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ABSTRACT

We show that the outer automorphism group of a polycyclic-by-finite group is an arithmetic group. This result
follows from a detailed structural analysis of the automorphism groups of such groups. We use an extended version of the
theory of the algebraic hull functor initiated by Mostow. We thus make applicable refined methods from the theory of
algebraic and arithmetic groups. We also construct examples of polycyclic-by-finite groups which have an automorphism
group which does not contain an arithmetic group of finite index. Finally we discuss applications of our results to the
groups of homotopy self-equivalences of K(Γ, 1)-spaces and obtain an extension of arithmeticity results of Sullivan in
rational homotopy theory.
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1. Introduction

1.1. The main results. — We write Aut(Γ) for the group of automorphisms of
a group Γ. The subgroup consisting of automorphisms induced by conjugations with
elements of Γ is denoted by InnΓ. It is normal in Aut(Γ) and the quotient group

Out(Γ) := Aut(Γ)/InnΓ

is called the outer automorphism group of Γ. This paper is devoted to the detailed
study of the groups Aut(Γ) and Out(Γ) in case Γ is polycyclic-by-finite. Here we say
that a group Γ is E -by-finite whenever E is a property of groups and when Γ has
a subgroup of finite index having property E . As one of our main results we prove:

Theorem 1.1. — For any polycyclic-by-finite group Γ, Out(Γ) is an arithmetic group.

To explain the concept of an arithmetic group we recall that a Q -defined linear

algebraic group G is a subgroup G ≤ GL(n, C) (n ∈ N) which is also an affine alge-
braic set defined by polynomials with rational coefficients in the natural coordinates of
GL(n, C). If R is a subring of C we put G(R) := G ∩ GL(n, R). We have G = G(C).
Let G be a Q -defined linear algebraic group. A subgroup Γ ≤ G(Q) is called an arith-

metic subgroup of G if Γ is commensurable with G(Z). An abstract group ∆ is called
arithmetic if it is isomorphic to an arithmetic subgroup of a Q -defined linear algebraic
group. Two subgroups Γ1, Γ2 of GL(n, C) are called commensurable if their intersection
Γ1 ∩ Γ2 has finite index both in Γ1 and Γ2. These definitions are taken from [35].

In case Γ is a finitely generated nilpotent group, Segal [41] observed that Out(Γ)

contains an arithmetic subgroup of finite index. Such a group need itself not be arith-
metic, see [21] for examples. Our Theorem 1.1 is a strengthening of Segal’s result
even in this restricted case. The results of Sullivan [44] imply for finitely generated
nilpotent groups a still weaker result on their outer automorphism groups. We shall
come back to this in Section 1.4. A related result, for any polycyclic-by-finite group,
is proved by Wehrfritz in [46]. He shows that Out(Γ) admits a faithful representation
into GL(n, Z), for some n, in this general case.

A role model for these results is the case Γ = Zn (n ∈ N). Here we have

Aut(Zn) = Out(Zn) = GL(n, Z)

and both Aut(Zn) and Out(Zn) are arithmetic groups. More generally, Aut(Γ) is arith-
metic for every finitely generated nilpotent group Γ, see [40, Corollary 9, Chapter 6].
This result was obtained for torsion-free finitely generated nilpotent groups by Aus-
lander and Baumslag, see [4–6]. We generalize it to the case of finitely generated
nilpotent-by-finite groups in Corollary 1.11. But this is not the general picture. We
now describe a polycyclic group so that Aut(Γ) does not contain an arithmetic sub-
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group of finite index. To do this we choose d ∈ N not a square, and let K = Q(
√

d)

be the corresponding real quadratic number field and write x �→ x̄ for the non-trivial
element of the Galois group of K over Q . Consider the subring O = Z + Z

√
d ≤ K.

By Dirichlet’s unit theorem we may choose a unit ε ∈ O∗ which is of infinite order
and satisfies εε̄ = 1. Define

D∞ := 〈A, τ | τ2 = (Aτ)2 = 1〉(1)

to be the infinite dihedral group. It is easy to see that F = O×Z obtains the structure
of a D∞-module by defining

A · (m, n) = (εm, n), τ · (m, n) = (m̄,−n) (m ∈ O, n ∈ Z).(2)

We denote the corresponding split extension by

Γ(ε) := F�D∞.

The group Γ(ε) is polycyclic and even an arithmetic group, but we have:

Theorem 1.2. — The automorphism group of Γ(ε) does not contain an arithmetic group of

finite index.

The statement of Theorem 1.2 is stronger than just saying that the automor-
phism group of Γ(ε) is not arithmetic, since there are groups (see [21]) which are
not arithmetic but which contain a subgroup of finite index which has this property.
Our examples show that the structure of the automorphism group varies dramatically
when Γ is replaced by one of its subgroups of finite index. It is for example easy to
see (also from results in Subsection 1.2) that the automorphism group of the subgroup
of Γ(ε) which is generated by F and A is an arithmetic group. More generally, as we
will explain below, every polycyclic-by-finite group has a finite index subgroup with an
arithmetic automorphism group.

Theorem 1.2 is complemented by a result of Merzljakov [30] who has proved,
for any polycyclic group Γ, that Aut(Γ) has a faithful representation into GL(n, Z) for
some n ∈ N. This generalizes also to the case of polycyclic-by-finite groups, see [47].

Let F = Fitt(Γ) be the Fitting subgroup of Γ. This is the maximal nilpotent
normal subgroup of Γ. Since F is characteristic in Γ (that is normalized by every auto-
morphism of Γ), we may define

AΓ|F := {φ ∈ Aut(Γ) | φ|Γ/F = idΓ/F}.(3)

As our main structural result on the automorphism group of a general polycyc-
lic-by-finite group we show:
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Theorem 1.3. — Let Γ be a polycyclic-by-finite group. Then AΓ|F is a normal subgroup of

Aut(Γ) and AΓ|F is an arithmetic group. There exists a finitely generated nilpotent group

B ≤ Aut(Γ) which consists of inner automorphisms such that

AΓ|F · B ≤ Aut(Γ)

is a subgroup of finite index in the automorphism group of Γ.

This theorem is a more precise version of [40, Theorem 2, Chapter 8] and of
certain similar theorems contained in [1]. It has many finiteness properties of Aut(Γ)

as a consequence, see [40, Chapter 8]. The fact that Aut(Γ) is finitely presented was
first proved by Auslander in [1].

1.2. Outline of the proofs and more results. — We shall describe now the gen-
eral strategy in our proofs and more results on the structure of the automorphism
group Aut(Γ) of a general polycyclic-by-finite group Γ. We take the basic theory of
polycyclic-by-finite groups for granted. As a reference for our notation and results we
use the book [40].

A polycyclic-by-finite group Γ has a maximal finite normal subgroup τΓ. We
say that Γ is a wfn-group if τΓ = {1}. We first consider the case of polycyclic-by-finite
groups which are wfn-groups and later reduce to this case.

Let now Γ be a polycyclic-by-finite group which is a wfn-group. We use the con-
struction from [8] of a Q -defined solvable-by-finite linear algebraic group HΓ which
contains Γ in its group of Q -rational points. The study of the functorial construction
Γ �→ HΓ traces back to work of Mostow [31,32]. The algebraic group HΓ has spe-
cial features which allow us to identify the group of algebraic automorphisms of HΓ,
which we call Auta(HΓ), with a Q -defined linear algebraic group AΓ. In general, the
group of algebraic automorphisms of a Q -defined algebraic group is an extension of
a linear algebraic by an arithmetic group, see [12]. The functoriality of HΓ leads to
a natural embedding

Aut(Γ) ≤ Auta(HΓ) = AΓ.(4)

These steps are carried out in detail in Sections 3 and 4.
After preparations in Sections 5 and 7 we prove the following in Section 9.

Theorem 1.4. — Let Γ be a polycyclic-by-finite group which is a wfn-group. Then Aut(Γ)

is contained in AΓ(Q). A subgroup of finite index in Aut(Γ) is contained in AΓ(Z). The group

AΓ|F is an arithmetic subgroup in its Zariski-closure in AΓ.

Theorem 1.4 is the main step in the proof of Theorem 1.3 which is given in
Section 11.2.
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In Section 10 we develop, starting from results in [21], a theory of proving arith-
meticity for linear groups which are related to arithmetic groups in certain ways. This
shows that the situation built up in Theorems 1.4 and 1.3 implies that Out(Γ) is an
arithmetic group for polycyclic-by-finite groups which are wfn-groups: To construct
a Q -defined algebraic group OΓ which contains Out(Γ) as an arithmetic subgroup we
start off by considering the Zariski-closure B of AΓ|F in AΓ. We then take the quotient
group B/C where C is the Zariski-closure of InnF in AΓ. The image of AΓ|F in B/C
is an arithmetic subgroup. We show that Out(Γ) is a finite extension group of the quo-
tient AΓ|F/InnF latexdocs its central subgroup D = (AΓ|F ∩ InnΓ)/InnF. We modify the
algebraic group B/C to obtain a Q -defined linear algebraic group E such that the
group D is unipotent-by-finite, and E still contains an isomorphic copy of AΓ|F/InnF as
an arithmetic subgroup. The construction ensures that (AΓ|F∩InnΓ)/InnF is arithmetic
in its Zariski-closure D in E and we can prove that Out(Γ) is arithmetic in a finite
extension group OΓ of the quotient E /D. The final definition of OΓ is contained in
Section 11.1.

To prepare for later applications we introduce some more notation. The group
of inner automorphisms InnHΓ

is by our constructions a Q -closed subgroup of the
group of algebraic automorphisms AΓ = Auta(HΓ). We call the quotient

Outa(HΓ) := AΓ/InnHΓ
(5)

the algebraic outer automorphism group of HΓ. It is again a Q -defined linear alge-
braic group, and we obtain a group homomorphism

πΓ : Out(Γ) → Outa(HΓ)(6)

by restricting the quotient homomorphism AΓ → Outa(HΓ) to the subgroup Aut(Γ)

≤ AΓ. We then prove in Section 11.1:

Theorem 1.5. — Let Γ be a polycyclic-by-finite group which is a wfn-group. Then there

is a Q -defined linear algebraic group OΓ which contains Out(Γ) as an arithmetic subgroup and

a Q -defined homomorphism πOΓ
: OΓ → Outa(HΓ) such that the diagram

Out(Γ) ��

��

πΓ

OΓ

zz
πOΓ

t
t
t
t
t
t
t
t
t
t

Outa(HΓ)

(7)

is commutative. The kernel of πΓ is finitely generated, abelian-by-finite and is centralized by a finite

index subgroup of Out(Γ). If Γ is nilpotent-by-finite then the kernel of πΓ is finite.

We shall start the discussion of the general situation now. Let Γ be a polycyclic-
by-finite group, possibly with τΓ non-trivial. Building on an idea of [40, Chapter 6,
exercise 10] for nilpotent groups, we show in Section 11.2:
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Proposition 1.6. — Let Γ be polycyclic-by-finite group and let τΓ denote its maximal finite

normal subgroup. Then the groups Aut(Γ) and Aut(Γ/τΓ) are commensurable. If Aut(Γ/τΓ) is

an arithmetic group then Aut(Γ) is arithmetic too. If Aut(Γ) is an arithmetic group then

Aut(Γ/τΓ) contains a subgroup of finite index which is an arithmetic group.

Recall that two abstract groups G and G′ are called commensurable if they contain
finite index subgroups G0 ≤ G and G′

0 ≤ G′ which are isomorphic. The examples
in [21] show that a group can contain an arithmetic subgroup of finite index without
being an arithmetic group. We do not know whether this phenomenon can arise in
the situation of Proposition 1.6. As proved in [21], all arithmetic subgroups in alge-
braic groups which do not have a quotient isomorphic to PSL(2) have only arithmetic
groups as finite extensions.

The groups Out(Γ) and Out(Γ/τΓ) satisfy a weaker equivalence relation (they
are called S-commensurable, see Section 1.4).

Proposition 1.7. — The natural homomorphism Out(Γ) → Out(Γ/τΓ) has finite kernel

and maps Out(Γ) onto a finite index subgroup of Out(Γ/τΓ).

Clearly, Γ/τΓ is a wfn-group. From Theorem 1.5 we already know that
Out(Γ/τΓ) is an arithmetic group. We further know from [46] that Out(Γ) is isomor-
phic to a subgroup of GL(n, Z), for some n ∈ N, and hence is residually finite. Recall
that a group G is called residually finite if for every g ∈ G with g �= 1 there is a sub-
group of finite index in G not containing g. We complete the proof of Theorem 1.1
in the general case by the following easy result.

Proposition 1.8. — Let A be a residually finite group and E a finite normal subgroup in A.

If A/E is arithmetic then A is an arithmetic group.

Indeed, A embeds as a subgroup of finite index in the arithmetic group
A/E × A/N where N is a normal subgroup of A with N∩E = {1} (cf. [40], Chapter 6,
Lemma 7).

In [16] Deligne constructs lattices (in non-linear) Lie groups which map onto
arithmetic groups with finite kernel but which are not residually finite. The above gives
a strong converse to this result.

To contrast the examples from Theorem 1.2 we formulate now a simple condi-
tion on a polycyclic-by-finite group which implies that Aut(Γ) is an arithmetic group.
We write λ : Γ → Γ̃ = Γ/τΓ for the projection homomorphism. We define

F̃(Γ) := λ−1(Fitt(Γ̃)).(8)

From general theory we infer that F̃(Γ) is normal in Γ and that Γ/F̃(Γ) is an abelian-
by-finite group. Suppose that Σ ≤ Γ is a normal subgroup of finite index with
F̃(Γ) ≤ Σ and the additional property that Σ/F̃(Γ) is abelian. Then the finite group
µ(Γ,Σ) = Γ/Σ acts through conjugation on the abelian group Σ/F̃(Γ). We prove:
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Theorem 1.9. — Let Γ be a polycyclic-by-finite group. Assume that there is a normal sub-

group Σ ≤ Γ which is of finite index, and such that Σ/F̃(Γ) is abelian and µ(Γ,Σ) = Γ/Σ

acts trivially on Σ/F̃(Γ). Then Aut(Γ) is an arithmetic group.

Theorem 1.9 has the following immediate corollaries.

Corollary 1.10. — Let Γ be a polycyclic-by-finite group. If Γ/Fitt(Γ) is nilpotent then

Aut(Γ) is an arithmetic group.

Corollary 1.11. — The automorphism group of a finitely generated and nilpotent-by-finite

group is an arithmetic group.

Corollary 1.12. — Every polycylic-by-finite group has a finite index subgroup whose auto-

morphism group is arithmetic.

Analogues of Theorem 1.9 and Corollary 1.10 have been proved in [19] for
arithmetic polycyclic-by-finite groups. The book [40] contains in Chapter 8 various
results which also show the arithmeticity of Aut(Γ), but the hypotheses on Γ are a lot
stronger than ours.

1.3. Cohomological representations. — Let Γ be a torsion-free polycyclic-by-finite
group, and R a commutative ring. Let H∗(Γ, R) denote the cohomology of Γ with
(trivial) R-coefficients. Since inner automorphisms act trivially on cohomology, the
outer automorphism group Out(Γ) is naturally represented on the cohomology space
H∗(Γ, R). The finite dimensional complex vector space H∗(Γ, C) comes with an
Z-structure (and a resulting Q -structure) given by the image of the base change homo-
morphism H∗(Γ, Z) → H∗(Γ, C). This allows us to identify GL(H∗(Γ, C)) with
a Q -defined linear algebraic group. The representation

ρ : Out(Γ) → GL(H∗(Γ, C))(9)

is integral with respect to the above Z-structure. Moreover, we define in Section 13.3,
building on geometric methods developed in [8], a Q -defined homomorphism

η : Outa(HΓ) → GL(H∗(Γ, C))(10)

which extends the homomorphism ρ via our homomorphism πOΓ
from Prop-

osition 1.5. By composition, we obtain a Q -defined homomorphism

ρOΓ
:= η ◦ πOΓ

: OΓ → GL(H∗(Γ, C)).(11)

We collect all of this together in the following theorem:
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Theorem 1.13. — Let Γ be a torsion-free polycyclic-by-finite group. Then there is

a Q -defined homomorphism ρOΓ
: OΓ → GL(H∗(Γ, C)) such that the diagram

Out(Γ) ��

��

ρ

OΓ

xx
ρOΓ

q
q
q
q
q
q
q
q
q
q
q

GL(H∗(Γ, C))

(12)

is commutative.

Thus, the Zariski-closure of the image of Out(Γ) in GL(H∗(Γ, C)) is a Q -closed
subgroup and we have:

Theorem 1.14. — Let Γ be a torsion-free polycyclic-by-finite group. Then the cohomology

image ρ(Out(Γ)) is an arithmetic subgroup of its Zariski-closure in GL(H∗(Γ, C)). The kernel

of ρ is a finitely generated subgroup of Out(Γ). If Γ is in addition nilpotent then the kernel of ρ

is nilpotent by-finite.

1.4. Applications to the groups of homotopy self-equivalences of spaces. — Let Γ be
a group. The motivation to study the structure of Out(Γ) comes partially from top-
ology since Out(Γ), for example, is naturally isomorphic to the group of homotopy
classes of homotopy self-equivalences of any K(Γ, 1)-space (see [39]). A substantial
theory using this tie between algebra and topology has been developed starting from
the work of Sullivan [44]. We shall explain here the connections of our work with Sul-
livan’s theory as described in [44] and we also mention the additions we can make to
Sullivan’s theory.

Sullivan considers spaces X which have a nilpotent homotopy system of finite
type, that is, the homotopy groups

(π1(X);π2(X), π3(X), ...)

are all finitely generated, π1(X) is torsion-free nilpotent and acts nilpotently on all
πi(X) (i ≥ 2). Sullivan associates to such a space X the minimal model of the
Q -polynomial forms of some complex representing X. This is a finitely generated
nilpotent differential algebra defined over Q , it is called X . Under the further as-
sumption that X is either a finite complex or that the homotopy groups πi(X) are
trivial, for almost all i ∈ N, he uses this construction to prove important results on
the group Aut(X) of classes of homotopy self-equivalences of the space X, cf. [44,
Theorem 10.3].

Let us specialize, for a moment, to the case where X is a K(Γ, 1)-space,
Γ a torsion-free finitely generated nilpotent group. The results of Sullivan can then
be related to what we prove. The following table contains a dictionary between the
objects defined by Sullivan and those appearing in our theory.
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Sullivan algebraic theory

Aut(X) Out(Γ)

X g

Aut(X ) Aut(g)

AutQ (X) = Aut(X )/inner automorphisms OΓ

πOΓ−→ Aut(g)/Inng

Here g is the Lie algebra of the Malcev-completion of π1(X) = Γ. The associated
DGA X coincides with the Koszul-complex of g. The Q -defined linear algebraic
group OΓ is defined in the previous subsection. It admits a Q -homomorphism πOΓ

with finite kernel onto the group Aut(g)/Inng of Lie algebra automorphisms of g
modulo inner automorphisms.

We mention the concept of S-commensurability of groups appearing in [44]. This
is the equivalence relation amongst groups which is generated by the operations of
taking quotients with finite kernel and finite index subgroups.

We shall now go through the four statements about Aut(X) which are contained
in [44, Theorem 10.3], specialized to a K(Γ, 1) space X, and rephrase them in our
context:

In Theorem 10.3 (i), it is stated that Aut(X) is S-commensurable with a full arith-

metic subgroup of AutQ (X). We prove (see Theorem 1.5), quite equivalently, that there is
a homomorphism πΓ : Out(Γ) → Aut(g)/Inng which has finite kernel and an arith-
metic subgroup as image. We additionally show that Out(Γ) is isomorphic to an arith-
metic subgroup in a Q -defined linear algebraic group OΓ which is a finite extension
group of Aut(g)/Inng. (Examples ([16], [21]) show that the class of arithmetic groups
is not closed under any of the two operations used to define S-commensurability.
Hence the information on Aut(X) = Out(Γ) contained in [44, Theorem 10.3 i)], for
our restricted case, is weaker then what follows from our results. Most dramatically
there are groups which can be mapped onto an arithmetic group with a finite ker-
nel which are not even residually finite. As Serre [42] remarks, localization results in
[45] imply that the group Aut(X) is residually finite. We wonder whether the general
theory can be extended similarly to our results.)

In Theorem 10.3 (ii) it is proved that the natural action of Aut(X) on the integral

homology is compatible with an algebraic matrix representation of AutQ (X) on the vector spaces

of rational homology. We consider here cohomology instead of homology and we obtain
a similar result. We prove that the natural action of Out(Γ) = Aut(X) on the image of
integral cohomology is compatible with an algebraic matrix representation of OΓ on
the vector spaces of rational cohomology (see Theorem 1.5 and Section 1.3). This has
the important consequence that the stabilizers of cohomology classes are arithmetic
groups.
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By Theorem 10.3 (iii), the reductive part of AutQ (X) is faithfully represented on the nat-

ural subspace of homology generated by maps of spheres into X. We recall (see Proposition 13.2)
that the reductive part of Aut(g)/Inng is faithfully represented on the cohomology vec-
tor spaces. Of course, Sullivan’s result implies that the representation is already faithful
on the first homology space. We obtain a similar result for the action of OΓ on the
first cohomology space.

In Theorem 10.3 (iv) it is proved that as we vary X through finite complexes, Aut(X)

runs through every commensurability class of groups containing arithmetic groups. Here our re-
sults give something different and new since Sullivan uses simply connected spaces
(π1(X) = {1}) which have non-vanishing higher homotopy groups to show his exis-
tence result:

Let N-commensurability be the equivalence relation for groups which is generated
by the operations of taking quotients with finitely generated nilpotent-by-finite groups
as kernel and by taking finite index subgroups. We can prove:

Proposition 1.15. — As we vary X through all finite K(Γ, 1) complexes, Γ a finitely gen-

erated nilpotent group, Aut(X) runs through every N-commensurability class of groups containing an

arithmetic group.

The result just mentioned follows from our theory of cohomological representa-
tions and from the existence theorems in [15]. We do not provide details here.

Having discussed the relation of our results to Sullivan’s we can mention the fol-
lowing generalization for spaces X which are K(Γ, 1) spaces for torsion-free polycyclic-
by-finite groups. In fact, we can collect the results described in Sections 1.2 and 1.3
to show:

Theorem 1.16. — Let Γ be a torsion-free polycyclic-by-finite group and let X a K(Γ, 1)

space. Let Aut(X) be the group of classes of homotopy self-equivalences of X. Then the following

hold:

i) Aut(X) is an arithmetic group.

ii) The action of Aut(X) on integral cohomology is compatible with an algebraic matrix

representation of the Q -defined linear algebraic OΓ on the vector spaces of cohomology.

iii) The stabilizer of an integral (rational) cohomology class is arithmetic.

Again, we wonder whether our Theorem 1.16 has an extension which does not
assume the vanishing of the higher homotopy groups.

As a corollary, using well known finiteness results for arithmetic groups we get:

Corollary 1.17. — Let Γ be a torsion-free polycyclic-by-finite group and let X be

a K(Γ, 1)-space. Let Aut(X) be the group of classes of homotopy self-equivalences of X. Then

the following hold:
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i) The group Aut(X) is residually finite.

ii) The group Aut(X) is finitely presented.

iii) The group Aut(X) contains only finitely many conjugacy classes of finite subgroups.

iv) Let µ be a finite group acting by group automorphisms on Aut(X), then the cohomology

set H1(µ, Aut(X)) is finite.

v) The group Aut(X) is of type WF.

For the definition and discussion of cohomology sets, see Section 6. The prop-
erties i), ..., v) all follow from the fact that Aut(X) is an arithmetic group. Property i)
is well known to hold for finitely generated linear groups, for ii), iii) see [9], iv) is
proved in [21] (for a weaker form see [12]). The last item, property WF, means that
every torsion-free subgroup ∆ of finite index in Aut(Γ) appears as the fundamental
group of a finite K(∆, 1). See [42] for discussion of this property of arithmetic groups
and further references. It is not known whether groups which are finite extensions of
a WF-group inherit the property WF, see [43,14]. Note also that properties ii), iii) are
compatible with S-commensurability whereas i), iv) are not.

Let X be a K(Γ, 1)-space for a group Γ. The automorphism group of Γ can
be naturally identified with the group of classes of pointed homotopy self-equivalences
Aut∗(X) (see [39]). In case Γ is finitely generated torsion-free nilpotent it was well
known that Aut∗(X) is an arithmetic group. Our results from Theorem 1.9 extend this
to a much larger class of groups. Our examples constructed in Section 12.2 and Theo-
rem 1.2 give rise to K(Γ, 1)-spaces X, where π1(X) is nice and arithmetic whereas
Aut∗(X) is far from being an arithmetic group.
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2. Prerequisites on linear algebraic groups and arithmetic groups

In the sequel we shall use a certain amount of the theory of linear algebraic
groups and also of the theory of arithmetic groups. We briefly review here what we
need and also add certain consequences of the general theory. Our basic references
are [11,13,35].

2.1. The general theory. — We use the usual terminology of Zariski-topology.
Thus a linear algebraic group A is a Zariski-closed subgroup of GL(n, C), for some
n ∈ N. It is Q -defined if it is Q -closed. We use the shorter term Q -closed for what
should be called closed in the Zariski-topology with closed subsets being those affine
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algebraic sets defined by polynomials with coefficients in Q . If R is a subring of C,
we put A (R) = A ∩ GL(n, R). We denote the connected component of the identity
in a linear algebraic group A by A ◦. The connected component A ◦ always has finite
index in A and A is called connected if A = A ◦. If A is defined over Q , its group
of Q -points A (Q) is Zariski-dense in A .

A homomorphism of algebraic groups is a morphism of the underlying affine algebraic
varieties which is also a group homomorphism. A homomorphism is defined over Q
(or Q -defined ) if the corresponding morphism of algebraic varieties is defined over Q .
It is called a Q -defined isomorphism if its inverse exists and is also a homomorphism de-
fined over Q . An automorphism is an isomorphism of a linear algebraic group to itself.
We also use the more abstract concept of a Q -defined linear algebraic group. It is
well known that a Q -defined affine variety equipped with a group structure given by
Q -defined morphisms is Q -isomorphic with a Q -closed subgroup of GL(n, C), for
some n ∈ N. As usual we write Ga = C for the additive and Gm = C∗ for the multi-
plicative group. Quotients exist in the category of Q -defined linear algebraic groups.
That is given a Q -closed normal subgroup N of a Q -defined linear algebraic group
A the quotient group A /N is a Q -defined linear algebraic group and the natural
map A → A /N is a Q -defined homomorphism. We say that A is the almost direct

product of two Zariski-closed subgroups B, C if B and C centralize each other, their
intersection B ∩ C is finite and if A = B · C holds.

Let now A be a Q -defined linear algebraic group, we write UA for its unipo-

tent radical. This is the largest Zariski-closed unipotent normal subgroup in A , it is
Q -closed. The algebraic group A is called reductive if UA = {1}. In particular, the
quotient A red = A /UA is reductive, for all linear algebraic groups A . We write A sol

for the solvable radical of A . This is the largest connected Zariski-closed solvable nor-
mal subgroup in A , it is Q -closed. A connected linear algebraic group A is called
semisimple if A sol = {1}.

A linear algebraic group is called a d-group if it consists of semisimple elements
only. A Zariski-closed subgroup which is a d-group is called a d-subgroup. A d-group is
reductive and abelian-by-finite. A torus is a linear algebraic group isomorphic to Gn

m,
for some n ∈ N. If S is a d-group then S ◦ is a torus.

Let A be a Q -defined linear algebraic group. Then the following hold (see
[11–13,35]).

AG1: There exists a Q -closed reductive complement R ≤ A , that is, A = UA ·
R is a semi-direct product of subgroups, and R ∼= A red. In particular, we
also have A ∼= UA �A red. Here the symbol ∼= indicates Q -isomorphism
of linear algebraic groups, and � indicates a semi-direct product.

AG2: All Q -closed reductive complements are conjugate by elements of UA (Q).
AG3: Let A be a Q -defined connected and reductive linear algebraic group.

Then A is the almost direct product of its center, which is a Q -closed
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d-subgroup, and the commutator subgroup [A ,A ], which is Q -closed,
connected and semisimple.

AG4: Let A be a Q -defined connected and semisimple linear algebraic group.
Then its group Auta(A ) of algebraic automorphisms is a Q -defined lin-
ear algebraic group and InnA is its connected component.

AG5: Let A be a Q -defined connected and reductive linear algebraic group.
Let B be Q -closed normal subgroup of A . Then there is a Q -closed
subgroup C of A which centralizes B, satisfies A = B · C such that
B ∩ C is finite. That is, A is the almost direct product of B and C .

AG6: Let S be a commutative d-group and G a finite group of Q -defined
automorphisms of S . Let S1 ≤ S be a G-invariant Q -closed subgroup.
Then there is a G-invariant Q -closed subgroup S2 ≤ S such that S is
the almost direct product of S1 and S2.

AG7: Let T ≤ A be a torus. Then the centralizer ZA (T ) of T in A has
finite index in the normalizer NA (T ).

Statement AG6 is proved by using the category equivalence between the cate-
gory of Q -defined commutative d-groups and the category of continuous, Z-finitely
generated modules for the absolute Galois group of Q (see [11, §8]) together with
Maschke’s theorem. The last fact AG7 is called the rigidity of tori, see [11, Corollary 2
of III.8] for a proof.

We shall add some remarks concerning the structure of solvable-by-finite groups.
A linear algebraic group H is solvable-by-finite iff its identity component H◦ is solv-
able. A Cartan subgroup D of H is by definition the normalizer of a maximal torus
T in H.

For a Q -defined, solvable-by-finite linear algebraic group H the following hold:

SG1: There are maximal tori T ≤ H which are Q -closed.
SG2: Let T be a maximal torus of H and D = NH(T). Then D◦ = NH◦(T)

equals the centralizer of T in H◦ and is a connected nilpotent group.
Moreover, D contains a maximal d-subgroup S with S◦ = T.

SG3: Let T ≤ H be a maximal torus which is Q -closed. Then D := NH(T) is
Q -closed and contains a maximal d-subgroup S of H which is Q -closed
and which satisfies S◦ = T.

SG4: Let S be a maximal d-subgroup of H. Then H = UH · S = UH � S.
SG5: All maximal tori and also all maximal d-subgroups in H are conjugate by

elements of [H◦, H◦] ≤ UH.
SG6: All Q -closed maximal tori and all Q -closed maximal d-subgroups are

conjugate by elements of [H◦, H◦](Q).
SG7: Let D be a Cartan subgroup of H and F ≤ UH a normal subgroup of H

which contains [H◦, H◦]; then we have H = F · D.



226 OLIVER BAUES, FRITZ GRUNEWALD

For almost all of this see [11, Chapter III]. Statement SG6 is contained in [12],
for a detailed proof see [19, Section 2].

We have defined the notion of an arithmetic subgroup of a Q -defined linear al-
gebraic group and that of an arithmetic group in the beginning of the introduction.
We shall often have to use the behaviour of arithmetic subgroups under Q -defined
homomorphisms. To describe this, let ρ : A1 → A2 be a Q -defined homomorphism
between Q -defined linear algebraic groups A1, A2 and A ≤ A1 a subgroup. Further-
more we suppose that ρ is surjective. We have:

AR1: If A is an arithmetic subgroup of A1 then ρ(A) is an arithmetic subgroup
of A2.

AR2: Suppose that ρ is injective, then A is an arithmetic subgroup of A1 if and
only if ρ(A) is commensurable with A2(Z).

AR3: Every abelian subgroup of an arithmetic group is finitely generated.
AR4: Let A be a Q -defined group and A1, A2 Q -defined subgroups such that

A = A1 � A2 is a semi-direct product. Let A ≤ A (Q) be a subgroup.
Assume there exist subgroups A1, A2 of A such that A = A1�A2 is a semi-
direct product. If A1 and A2 are arithmetic subgroups in A1 and A2, re-
spectively, then A is an arithmetic subgroup of A .

Statement AR1 is proved in [10] and AR2 is a consequence of it. Statement AR2
shows that the notion of an arithmetic subgroup does not depend on the particu-
lar embedding of the ambient algebraic group into GL(n, C). Statement AR3 follows
from Mal’cev’s theorem on solvable subgroups of GL(n, Z), see [40], Chapter 2. State-
ment AR4 is a consequence of AR1.

2.2. Algebraic groups of automorphisms. — Let G be a group acting by automor-
phisms on a group A and let B ≤ A be a subgroup of A. We write

NG(B) := {g ∈ G | g(B) = B},
ZG(B) := {g ∈ G | g(b) = b for all b ∈ B}

for the normalizer and centralizer of B in G.

Definition 2.1. — Let A be a Q -defined linear algebraic group and let G be a group which

acts by Q -defined automorphisms on A . Then G normalizes the unipotent radical UA and we say

that G acts as an algebraic group of automorphisms on A if ZG(T ) has finite index in NG(T )

for every Q -defined torus T of A red = A /UA .

Note that G = GL(n, Z) acts by Q -defined automorphisms on the torus
A = Gn

m. But for n ≥ 2 this is not an algebraic group of automorphisms on A .
Positive examples are given in the next lemma.
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Lemma 2.2. — Let B be a Q -defined linear algebraic group and A ≤ B a Q -closed

subgroup. Let further G ≤ B(Q) be a subgroup which normalizes A . Then G acts by conjugation

on A as an algebraic group of automorphisms.

Proof. — Replacing B by the Zariski-closure of A · G, we may assume that A
is normal in B. Then UA is also normal in B and the image of G in B/UA acts by
conjugation on A /UA . Thus the lemma follows from the rigidity of tori (AG7).

Lemma 2.3. — Let A be a Q -defined linear algebraic group. Let G be an algebraic group

of automorphisms on A . Then ZG(S ) has finite index in NG(S ) for every Q -closed commutative

d-subgroup S of A /UA .

Proof. — To prove the lemma, we may replace A by A /UA . We consider
a Q -closed commutative d-subgroup S of A . Its connected component S ◦ is
a Q -defined torus in A ◦. We have NG(S ) ≤ NG(S ◦). Our hypothesis implies that
Z1 = NG(S ) ∩ ZG(S ◦) has finite index in NG(S ).

There is a finite Zariski-closed subgroup E ≤ S such that S = S ◦ · E . Let E0

be the kernel of the homomorphism from S to S which sends x ∈ S to x|E |. It is
finite, contains E and is normalized by NG(S ). Trivially Z2 = NG(S ) ∩ ZG(E0) has
finite index in NG(S ). Since Z1 ∩ Z2 is contained in ZG(S ), this proves that ZG(S )

is of finite index in NG(S ).

The following lemmata describe natural operations which can be perfomed with
algebraic groups of automorphisms.

Lemma 2.4. — Let A be a Q -defined linear algebraic group and B a Q -closed normal

subgroup in A . Let G be an algebraic group of automorphisms of A which normalizes B. Then

G acts as a group of algebraic automorphisms on B and also on A /B.

Proof. — This is clear for B, since B is normal in A . To prove that G acts as
an algebraic group of automorphisms on A /B, we use a G-invariant decomposition
AG5. We leave the details to the reader.

Remark that, in general, the converse of the statements of Lemma 2.4 is not
true. Nevertheless, we have:

Lemma 2.5. — Let A and B be Q -defined linear algebraic groups, and let G act as

an algebraic group of automorphisms on A and on B. Then G acts as an algebraic group of

automorphisms on the product C = A × B.

Proof. — Let G act on C by the product action. Let T be a torus in C red =
A red ×Bred and put G′ = NG(T ). The torus T is contained in the direct product of
factors TA ≤ A red, TB ≤ Bred which are stabilized by G′. Hence, both are central-
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ized by a finite index subgroup of G′. Therefore, T is centralized by this finite index
subgroup of G′.

Lemma 2.6. — Let A be a Q -defined linear algebraic group and G a group of Q -

defined automorphisms of A . Suppose L, H ≤ G are subgroups such that L is normal in G and

G = L · H holds. If both L and H are algebraic groups of automorphisms of A then also G has

this property.

Proof. — We consider G as a group of Q -defined automorphisms of B =
(A /UA )◦. We have the almost direct decomposition B = Z ·[B,B], where Z is the
center of B. The group G normalizes both Z and [B,B]. Let T be a Q -defined
torus of B. If T ≤ [B,B] then ZG(T ) has finite index in NG(T ) since G contains
a subgroup of finite index which acts by inner automorphisms on [B,B] (AG4). Now
assume T ≤ Z . By our assumption on L and H it follows that ZG(Z 0) has finite in-
dex in G (since G normalizes Z 0), and, a fortiori, ZG(T ) has finite index in NG(T ).
The case of a general T can be treated by projecting T on the factors of the almost
direct product decomposition AG3.

In Section 10 the following fact plays a crucial role.

Proposition 2.7. — Let A be a connected Q -defined linear algebraic group, equipped with

an algebraic group of automorphisms G. Then there are:

i) a Q -closed, G-invariant central d-subgroup Z1 in A and

ii) a Q -closed, G-invariant subgroup A1 of A with unipotent-by-finite center

such that A is decomposed as the almost direct product of Z1 and A1.

Proof. — Let A red be a maximal reductive subgroup of A which is defined
over Q . Let Z be the center of A red and let Z1 be the maximal torus in the center
of A . Thus Z1 is Q -closed in A , it is contained in Z , and it is normalized by G.

By Lemma 2.3, the group G1 of automorphisms of Z which is induced by the
quotient action of G on the isomorphic image of Z in A /UA is finite. Hence, by
AG6, we may choose a Q -closed and G1-invariant subgroup Z2 ≤ Z such that Z
is the almost direct product of Z1 and Z2. This shows that Z1 and A1 = UA · Z2 ·
[A red,A red] satisfy the requirements of the lemma.

3. The group of automorphisms of a solvable-by-finite linear
algebraic group

Let A be a linear algebraic group defined over Q . We let

Auta(A ), Auta,Q (A )(13)
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denote the group of all automorphisms of A , respectively the group of all Q -defined
automorphisms of A . We also need the following concept.

Definition 3.1. — We say that a linear algebraic group A has a strong unipotent radical if

the centralizer ZA (UA ) of its unipotent radical UA is contained in UA .

Given a Q -defined solvable-by-finite linear algebraic group H with a strong uni-
potent radical we will identify Auta(H) in a natural way with a Q -defined linear alge-
braic group. We obtain special features of this identification which we will need later.

For a general linear algebraic group A , the group Auta(A ) is a group of type
ALA, that is, Auta(A ) is an extension of an affine algebraic group by an arithmetic
group, see [12]. Our approach is a variation of corresponding results in [12]. A con-
struction similar to ours, but in a more restricted situation, is contained in [19].

3.1. The algebraic structure of Auta(H). — We will assume here that H is a Q -
defined solvable-by-finite linear algebraic group which has a strong unipotent radical
U := UH. Let u denote the Lie algebra of U. The Lie algebra u is defined over Q
and Aut(u) ≤ GL(u) is a Q -defined linear algebraic group. The exponential map

exp : u→ U(14)

is a Q -defined isomorphism of varieties. Thus, via the bijective homomorphism

Auta(U) � Φ �→ exp−1 ◦ Φ ◦ exp ∈ Aut(u)(15)

the group Auta(U) attains a natural structure of a linear algebraic group which is de-
fined over Q .

We let S ≤ H be a maximal Q -closed d-subgroup and obtain the decomposition
H = U · S described in SG4 of Section 2. We define

Auta(H)S := {Φ ∈ Auta(H) | Φ(S) = S} ≤ Auta(H).(16)

Lemma 3.2. — The restriction map Φ �→ Φ|U identifies Auta(H)S with a Q -defined

closed subgroup of Auta(U).

Proof. — Since H has a strong unipotent radical the restriction map is injective
on Auta(H)S. Let Ad(S) denote the image of S under the restriction of the adjoint
representation to u. Then Ad(S) is a Q -defined subgroup of Aut(u). Note that the
obvious homomorphism S → Ad(S) is a Q -defined isomorphism since H has a strong
unipotent radical (see also [19], Lemma 2.3). It is clear that, via the exponential map,
the restriction of Auta(H)S to U is isomorphic to the normalizer of Ad(S) in Aut(u).
Since Ad(S) is a Q -defined group, its normalizer and centralizer are Zariski-closed
subgroups of Aut(u). By the Galois criterion for rationality (see [11, AG 14]) the nor-
malizer and centralizer of Ad(S) are defined over Q . In particular, Auta(H)S restricts
to a Q -defined subgroup of Auta(U).
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Thus the lemma furnishes a natural structure of Q -defined linear algebraic
group on Auta(H)S. Since Auta(H)S acts on U by Q -defined morphisms, the semi-
direct product U � Auta(H)S is an affine algebraic group over Q , and thus is also
equipped with the natural structure of a Q -defined linear algebraic group, see [11].
Let Innu ∈ Auta(H) denote the inner automorphism corresponding to u ∈ U, that is,
Innu(h) = uhu−1, for all h ∈ H. We consider the homomorphism

Θ : U� Auta(H)S −→ Auta(H), (u,Φ) �→ Innu ◦ Φ.(17)

Lemma 3.3. — The homomorphism Θ is surjective.

Proof. — The group H decomposes as a semi-direct product of Q -defined alge-
braic groups H = U · S ∼= U � S. All maximal d-subgroups of H are conjugate by
elements of U, and Q -defined d-subgroups are conjugate by elements of U(Q) (see
Section 2). Therefore, the homomorphism Θ is onto Auta(H).

Lemma 3.4. — The kernel of the homomorphism Θ is a Q -defined unipotent subgroup of

U� Auta(H)S.

Proof. — In fact, ker Θ = {(u, Inn−1
u ) | Innu ∈ Auta(H)S} is a unipotent subgroup

of U� Auta(H)S. Since the homomorphism Θ corresponds to a Q -defined action of
U� Auta(H)S on the variety U, its kernel is a Q -defined subgroup.

Let

AH := U� Auta(H)S/ ker Θ(18)

denote the quotient group of U � Auta(H)S by the kernel of Θ. The group AH has
a natural structure of a Q -defined linear algebraic group, such that

AH(Q) = U� Auta(H)S(Q)/(ker Θ)(Q).(19)

Therefore, we have:

Theorem 3.5. — The homomorphism AH → Auta(H) which is induced by (17) naturally

identifies Auta(H) with the complex points of the Q -defined linear algebraic group AH.

By arguments using the above setup, the rational points of the corresponding
affine algebraic group are naturally interpreted in the following way:

Proposition 3.6. — Under the homomorphism AH → Auta(H) which is induced by (17)
the group of rational points AH(Q) of AH corresponds to the group Auta,Q (H) of Q -defined

automorphisms of H.
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Proof. — Let Φ ∈ AH(Q). It is clear from our construction that Φ preserves the
group of rational points H(Q) ≤ H which is Zariski-dense in H (cf. [11, §18.2]). By
the Galois-criterion for rationality (compare [11, AG 14]), Φ is defined over Q .

Conversely, assume Φ ∈ Auta(H)Q is a Q -defined automorphism of H. Then,
by AG2, there exists v ∈ U(Q) such that Ψ = Innv ◦ Φ ∈ Auta(H)S, and Ψ is defined
over Q as well. The exponential correspondence shows that Ψ ∈ Auta(H)S(Q). It
follows that Φ ∈ Auta(H)(Q).

Henceforth, we will identify Auta(H) with (the complex points of ) the linear al-
gebraic group AH, and Θ : U�Auta(H)S → AH = Auta(H) becomes a morphism of
algebraic groups which is defined over Q .

3.2. Arithmetic subgroups of Auta(H). — We keep the notation of the previ-
ous subsection. In particular, H denotes a Q -defined solvable-by-finite linear algebraic
group with a strong unipotent radical U = UH. Let further S be a maximal Q -defined
d-subgroup of H.

Let θ ≤ U(Q) be a finitely generated subgroup which is Zariski-dense in U.
Then θ is an arithmetic subgroup of the Q -defined group U. We explain now how
the choice of θ gives rise to an arithmetic subgroup Aθ of Auta(H) = AH.

Definition 3.7. — We define the following subgroups of Auta(H):

Aθ := {Φ ∈ Auta(H) | Φ(θ) = θ}, Λθ := Auta(H)S ∩ Aθ,(20)
Aθ := Θ (θ �Λθ) ≤ AH(Q).(21)

Lemma 3.8. — Let θ ≤ U(Q) be a finitely generated subgroup which is Zariski-dense

in U. Then the group Λθ is an arithmetic subgroup of Auta(H)S.

Proof. — As explained in Subsection 3.1, the group Auta(H)S is Q -isomorphic to
the normalizer NAut(u)(Ad(S)) via the isomorphism (15). Embedding Aut(θ) as a sub-
group of Auta(U), it corresponds to

NAut(u)(log θ) = {Ψ ∈ Aut(u) | Ψ(log θ) ⊆ log θ} ≤ Aut(u).

The group NAut(u)(log θ) stabilizes the lattice L in u which is generated by the set
log θ. Moreover, NAut(u)(log θ) is arithmetic in Aut(u), see [40, Chapter 6]. It follows
that Λθ ≤ Auta(H)S corresponds to

NAut(u)(Ad(S)) ∩ NAut(u)(log θ(Γ)).

Thus, under the natural linear representation of Auta(H)S in GL(u), Λθ is com-
mensurable to the stabilizer of a lattice L ⊂ u(Q). Therefore, Λθ is arithmetic in
Auta(H)S.
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Using AR4 in Section 2 we deduce that θ�Λθ is arithmetic in U�Auta(H)S.
Since Aθ is the image of the arithmetic group θ �Λθ under the Q -defined surjective
homomorphism Θ, Aθ is arithmetic in Auta(H). This proves:

Proposition 3.9. — Let θ ≤ U(Q) be a finitely generated subgroup which is Zariski-dense

in U. Then the group Aθ is an arithmetic subgroup of Auta(H).

3.3. Some closed subgroups of Auta(H). — We stick to the conventions about H,
U, S. In addition, we introduce F ≤ U to be a Q -closed normal subgroup of H which
contains the commutator group [H◦, H◦]. By SG7 of Section 2, we have H = F · D,
for every Q -closed Cartan subgroup of H. As before S denotes a maximal d-subgroup
in H.

Let NA (F) denote the subgroup of elements in Auta(H) which preserve F. Ad-
ditionally, we define:

AH|F := {Φ ∈ NA (F) | Φ|H/F = idH/F},
AS := {Φ ∈ NA (F) | Φ|H◦/F = idH◦/F, Φ(S) = S},
A 1

S := {Φ ∈ AS | Φ|S = idS}.
It is easy to see that these groups are Q -closed subgroups of Auta(H).

Lemma 3.10. — The following hold:

i) A 1
S ≤ AH|F.

ii) Define AH|U = {Φ ∈ A | Φ|H/U = idH/U}, then AH|U ∩ AS = A 1
S .

iii) AH|F ∩ AS = A 1
S .

Proof. — Let Φ ∈ A 1
S and u ∈ U. Since Φ|H◦/F = idH◦/F, we have Φ(u) = ufu,

where fu ∈ F. Now let h ∈ H, and write h = su, where s ∈ S, u ∈ U. It follows that
Φ(h) = hfu. Hence, Φ ∈ AH|F. This proves i).

Let Φ ∈ AH|U ∩ AS and s ∈ S. Then Φ(s) = sus, where us ∈ U. Since Φ ∈ AS,
Φ(s) ∈ S. It follows that us = 1. Therefore, Φ ∈ A 1

S . This proves ii).
By i), A 1

S ⊂ AH|F. Conversely, AH|F ∩AS ≤ AH|U ∩AS, and hence by ii), AH|F ∩
AS ≤ A 1

S . This proves iii).

Before we proceed let us introduce some notation concerning inner automor-
phisms.

Definition 3.11. — Let A be a group and B ≤ A a subgroup. Let a ∈ A. We write

Inna ∈ Aut(A) for the inner automorphism of A defined by g �→ aga−1, for all g ∈ A. Given an

element b ∈ B, we set InnA
b ∈ Aut(A) for the corresponding inner automorphism of A (to distinguish

it from the induced inner automorphism of B). We write InnA
B for the subgroup of Aut(A) con-

sisting of all elements InnA
b , b ∈ B.
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Let D be Cartan subgroup of H which contains S. Thus D = UD ·S. We define

AD := {Φ ∈ NA (F) | Φ|H◦/F = idH◦/F, Φ(D) ⊂ D}.(22)

If D is defined over Q then AD is a Q -defined subgroup of Auta(H).

Lemma 3.12. — The following hold:

i) Let u ∈ UD such that InnH
u ∈ AH|F. Then there exists v ∈ D ∩ F such that, for all

s ∈ S, InnH
u (s) = InnH

v (s).
ii) AH|F ∩ AD = InnH

F∩D · A 1
S .

Proof. — Let s ∈ S. Then InnH
u (s) = sfs, where fs ∈ F ∩ D. Moreover, fs = 1,

for s ∈ S◦ since u normalizes S◦. By a standard argument (compare for example [12])
the cocycle s �→ fs is of the form fs = s−1vsv−1, for some v ∈ F ∩ D. Thus, InnH

v (s) =
InnH

u (s), for all s ∈ S.
Let Φ ∈ AH|F ∩ AD. Since Φ(D) ≤ D, there exists v ∈ UD such that vSv−1 =

Φ(S). Then Ψ = InnH
v−1 ◦ Φ ∈ AS ∩ AH|U holds. By Lemma 3.10 (ii), Ψ ∈ A 1

S follows.
In particular, Ψ(s) = s, for all s ∈ S. Hence, Φ(s) = InnH

v (s), for all s ∈ S. Since
we have Φ ∈ AH|F, this implies that InnH

v ∈ AH|F holds. By the first part, there exists
w ∈ D ∩ F such that InnH

w (s) = InnH
v (s) holds for all s ∈ S. In particular we find

InnH
w−1 ◦ Φ ∈ AS ∩ AH|F = A 1

S . Hence, AH|F ∩ AD ⊂ InnH
F∩D · A 1

S holds. The lemma
follows.

Proposition 3.13. — Let H be a Q -defined solvable-by-finite linear algebraic group and

F ≤ UH be a Q -closed subgroup which contains [H◦, H◦], then

AH|F = InnH
F · A 1

S

holds.

Proof. — It is clear that InnH
F · A 1

S ≤ AH|F. Now let Φ ∈ AH|F. Since F con-
tains [H◦, H◦], there exists v ∈ F such that vDv−1 = Φ(D). Therefore, InnH

v−1 ◦ Φ ∈
AD ∩ AH|F holds. The proposition follows from the previous lemma, part ii).

4. The algebraic hull of a polycyclic-by-finite wfn-group

Let Γ be a polycyclic-by-finite group. Its maximal nilpotent normal subgroup
Fitt(Γ) is called the Fitting subgroup of Γ. We assume that Fitt(Γ) is torsion-free and
ZΓ (Fitt(Γ)) ≤ Fitt(Γ). These two conditions are equivalent to the requirement that Γ

has no non-trivial finite normal subgroups. We call a group with this property a wfn-

group. Proofs of the following results may be found in [8, Appendix A].
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Theorem 4.1. — Let Γ be a polycyclic-by-finite wfn-group. Then there exists a Q -defined

linear algebraic group HΓ and an injective group homomorphism ψ : Γ → HΓ(Q) such that:

i) ψ(Γ) is Zariski-dense in HΓ,

ii) HΓ has a strong unipotent radical U = UHΓ
,

iii) dim U = rank Γ.

Moreover, ψ(Γ) ∩ HΓ(Z) is of finite index in Γ.

Here, rank Γ denotes the number of infinite cyclic factors in a composition series
of Γ. (This invariant is sometimes also called the Hirsch-rank of Γ.)

We remark that the group HΓ is determined by the conditions i)–iii) up to Q -
isomorphism of algebraic groups:

Proposition 4.2. — Let Γ be a polycyclic-by-finite wfn-group. Let H′ be a Q -defined linear

algebraic group and ψ ′ : Γ −→ H′(Q) an injective homomorphism which satisfies i) to iii) from

above. Then there exists a Q -defined isomorphism Φ : HΓ → H′ such that ψ ′ = Φ ◦ ψ.

Corollary 4.3. — Let Γ be a polycyclic-by-finite wfn-group. The algebraic hull HΓ of Γ is

unique up to Q -isomorphism of algebraic groups. In particular, every automorphism φ of Γ extends

uniquely to a Q -defined automorphism Φ of HΓ.

We call the Q -defined linear algebraic group HΓ the algebraic hull for Γ. We shall
identify Γ with the corresponding subgroup of its algebraic hull HΓ.

If Γ is finitely generated torsion-free nilpotent then HΓ is unipotent and The-
orem 4.1 and Proposition 4.2 are essentially due to Malcev [29]. If Γ is torsion-free
polycyclic, Theorem 4.1 is due to Mostow [31] (see also [36, §IV, p. 74] for a different
proof ).

Proposition 4.4. — Let Γ be a polycyclic-by-finite wfn-group. Let HΓ be the algebraic hull

for Γ. Then Γ ∩ UHΓ
= Fitt(Γ) holds.

Definition 4.5. — We define F = FΓ := Fitt(Γ) ≤ HΓ as the Zariski-closure of the

Fitting subgroup of Γ.

Thus, in particular, F is a connected unipotent normal subgroup of HΓ, and F
is defined over Q . Moreover:

Proposition 4.6. — The commutator subgroup [H◦
Γ, H◦

Γ] is contained in F. Let D be

a Cartan subgroup of HΓ. Then there is a decomposition

HΓ = F · D.(23)

Proof. — Since Γ is Zariski-dense, we see that

[H◦
Γ, H◦

Γ] = [Γ ∩ H◦
Γ,Γ ∩ H◦

Γ] ≤ Fitt(Γ) = F.

The decomposition of HΓ follows (see SG7 of Section 2).
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4.1. A faithful rational representation of Aut(Γ). — Let Auta(HΓ) be the group
of algebraic automorphisms of HΓ with its natural structure of Q -defined linear al-
gebraic group. We view Auta(HΓ) as a Q -defined closed subgroup of GL(n, C), for
some n ≥ 0. Then Proposition 3.6 shows that the extension

Aut(Γ) � φ �→ Φ ∈ Auta,Q (HΓ) = Auta(HΓ)(Q)(24)

which is defined in Corollary 4.3 gives rise to a faithful representation of Aut(Γ) into
GL(n, Q):

Corollary 4.7. — The extension homomorphism (24) is a faithful homomorphism of Aut(Γ)

into the group of Q -points of the linear algebraic group Auta(HΓ).

Using this fact, if an embedding Γ ≤ HΓ is fixed we identify Aut(Γ) with a sub-
group of Auta(HΓ). Remark though, that, in general, Aut(Γ) is not Zariski-dense in
Auta(HΓ) because the elements of Aut(Γ) preserve the Fitting subgroup F, and hence
also the Zariski-closure F of F. Thus, with the conventions from Section 3.3, Aut(Γ)

is contained in the subgroup NA (F) of Auta(HΓ).
Let AΓ|F ≤ Aut(Γ) be the subgroup defined in (3). Since Γ is Zariski-dense in

HΓ, the following is clear.

Lemma 4.8. — We have AΓ|F ≤ AH|F(Q) under the extension homomorphism (24).

4.2. Thickenings of Γ in HΓ. — Before introducing the thickening, we recall
some results about finitely generated subgroups in unipotent algebraic groups. Let U
be a unipotent Q -defined linear algebraic group, and let F ≤ U(Q) be a finitely
generated subgroup. Then F is a torsion-free nilpotent group. Let F := F ≤ U be
the Zariski-closure of F. Then F is Q -defined, and dim F = rank F. The group of Q -
points of F is isomorphic to the Malcev radicable hull of F, i.e., F(Q) is radicable,
and for every x ∈ F(Q) there exists k ∈ N such that xk ∈ F. For m ∈ N, we define

F
1
m := 〈x ∈ F(Q) | xm ∈ F〉.

Then F
1
m ≤ F(Q) is finitely generated, F ≤ F

1
m and |F 1

m : F| < ∞. Every finitely
generated subgroup G ≤ F(Q) is contained in F

1
m , for some m ∈ N. See [40] for

more details on all of this.
Now let Γ be a polycyclic-by-finite wfn-group, let F denote the Fitting subgroup

of Γ, and let F ≤ HΓ be the Zariski-closure of F in the algebraic hull of Γ. Since F is
unipotent, F

1
m is defined as a subgroup of F(Q).

Definition 4.9. — A subgroup Γ̃ of HΓ which is of the form Γ̃ = F
1
m · Γ is called a

thickening of Γ.
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Clearly thickenings Γ̃ exist, for every m ∈ N. A thickening Γ̃ of Γ is a finitely
generated subgroup of HΓ(Q) which is of finite index over Γ. We further remark that
Fitt(Γ̃) = F

1
m . The inclusion of Γ̃ into HΓ shows that HΓ is an algebraic hull also for

the thickening Γ̃.

4.3. The automorphism group of the thickening. — Let Γ be a polycyclic-by-finite
wfn-group and let Γ̃ ≤ HΓ(Q) be a thickening of Γ. Let φ ∈ Aut(Γ), and let
Φ : HΓ → HΓ denote the extension of φ in Auta(HΓ). Since the automorphism Φ

preserves HΓ(Q), it is clear that Φ preserves Γ̃ ≤ HΓ(Q) as well. Restricting Φ to Γ̃

we thus obtain a natural inclusion Aut(Γ) ↪→ Aut(Γ̃). This shows that we may identify
Aut(Γ) with a finite index subgroup of Aut(Γ̃) in a natural way:

Proposition 4.10. — Let Γ be a polycyclic-by-finite wfn-group, and let Γ̃ be a thickening

of Γ. Then the group Aut(Γ) = {ψ ∈ Aut(Γ̃) | ψ(Γ) = Γ} is a subgroup of finite index in

Aut(Γ̃).

Proof. — Put d = [Γ̃ : Γ] for the index of Γ in Γ̃. Remark that there are only
finitely many subgroups of Γ̃ with index d , since Γ̃ is a finitely generated group. The
automorphism group Aut(Γ̃) acts on the set of such subgroups and the group Aut(Γ)

is the stabilizer of the subgroup Γ. Hence, we have [Aut(Γ̃) : Aut(Γ)] ≤ 
, where 


is the number of subgroups of index d .

5. Thickenings of Γ admit a supplement

We give here a short account of the construction of nilpotent-by-finite supple-
ments in polycyclic-by-finite groups. Similar results are contained in the book [40]
where nilpotent supplements in polycyclic groups are considered.

Definition 5.1. — Let Γ be a polycyclic-by-finite group and let C ≤ Γ be a nilpotent-by-

finite subgroup. We call C a nilpotent-by-finite supplement in Γ if Γ = Fitt(Γ) · C.

Nilpotent-by-finite supplements do not exist for general groups Γ. We will show
below that a polycyclic-by-finite wfn-group Γ admits a thickening which has a nil-
potent-by-finite supplement, a result originally due to Romankov (for polycyclic
groups), see [38, Lemma 4.4].

As standing assumption for this section we have that Γ is a polycyclic-by-finite
wfn-group, and we put F = Fitt(Γ). We fix an inclusion Γ ≤ HΓ(Q) of Γ into its
algebraic hull HΓ. We put F for the Zariski-closure of F in HΓ, and put N = F(Q).

Lemma 5.2. — Let Γ be a polycyclic-by-finite wfn-group and let D ≤ HΓ be a Q -

defined Cartan-subgroup. Then Ĉ = ΓN ∩ D is a nilpotent-by-finite subgroup of Γ · N such that

Γ · N = Ĉ · N holds.
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Proof. — The decomposition (23) induces a corresponding decomposition for the
group of Q -points of HΓ, that is, HΓ(Q) = N · D(Q).

Let γ ∈ Γ. Since Γ ≤ HΓ(Q) holds, it follows that γ = nγ cγ , where nγ ∈ N,
cγ ∈ D(Q) ∩ ΓN. Hence, Γ · N = Ĉ · N holds.

We prove now the existence of supplements in a thickening Γ̃ = F
1
m · Γ.

Proposition 5.3. — Let Γ be a polycyclic-by-finite wfn-group and let D ≤ HΓ be a Q -

defined Cartan subgroup. Then there exists m ∈ N such that

F
1
m · Γ = F

1
m · C, where C = (F

1
m · Γ) ∩ D.

Proof. — By the previous lemma, ΓN = ĈN, where Ĉ = ΓN ∩ D. It follows that
the natural map Ĉ → ΓN/N is surjective.

Since ΓN/N is finitely generated, there exists a finitely generated group C ≤ Ĉ
so that C → ΓN/N is surjective. Let c1, ..., ck be generators for C, ci = γini, where
γi ∈ Γ and ni ∈ N. Choose m ∈ N such that ni ∈ F

1
m , i = 1...k. Then C ≤ Γ̃ = ΓF

1
m ,

and, in particular, F
1
m C ≤ Γ̃.

The surjectivity of the map C → ΓN/N shows that every γ ∈ Γ is of the form
γ = cn, where c ∈ C, n ∈ N ∩ Γ̃ = F

1
m . This shows that Γ̃ = F

1
m · C.

A nilpotent-by-finite supplement is called maximal if it is a maximal element of
the set of all nilpotent-by-finite supplements with respect to inclusion of subgroups.
We show that the maximal supplements are those which arise by the construction of
Proposition 5.3.

Proposition 5.4. — Let Γ be a polycyclic-by-finite wfn-group. Let Γ̃ = F
1
m · Γ be a thick-

ening which admits a maximal nilpotent-by-finite supplement C. Then there exists is a Q -defined

Cartan subgroup D of HΓ such that C = Γ̃ ∩ D and C is Zariski-dense in D.

Proof. — Let C be any nilpotent-by-finite supplement in Γ̃. Put C = C for the
Zariski-closure of C. Since C ≤ HΓ(Q), C is defined over Q . Since Γ̃ = F

1
m · C is

Zariski-dense in HΓ, we have HΓ = F · C . Let S be a maximal d-subgroup of C .
Then S is also maximal in HΓ. In particular, C contains a maximal Q -defined torus
T of HΓ. Since C is nilpotent by-finite, T is unique and normal in C . We let D denote
the Cartan-subgroup corresponding to T. Then C ≤ D. It follows that C ≤ Γ̃ ∩ D.
In particular, if C is maximal, then C = Γ̃ ∩ D.

Let us prove now that every maximal nilpotent by-finite supplement C is Zariski-
dense in the Cartan subgroup D which contains C . In fact, since H ≤ F · C ,
D = UD · S, where S ≤ D is a maximal d-subgroup of C , and UD is a unipotent
normal subgroup. Hence, S is a maximal d-subgroup of D as well. Furthermore, we
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can write u ∈ UD as u = fu1, where u1 ∈ UC , f ∈ F ∩ D. By the maximality of C,
F∩D ≤ C. Therefore, C∩F = F∩D is Zariski-dense in F∩D. This means, F∩D ≤ C .
Hence, f ∈ C and u ∈ C . It follows that C = D.

Proposition 5.5. — Let Γ be a polycyclic-by-finite wfn-group, and Γ̃ = F
1
m · Γ a thicken-

ing of Γ. Then there are at most finitely many F
1
m -conjugacy classes of maximal nilpotent by-finite

supplements in Γ̃.

Proof. — Let C be a maximal nilpotent-by-finite supplement in Γ̃. By Proposi-
tion 5.4, C = Γ ∩ D, where D is a Cartan subgroup of H. We consider Γ̃0 = Γ̃ ∩ H◦,
C0 = C ∩ Γ̃0. Then Γ̃0 is a polycyclic normal subgroup of Γ̃ and C0 � C. Also C0 =
C ∩ Γ̃0 = D ∩ Γ̃0 = D◦ ∩ Γ̃0. Since D◦ is a Cartan subgroup in H◦, C0 is a maximal
nilpotent supplement in Γ̃0 (see Proposition 5.4). Note further that C = Γ̃ ∩ NΓN(C0)

is uniquely determined by C0. By [40, Chapter 3, Theorem 4], there are only finitely
many F

1
m -conjugacy classes of maximal nilpotent supplements C0 ≤ Γ̃0. This also im-

plies that there are only finitely many F
1
m -conjugacy classes of maximal nilpotent by-

finite supplements in Γ̃.

6. Lemmas from group theory

We provide here some simple facts which shall be needed later.
We start off with a few remarks on group cohomology with non-abelian coeffi-

cients. Let µ be a group, and let L be a group on which µ acts by automorphisms.
If s ∈ µ we write v �→ vs, v ∈ L, for the action of s on L.

The set Z1(µ, L) = {z : µ → L | z(s1s2) = z(s1) z(s2)
s1} is called the set of

1-cocycles. Two 1-cocycles z1 and z2 are cohomologous if and only if there exists v ∈ L
such that z1(s) = v−1z2(s)vs. Let H1(µ, F) denote the set of equivalence classes of
cocycles. It is called the first cohomology set for µ with coefficients in L. The following
lemma is well known.

Lemma 6.1. — Let µ be a finite group, and L a finitely generated nilpotent group on which

µ acts by automorphisms. Then the cohomology set H1(µ, L) is finite.

Proof. — Let G = L�µ be the split extension corresponding to the given action
of µ on L. We consider L as a normal subgroup in G. A 1-cocycle z : µ → L gives
rise to the finite subgroup µz := {(z(s), s) | s ∈ µ} of G. Two 1-cocycles z1 and z2 are
cohomologous if and only if the corresponding subgroups µz1 and µz2 are conjugate
by an element of L. Since G is a finitely finitely generated nilpotent-by-finite group
we know (see [40], Chapter 8, Theorem 5) that G has only finitely many conjugacy
classes of finite subgroups. Since L has finite index in G, the lemma follows.
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We also need the following lemma.

Lemma 6.2. — Let N be a group and M ≤ N a finitely generated torsion-free abelian

normal subgroup of finite index. Define

Aut(N, M) = {φ ∈ Aut(N) | φ(M) = M, φ|M = idM}.
then InnN

M (see Definition 3.11) is a subgroup of finite index in Aut(N, M).

Proof. — We briefly sketch the argument. Remark first that is suffient to prove
the lemma in the case that the extension M ≤ N is effective, that is, ZN(M) ≤ M.
We set µ = N/M. Assuming effectiveness, there exists a finite extension group N ≤ L
of N which splits, that is, L is a semi-direct product L = ML � µ, where ML ≥ M
is a torsion-free abelian group which contains M as a subgroup of finite index. Every
automorphism of N extends uniquely to an automorphism of L which preserves ML.
Therefore, it is enough to show the lemma for Aut(L, ML). Now let φ ∈ Aut(L, ML),
that is, Φ|ML = idML , and assume additionally that φ is the identity on the finite
quotient L/ML. The group of all such φ is isomorphic to the group of 1-cocycles
in Z1(µ, ML) with the inner automorphisms corresponding to 1-coboundaries. Since
H1(µ, ML) (see Lemma 6.1) is finite, InnL

ML
is of finite index in Aut(L, ML).

The following can be deduced from [40], Section 6, we skip the proof.

Lemma 6.3. — Let U be a unipotent Q -defined linear algebraic group. The following hold:

i) Let U1 ≤ U2 ≤ U(Q) be two finitely generated subgroups and suppose that U1 is

Zariski-dense in U then the index [U2 : U1] is finite.

ii) Let U ≤ U(Q) be a Zariki-dense finitely generated subgroup and let d ∈ N. Let V ≤
U(Q) be a subgroup which contains U and satisfies [V : U] ≤ d . Then V is contained

in U
1
d! . In particular, the set of all such subgroups V is finite.

7. Unipotent shadows of Γ

Let Γ be a polycyclic-by-finite wfn-group. We set F = Fitt(Γ) and write F for
its Zariski-closure in HΓ. Furthermore, we choose a thickening Γ̃ = F

1
m · Γ which has

a (maximal) nilpotent-by-finite supplement C ≤ Γ̃. We use this setup to construct (in
a controlled way, depending on Γ) a finitely generated nilpotent group
θ ≤ U(Q) which is Zariski-dense in U. We shall later use θ to find arithmetic sub-
groups in Aut(Γ).

Using the above data we start our construction. We shall use the results of Sec-
tion 5. Let D = C ≤ HΓ denote the Zariski-closure of C. Then D is a Q -defined
Cartan-subgroup of HΓ. We have C = Γ̃ ∩ D, by Proposition 5.4. Let S ≤ D be
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a maximal Q -defined d-subgroup in D. Then S is a finite extension of the maximal
torus S◦. The torus S◦ is central in D◦, and D = NH(S◦). We set C0 = C ∩ D◦. Then
C0 is a nilpotent finite index normal subgroup of C.

We consider the split decompositions D = UD · S, D◦ = UD · S◦, where UD is
the unipotent radical of D. Every c ∈ D(Q) can be written uniquely as

c = uc · sc with uc ∈ UD(Q), sc ∈ S(Q).(25)

If c ∈ D◦(Q) holds, then sc ∈ S◦(Q) follows. We define

UC,S = 〈uc | c ∈ C〉, UC0 = 〈uc | c ∈ C0〉.(26)

Lemma 7.1. — The groups UC0 ≤ UC,S are finitely generated, Zariski-dense subgroups

of UD, and UC0 is of finite index in UC,S. Moreover, UC,S is normalized by C, and UC0 is

normalized by C0.

Proof. — Since S◦ ≤ D◦ is central in D◦, the map C0 � c �→ uc ∈ UD is a homo-
morphism. Therefore, the group UC0 is finitely generated. Moreover, since UD = UC0

,
the group UC0 is Zariski-dense in UD. Let S ≤ S denote the image of the homo-
morphism C → S, c �→ sc, and S0 ≤ S the corresponding image of C0. The group
C acts on C0 and on UD by conjugation. Since S◦ is central in D◦, this action factors
over the finite group µ = S/S0. For all c, d ∈ C, we have the formula

ucd = uc scuds−1
c .(27)

This shows that the group UC,S is generated by UC0 and a finite set uc1, ...ucl , where
the ci ∈ C represent generators for C/C0. Therefore, UC,S is finitely generated. The
statement about the finite index follows from Lemma 6.3.

Equation (27) also shows that the action of the finite group µ on UD preserves
the subgroup UC,S. This implies that UC,S is normalized by C. The second statement
follows by similar reasoning.

Definition 7.2. — We define

θC,S := 〈
F

1
m , UC,S

〉
, θC0 := 〈

F
1
m , UC0

〉
.(28)

The groups θC,S are called unipotent shadows of Γ.

Since we have U = F · DU (see SG7 of Section 2), Lemma 7.1 shows that each
unipotent shadow θC,S is a finitely generated subgroup of U(Q) which is Zariski-dense
in U, and it contains the group θC0 as a normal subgroup of finite index.
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Definition 7.3. — We call θC,S a good unipotent shadow if the conditions

θC0 ∩ F = θC,S ∩ F = F
1
m = Fitt(Γ̃)(29)

are satisfied.

Good shadows may be obtained by further thickening of the Fitting-subgroup.

Proposition 7.4. — Let Γ be a polycyclic-by-finite wfn-group. Then there is a thickening

Γ̃ = F
1
m · Γ with a nilpotent-by-finite supplement C ≤ Γ̃, such that, for every maximal Q -defined

d-subgroup S ≤ C, θC,S is a good unipotent shadow.

Proof. — Choose 
 ∈ N such that the thickening F
1

 · Γ admits a nilpotent-by-

finite supplement C. Let S be a maximal Q -defined d-subgroup in the Zariski-closure
D of C. Let θC,S be defined as in Definition 7.2.

Since θC,S is finitely generated, we may choose m ∈ N, divisible by 
, such that
θC,S ∩ F ≤ F

1
m . Now put Γ̃ = F

1
m ·Γ, and remark that C is a nilpotent-by-finite supple-

ment in Γ̃. By Proposition 5.4, C1 = D ∩ Γ̃ is a maximal nilpotent-by-finite supple-
ment in Γ̃, and contains C. Since every element c1 ∈ C1 can be expressed as c1 = fc
with c ∈ C and f ∈ F

1
m , we find, going through the definitions of θC,S and θC1,S, that

θC1,S ∩ F ≤ F
1
m · (θC,S ∩ F). This implies that θC1,S ∩ F = F

1
m = Fitt(Γ̃). Hence the

requirements of Definition 7.3 follow.

The following compatibility results are very important for our future construc-
tions.

Proposition 7.5. — Let Γ be a polycyclic-by-finite wfn-group. Let Γ̃ = F
1
m · Γ be a thick-

ening of Γ with a nilpotent-by-finite supplement C ≤ Γ̃. Let θC,S be a corresponding unipotent

shadow. Then the following hold:

i) Let φ ∈ Aut(Γ̃) be an automorphism which satisfies φ(C) = C, and let Φ be its

extension to an automorphism of HΓ. Then we have Φ(θC0) = θC0 .

ii) For a finite finite index subgroup of the group of all automorphisms φ ∈ Aut(Γ̃) with

φ(C) = C, the extension Φ satsifies Φ(θC,S) = θC,S.

iii) The group Γ̃ normalizes θC,S.

Proof. — Since φ(C) = C, we have Φ(D) = D, hence also Φ(D◦) = D◦ and
Φ(S◦) = S◦. The definition of UC0 shows that Φ(UC0) = UC0 . Since Φ also stabilizes
Fitt(Γ̃) = F

1
m , it stabilizes θC0 . This proves i).

Since θC0 is of finite index in θC,S, we can use i) together with part ii) of
Lemma 6.3 to prove ii).

By Lemma 7.1, UC,S is normalized by C. Since C also normalizes Fitt(Γ̃) = F
1
m

it normalizes θC,S = F
1
m · UC,S. The Fitting subgroup F

1
m normalizes θC,S because it is

contained in θC,S. Hence, Γ̃ = F
1
m · C normalizes θC,S. Hence, iii) holds.
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8. Arithmetic subgroups of Aut(Γ)

Let Γ be a polycyclic-by-finite wfn-group. As usually, the group Γ is considered
as embedded in the Q -points of its algebraic hull HΓ. This also fixes an embedding
of Aut(Γ) in the Q -points of the Q -defined linear algebraic group Auta(HΓ).

We set F = Fitt(Γ) and write F for its Zariski-closure. We assume for this section
that Γ admits a nilpotent-by-finite supplement. Thus we may choose a nilpotent-by-
finite subgroup C of Γ such that Γ = F · C holds. We choose C maximal with these
properties. We write D = C for its Zariski-closure. Then C = Γ∩D. We further choose
a Q -defined d-subgroup S ≤ C. Associated with these data comes a unipotent shadow
θ = θC,S, as constructed in the previous section. We make the additional assumption
that θ is a good unipotent shadow (see Definition 7.3). Our general philosophy is that
we always can replace a general wfn-group Γ by one of its thickenings to enforce these
assumptions.

We define U to be the unipotent radical of HΓ. The unipotent shadow θ ≤
U(Q) provides us with arithmetic subgroups of suitable Q -closed subgroups of
Auta(HΓ) (compare Section 3.2). We then will find the position of Aut(Γ) ≤ Auta(HΓ)

relative to them. Given a subgroup B ≤ Auta(HΓ) we define

B[θ] := {Φ ∈ B | Φ(θ) = θ}(30)

to be the stabilizer of θ in B. We have:

Lemma 8.1. — Let B ≤ Auta(HΓ) be a Q -closed subgroup which acts faithfully on U.

Then B[θ] is an arithmetic subgroup of B.

The lemma follows along the principles used in Section 3.2, that is, by lineariz-
ing the action on U via the exponential function to a linear action on the Lie algebra
of U.

As a first application of Lemma 8.1, we obtain that A 1
S [θ] is arithmetic in A 1

S ,
(see Section 3.3 for the definition of A 1

S ). We deduce:

Proposition 8.2. — Given the data (Γ, C, S) as described above. Then

InnHΓ

F · A 1
S [θ] ≤ AHΓ|F(Q)

is an arithmetic subgroup of AHΓ|F.

Proof. — By our definitions, A 1
S [θ] normalizes both F and θ, and hence also

F ∩ θ. We have F ∩ θ = F since θ is a good shadow. It follows that

F�A 1
S [θ] ≤ F�A 1

S
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is an arithmetic subgroup. We consider the natural Q -defined homomorphism
F�A 1

S → AHΓ|F which is induced by (17). By Proposition 3.13, it is surjective. This
implies the result. Of course we have also used that the image of an arithmetic group
under a Q -defined homomorphism is arithmetic (see AR1 of Section 2).

We turn now to the task of comparing Aut(Γ) to the above arithmetic groups.
We define, as in the introduction,

AΓ|F := {φ ∈ Aut(Γ) | φ|Γ/F = idΓ/F}.
Clearly, AΓ|F is a characteristic subgroup of Aut(Γ). Set also

AC
Γ|F := {φ ∈ AΓ|F | φ(C) = C}.

We obtain from Proposition 5.5:

Lemma 8.3. — Given the data (Γ, C, S) described above, InnΓ
F · AC

Γ|F has finite index in

AΓ|F.

Next we analyze the group AC
Γ|F[θ]. We obtain from Proposition 7.5 ii):

Lemma 8.4. — Given the data (Γ, C, S) described above, AC
Γ|F[θ] has finite index in AΓ|F.

We have the semi-direct product decomposition D = UD · S. Relative to this
decomposition we can consider the quotient homomorphism πS : D → S, and define

S := πS(C), S0 := πS(C ∩ D◦)(31)

Notice that, by the constructions in Section 7, we have c ·πS(c)−1 ∈ θ, for every c ∈ C.
We need the following technical observations:

Lemma 8.5. — Given the data (Γ, C, S), described above and S, S0 as defined in (31),

we have

i) The group S normalizes F ∩ C and S0 centralizes it.

ii) Let Φ be the extension of the automorphism φ ∈ AC
Γ|F[θ] to an automorphism of HΓ.

Then Φ(s) · s−1 ∈ F ∩ C holds, for every s ∈ S. If s ∈ S0 then Φ(s) · s−1 = 1.

Proof. — i): Let s be in S, choose c ∈ C with πS(c) = s and define v = c ·πS(c)−1.
As remarked above, we have v ∈ θ. Since c normalizes F ∩ C, the following holds

s(F ∩ C)s−1 = v−1(F ∩ C)v.

The right hand side is in θ and in F, hence in θ ∩ F = F. This implies that the
right hand side is in D = F ∩ D. The subgroup D ≤ Γ is nilpotent-by-finite and
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normalized by C. Both C and D are contained in D. Hence 〈C, D〉 is a nilpotent-by-
finite supplement in Γ. Since C is maximal, we have D = F ∩ D ≤ C and the first
part of i) follows. For the second part, notice that F ∩ C ≤ D◦.

ii): Let s be in S, choose c ∈ C with πS(c) = s and define v = c · πS(c)−1. Then

φ(c)c−1 = Φ(v)Φ(s)s−1v−1.

Since Φ is the identity modulo F, the right hand side is in U, whereas the left hand
side is in C. Hence, the right hand side is in C ∩ U ≤ θ. Our assumptions imply
Φ(s)s−1 ∈ θ and then Φ(s)s−1 ∈ θ ∩ F = F. Here we have used that θ is a good
unipotent shadow. Furthermore the above equation shows that Φ(s)s−1 ∈ D holds. As
under i), we finish the proof of the first part of ii) by remarking that F∩D is contained
in C. For the second notice that if s ∈ S◦ holds then Φ(s)s−1 ∈ F ∩ S◦ = {1} follows.

We proceed with the construction of subgroups in Aut(Γ). We define

AC
Γ|F[θ]1 := {

φ ∈ AC
Γ|F[θ] ∣∣ Φ(S) = S, Φ|S = idS

}
.(32)

Here Φ is as always the extension of the automorphism φ ∈ Aut(Γ) to an automor-
phism of HΓ. We have:

Lemma 8.6. — Given the data (Γ, C, S), as above. Then InnF∩C · AC
Γ|F[θ]1 is of finite

index in AC
Γ|F[θ].

Proof. — Notice first that InnF∩C is contained in AC
Γ|F[θ], as follows from the defi-

nitions. Let S, S0 ⊂ S be the subgroups defined in (31). The quotient group µ = S/S0

is finite and acts by conjugation on F ∩ C (see Lemma 8.5 i)). We let Z1(µ, F ∩ C)

be the corresponding set of 1-cocycles and H1(µ, F ∩ C) the cohomology set (see
Section 6 for definitions). This cohomology set is finite, by Lemma 6.1.

Given φ ∈ AC
Γ|F[θ] with extension Φ, we obtain, using Lemma 8.5, a map Dφ :

S → F ∩ C by setting Dφ(s) = Φ(s) · s−1. The verification of the following is straight-
forward:

– the above D induces a (well defined) map

D : AC
Γ|F[θ] → Z1(µ, F ∩ C),

– the map D from the previous item induces a (well defined) map

D̂ : AC
Γ|F[θ]/InnΓ

F∩C · AC
Γ|F[θ]1 −→ H1(µ, F ∩ C),

– the map D̂ is injective.

As remarked before, H1(µ, F ∩ C) is finite and the lemma is proved.
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We put now Lemmas 8.3, 8.4, and 8.6 together and obtain:

Lemma 8.7. — Given the data (Γ, C, S), as above. Then the group InnΓ
F · AC

Γ|F[θ]1 is of

finite index in AΓ|F.

The link between Proposition 8.2 and Lemma 8.7 is given by:

Proposition 8.8. — Given the data (Γ, C, S), as above. Then AC
Γ|F[θ]1 = A 1

S [θ].

Proof. — By the definitions, AC
Γ|F[θ]1 ≤ A 1

S [θ] holds. Now let Φ be an elem-
ent of A 1

S [θ]. We show that Φ is contained in Aut(Γ). First of all, we have Φ(F) =
Φ(θ ∩ F) = Φ(θ) ∩ Φ(F) = F. Here we used that θ is a good unipotent shadow.
Since Φ|H◦/F = idH◦/F, it follows that Φ|θ/F = idθ/F. Let c ∈ C, c = us with u ∈ θ and
s ∈ S. By the above, Φ(u) = fu, for some f ∈ F. Therefore, we get

Φ(c) = Φ(u)Φ(s) = Φ(u)s = fus = fc ∈ Γ.

Since Φ(D) = D, it follows that Φ(c) ∈ Γ ∩ D = C. This shows that Φ stabilizes C.
Hence, Φ(Γ) = Φ(FC) = FC = Γ. Thus, Φ ∈ Aut(Γ) holds. The lemma follows.

Putting together Lemma 8.7, Proposition 8.8, and Lemma 4.8, we obtain:

Corollary 8.9. — The group AΓ|F is an arithmetic subgroup of AHΓ|F.

Finally, let us consider the arithmetic subgroup Aθ (see Definition 3.7) of the
group Auta(HΓ). The group AΓ̃|F̃[θ] is defined as the stabilizer of θ in AΓ|F. We note:

Proposition 8.10. — A finite index subgroup of InnΓ · AΓ|F[θ] is contained in Aθ .

Proof. — By construction, we have AC
Γ|F[θ]1 ≤ Aθ . The group InnΓ stabilizes θ,

by Proposition 7.5 iii). Obviously InnF̃ is contained in Aθ . We have Γ = F̃ · C. Let
c be an element of C, we write c = v · s with v ∈ θ, s ∈ S. Then Innv ∈ Aθ , and
hence Inns stabilizes θ. Clearly, Inns ∈ Auta(HΓ)S, therefore Inns is also in Aθ . This
shows that InnΓ is contained in Aθ . Now InnΓ · AΓ|F̃[θ]1 is a finite index subgroup of
InnΓ · AΓ|F[θ], by Lemma 8.7.

9. The automorphism group of Γ as a subgroup of Auta(HΓ)

This section contains the final proof of Theorem 1.4. We also provide the in-
put for the proofs of Theorem 1.3 and Theorem 1.1. (These proofs will be given in
Section 11.)
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Let Γ be a polycyclic-by-finite wfn-group. We stick to our usual conventions.
Namely, Γ is embedded in the Q -points of its algebraic hull HΓ, Aut(Γ) ≤
Auta(HΓ)(Q), and U is the unipotent radical of HΓ. We also fix, as a reference,
a thickening Γ̃ = F

1
m · Γ of Γ in HΓ. We choose a thickening which satisfies the

assumptions of Section 8 on the data (Γ̃, C, S). In particular, C ≤ Γ̃ is a maximal
nilpotent-by-finite supplement, D = C its Zariski-closure, S ≤ D a maximal Q -defined
d-subgroup, and θ = θΓ̃ is a good unipotent shadow for Γ̃. Such a thickening exists,
by Proposition 7.4.

Proposition 9.1. — Let Γ be a polycyclic-by-finite wfn-group. Then the subgroup InnΓ ·AΓ|F
has finite index in Aut(Γ).

Proof. — Recall that AΓ|F = {φ ∈ Aut(Γ) | φ|Γ/F = idΓ/F}. We shall use that

AΓ|F = Aut(Γ) ∩ AHΓ|F = Aut(Γ) ∩ AHΓ|U.(33)

This is a straightforward consequence of Proposition 4.4.
Let us put N = πU(Γ), and M = πU(Γ0), where Γ0 = Γ∩H◦. Define Ŝ = HΓ/U

and note that Ŝ is a Q -defined d-group.
Let φ ∈ Aut(Γ) and let Φ ∈ Auta(HΓ) be its extension to HΓ. The Q -defined

automorphism Φ induces a Q -isomorphism ΦŜ of Ŝ, which preserves N and M. The
restriction of ΦŜ to N will be denoted by φN. By the rigidity of tori (AG7), for all φ in
a finite index subgroup of Aut(Γ), φN is the identity on M, that is φN ∈ Aut(N, M).
Thus, by Lemma 6.2, φN ∈ InnN

M holds in a finite index subgroup of Aut(Γ). If φN ∈
InnN

M, there exists c ∈ Γ0 such that
(
InnΓ

c ◦ φ
)

N
= idN. Since N is Zariski-dense in Ŝ,

this implies InnΓ
c ◦φ ∈ Aut(Γ)∩AHΓ|U = AΓ|F. Therefore, InnΓ

Γ0
· AΓ|F is of finite index

in Aut(Γ).

Proof of Theorem 1.4. — By the results proved in Section 4.1, Aut(Γ) is con-
tained in the Q -points of Auta(HΓ). We come now to the statement about AΓ|F. We
use that Aut(Γ) is naturally contained in Aut(Γ̃) as a subgroup of finite index, see
Proposition 4.10. The obvious fact that F̃ = Fitt(Γ̃) satisfies F̃ ∩ Γ = F implies that
AΓ|F = AΓ̃|F̃ ∩ Aut(Γ) is of finite index in AΓ̃|F̃. Hence, by Corollary 8.9, AΓ|F is an
arithmetic subgroup of AHΓ|F.

Now we prove that Aut(Γ) is, up to finite index, contained in the arithmetic
group Aθ defined relative to the good unipotent shadow θ = θΓ̃. (For the construction
of Aθ refer to Definition 3.7.) Since Aut(Γ) is with finite index naturally contained
in Aut(Γ̃) (see Proposition 4.10) it is enough to prove that a finite index subgroup
of Aut(Γ̃) is contained in Aθ . The latter is implied by Proposition 8.10 and Proposi-
tion 9.1.
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Proof of Theorem 1.3 for wfn-groups. — By Proposition 9.1, we have that InnΓ ·AΓ|F
is of finite index in Aut(Γ). Moreover, Γ̃ = F̃ · C contains Γ as a subgroup of finite
index. Hence, F · (Γ ∩ C) is of finite index in Γ. We have InnF is in AΓ|F. Therefore,
InnΓ

C · AΓ|F is of finite index in Aut(Γ). Now choose a finite index invariant nilpotent
subgroup B of InnΓ

C to obtain the result.

The usual induction procedure gives the following immediate corollary of Theo-
rem 1.4:

Corollary 9.2. — Let Γ be a polycyclic-by-finite wfn-group. Then there exists a faithful

representation of Aut(Γ) into GL(n, Z), for some n ∈ N.

10. Extensions and quotients of arithmetic groups

In the following we shall accumulate some results about extensions and quotients
of arithmetic groups which will be necessary for the proofs in the next subsection. To
formulate these results we need the following concepts.

Definition 10.1. — Let A be a Q -defined linear algebraic group and A ≤ A a subgroup.

An automorphism φ of A is said to be A -rational if there is a Q -defined automorphism of A
which normalizes A and coincides with φ on A. Moreover, a homomorphism ρ : A → G (Q) into

a Q -defined linear algebraic group G is called A -rational if ρ extends to a Q -homomorphism

ρA : A → G .

Definition 10.2. — Let G be a group of automorphisms of A. If the action of G on A
extends to an algebraic group of automorphisms on A (see Definition 2.1) then G is said to be an

A -algebraic group of automorphisms of A.

As explained in the introduction, a finite extension group of an arithmetic group
need not be arithmetic. We shall give now a slight generalization of a criterion from
[21] which allows to show that certain finite extension groups of arithmetic groups are
again arithmetic.

Lemma 10.3. — Let A be a Q -defined linear algebraic group and A ≤ A a Zariski-

dense arithmetic subgroup. Let B ≥ A be a group containing A as a normal subgroup of finite index.

Suppose that conjugation of B on A is A -rational. Then the following hold:

i) The inclusion of A into A can be extended to an embedding of the group B as an arith-

metic subgroup into a Q -defined linear algebraic group B which contains A as a sub-

group of finite index.

ii) Every automorphism of B which normalizes A and which induces an A -rational auto-

morphism of A is B-rational.
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iii) Let G be a group which acts by automorphisms on B which normalize A. If G acts as

an A -algebraic group of automorphisms on A then G is a B-algebraic group of auto-

morphisms of B.

iv) Let ρ : B → G (Q) be a representation of B which restricts to an A -rational represen-

tation of A. Then ρ is B-rational.

Proof. — Statement i) is an application of [21, Proposition 2.2]. The Q -defined
linear algebraic group B is constructed through the usual induction procedure, and if
R = {r1, ..., rn} ⊂ B is a complete set of coset representatives for A in B then R also
forms a complete set of coset representatives for A in B. There exists thus rij ∈ R
and aij ∈ A such that rirj = rijaij .

We show iv). Let ρ : B → G be a homomorphism of B whose restriction to
A is A -rational. That is, there is a Q -defined homomorphism ρA : A → G with
ρA (a) = ρ(a) for all a ∈ A. We shall show now that ρ is B-rational. Note first that,
for all b ∈ B and all a ∈ A , we have

ρA (b−1ab) = ρ(b)−1ρA (a)ρ(b),

since this identity is valid on the Zariski-dense subgroup A of A . Define now a map
f : B → G by

f (ria) := ρ(ri)ρA (a) (i = 1, ..., n, a ∈ A ).

Clearly, f is a Q -defined morphism of varieties. A straightforward computation using
the above mentioned identity shows that f is a homomorphism of groups. It follows
that f is a Q -defined homomorphism of linear algebraic groups. It is clear that f
coincides with ρ on B. This proves iv).

Note that ii) is an immediate consequence of iv).
To prove iii) use ii), and note that the condition of being an algebraic group of

automorphisms on B depends only on the connected component B◦ = A ◦.

The following remark is evident from the definition of an arithmetic group.

Lemma 10.4. — Let B be a Q -defined linear algebraic group and A ≤ B ≤ B(Q) be

subgroups. Assume that A is of finite index in B and is an arithmetic subgroup of its Zariski-closure.

Then B is an arithmetic subgroup of its Zariski-closure in B.

Next we study certain arithmetic quotients of arithmetic groups.

Proposition 10.5. — Let A be a Q -defined linear algebraic group and A ≤ A a Zariski-

dense arithmetic subgroup. Let N ≤ A be a normal subgroup of A and let N denote the Zariski-

closure of N in A . Assume furthermore that N has finite index in N ∩ A. Then:
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i) The group A/N embeds as an arithmetic subgroup into a Q -defined linear algebraic

group D.

ii) Every A -rational automorphism of A which normalizes N induces a D-rational auto-

morphism of A/N.

iii) Every A -algebraic group of automorphisms on A which normalizes N induces a D-

algebraic group of automorphisms of A/N.

iv) Let ρ be an A -rational representation of A with N ≤ ker ρ. Then the induced quotient

representation of A/N is D-rational.

For the proof of Proposition 10.5 we need the following lemma.

Lemma 10.6. — Under the assumptions of Proposition 10.5 there exists a finite index sub-

group C ≤ A such that N ∩ C ≤ N.

Proof. — To prove the lemma, we may clearly assume that the group A is con-
nected. Let UA be the unipotent radical of A . The unipotent radical UN of N is
contained as a normal subgroup in UA . We may now choose a reductive comple-
ment A red for UA , such that N red = N ∩ A red is a reductive complement for UN

in N . In particular, N red is normal in A red. Thus, by AG5, we may choose an al-
most direct complement H for N red in A red. That is, H is a Q -defined subgroup
of A red which centralizes N red, satisfies A red = N red · H and has finite intersection
N red ∩ H .

We put NU = UN ∩ N, and N1 = N red ∩ N. Since N is arithmetic in N ,
NU · N1 has finite index in N. Since NU is arithmetic in the unipotent group UN ,
there is a congruence subgroup G of A with the property UN ∩ G ≤ NU (see [40],
Chapter 4, Theorem 5). This congruence subgroup may be chosen torsion-free as
well. We now set

GU = UA ∩ G, G1 = N red ∩ G, GH = H ∩ G.

Since G is an arithmetic subgroup of A , the product GU · G1 · GH is of finite index
in G. Both N1 and G1 are arithmetic subgroups of N red. Hence, C1 = N1 ∩ G1 has
finite index in N1 and G1. Therefore,

C = GU · C1 · GH

has finite index in G and A. Since G is torsion-free, N ∩ C is contained in GU · C1.
Now we find that

N ∩ C ≤ GU · C1 ≤ (UA ∩ C) · (N red ∩ G) ≤ NU · N1 ≤ N.

This finishes the proof of the lemma.
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Proof of Proposition 10.5. — Replacing the subgroup C constructed in Lemma 10.6
above by one of its subgroups of finite index and also possibly by C · N, the following
can be arranged:

– C is a normal subgroup of finite index in A,
– C ∩ N = N,
– C is normalized by every automorphism of A which normalizes N.

Let C denote the Zariski-closure of C. This is a Q -closed subgroup (of finite index)
in A which contains N . Also C/N is contained as a Zariski-dense subgroup in the
Q -defined linear algebraic group C /N . Moreover, C/N is an arithmetic subgroup of
C /N , by AR1.

Now B = A/N is a finite extension group of C/N. Clearly, conjugations by
elements of A give rise to C /N -rational automorphisms of C/N and so does every
A -rational automorphism of A which normalizes N. Therefore, the group D may be
constructed by application of Lemma 10.3, thus proving i), ii), iii).

To prove iv), let ρA : A → G denote the algebraic extension of ρ, and let ρA/N :
A/N → G (Q) be the quotient representation induced by ρ. Clearly, its restriction to
C/N is C /N -rational, since ρA factors over C /N . Thus, part iv) of Lemma 10.3
shows that ρA/N is D-rational.

In the following we deal with the fact that a group which is isomorphic to an
arithmetic group may admit essentially different arithmetic embeddings into linear al-
gebraic groups. This phenomenon plays a role in our arithmeticity proofs. At this
point we will also need the full strength of the assumption that G acts as an alge-
braic group of automorphisms on A ≤ A , in order to extend the action of G to
a modification of the ambient group A .

Proposition 10.7. — Let A be an arithmetic subgroup of a Q -defined linear algebraic group

A and G an A -algebraic group of automorphisms of A. Let D be a normal subgroup of A which

is contained in the center of A and which is normalized by G. Then the group A can be embedded

as an arithmetic subgroup into a Q -defined linear algebraic group E such that:

i) The subgroup D of A is unipotent-by-finite in E .

ii) The group G acts as an E -algebraic group of automorphisms of A.

iii) If ρ : A → G (Q) is an A -rational representation which satisfies D ≤ ker ρ then ρ

is E -rational.

Proof. — Clearly, there is no harm in assuming that A is Zariski-dense in A . We
choose a subgroup C ≤ A, subject to the following conditions:

– C is torsion-free and a normal subgroup of finite index in A,
– C is contained in the connected component A ◦ of A ,
– C is normalized by G.
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Note that C is Zariski-dense in A ◦. We define G1 = InnA · G to be the subgroup of
the automorphism group of A which is generated by InnA and G. Then G1 acts by
Q -defined automorphisms on A . Now Lemma 2.2 and Lemma 2.6 show that G1 is
an A -algebraic group of automorphisms of A (and also of C). Hence, according to
Proposition 2.7, there exists a G1-invariant almost direct product decomposition

A ◦ = Z1 · A1,

where Z1 is the Q -closed central d-subgroup consisting precisely of the semisimple
elements contained in the center of A ◦, and A1 is a Q -closed normal subgroup of
A with unipotent by-finite center.

Next we define

Z1 = C ∩ Z1, C1 = C ∩ A1, C2 = Z1 · C1.

Observe that Z1 is an arithmetic subgroup of Z1 and that C1 is arithmetic in A1. It
follows that C2 is arithmetic in A and of finite index in C. Since C is torsion-free, we
have Z1 ∩C1 = {1}, and therefore C2 is isomorphic to the direct product Z1 ×C1. The
action of G1 as an A -algebraic group of automorphisms of C stabilizes the factors Z1

and C1, and hence also C2.
Now put D for the Zariski-closure of D. Since D is central in A, D ≤ Z(A ).

It follows that the maximal d-subgroup SD of D is contained in Z1. Since SD is
invariant in D, there exists, by virtue of AG6, an almost direct product decomposition
Z1 = SD ·S2 which is respected by G1. We define ZD = Z1 ∩SD and Z2 = Z1 ∩S2.
By the arithmeticity of the factors Z1 and Z2, the product ZD · Z2 is of finite index
in Z1. Also this decomposition is preserved by G1.

Now define C3 = ZD · Z2 · C1 ≤ SD · S2 · A1. This group is an arithmetic
subgroup, G1-invariant and of finite index in A. Since it is torsion-free it is also a direct
product of its factors. Let us put A2 = S2 · A1 and ¯A2 = A2/(A2 ∩ SD). Then we
have an induced arithmetic and Zariski-dense embedding

C3 = ZD × (Z2 × C1) ≤ SD × ¯A2.

Since ZD is isomorphic to Zn, for some n ≥ 0, we may embed this group as an arith-
metic subgroup into Gn

a. This gives rise to an arithmetic and Zariski-dense embedding

C3 = ZD × (Z2 × C1) ≤ Gn
a × ¯A2

which has the property that D ∩ C3 is unipotent by-finite in Gn
a × ¯A2.

Note that G1 induces an ¯A2-algebraic group of automorphisms of C1. We con-
sider now the arithmetic embedding of ZD into the unipotent group Gn

a. The action
of G1 on ZD extends to an action by Q -defined automorphisms of Gn

a. This turns G1
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into a Gn
a-algebraic group of automorphisms of ZD . We infer from Lemma 2.5 that

the product action of G1 on Gn
a × ¯A2 turns G1 into an algebraic group of automor-

phisms of Gn
a × ¯A2. This, in particular, turns G1 into an Gn

a × ¯A2-algebraic group of
automorphisms of C2.

Now let ρ be an A -rational representation of A which contains D in its kernel.
In particular, it satisfies D ≤ ker ρA , where ρA denotes the extension of ρ to A . The
restriction of ρA to A2 gives rise to a Q -defined homomorphism ρ̄ : Gn

a × ¯A2 → G
which has the subgroup Gn

a in its kernel. We contend that ρ̄ extends the representation
ρ on C3. This is easily verified. Thus ρ : C3 → G is Gn

a × ¯A2-rational.
Since C3 is normal and of finite index in A, this allows, by application of

Lemma 10.3, to embed the group A as an arithmetic subgroup in a finite extension
E of Gn

a × ¯A2 such that G acts as a E -algebraic group of automorphisms of A. This
embedding has the property that the finite index subgroup C3 ∩ D ≤ D is unipo-
tent. Hence, D is unipotent-by-finite under the embedding of A into E . This proves i)
and ii). The last statement of Lemma 10.3 asserts that ρ is E -rational, since the re-
striction of ρ to C3 is Gn

a × ¯A2-rational.

Part of Proposition 10.7 is reminiscent of Corollary 3.5 from [19] and of Propo-
sition 3.3 from [21], but it is stronger since no passages to subgroups of finite index
are required. Our ultimate arithmeticity result is contained in the next proposition.

Proposition 10.8. — Let A be a Q -defined linear algebraic group and let A ≤ A (Q) be

a Zariski-dense subgroup. Assume N, B, C are normal subgroups of A such that the following hold:

i) N · B has finite index in A,

ii) B is an arithmetic subgroup in its Zariski-closure B,

iii) C is an arithmetic subgroup in its Zariski-closure C ,

iv) C ≤ N ∩ B and D = (N ∩ B)/C is in the center of B/C.

Then A/N is an arithmetic group.

Moreover, there exists an arithmetic embedding of A/N into a Q -defined linear algebraic group

AN which has the following property: For any A -rational representation of A with N ≤ ker ρ, the

induced quotient representation of A/N is an AN-rational representation.

Proof. — The group A induces by conjugation an B-algebraic group of automor-
phisms of B which we call G. Note that B and C are normal in A , and preserved
by G as well. Since B and C are arithmetic subgroups of their respective Zariski-
closures, we find that C has finite index in C ∩B. We may hence use Proposition 10.5
to embed the group B/C as an arithmetic subgroup into a Q -defined linear alge-
braic group D. This embedding has the property that the group G of automorphisms
of B/C is D-algebraic.

We consider now the subgroup D = (N ∩ B)/C in B/C. By our assumption iv),
D is central in B/C. Since G is D-algebraic, we may, by Proposition 10.7, change the
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arithmetic embedding of B/C in D to an arithmetic embedding of B/C into a Q -
defined linear algebraic group E such that D is unipotent-by-finite in E . Moreover,
the group G acts as an E -algebraic group of automorphisms.

Let us consider now the Zariski-closure D1 of D in E . Since D has a unipo-
tent finite index subgroup, D is an arithmetic subgroup of the Q -defined algebraic
group D1. (For a proof consult [40, Chapter 8]). Since D is an arithmetic subgroup it
has finite index in D1 ∩B/C. Therefore, we may apply Proposition 10.5 to embed the
quotient (B/C)/D as an arithmetic subgroup into a Q -defined linear algebraic group
B1 such that G acts by B1-rational automorphisms on (B/C)/D.

By assumption i), A/N is isomorphic to a finite extension group of

(B/C)/D ∼= B/B ∩ N ∼= (N · B)/N.

The elements of A/N act on (B/C)/D as B1-rational automorphisms since the elem-
ents of G have this property. Finally, we apply Lemma 10.3 to find that A/N is arith-
metic in a Q -defined linear algebraic group.

To prove that the restriction of ρ to A/N is AN-rational, we have to carry over
the rationality of ρ in each of the construction steps above. The details are easily ver-
ified.

11. The arithmeticity of Out(Γ)

This section contains the complete proof of Theorem 1.1 which proceeds in two
steps. These steps are carried out in Section 11.1 and in Section 11.2. On our way,
we provide (respectively, finish) the proof of Theorem 1.5 in Section 11.1, as well as
the proofs of Theorem 1.3 and of Theorem 1.9 in Section 11.2.

Throughout this section, Γ denotes a polycyclic-by-finite group. We also stick to
the notation introduced in Sections 2 to 6. In particular, F ≤ Γ denotes the Fitting
subgroup of Γ. If in addition Γ is a wfn-group, HΓ denotes the algebraic hull of Γ,
and F the Zariski-closure of F.

11.1. The case of polycyclic-by-finite wfn-groups. — The purpose of this subsec-
tion is to prove Theorem 1.5 of the introduction. Let us therefore assume here that
Γ is a wfn-group. The arithmeticity of Out(Γ), in the case that Γ is a wfn-group, is
an immediate consequence of the structural properties of the embedding Aut(Γ) ≤
Auta(H)(Q) together with Proposition 10.8. To see this let us put now

A = Aut(Γ), N = InnΓ, B = AΓ|F, C = InnF.(34)

Then we have:
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Proposition 11.1. — Let Γ be a wfn-group. Then the subgroups N, B, C ≤ A defined

in (34) satisfy the hypotheses of Proposition 10.8 with respect to the Zariski-closure A of Aut(Γ)

in Auta(H).

Proof. — Condition i) requires that N · B = InnΓ · AΓ|F has finite index in A =
Aut(Γ). This is contained in Proposition 9.1. Theorem 1.4 says that B = AΓ|F is arith-
metic in its Zariski-closure B in A . This implies condition ii).

The construction of the algebraic structure on Auta(H) (see Subsection 3.1)
shows that the group InnF is a Zariski-closed subgroup of the unipotent radical of
Auta(H). Moreover, InnF contains the finitely generated group InnF as a Zariski-dense
subgroup of rational points. In particular, C = InnF is arithmetic in its Zariski-closure.
This implies condition iii).

We shall finally verify the conditions iv) of Proposition 10.8. Clearly we have
InnF ≤ InnΓ∩AΓ|F, that is, C ≤ N∩B. Now let Φ ∈ AΓ|F and γ ∈ Γ with Innγ ∈ AΓ|F.
Then Φ(γ) = γ f , where f ∈ F. It follows that

Φ ◦ Innγ ◦ Φ−1 = InnΦ(γ) = Innγ Innf .

This shows that InnΓ ∩ AΓ|F = N ∩ B projects onto a central subgroup of B/C =
AΓ|F/InnΓ

F . Hence, iv) holds.

Proof of Theorem 1.5. — We may now apply Proposition 10.8 which asserts that
there exists a Q -defined linear algebraic group

OΓ = AN = AInnΓ

which contains an isomorphic copy of the group Out(Γ) = A/N as an arithmetic
subgroup. This already establishes the arithmeticity of Out(Γ).

Consider next the algebraic outer automorphism group

Outa(HΓ) = Auta(HΓ)/InnHΓ
,

and let πΓ : Out(Γ) → Outa(HΓ) be the homomorphism induced on Out(Γ). Since
the natural map Auta(HΓ) → Outa(HΓ) is a Q -defined homomorphism, it induces
a Q -defined homomorphism A → Outa(HΓ). Since πΓ contains N = InnΓ in its
kernel, Proposition 10.8 asserts that the homomorphism πΓ : Out(Γ) → Outa(HΓ)

can be extended to a Q -defined homomorphism

πOΓ
: OΓ → Outa(HΓ).

This proves the first part of Theorem 1.5.
To show the statements about the kernel of πΓ, we define:

K = InnH ∩ Aut(Γ), KF = InnH ∩ AΓ|F, EF = InnHΓ

F ∩ AΓ|F.
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Lemma 11.2. — With the above notation the following hold:

i) InnΓ
F has finite index in EF.

ii) There is a finite index normal subgroup T ≤ AΓ|F such that T ∩ EF ≤ InnΓ
F .

iii) The commutator group [AΓ|F, KF] is contained in EF.

Proof. — Note that InnH
F is Zariski-dense and arithmetic in the unipotent group

InnH
F . Since AΓ|F is an arithmetic subgroup of its Zariski-closure in A , EF is arithmetic

in InnH
F as well. This implies i).
Now ii) follows from i) together with the congruence subgroup property for InnΓ

F .
(Compare the proof of Lemma 10.6.)

For iii), let Φ be the extension of φ ∈ AΓ|F to an automorphism of HΓ. Let
h ∈ H such that Innh = ψ ∈ KF. Since Φ ∈ AHΓ|F

Φ ◦ Innh ◦ Φ−1 = InnΦ(h) = Innh ◦ Innfh.

This in turn gives ψ−1 ◦ φ ◦ ψ ◦ φ−1 ∈ InnHΓ

F ∩ AΓ|F = EF, proving iii).

The kernel of πΓ is the image of K = InnHΓ
∩ Aut(Γ) in Out(Γ). Let K̄F and

ĒF be the images of KF, EF in AΓ|F/InnΓ
F . Let T̄ be the corresponding image of the

finite index subgroup T ≤ AΓ|F as in Lemma 11.2 ii). Lemma 11.2 i) shows that ĒF is
finite. By ii) and iii) of the same lemma, K̄F is centralized by the finite index subgroup
T̄ ≤ AΓ|F/InnΓ

F . In particular, K̄F is abelian-by-finite. Consider now the commutative
diagram

AΓ|F/InnΓ
F

��

��

Out(Γ) = Aut(Γ)/InnΓ

uukkk
kk
kk
k
kk
kk
k
kk

Outa(HΓ)

of natural homomorphisms. By AR3, every abelian subgroup of an arithmetic group
is finitely generated. Hence, the image of K̄F in Out(Γ) is so. We may also infer that
K̄F is finitely generated.

Since InnΓ ·AΓ|F has finite index in Aut(Γ), the normal subgroup K̄F maps onto
a finite index subgroup of the image of K in Aut(Γ)/InnΓ. This proves that ker πΓ

is finitely generated, abelian-by-finite and centralized by a finite index subgroup of
Out(Γ). If Γ is nilpotent-by-finite then EF is of finite index in KF, and hence ker πΓ

is finite. This finishes the proof of Theorem 1.5.

11.2. The case of a general polycyclic-by-finite group. — In this subsection, we ex-
plain the transfer of our arithmeticity results from the case of wfn-groups to general
polycyclic-by-finite groups. Thereby, we provide the final step in the proofs of The-
orem 1.1 and Theorem 1.3. We also prove Proposition 1.6 and Theorem 1.9.
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Let Γ be a polycyclic-by-finite group. Let τΓ denote the maximal finite normal
subgroup of Γ. Note that τΓ is characteristic in Γ that is, it is normalized by every
automorphism of Γ. The quotient group

Γ̃ := Γ/τΓ

is a wfn-group. We let j : Γ → Γ̃ denote the quotient homomorphism. By The-
orem 1.5, the group Out(Γ̃) is an arithmetic group. We shall show that Out(Γ) has
the same property.

Let Γ0 ≤ Γ be a characteristic finite index subgroup with Γ0 ∩ τΓ = {1}. We
may suppose that the image Γ̃0 ≤ Γ̃ of Γ0 in Γ̃ is also characteristic. (To obtain such
a subgroup, let n ∈ N be the index of a torsion-free subgroup of finite index in Γ.
Take Γ0 to be the subgroup generated by all γ n!, γ ∈ Γ).

Let us put

µ := Γ/Γ0.

The quotient homomorphism j and the projection to µ induce injective homomor-
phisms

jµ : Γ → Γ̃ × µ, and kµ : Aut(Γ) → Aut(Γ̃) × Aut(µ).

We define finite index subgroups of Aut(Γ) and Aut(Γ̃), respectively:

A0 := {φ ∈ Aut(Γ) | φΓ/Γ0 = idΓ/Γ0} ≤ Aut(Γ),

Ã0 := {φ ∈ Aut(Γ̃) | φΓ̃/Γ̃0 = idΓ̃/Γ̃0} ≤ Aut(Γ̃).

Lemma 11.3. — With the above notation the following hold:

i) The group jµ(Γ) is of finite index in Γ̃ × µ.

ii) Let F = Fitt(Γ). Then j(F) is of finite index in Fitt(Γ̃).

iii) The induced homomorphism k : Aut(Γ) → Aut(Γ̃) maps the group A0 isomorphically

onto Ã0. In particular, k(Aut(Γ)) is of finite index in Aut(Γ̃).

iv) The subgroup AΓ|F ≤ Aut(Γ) is mapped by k onto a finite index subgroup of AΓ̃|F̃.

Proof. — Part i) is clear. For ii), note first that j(F) is a nilpotent normal subgroup
in Γ̃, and hence j(F) ≤ Fitt(Γ̃). Then F0 = j−1(Fitt(Γ̃) ∩ Γ0) is a nilpotent normal
subgroup of Γ which is of finite index in the preimage j−1(Fitt(Γ̃)). Moreover, F0 ≤ F.
Hence F is of finite index in this preimage. This implies ii).

To prove iii), we show that kµ(A0) = Ã0 × {1}. Clearly, kµ(A0) is contained in
Ã0 ×{1}. Let ψ ∈ Ã0. We show that there exists φ ∈ A0 such that ψ = k(φ) is induced
by φ. If γ ∈ Γ, we let γ̃ = j(γ) denote its projection into Γ̃. Since the projection j
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maps Γ0 isomorphically onto the invariant subgroup Γ̃0, the automorphism ψ defines
ψ0 ∈ Aut(Γ0) uniquely with the property that

j(φ0(γ)) = ψ(γ̃ ) (γ ∈ Γ0).

Let Γ
/
Γ0 = ⋃

i γiΓ0 be the coset decomposition. Now we can write ψ(γ̃i) = γ̃iεi,
εi ∈ Γ̃0. There exist unique δi ∈ Γ0 such that εi = δ̃i. We declare now

φ(γis) = γ̃iδiφ0(s) (s ∈ Γ0).

It is easy to verify that this actually defines an automorphism φ ∈ Aut(Γ). This φ is
clearly a lift of ψ.

For iv) consider the quotient homomorphism Γ/F → Γ̃/F̃. By ii), this homo-
morphism has finite kernel. Since it is surjective, the group AΓ|F is mapped into AΓ̃|F̃
by k. Let A1 be the preimage of AΓ̃|F̃ in Aut(Γ). Now applying the reasoning of iii)
to the above quotient homomorphism with finite kernel, we deduce that finite index
subgroup of A1 acts as the identity on Γ̃/F̃. That is, AΓ|F has finite index in A1. This
shows iv).

Part iii) of the above lemma immediately implies Proposition 1.6:

Proof of Proposition 1.6. — The groups Aut(Γ) and Aut(Γ̃) are commensurable,
since they have isomorphic finite index subgroups A0 and Ã0. If Aut(Γ̃) is arithmetic,
then the product Aut(Γ̃)×Aut(µ) is arithmetic. Since Aut(Γ) embeds as a subgroup of
finite index in the latter product, Aut(Γ) is an arithmetic group as well. Conversely, if
Aut(Γ) is arithmetic, the finite index subgroup A0 ≤ Aut(Γ) is arithmetic too. There-
fore, the subgroup Ã0 ≤ Aut(Γ̃) is arithmetic.

A related result is:

Proposition 11.4. — The subgroup AΓ|F of Aut(Γ) is arithmetic.

Proof. — By iv) of Lemma 11.3, the injection jµ maps AΓ|F onto a finite index
subgroup of AΓ̃|F̃ × Aut(µ). Since AΓ̃|F̃ is arithmetic, by Corallary 8.9, we can infer
that AΓ|F is arithmetic.

Proof of Theorem 1.3 in the general case. — As remarked above, the projection k
maps AΓ|F onto a finite index subgroup of AΓ̃|F̃. Let B ≤ Γ ∩ Γ0 be a nilpotent sub-
group such that AΓ̃|F̃ · j(B) is of finite index in Aut(Γ̃) (see Section 9). Then AΓ|F · B
is of finite index in Aut(Γ). Together with Proposition 11.4, this proves the required
decomposition of Aut(Γ).

As another consequence of Lemma 11.3, we infer that Out(Γ) and Out(Γ̃) are
S-commensurable:
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Proof of Proposition 1.7. — Since k(InnΓ0) ≤ InnΓ̃ is of finite index in InnΓ̃ and k :
A0 → Ã0 is an isomorphism, A0 ∩InnΓ is a subgroup of finite index in k−1(Ã0 ∩InnΓ̃).
We consider the map on quotients

A0/A0 ∩ InnΓ

k∗−→ Ã0/Ã0 ∩ InnΓ̃

which is induced by k. The above implies that k∗ has finite kernel. Since the left hand
side is a finite index subgroup of Out(Γ), the corollary follows.

Proof of Theorem 1.1 in the general case. — Let Γ be a polycyclic-by-finite group.
Then we know that Out(Γ) is residually finite (by [46]). By Proposition 1.7, it projects
with finite kernel onto a finite index subgroup of the arithmetic group Out(Γ̃). Thus
Proposition 1.8 implies that Out(Γ) is arithmetic.

Proof of Theorem 1.9. — By Proposition 1.6 we reduce to the case of Γ̃. Using
Proposition 9.1 we infer that AΓ̃|F is of finite index in Aut(Γ̃). We finally use The-
orem 1.4.

12. Polycyclic groups with non-arithmetic automorphism groups

We present examples of polycyclic groups whose automorphism groups are not
isomorphic to any arithmetic group. In particular, we shall prove Theorem 1.2.

12.1. Automorphism groups of semi-direct products. — Here are some remarks con-
cerning the automorphism group of groups Γ which are semi-direct products F � D
where D is a group and F is a (commutative) D-module.

We write the group product in F additively, and for h ∈ D, we write f �→ h · f ,
f ∈ F, to denote the action of the element h on F. Let Θ be a subgroup of Γ. We
write InnΘ for the subgroup of Aut(Γ) consisting of the inner automorphisms defined
by the elements of Θ. Similarly as before, we put

AΓ|F := {φ ∈ Aut(Γ) | φ(F) = F, φ|Γ/F = idΓ/F}.
There are two constructions for automorphisms in AΓ|F. For the first, let Der(D, F) =
{d : D → F | d(h1h2) = z(h1) + h1 · z(h2)} be the group of derivations from D into F.
The group of derivations naturally obtains the structure of a D-module by setting

g ∗ d (h) := g · d( g−1hg) ( g, h ∈ D, d ∈ Der(D, F)).

A derivation d ∈ Der(D, F) gives rise to an automorphism φd : Γ → Γ by

φd((m, g)) := (m + d( g), g) (m ∈ F, g ∈ D).
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We write Autd(Γ) for the (abelian) subgroup of AΓ|F consisting of these automorphisms.
We remark that the homomorphism

Der(D, F) → AΓ|F, d �→ φd (d ∈ Der(D, F))

is D-equivariant with respect to the above D-action on Der(D, F) and conjugation by
elements of InnD on AΓ|F.

Let us define AutD(F) to be the group of D-equivariant automorphisms of F.
Given a D-equivariant automorphism ρ : F → F, we define an automorphism φρ :
Γ → Γ by

φρ((m, g)) := (ρ(m), g) (m ∈ F, g ∈ D).

We write Auta(Γ) for the subgroup of AΓ|F consisting of these automorphisms.

Proposition 12.1. — Let Γ = F � D be a semi-direct product of a abelian D-module F
by the group D. We then have:

i) AΓ|F = Autd(Γ) · Auta(Γ).

ii) InnΓ · AΓ|F = (Autd(Γ) · Auta(Γ)) · InnD.

iii) Auta(Γ) centralizes InnD.

iv) Autd(Γ) ∩ Auta(Γ) = {1}.
v) Autd(Γ) is an abelian normal subgroup in InnΓ · AΓ|F.

The proof of this proposition is straightforward, we skip it.

12.2. Examples. — In order to show that certain groups are not arithmetic we
use the following simple criterion.

Proposition 12.2. — For a matrix A ∈ GL(n, Z), let Γ(A) = Zn
� 〈A〉 be the split

extension of Zn by the cyclic group generated by A. If Γ(A) is an arithmetic group then either A is

of finite order or a power of A is unipotent or A is semisimple.

In the first two cases of Proposition 12.2 that is if either A is of finite order or
a power of A is unipotent the group Γ(A) is arithmetic. In case A is semisimple Γ(A)

can be arithmetic but examples in [22] show that it need not have this property.

Proof. — Suppose that Γ(A) is an arithmetic group and that A is not of fi-
nite order nor a power of A is unipotent. In this case, we have Fitt(Γ(A)) = Zn.
Assume further that Γ(A) is an arithmetic group. We can find (compare [19, Theo-
rem 3.4]) a solvable Q -defined linear algebraic group H, having a strong unipotent
radical so that there is an isomorphism ψ : Γ(A) → Γ where Γ is a Zariski-dense
arithmetic subgroup of H(Q). Let U be the unipotent radical of H and let u denote
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the Lie algebra of U. The exponential map exp : u→ U is a Q -defined isomorphism
of varieties. The adjoint representation leads to a Q -defined rational representation
αH : H → Aut(u) which is defined by

αH( g) (x) = exp−1( g exp(x)g−1) ( g ∈ H, x ∈ u).
Since αH is Q -defined, the image αH(Γ) is a Zariski-dense and arithmetic (by AR1)
subgroup of αH(H). The kernel of αH is equal to U. Taking the image under exp−1

of the standard basis in Zn we obtain a Q -basis of u(Q). Expressed in this basis ψ(A)

acts by the matrix A on the subspace u0 spanned by these elements. Also H0 stabi-
lizes u0. Hence the cyclic subgroup generated by A is arithmetic and Zariski-dense in
H1 = αH(H).

Let A = SJ be the Jordan-decomposition of A, that is J ∈ H1(Q) is unipotent
and S ∈ H1(Q) is semisimple and JS = SJ holds. There is a n ∈ N such that Jn ∈
H1(Z), and hence a m ∈ N such that Jm ∈ 〈A〉. This implies Sm ∈ 〈A〉. We infer that
J = 1.

We shall discuss now the example from the introduction. That is, we choose
d ∈ N not a square, set ω = √

d and let K = Q(ω) be the corresponding real
quadratic number field. We write x �→ x̄ for the non-trivial element of the Galois
group of K over Q . We consider the subring O = Z + Zω ⊂ K and choose a unit
ε = a + bω of O which is of infinite order and satisfies εε̄ = 1.

Let D∞ be the infinite dihedral group as in (1). We further take F = O ×Z with
the D∞-module structure defined as in (2). As done in the introduction, we put

Γ(ε) := F�D∞.

We describe four derivations d1, ..., d4 in Der(D∞, F) by specifying their values
on the generators A, τ of D∞. We define l to be the greatest common factor of a + 1
and bd . Now put:

d1(A) = (0, 1), d1(τ) = (0, 0);
d2(A) = (0, 0), d2(τ) = (0, 1);
d3(A) = (ω, 0), d3(τ) = (ω, 0);
d4(A) =

(
(ε + 1)ω

l
, 0

)
, d4(τ) = (0, 0).

Each of the above pairs of values defines a derivation by extension.
We also define

Â :=

⎛

⎜
⎜
⎝

1 −2 0 0
0 1 0 0
0 0 −1 −2(a+1)

l
0 0 g 2a + 1

⎞

⎟
⎟
⎠ .(35)

The structure of Aut(Γ(ε)) is described in the following proposition.



AUTOMORPHISM GROUPS OF POLYCYCLIC-BY-FINITE GROUPS 261

Proposition 12.3. — The following hold in Aut(Γ(ε)):

i) AutD∞(F) is finite.

ii) The derivations d1, ..., d4 are a Z-basis of Der(D∞, F).

iii) The action of InnA on Der(D∞, F) expressed relative to the basis d1, ..., d4 is given

by the matrix Â.

iv) Aut(Γ(ε)) contains a subgroup of finite index which is isomorphic to Γ(Â).

Proof. — Items i), ii), iii) are proved by some straightforward computations which
we skip. Remark that F is the Fitting-subgroup of Γ(ε). Setting Γ = Γ(ε) we know
from Proposition 9.1 that InnΓ · AΓ|F has finite index in Aut(Γ(ε)). The rest follows
from Proposition 12.1.

We are now ready for the proof of Theorem 1.2.

Proof of Theorem 1.2. — Suppose that Aut
(
Γ(ε)

)
contains a subgroup of finite

index which is an arithmetic group. We infer from iv) in Proposition 12.3 that Γ(Â)

is an arithmetic group, where Â is as in (35). We finish by the remark that Â does not
satisfy the necessary properties in Proposition 12.2.

Building on the above method it is possible to construct many more examples
of polycyclic groups Γ with an automorphism group Aut(Γ) which does not contain
an arithmetic subgroup of finite index. For example, as a slight variation of the above
groups Γ(ε), we may replace the dihedral group D∞ by the non-trivial semi-direct
product D1 of Z with itself, and let D1 act on F = O ×Z via its natural homomorph-
ism to D∞. We thus obtain a torsion-free, arithmetic polycyclic group Γ1(ε) of rank
five with non-arithmetic automorphism group. Another interesting class of examples
may be constructed by starting with the (non-arithmetic) polycyclic groups constructed
in [22]. For these examples the failure of arithmeticity is of rather different nature than
in the groups Γ(ε).

13. Cohomology representations of Out(Γ)

In this section we study the representation of Aut(Γ), Γ a torsion-free polycyclic-
by-finite group, on the cohomology groups H∗(Γ, R), where R = Z, Q , C. Since inner
automorphisms act trivially on the cohomology of Γ, the outer automorphism group
Out(Γ) is represented on the cohomology ring H∗(Γ, R). Considering the special case
R = C, we find that the complex vector space H∗(Γ, C) comes with a natural Z-
structure which is given by the image of the base change homomorphism H∗(Γ, Z) →
H∗(Γ, C). Recall that this image is a finitely generated subgroup containing a basis of
H∗(Γ, C). We fix here this Z-structure and its resulting Q -structure on H∗(Γ, C). The
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representation of Out(Γ) is an integral representation on H∗(Γ, C), that is, Out(Γ) nor-
malizes the Z-lattice in H∗(Γ, C) just described. The Q -structure on H∗(Γ, C) allows
us to identify the group of invertible linear maps GL(H∗(Γ, C)) with a Q -defined lin-
ear algebraic group. The Zariski-closure of the image of Out(Γ) in GL(H∗(Γ, C)) is
a Q -closed subgroup. We will show that the representation of Out(Γ) on H∗(Γ, C)

is an arithmetic representation, that is, the image of Out(Γ) in GL(H∗(Γ, C)) is an arith-
metic subgroup in its Zariski-closure. In particular, this establishes our main results of
Section 1.3.

To carry over the information from the embedding of Out(Γ) into a linear al-
gebraic group to topology and to the study of the cohomology H∗(Γ, R), we apply
geometric methods originating from [8].

13.1. Automorphisms of Lie algebra cohomology. — An important special case in
our theory is that of a finitely generated torsion-free nilpotent group Γ. In this case,
the cohomology of Γ is intimately related to the Lie algebra cohomology of the Lie al-
gebra of the Malcev completion of Γ, see Section 13.2. We add here some well known
facts about Lie algebra cohomology.

Let g denote a Lie algebra. The Lie product of g is expressed by a map ϕ :
g ∧ g → g which satisfies the Jacobi-identity. The cohomology ring H(g) of g is de-
fined as the cohomology of the Koszul-complex K of g, cf. [26]. The complex K has
the structure of a differential graded algebra. As a graded algebra K = ∧

g∗ is the
exterior algebra of the dual of g. The differential d of K is determined in degree
one, where d : g∗ → ∧2

g∗ is defined as the dual of the Lie product ϕ. In particular,
the cohomology of g in degree one is computed as H1(g) = Z1(g) = [g, g]⊥. Note
furthermore that, via the duality, the automorphism group of the differential graded
algebra K identifies with the group of Lie algebra automorphisms Aut(g). The auto-
morphism group Aut(g) acts on the cohomology H(g) with the inner automorphisms,
generated by the exponentials of inner derivations of g acting trivially.

Assume now that g is nilpotent. We consider the descending central series of
g which is defined by g0 = g, gi+1 = [g, gi]. Since g is nilpotent, gk = {0}, for
some (minimal) k ∈ N. Dualizing the descending central series, we obtain a filtration
g0 = {0} ⊂ g1 ⊂ ... ⊂ gk = g∗, where gi = (gi)⊥, and dgi ⊂ ∧2

gi−1.

Lemma 13.1. — Let Φ be a semi-simple automorphism of the Koszul-complex of the nilpo-

tent Lie algebra g. If Φ induces the identity on H1(g) then Φ = id.

Proof. — Since Φ is the identity on H1, it is the identity on g1. We prove by
induction that Φ is the identity on the subalgebra Kj , generated by gj , j > 1. Now gj

is obtained from gj−1 by adding finitely many generators x ∈ gj . Since Φ is semisimple,
x may be chosen in a Φ-invariant complement W of gj−1 in gj . Since dx ∈ Ki−1,
dΦx = Φdx = dx and d (Φx − x) = 0. Since W has no intersection with ker d1 = g1,
this implies Φx = x. Therefore, Φ is the identity on gj , and hence on Kj .
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We thus obtain the following result:

Proposition 13.2. — Let g be a nilpotent Lie algebra. Then the kernel of the natural repre-

sentation of Aut(g) on the cohomology H(g) is unipotent. In particular, any reductive subgroup of

Aut(g) acts faithfully on H(g), even on H1(g).

13.2. Computation of H∗(Γ, C) via geometry and Aut(Γ)-actions. — Before treating
the general case, we start by recalling some known facts which allow us to compute
the complex cohomology of a finitely generated torsion-free nilpotent group in terms
of Lie algebra cohomology. Let Θ be a finitely generated torsion-free nilpotent group,
and U the complex Malcev-completion of Θ, u the Lie algebra of U. Thus Θ ≤ U(Q)

and MΘ = Θ\U(R) is a smooth manifold which is an Eilenberg–Mac Lane space
of type K(Θ, 1). Here, R denotes the field of real numbers. In particular, there is
a natural identification of H∗(Θ, Z) with the singular cohomology group H∗(MΘ, Z),
see the discussion later in this section. By de Rham’s theorem, the singular cohomo-
logy ring H∗(MΘ, C) of the smooth manifold MΘ is isomorphic to the cohomology
H∗

DR(MΘ, C) of complex valued C∞-differential forms on MΘ. In this situation, No-
mizu [33] proved that the natural map from u into the differential forms on U(R)

induces an isomorphism of cohomology rings

n : H∗(u, C)
∼=−→ H∗

DR(MΘ, C).(36)

Composing this map with the natural isomorphisms

H∗
DR(MΘ, C) → H∗(MΘ, C) → H∗(Θ, C)

gives thus a linear isomorphism

nΘ : H∗(u, C)
∼=−→H∗(Θ, C).(37)

Since Aut(Θ) acts on U(R) by algebraic automorphisms, it also acts through smooth
maps on MΘ. Moreover, the isomorphisms n and nΘ are compatible with the induced
cohomology actions of Aut(Θ) on H∗(u, C), H∗

DR(MΘ, C) and H∗(Θ, C).
A similar picture carries over to our general situation where we start with

a torsion-free polycyclic-by-finite group Γ. We explain now some geometric construc-
tions which extend the above picture from the case of torsion-free nilpotent groups to
the more general situation. These constructions are closely connected with the alge-
braic setup discussed so far in this paper.

Let HΓ be the algebraic hull of Γ, S a maximal Q -closed d-subgroup, and U the
unipotent radical of HΓ. We have HΓ = U · S. We report from [8] the construction of
the standard Γ-manifold MΓ. To construct this manifold we write a γ ∈ Γ (uniquely)
as γ = us with u ∈ U(Q), s ∈ S(Q) and set

γ ∗ x := usxs−1 = γ xs−1 (x ∈ U(R)).(38)
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As noted in [8], this establishes a fixed-point-free, differentiable and properly discon-
tinuous action of Γ on U(R). Moreover, the quotient space

MΓ = Γ\U(R)

is a compact C∞-manifold and an Eilenberg–Mac Lane space of type K(Γ, 1).
We now explain how to calculate the complex cohomology of MΓ, and hence

the cohomology of Γ. Let u denote the Lie algebra of U, and let Ku be the Koszul-
complex of u (see Section 13.1). We let S act by conjugation on U and by the adjoint
action on u and Ku. Let K S

u ⊂ Ku denote the differential subcomplex of invariants
for S. Now, as is proved [8, §3], the obvious map

n : H∗(Ku, C)S → H∗
DR(MΓ, C)(39)

is an isomorphism of cohomology rings.
We explain next how Aut(Γ) acts on the above cohomology spaces. Let φ ∈

Aut(Γ) and Φ be its extension to an algebraic automorphism of HΓ. We choose a wφ ∈
U(Q) with the property that Φ(S) = wφSw−1

φ and set

Xφ(x) = Φ(x)wφ (x ∈ U(R)).(40)

This defines a C∞-map Xφ : U(R) → U(R). A straighforward computation yields
that

Xφ(γ ∗ x) = φ(γ) ∗ Xφ(x).(41)

This shows that the map Xφ descends to a map X̄φ : MΓ → MΓ.
Let

ZU(S) := {v ∈ U | vsv−1 = s for all s ∈ S}
be the centralizer of S in U. This is a Q -closed subgroup of U. Note that the similarly
defined normalizer of S in U is in fact equal to ZU(S). Multiplication from the right
defines an action of ZU(S)(R) on U(R) which commutes with the action of Γ on
U(R) defined in (38). Since ZU(S)(R) is connected, this action is homotopically trivial,
and so is the induced action on MΓ.

Let φ, ψ ∈ Aut(Γ) be automorphisms. A straighforward computation shows that
Xφ ◦ Xψ differs from Xφ◦ψ by an element of ZU(S)(R) acting on U(R). This shows
that Xφ ◦ Xψ and Xφ◦ψ are homotopic maps, as well as the maps X̄φ ◦ X̄ψ and X̄φ◦ψ .
In particular, this implies that, via the maps X̄φ, φ ∈ Aut(Γ), we obtain an action of
the group Aut(Γ) on the cohomology spaces H∗

DR(MΓ, C) and H∗(MΓ, C). The de
Rham isomorphism

I∗ : H∗
DR(MΓ, C) → H∗(MΓ, C)(42)
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is obviously equivariant. Since MΓ is a K(Γ, 1), there is an isomorphism (compare
[28, Theorem 11.5]),

J∗ : H∗(MΓ, C) → H∗(Γ, C).(43)

The isomorphism J∗ is natural with respect to the pairs (X̄φ, φ). (For this, property
(41) is essential, as is explained in [28].) In particular, J∗ is Aut(Γ)-equivariant.

The group Auta(HΓ) of algebraic automorphisms of HΓ stabilizes the unipotent
radical U, and hence it acts on u and Ku. Since the group of inner automorphisms
InnU acts trivially on H∗(Ku, C), we obtain an action of Auta(HΓ) = InnU ·Auta(HΓ)S

on H∗(Ku, C)S. Here Auta(HΓ)S stands for the stabilizer of S in Auta(HΓ). In particu-
lar, identifying Aut(Γ) as usually with a subgroup of Auta(HΓ), this constructs a rep-
resentation of Aut(Γ) on H∗(Ku, C)S. The isomorphism (39) can then be easily seen
to be Aut(Γ)-equivariant.

Let us define

nΓ = J∗ ◦ I∗ ◦ n : H∗(Ku, C)S → H∗(Γ, C).(44)

We have proved:

Proposition 13.3. — Let Γ be a torsion-free polycyclic-by-finite group. The isomorphism nΓ :
H∗(Ku, C)S → H∗(Γ, C) is equivariant with respect to the action of Aut(Γ) on H∗(Ku, C)S

(as defined above) and the natural action on H∗(Γ, C).

13.3. Rational action of Outa(HΓ) on H∗(Γ, C). — As remarked before, the
cohomology H∗(Γ, C) carries a natural Q -structure induced by the coefficient homo-
morphism H∗(Γ, Q) → H∗(Γ, C). Thus, in particular, the group GL(H∗(Γ, C)) at-
tains the natural structure of a Q -defined group. We discuss now the naturally defined
Q -structure on H∗(Ku, C)S.

Note first that the Lie algebra u is defined over Q . This means, there exists
a Lie algebra uQ over Q such that u = uQ ⊗ C is the scalar extension of uQ . The
Q -subalgebra uQ is called a Q -structure on u. It is induced by the Q -strucure on HΓ

(or, equivalently, by the unipotent shadow Θ of Γ) on u. (For related details con-
cerning Q -structures on nilpotent Lie algebras and unipotent groups one may con-
sult [40,24].) Since u is defined over Q , we obtain a rational structure for the vec-
tor space Ku of the Koszul-complex of u, and all differentials are defined over Q .
Since S is Q -closed in HΓ, it follows that the complex K S

u and its cohomology vector
spaces H∗(K S

u , C) inherit a natural Q -structure from Ku, representing GL(H∗(Γ, C))

as a Q -defined linear algebraic group.
Recall the construction of the Q -defined algebraic structure of Auta(HΓ) which

is discussed in Section 3.1. It is obtained by taking the natural quotient InnU �

Auta(HΓ)S → Auta(HΓ). Since, by definition of its algebraic structure, the natural
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representation of Auta(HΓ)S on u is defined over Q , the natural representation of
Auta(HΓ) on H∗(Ku, C)S is Q -defined as well. This also implies that the representa-
tion of Auta(HΓ) factors via a Q -defined representation η of Outa(HΓ). In particular,
the induced representation of Aut(Γ) on H∗(Ku, C)S factors through Out(Γ), and,
taking a basis with respect to the above constructed Q -structure, every element of
Out(Γ) acts by a matrix with rational entries on H∗(Ku, C)S.

Proposition 13.4. — The natural representation of Out(Γ) on H∗(Γ, C) is arithmetic.

Proof. — By construction, Out(Γ) is contained in the Q -defined linear algebraic
group OΓ as a Zariski-dense arithmetic subgroup. Via the homomorphism πOΓ

: OΓ →
Outa(HΓ) the representation of Out(Γ) on H∗(Ku, C)S is induced by a Q -defined
representation of OΓ. Let ρOΓ

denote the representation of OΓ on H∗(Γ, C) which
is obtained by conjugating with the isomorphism nΓ defined in (44). Let ρ denote
the natural representation of Out(Γ) on H∗(Γ, C). Since nΓ is Aut(Γ)-equivariant,
ρOΓ

(Out(Γ)) = ρ(Out(Γ)) consists of integral matrices in GL(H∗(Γ, C)) (with respect
to a basis of H∗(Γ, C) taken in the image of H∗(Γ, Z)).

We show that ρOΓ
is a Q -defined representation for the natural Q -structure on

H∗(Γ, C). As Out(Γ) is Zariski-dense in OΓ and consists of rational points, it follows
that the homomorphism ρOΓ

maps a Zariski-dense subset of rational points of OΓ to
rational points of GL(H∗(Γ, C)). The Galois-criterion for rationality applied to the
case of the extension C over Q implies that ρOΓ

is defined over Q . By AR1, we infer
that the image ρ(Out(Γ)) in GL(H∗(Γ, C)) is arithmetic in ρOΓ

(OΓ).

Proposition 13.4 proves Theorem 1.13 of the introduction. Remark that the ker-
nel of ρ is a finitely generated group since it is an arithmetic subgroup of the kernel
of ρOΓ

.

Remark 13.5. — The proof of Proposition 13.4 gives no information about the
rationality of the isomorphism nΓ. In fact, the representation of OΓ might be trivial.

For Γ = Θ a nilpotent group, some considerations on rationality questions for
the isomorphism nΘ may be found in [27]. We state here:

Proposition 13.6. — The isomorphism nΓ is defined over Q .

Sketch of proof. — We show that the map n : H∗(Ku, C)S → H∗
DR(MΓ, C) is

defined over Q . This can be seen as follows. In exponential coordinates for U(R), the
forms in Ku(Q) define polynomial differential forms with rational coefficients. The
de Rham isomorphism I∗ factorizes over the cohomology of the piecewise differential
forms, see [18, VIII]. The natural map from differential forms to piecewise-forms,
maps the forms corresponding to elements of Ku(Q) into piecewise linear forms with
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rational coefficients. By Sullivan’s P. L. de Rham theorem (see [44,18]) these are mapped
into H∗(MΓ, Q).
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