3}^{2}}{1-\zeta_{3}^{2}} \\
= & 1-l(B)=n_{1}+n_{5}-n_{6}=\chi_{G}(B) .
\end{aligned}
$$

We see that both $\#\{\cdots\}$ are 3 from the character table in $\S 2$. Hence $\operatorname{Tr}(B)=$ $\operatorname{Tr} \rho(B ; X)$.

For the $\operatorname{Tr} \rho(C ; X), \operatorname{Tr} \rho\left(D_{1} ; X\right)$ and $\operatorname{Tr} \rho\left(D_{2} ; X\right)$, the proofs are similar. So we can omit them.

Proposition 3.3. Assume that $n_{1}=1$. If G satisfies the $C Y$ - and $R H$-conditions, then G comes from a Riemann surface except in the case of the 5 -tuple $(1,0,0,0,0)$.

Proof. It is sufficient to consider the following 5-tuples.

	$l(A)$	$l(B)$	$l(C)$	p	q
(1)	1	0	0	0	0
(2)	0	1	0	0	0
(3)	0	0	1	0	0
(4)	0	0	0	1	0
(5)	0	0	0	0	1
(6)	1	0	1	0	0
(7)	2	0	0	0	0
(8)	0	0	0	1	1
(9)	0	0	0	2	0
(10)	0	0	0	0	2

Except in (1), we can define homomorphisms φ easily. For the $G L(g, \boldsymbol{C})$-conjugacy of the group, the proof is similar to Proposition 3.2.

Remark. We have a Riemann surface for ($2,0,0,0,0$).
Proposition 3.4. Assume that $n_{1}=0$. Considering (*) we get a table of minimal 5 tuples:

		$l(A)$	$l(B)$	$l(C)$	p	q
$[\mathrm{I}]$	(1)	1	1	1	1	1
$[\mathrm{II}]$	(1)	1	1	1	1	0

(2)	1	1	1	0	1
(3)	1	1	0	1	1
(4)	1	0	1	1	1
(5)	0	1	1	1	1
[III] (1-a)	2	1	1	0	0
(1-b)	1	2	1	0	0
(1-c)	1	1	2	0	0
(2)	1	1	0	1	0
(3)	1	1	0	0	1
(4)	1	0	1	1	0
(5)	1	0	1	0	1
(6)	1	0	0	1	1
(7)	0	1	1	1	0
(8)	0	1	1	0	1
(9)	0	I	0	1	1
(10)	0	0	1	1	1
[IV] (1-a)	4	1	0	0	0
(1-b)	2	2	0	0	0
(1-c)	1	3	0	0	0
(2-a)	4	0	1	0	0
(2-b)	2	0	2	0	0
(2-c)	1	0	3	0	0
(3-a)	3	0	0	1	0
(3-b)	3	0	0	0	1
(4-a)	1	0	0	2	0
(4-b)	1	0	0	0	2
(5-a)	0	2	1	0	0
(5-b)	0	1	2	0	0
(6-a)	0	2	0	1	0
(6-b)	0	2	0	0	1
(7-a)	0	1	0	2	0
(7-b)	0	1	0	0	2
(8-a)	0	0	2	1	0
(8-b)	0	0	2	0	1
(9-a)		0	1	2	0
(9-b)	0	0	1	0	2
(10-a)	0	0	0	2	1
(10-b)	0	0	0	1	2
[V] (1)	6	0	0	0	0
(2)	0	4	0	0	0
(3)	0	0	3	0	0

(4)	0	0	0	3	0
(5)	0	0	0	0	3

In the above table, some of them are easily induced from the other. Let us denote $P \mapsto Q$ when Q is induced from P. That is;
$[\mathrm{I}](1) \mapsto[\mathrm{II}](1)$ by considering $D_{1} \cdot D_{1}^{3}=D_{1}^{4}$.
$[\mathrm{II}](2) \mapsto[\mathrm{II}](1)$ by considering the inverse.
$[\mathrm{II}](3),(4),(5) \mapsto[\mathrm{III}](3)$, (4), (7) respectively, by $D_{1} \cdot D_{1}^{3}=D_{1}^{4}$.
[III](3), (5), (8) $\mapsto[I I I](2),(4),(7)$ respectively, by considering the inverse of each member.
[IV](3-b), (4-b), (6-b), (7-b), (8-b), (9-b), (10-b) $\mapsto[I V](3-a), ~(4-a), ~(6-a), ~(7-a)$, $(8-a),(9-a),(10-a)$ respectively, by considering the inverse of each member.
$[\mathrm{V}](5) \mapsto[\mathrm{V}](4)$, by considering the inverse.
We see that [III](6), [IV](9-a) and (10-a) cannot come from Riemann surfaces by Proposition 2.2, (1), (3) and (2). We see also that [IV](9-b) and [IV](10-b) cannot come from Riemann surfaces. Indeed, we see that [IV](9-b) $\mapsto[$ IV](9-a) and [IV](10b) $\mapsto[$ IV] $(10-\mathrm{a})$. However, the following five cases come from Riemann surfaces as we can see in the proof of the next Theorem:
(1) $(2,0,0,1,1),(1,0,0,2,1)$.
(2) $(0,0,2,2,0),(0,0,1,3,0)$.
(3) $(0,0,0,2,2),(0,0,0,3,1)$.

Thus we have determined all cases which do not come from Riemann surfaces. We shall express this fact in terms of (n_{1}, \ldots, n_{6}) in (*), because it is more directly related to the group G.

Theorem. Assume that G satisfies the $C Y$ - and $R H$-conditions. If G does not come from a Riemann surface of genus g then $\left(n_{1}, \ldots, n_{6}\right)$ is equal to one of the following:

(1)	$(1,1,1,1,2,2)$	$(g=43)$,
(2)	$(0,1,1,1,1,0)$	$(g=19)$,
(3)	$(0,2,0,2,2,1)$	$(g=40)$,
(4)	$(0,0,2,2,2,1)$	$(g=40)$,
(5)	$(0,2,1,3,2,1)$	$(g=49)$,
(6)	$(0,1,2,3,2,1)$	$(g=49)$.

Proof. By Propositions 3.2, 3.3 and 3.4 it is sufficient to prove that the reduced members in Proposition 3.4 come from Riemann surfaces except in the five cases (2)(6). Further, the surjectivity is easy to show and so we shall show only the relation. Here, for example, in [II](1) we mean $A \cdot B \cdot C \cdot D=E$ and $\langle A, B, C, D\rangle=G L\left(3, F_{2}\right)$.

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \tag{II}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right), \quad C=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right),
$$

$$
D=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

[III](1-a) $A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right), \quad A^{\prime}=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right), \quad B=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$,

$$
C=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

(1-b) $\quad A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right), \quad B=B^{\prime}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right), \quad C=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right)$.
(1-c) $\quad A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right), \quad B=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0\end{array}\right), \quad C=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$,

$$
C^{\prime}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

(2) $\quad A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad B=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right), \quad D=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$.
(4) $\quad A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right), \quad C=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right), \quad D=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$.
(7) $\quad B=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right), \quad C=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right), \quad D=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$.
(9) $\quad B=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1\end{array}\right), \quad D=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \quad D^{\prime}=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right)$.
(10)

$$
C=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right), \quad D=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad D^{\prime}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) .
$$

$[\mathrm{IV}](1-\mathrm{a}) \quad A_{1}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right), \quad A_{3}=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right)$,
$A_{4}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \quad B=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$.
(1-b) $A_{1}=A_{2}=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad B_{1}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), \quad B_{2}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$.
(1-c) $\quad A_{1}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \quad B_{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right), \quad B_{2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)$,
$B_{3}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.
(2-a) $\quad A_{1}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad A_{2}=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right), \quad A_{3}=A_{4}=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right)$. $C=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$.
(2-b) $\quad A_{1}=A_{2}=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right), \quad C=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right), \quad C^{\prime}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)$.
(2-c) $\quad A_{1}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad C_{1}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \quad C_{2}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$,

$$
C_{3}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

(3-a) Put A_{1}, A_{2}, A_{3} as in (1-a) and put $D_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$.
(4-a) $\quad A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right), \quad D_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0\end{array}\right), \quad D_{1}^{\prime}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.
(5-a) $\quad B_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right), \quad B_{2}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), \quad C=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)$.
(5-b) In (5-a), put $B_{1}, C_{1}=B_{1} B_{2}$ and $C_{2}=B_{2}^{-1} B_{1}$.
(6-a) $\quad B_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right), \quad B_{2}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right), \quad D_{1}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0\end{array}\right)$.
(7-a) $\quad B=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right), \quad D_{1} \doteq\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right), \quad D_{1}^{\prime}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
(8-a) $\quad C_{1}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0\end{array}\right), \quad C_{2}=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \quad D_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$.
[V] (1) $A_{1}=A_{6}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \quad A_{2}=A_{5}=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right), \quad A_{3}=A_{4}=\left(\begin{array}{lll}0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0\end{array}\right)$.
(2) $\quad B_{1}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1\end{array}\right), \quad B_{2}=B_{1}^{-1}, \quad B_{3}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), \quad B_{4}=B_{3}^{-1}$.
(3) $\quad C_{1}=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \quad C_{2}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right), \quad C_{3}=\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$.
(4) $\quad D_{1}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \quad D_{1}^{\prime}=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1\end{array}\right), \quad D_{1}^{\prime \prime}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.

We see easily what we stated just before the Theorem.
(1) $(2,0,0,1,1) \mapsto(0,0,1,1,1) ;(1,0,0,2,1) \mapsto(1,1,0,0,1)$.
(2) $\quad(0,0,2,2,0) \mapsto(0,1,0,2,0) ;(0,0,1,3,0) \mapsto(0,1,1,1,0)$.
(3) $(0,0,0,2,2) \mapsto(0,1,0,2,0) ;(0,0,0,3,1) \mapsto(0,1,0,1,1)$.

Finally, for the $G L(g, C)$-conjugacy of the groups the proof is the same as that of Proposition 3.2.
q.e.d.

References

[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985.
[2] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, Springer Verlag, Berlin, Heidelberg, New York, 1972.
[3] H. Kimura, On automorphism groups of compact Riemann surfaces with prescribed group structure-The cases of D_{8} and Q_{8}-, to appear.
[4] H. Kimura, On F-data of automorphism groups of compact Riemann surfaces-The case of A_{5}-, to appear in Kodai Math. J.
[5] A. Kuribayashi and H. Kimura, On automorphism groups of compact Riemann surfaces, Saitama Math. J. 6 (1989), 9-17.
[6] A. Kuribayashi and H. Kimura, Automorphism groups of compact Riemann surfaces of genus five, J. Algebra 134 (1990), 80-103.
[7] I. Kuribayashi, On automorphisms of prime order of a Riemann surface, Manuscripta Math. 44 (1983), 103-108.
[8] I. Kuribayashi, On an algebraization of the Riemann-Hurwitz relation, Kodai Math. J. 7 (1984), 222-237.
[9] I. Kuribayashi, Classification of automorphism groups of compact Riemann surfaces of genus two, preprint, University of Tsukuba (1986), 25-39.
[10] I. Kuribayashi, On automorphism groups of a curve as linear groups, J. Math. Soc. Japan 39 (1987), 51-77.
[11] J. Lehner, Discontinuous groups and automorphic functions, Amer. Math. Soc, 1964.
[12] B. H. Matzat, Konstruktive Galoistheorie, Lecture Notes in Math. 1284 (1984) Springer-Verlag, Berlin, Heidelberg, New York, 1984.
[13] M. Weinstein, Examples of Groups, Polygonal Publishing House, Passaic, NJ 07055, 1977.

Department of Mathematics
Chuo University
Tokyo 112
Japan

Tokyo Institute of Technology
Department of Mathematics
Tokyo 152
Japan

[^0]: * Supported by the Fellowships for Japanese Junior Scientists of the Japan Society for the Promotion of Science.

