AUTOMORPHISM GROUPS OF FINITE SUBGROUPS OF DIVISION RINGS

R. J. FAUDREE

If a finite group G can be embedded in the multiplicative group of a division ring, then G can be embedded in a division ring D generated by G such that any automorphism of G can be uniquely extended to be an automorphism of D. It seems natural then to investigate the relation between the automorphism group of G and the automorphism group of D.

We will prove that the automorphism group of G determines the automorphism group of D modulo the inner-automorphism group of D (i.e. every automorphism of D can be written as a product of an inner-automorphism of D and an automorphism of G). The automorphism group of G does not completely determine the automorphism group of D for the rational quaternions contain an isomorphic copy of Q_s , the quaternion group of order 8. There are infinitely many automorphisms of the rational quaternions but the automorphism group of Q_s is finite.

Amitsur determined which finite groups can be embedded in a division ring [2]. We will use his conditions, but first some definitions will be given and certain algebraic structures will be discussed.

Let m and r be relatively prime integers, s = (r - 1, m) t = m/sand n =minimal integer satisfying $r^n \equiv 1 \pmod{m}$.

$$G_{m,r} = Gp(A, B \mid A^m = 1, BAB^{-1} = A^r, B^n = A^t)$$
.

 \mathfrak{T} , \mathfrak{O} , and \mathfrak{F} will denote the binary tetrahedral, binary octahedral and binary icosahedral groups.

If ε_m is a primitive m^{th} root of unity and σ_r is the automorphism of $Q(\varepsilon_m)$ determined by the map $\varepsilon_m \to \varepsilon_m^r$, then

$$\mathfrak{A}_{m,r} = (Q(\varepsilon_m), \, \sigma_r, \, \varepsilon_m^t)$$

will denote the cyclic algebra determined by the field $Q(\varepsilon_m)$, the automorphism σ_r and the element ε_m^t . The map $A \to \varepsilon_m$ and $B \to \sigma_r$ determines an isomorphic embedding of $G_{m,r}$ into the algebra $\mathfrak{A}_{m,r}$. Under this identification we have

$$\mathfrak{A}_{m,r} = (Q(A), B, A^t)$$
.

The algebra $\mathfrak{A}_{m,r}$ is a division algebra if and only if $G_{m,r}$ can be embedded in a division ring [2]. The following diagram gives some subalgebras of $\mathfrak{A}_{m,r}$ which will be of importance in this paper. Here $Z_{m,r}$ denotes the center of $\mathfrak{A}_{m,r}$.

For a discussion of the algebra $\mathfrak{A}_{m,r}$ and a proof of the following proposition see [2].

PROPOSITION 1. A finite group G can be embedded in a division ring if and only if G is isomorphic to one of the following:

(1) Cyclic group

(2) $G_{m,r}$ where m and r satisfy condition C.

(3) A direct product of \mathfrak{T} and $G_{m,r}$ where $G_{m,r}$ is cyclic of order m or of the preceding type, $(6, |G_{m,r}|) = 1$, and 2 has odd order (mod m).

(4) \mathfrak{O} and \mathfrak{J} .

Additional notation must be given before condition C can be stated. Let p be a fixed prime dividing m. $\alpha = \alpha_p$ is the highest power of p dividing m η_p is the minimal integer satisfying $r^{\eta_p} \equiv 1 \mod (mp^{-\alpha})$. μ_p is the minimal integer satisfying $r^{\mu_p} \equiv p^{\mu'} \mod (mp^{-\alpha})$ some integer μ' . $\delta'_p = \mu_p \delta_p / \eta_p$.

Condition C. Integers m and r satisfy condition C if either (I) (n, t) = (s, t) = 1

or (II) $n = 2n', m = 2^{\alpha}m', s = 2s'$ where $\alpha \ge 2, m', s'$, and n' are odd integers; (n, t) = (s, t) = 2 and $r \equiv -1 \mod 2^{\alpha}$.

and either (III) n = s = 2 and $r \equiv -1 \mod m$

or (IV) For every $q \mid n$ there exists a prime $p \mid m$ such that $q \nmid \eta_p$ and that either

(1) $p \neq 2$ and $(q, (p^{\delta'_p} - 1)/s) = 1$ or

(2) p = q = 2, II holds and $n/4 \equiv \delta'_2 \equiv 1 \pmod{2}$.

A group G has property E if G can be embedded in the multiplicative group of a division ring, property EE if G can be embedded in some division ring D generated by G such that any automorphism of G can be extended uniquely to D, and property EEE if the automorphism group of G determines the automorphism group of D modulo the inner-automorphism group of D.

A relation between the above properties is given by

PROPOSITION 2. A finite group with property E has property EE. For a proof see [3].

We will prove

THEOREM. A finite group with property E has property EEE.

In the remaining discussion G will denote a finite group with property E, A(G) will denote the group of automorphisms of G, and I(G) will denote the group of inner-automorphisms of G. If G has property EE with respect to a division ring D, then $I_D^*(G)$ will denote the subgroup of elements of A(G) which can be extended to an innerautomorphism of D. A(D) and I(D) will denote the automorphism group and inner-automorphism group of D respectively. Z(G) and Z(D) will denote the center of G and D respectively.

A slightly stronger statement than Proposition 2 is true. A finite group with property E has property E with respect to a division ring D of characteristic 0 which is uniquely determined up to isomorphism and G has property EE with respect to D, [2] and [3]. Thus A(G)can be considered as a subgroup of A(D). Since D is uniquely determined up to isomorphism, $I_D^*(G)$ does not depend upon D and $I_D^*(G)$ can be replaced by $I^*(G)$. It is easily seen that A(G) determines A(D) modulo I(D) if and only if $[A(G): I_D(G)] = [A(D): I(D)]$.

We will break the proof of the Theorem into 9 lemmas.

LEMMA 1. All finite cyclic groups G have property EEE.

Proof. Assume G has order m. Let ε_m be a primitive m^{th} root of unity. Each automorphism of the field $Q(\varepsilon_m)$ is determined by the map $\varepsilon_m \to \varepsilon_m^r$ where (r, m) = 1. Each of these maps also determines an automorphism of the cyclic group (ε_m) .

LEMMA 2. The groups \mathfrak{O} and \mathfrak{F} have property EEE.

Proof. \mathfrak{O} can be embedded in $\mathfrak{A}_{8,-1}$ [2, Th. 6b]. $|A(\mathfrak{O})| = 48$, and $|I(\mathfrak{O})| = 24$ and there is an automorphism of \mathfrak{O} which can be extended to $\mathfrak{A}_{8,-1}$ and which does not leave $Z(\mathfrak{A}_{8,-1})$ elements-wise fixed [3, Lemma 3]. Therefore $[A(\mathfrak{O}): I^*(\mathfrak{O})] = 2$. But $[A(\mathfrak{A}_{8,-1}): I(\mathfrak{A}_{8,-1})] =$ $[Z(\mathfrak{A}_{8,-1}): \Delta]$ where Δ is the fixed field of $A(\mathfrak{A}_{8,-1})$ [5, p. 163]. $[Z(\mathfrak{A}_{8,-1}): Q] = 2$, thus

$$[A(\mathfrak{A}_{8,-1}):I(\mathfrak{A}_{8,-1})] = 2 = [A(\mathfrak{O}):I^*(\mathfrak{O})],$$

 \mathfrak{F} can be embedded in $\mathfrak{A}_{10,-1}$ [2, Th. 6c]. Since $|A(\mathfrak{F})| = 120$, $|(I(\mathfrak{F})| = 60$ and there is an automorphism of \mathfrak{F} which is not an inner-automorphism of $\mathfrak{A}_{10,-1}$, [3, Lemma 4], $[A(\mathfrak{F}): I^*(\mathfrak{F})] = 2$. Since $[Z(\mathfrak{A}_{10,-1}): Q] = 2$, $[A(\mathfrak{F}_{10,-1}): I(\mathfrak{A}_{10,-1})] = 2 = [A(\mathfrak{F}): I^*(\mathfrak{F})].$

LEMMA 3. Let H be the subgroup of the automorphism group of Q(A) determined by the integers $\{l \mid (l, m) = 1, l \equiv 1 \pmod{n}\}$. Let Δ_H be the subfield of Q(A) left fixed by the group H. If $G_{m,r}$ has property E, then Δ_H contains the fixed field of the subgroup of $Gp(A(G), I(\mathfrak{A}_{m,r}))$ of $A(\mathfrak{A}_{m,r})$. In particular, $Q(A^t)$ contains the fixed field of $Gp(A(G), I(\mathfrak{A}_{m,r}))$.

Proof. If (l, m) = 1 and $l \equiv 1 \mod n$, then the map $A \to A^{l}$ and $B \to A^{t(l-1)/n}B$ determines an automorphism of G. Thus by Proposition 2, the map of Q(A) determined by $A \to A^{l}$ be extended to be an automorphism in $Gp(A(G), I(\mathfrak{A}_{m,r}))$. Hence \mathcal{A}_{H} contains the fixed field of $Gp(A(G), I(\mathfrak{A}_{m,r}))$.

For (l, m) = 1, the map of Q(A) determined by $A \to A^{l}$ leaves A^{l} fixed if and only if $A^{l} = A^{l}$ or $l \equiv 1 \pmod{s}$. But if $l \equiv 1 \pmod{s}$, then $l = 1 \pmod{n}$ and $Q(A^{l}) \supseteq \Delta_{II}$.

LEMMA 4. A group $G_{m,r}$ with m and r satisfying (I) of Condition C has property EEE.

Proof. Let σ be an automorphism of $\mathfrak{A}_{m,r}$ and $A' = \sigma(A)$ and $B' = \sigma(B)$. Then $\sigma^{-1}(A^t) = A^{tw}$ with (w, m) = 1.

The map $A' \to A^l$ determines an automorphism τ of Q(A') onto Q(A) if (l, m) = 1. There is an integer l such that $l \equiv 1 \pmod{t}$, $wl \equiv 1 \pmod{s}$ and (l, m) = 1. Therefore by Lemma 3 and [5, p. 162, Th. 1], τ can be extended to an automorphism of $\mathfrak{A}_{m,r}$ in $Gp(A(G), I(\mathfrak{A}_{m,r}))$. We will denote this extension also by τ .

Thus $\tau\sigma(A) = A^{i}$ and $\tau\sigma(B) = B''$. If $l \equiv 1 \pmod{n}$ then by Lemma 3 and [5, p. 162, Th. 1] $\tau\sigma$ is in $Gp(A(G), I(\mathfrak{A}_{m,r}))$. And hence σ is in $Gp(A(G), I(\mathfrak{A}_{m,r}))$. Assume $l \not\equiv 1 \pmod{n}$. $B'' = \alpha_{0} + \alpha_{1}B + \cdots + \alpha_{n-1}B^{n-1}$ for α_{i} in Q(A). Since $B''A = A^{r}B''$,

$$\sum\limits_{i=1}^{n-1}lpha_iA^{ri}B^i=\sum\limits_{i=1}^{n-1}lpha_iA^rB^i$$
 .

Thus $\alpha_i = 0$ for $i \neq 1$, and $B'' = \alpha B$ for α in Q(A). $(\alpha B)^n = (A^l)^t$ and therefore $\alpha \theta(\alpha) \cdots \theta^{n-1}(\alpha) = A^{t(l-1)}$ where θ is the automorphism of Q(A) induced by B. Since $l \not\equiv 1 \pmod{n}$, this contradicts the fact that $\mathfrak{A}_{m,r}$ is a division algebra [1, p. 75, Th. 12 and 14, p. 149, Th. 32].

LEMMA 5. Let G be a finite group with property EE with respect

to the division ring D. Let H be a characteristic subgroup of G such that D', the subdivision ring of D generated by H, contains Z(D). Let μ be the map $A(G) \rightarrow A(H)$. Let R be the subgroup of $\mu(A(G))$ which $\tau \rightarrow \tau/H$ leaves Z(D) element-wise fixed. Then

$$[\mu(A(G)): R] = [A(G): I^*(G)].$$

Proof. If τ is in A(G), then τ is in I(D) and hence in $I^*(G)$ if and only if τ leaves Z(D) element-wise fixed, [5, p. 162]. Since $Z(D) \subset D', \tau$ is in $I^*(G)$ if and only if $\mu(\tau)$ leaves Z(D) element-wise fixed. Therefore $\mu(I^*(G)) = R$ and the lemma follows from an elementary theorem of group theory.

LEMMA 6. Let $G_{m,r}$ be a group with property E in which (A) is a characteristic subgroup. Let Δ_A be the fixed field of $A(\mathfrak{A}_{m,r})$ and Δ_G the fixed field of $Gp(A(G_{m,r}), I(\mathfrak{A}_{m,r}))$, then

$$[\varDelta_G: \varDelta_A][A(G_{m,r}): I^*(G_{m,r})] = [A(\mathfrak{A}_{m,r}): I(\mathfrak{A}_{m,r})]$$

Proof. In the notation of the previous lemma let $G = G_{m,r}$, H = (A) and $D = \mathfrak{A}_{m,r}$. Then D' = Q(A) and $Z(D) = Z_{m,r}$. If σ is the automorphism of $\mathfrak{A}_{m,r}$ induced by $B, R = \mu((\sigma))$. Therefore by Lemma 5, $[A(G_{m,r}): I^*(G_{m,r})] = [\mu(A(G_{m,r})): \mu((\sigma))]$. Δ_G is the subfield of Q(A) left fixed by $\mu(A(G_{m,r}))$, thus by Galois theory $[\mu(A(G_{m,r})): \mu((\sigma))] = [Z_{m,r}: \Delta_G]$.

Hence

$$[A(\mathfrak{A}_{m,r}): I(\mathfrak{A}_{m,r})] = [Z_{m,r}: \mathcal{A}_A] \text{ by } [5, p. 163]$$
$$= [Z_{m,r}: \mathcal{A}_G][\mathcal{A}_G: \mathcal{A}_A]$$
$$= [A(G_{m,r}): I^*(G_{m,r})] \cdot [\mathcal{A}_G: \mathcal{A}_A] .$$

LEMMA 7. A group $G_{m,r}$ where m and r satisfy (II) and (III) of Condition C has property EEE.

Proof. Let u and v be integers with $0 \leq u, v < m$ and (u, m) = 1. The map of $G_{m,r}$ determined by $A \to A^u$ and $B \to A^{\circ}B$ is an automorphism of $G_{m,r}$. Therefore any automorphism of (A) can be extended to an automorphism of $G_{m,r}$. Hence Q is the fixed field of $Gp(A(G_{m,r}), I(A_{m,r}))$ and of $A(A_{m,r})$.

 $A^{l}B$ has order 4 for any integer *l*. Thus if m > 4, (A) is a characteristic subgroup of $G_{m,r}$. Therefore by Lemma 6,

$$[A(G_{m,r}): I^*(G_{m,r})] = [A(\mathfrak{A}_{m,r}): I(\mathfrak{A}_{m,r})].$$

If m = 4, then $G_{m,r}$ is isomorphic to Q_8 , the quaternions. Since the

center of $\mathfrak{A}_{4,-1}$ is Q, all automorphisms of $\mathfrak{A}_{4,-1}$ are inner-automorphisms [5, p. 162]. Thus Q_8 trivially has property *EEE*.

LEMMA 8. If m and r satisfy (II) and (IV) of Condition C, then $G_{m,r}$ is isomorphic to $Q_8 \times G_{m',r'}$ where $G_{m',r'}$ is cyclic of order m' or satisfies Condition C, (6, $|G_{m',r'}| = 1$ and 2 has odd order (mod m').

Proof. By (IV), r has even order $(\mod (m/p^{\alpha_p}))$ for any prime $p \mid m$ and $p \neq 2$. Therefore r has odd order $(\mod m/2^{\alpha})$, $m/4 \equiv 1 \pmod{2}$, and $\alpha = 2$.

By the above remarks r and hence r^4 has order $n/2 \pmod{m/4}$. Therefore $Gp(A^4, B^4)$ is isomorphic to $G_{m',r'}$ where m' = m/4 and $r' = r^4$. Also $Gp(A^{m/4}, B^{ns/4})$ is isomorphic to Q_8 .

Direct calculation verifies that appropriate elements commute and hence $G_{m,r} = Gp(A^4, B^4) \times Gp(A^{m/4}, B^{ns/4}) \cong G_{m',r'} \times Q_8$. (6, $|G_{m',r'}|) = 1$ and 2 having odd order (mod m') follows from [4, Corollary, Th. 2].

LEMMA 9. A group G satisfying (3) of Proposition 1 or (II) and (IV) of Condition C has property EEE.

Proof. By Lemma 8, G is isomorphic to $H \times G_{m,r}$ where H is Q_8 or \mathfrak{T} . \mathfrak{T} contains an isomorphic copy of Q_8 . In either case G can be embedded in \mathfrak{A}_{4m,r_1} where $r_1 \equiv r \pmod{m}$ and $r_1 \equiv -1 \mod 4$. [2, Th. 6a]. \mathfrak{A}_{4m,r_1} is isomorphic to $\mathfrak{A}_{4,-1} \bigotimes_Q \mathfrak{A}_{m,r}$. Therefore by proper identification, there is no loss of generality in assuming that $H \subset \mathfrak{A}_{4,-1}$, $G_{m,r} \subset \mathfrak{A}_{m,r}$. Since $Z(\mathfrak{A}_{4,-1}) = Q$, and $Z(\mathfrak{A}_{4m,r_1}) = Z(\mathfrak{A}_{m,r}) = Z_{m,r}$,

$$\mathfrak{A}_{4m,r_1} = (\mathfrak{A}_{4,-1}, Z_{m,r}) \bigotimes_{Z_{m,r}} \mathfrak{A}_{m,r};$$

where $(\mathfrak{A}_{i,-1}, Z_{m,r})$ is a normal division algebra of order 4 over $Z_{m,r}$ and $\mathfrak{A}_{m,r}$ is a normal division algebra of order n^2 over $Z_{m,r}$.

Let θ be an automorphism of \mathfrak{A}_{4m,r_1} . Since $(4, n^2) = 1$ there is an automorphism τ of \mathfrak{A}_{4m,r_1} over $Z_{m,r}$ (i.e. the elements of $Z_{m,r}$ are left point-wise fixed) such that $\tau\theta(\mathfrak{A}_{m,r}) = \mathfrak{A}_{m,r}$ and $\tau\theta((\mathfrak{A}_{4,-1}, Z_{m,r})) =$ $(\mathfrak{A}_{4,-1}, Z_{m,r})$ [1, p. 77]. τ is in $I(\mathfrak{A}_{4m,r_1})$ [5, p. 162]; and $\tau\theta$ restricted to $\mathfrak{A}_{m,r}$ is in $A(\mathfrak{A}_{m,r})$. Thus the fixed field of $A(\mathfrak{A}_{m,r})$ is equal to the fixed field of $A(\mathfrak{A}_{4m,r_1})$. Therefore

$$[A(\mathfrak{A}_{4m,r_1}):I(\mathfrak{A}_{4m,r_1})] = [Z_{m,r}:\varDelta] = [A(\mathfrak{A}_{m,r}):I(\mathfrak{A}_{m,r})],$$

where Δ is the fixed field of $A(\mathfrak{A}_{m,r})$, [5, p. 113].

$$A(G) = A(H) imes A(G_{m,r})$$
 , and since $Z(\mathfrak{A}_{4,-1}) = Q$,

all automorphisms of $\mathfrak{A}_{4,-1}$ are inner-automorphisms and $I^*(H) = A(H)$. If θ is in A(G) but not in $I^*(H) \times I^*(G_{m,r})$, then θ moves an element of $Z_{m,r}$. Consequently $I^*(G) = I^*(H) \times I^*(G_{m,r})$ and $[A(G): I^*(G)] = [A(G_{m,r}): I^*(G_{m,r})]$. Since $(|G_{m,r}|, 6) = 1, m$ and r satisfy (I) of condition C. Thus by Lemma 4, $[A(G_{m,r}): I^*(G_{m,r})] = [A(\mathfrak{A}_{m,r}); I(\mathfrak{A}_{m,r})]$ and $[A(\mathfrak{A}_{4m,r_1}): I(\mathfrak{A}_{4m,r_1})][A(G): I^*(G)]$.

The theorem is a consequences of Lemmas 1, 2, 4, 7 and 9.

BIBLIOGRAPHY

1. A. A. Albert, *Structure of Algebras*, Amer. Math. Soc. Colloq. Publ. Vol. 24, Amer. Math. Soc., Providence, R. I., 1939.

2. S. A. Amitsur, *Finite subgroups of division rings*, Trans. Amer. Math. Soc. **80** (1955), 361-386.

3. R. J. Faudree, Subgroups of the multiplicative group of a division ring, Trans. Amer. Math. Soc. **124** (1966), 41-48.

4. _____, Embedding theorems for ascending nilpotent groups, Proc. Amer. Math. Soc. 18 (1967), 148-154.

5. N. Jacobson, *Structure of Rings*, Amer. Math. Soc. Colloq. Publ. Vol. 37, Amer. Math. Soc., Providence, R. I., 1956.

Received July 6, 1967. In partial support by the NSF Foundation Grant GP-3990.

UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA UNIVERSITY OF ILLINOIS URBANA, ILLINOIS