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Abstract. We study automorphisms of the CAR algebra which map the family of gauge-invariant,
quasi-free states of the CAR algebra onto itself and show (Theorem 3.1) that they are one-particle
automorphisms.

1. Introduction

The problem discussed in this paper arose from questions regarding equi-
librium states of thermodynamical systems. Equilibrium states have been
extensively discussed in the framework of C*-algebras of observables (see, for
example [6, 15]). Such states are labeled by a very small number of parameters.
For example, in the case of a gas of identical particles, the equilibrium states are
labeled by the temperature, the chemical potential, and the average velocity of the
particles — quantities which relate directly with the conserved quantities — energy,
particle number, and total momentum. Since conserved quantities are in one-one
correspondence with one-parameter groups of transformations which leave the
Hamiltonian invariant, we can describe the situation in a way which remains
meaningful for infinite systems. Equilibrium states of thermodynamical systems
are labeled by a very small number of parameters which relate directly with one-
parameter, automorphism groups of the observable algebra that commute with the
time-evolution automorphisms. The fact that there are so few parameters involved,
which is related to the fact that there are only a small number of one-parameter
groups of automorphisms that commute with the time-evolution, is an aspect of the
ergodic nature of most large physical systems. A proof based on the dynamics
of the system is still lacking, even though Sinai has obtained very interesting
results in this direction for a classical system of N hard spheres.

Systems of particles without interaction do not behave ergodically in the above
sense. This does not mean, however, that systems of noninteracting particles are
uninteresting from the point of view of ergodicity. In [7, 8], the asymptotic time
behavior of the free Fermi gas is discussed. It is found in {7] that, for increasing
time, primary states of the CAR algebra are asymptotic to gauge-invariant,
quasi-free states, provided these states satisfy a certain clustering property. In
particular, primary, stationary (i.e. time-invariant) states with that clustering
property are quasi-free. Quasi-free states [1-5, 9—14, 16, {7] are particularly
simple states in the sense that they lack all except two-point correlations. Some
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basic facts about gauge-invariant, quasi-free states are given in Section 2. These
states are in one-one correspondence with positive operators in the unit ball,
the so-called one-particle operators, acting on the one-particle Hilbert space #.
Stationary, quasi-free states of the free fermions are not labeled by a finite number
of parameters, as in the interacting case, but by one-particle operators that com-
mute with the Hamiltonian

H(= —(h*/2m) (*/0x? + 3?/0y* + 8*/0z%) = — (h*/2m)4) .

In particular, all operators of the form, f(hd/iox, ho/idy, hé/idz) with f positive
and having essential supremum {, define translationally-invariant, stationary
states of the free fermion system. In this case, f(p,, p;, ps) is the momentum
distribution of the particles.

The free fermion system is of particular interest to us because, as noted before,
the set of all primary states that satisfy a certain clustering property is known.
It is a subset of the gauge-invariant, quasi-free states. This result is an important
tool in determining the automorphisms that commute with the free-time evolution.
Since a clustering property that is somewhat stronger than that which holds for
all primary states may well be a condition one must impose upon a physically
meaningful state, we shall restrict our considerations to those automorphisms of
the CAR algebra whose transposes preserve this property. Let o be such an
automorphism that, in addition, commutes with the free-time evolution. Its
transpose maps the set of stationary, quasi-free states, that satisfy the clustering
property, onto itself. What can one conclude about a?

Before attempting to solve this problem, one is faced with a more primitive
question. What can be said about an automorphism « of the CAR algebra whose
transpose maps the set of quasi-free states (or a certain subset of it) onto itself?
Our main result (Theorem 3.1) states that, when the transpose leaves the set of
gauge-invariant, quasi-free states stable, then, either the Fock state is mapped
onto itself and there is a unitary operator U on #, such that a(a(f))=a(U f),
or the Fock state is mapped onto the anti-Fock state and there is a conjugate-
unitary operator W on #, such that a{a(f)) = a(W f)*, where a(f) is the annihila-
tion operator on Fock space.

A related result is stated in Theorem 4.1. A unitary operator on one-particle
space defines, in an obvious manner, a unitary operator on n-particle space.
Theorem 4.1 characterizes such unitary operators on n-particle space as those
which map anti-symmetrized products of one-particle wave functions (product
vectors) onto product vectors.

Section 2 is devoted to notation and a number of preliminary results, which
are used throughout the paper. The main theorem is proven in Section 3; and
Section 4 contains some related results.

2. Some Preliminaries

An infinite system of identical Fermi particles can be represented, insofar as
their algebraic interrelations are concerned, by a C*-algebra, 2, the so-called CAR
algebra. The abstract algebra 2 may be characterized as the norm closure (comple-
tion) of an algebra generated by a countably-infinite family of pairwise-commuting,
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self-adjoint algebras each isomorphic to the algebra of 2 x 2 complex matrices
and each containing the unit, I, of 2. Each =-representation of 2 gives rise to a
representation of the canonical anticommutation relations (CAR), and conversely.

For our purposes, it is more useful to describe U in its Fock representation.
With # a complex Hilbert space and J#, the n-fold tensor product, so that, for

Xisees Xps Yis oos Y in H, <X1®"’ ®x,,|y1®---®yn>=<x1|y1>~-~<x,,|y,,>, let
. . . 1
S, be the projection operator on #, which assigns ‘,ZX(O')XW)@“'@XJ(M
n! %

to x; ® - ®x,, where ¢ is a permutation of {1, ...,n} and y(o) is +1 if o is even,
—1if o is odd. The range of S, is the space #® of antisymmetric tensors. We write
x; A Ax, for (a8, (x;® - ®x,) (the “antisymmetrized, n-particle state
with wave functions x,, ..., x,’"). We have:

<X1 /\ /\xn|y1 /\ /\yn>:n!<x1®”’®xnlsn_(yl®"'®yn)>
= ZX(U)<X1 Yoy Xl Yo = det ({x;]y) .

Thus, assuming x; A --- Ax, and y; A--- Ay, are not 0, they are orthogonal if
and only if there are scalars ¢y, ..., ¢,, not all 0, such that

0= Z eixilyp = <Z CXIy,>,

that is, if and only if the space, [x, ..., x,], generated by x,, ..., x,, contains a
non-zero vector (Z¢; x;) orthogonal to [y,, ..., y,J. If, in addition, the intersection,
%1 x, A0 [y15 --o» Yul Of the spaces [x,, ..., x,] and [y, ..., y,] has dimension
n— 1 (in this case, we say that the spaces are “perpendicular”), the projections with
ranges [x,, ..., x,] and [y, ..., y,] commute. It follows that {e; A---Ae¢; } is an
orthonormal basis for #, if {e;} is an orthonormal basis for #. Moreover,
x; A Ax,=0 if and only if x,,...,x, are linearly dependent (if and only if
[x,...,x,] has dimension less than n). Thus ze [x,, ..., x, L, if zAx; A+~ A x,=0
and x; A --- Ax,$0. From this, if x;, A--- Ax, =y, A--- Ay, %0, then [x,, ..., X,

=[y{s.... ¥,]. On the other hand, if [x,,...,x,]=1[y{, ..., v,), then, expressing

each y;asalinear combinationofx, ..., x,, weseethatx; A --- Ax,andy; A - Ay,
are scalar multiples of one another. We say that x; A --- A x,, is a product vector —
the exterior (or, wedge) product of x,, . ,x

The antisymmetric Fock space, #?, is Z @ A, By definition #® consists
n=0

of complex scalar multiples of a single (unit) vector @, the Fock vacuum; and
HD is A If A were finite dimensional, #¥ would be the (finite-dimensional)
“exterior” algebra over #. The mapping, A, from the n-fold Cartesian product
H x - X H to A which assigns x, A--- Ax, to (x;,...,x,) is an alternating,
n-linear mapping. If @ is such a mapping of # x --- x # into a space 4, thereis a
mapping d of #@ into A such that @ =d- A. In particular if T'is a linear mapping
of # into A then (xy, ..., x,) = Tx; A--- A Tx, is an alternating n-linear mapping
of # x -« x A into %,,‘“), so that there is a linear mapping T of #& into 4% such
that T(x1 A Nx)=Tx; N+« A Tx, I Tisaunitary transformatlon of # onto%f
metric considerations apply and T is a unitary transformation of AP onto A L.
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TSt A=HDH, X =X @A, P(x,y)=(x,0), and Qu, v)=(,0), with
X, yin # and u, vin A, then there is a unitary transformation U of # onto 4" such
that QU P(x, y)=(T'x, 0) for all x,y in #. Then U is a unitary transformation of
A onto A,@ and Qisa projection of #, onto #,. Since T is the restriction
of QU to Jiﬂ(“’ we see that |T|<1.If Tis a positive operator with pure point
spectrum, computmg norms with a basis of eigenvectors for T, we find that
HTI% @|| = A,---4,, where A4, ..., A, are the n largest eigenvalues of T (multiplicity
included). An approximation argument provides the corresponding result for a
general positive operator; and polar decomposition provides a2 norm formula
for a general bounded operator. A 51mple check yields (T)* = T*.

Since (fi,....f)—=>fAfiA---Af, is an alternating, n-linear mapping,
there is a linear mapping, a,(f)*, of #@ into H#'?, with value f A f; A~ A f,
at fy A+ A f,. The family {a,(f)*} defines a mapping a(f)* on #. With {e;}
an orthonormal basis for J#, a(e,)* maps {e; A---Ae; :1¢{iy,...,i,},n=0,1,2,...}
onto an orthonormal basis for the orthogonal complement HWOA; and
a(e,)* annihilates this complement. Thus a(e,)* is a partial isometry with initial
space " and final space AP O A" It follows that I=a(e,)*ale,) +ale,)ale,)*
(={aley), aley)*} ). More generally a(f)a(f)*+a(f)*a(f)=<{f|f>1. Polariza-
tion of this yields: {a(f),a(g)*}, =<{flg>I. We note that our inner product,
{flg>, 1s linear in g and conjugate linear in f. We have {a(f)*, a(g)*}. =0, as
well. A conjugate-linear mapping f — a(f) of # onto operators a(f) on a Hilbert
space satisfying the relations (canonical anticommutation relations)

{a(f) a(gy*}+ =< flg> L {a(f), alg)}+ =0

is said to be a representation of the CAR. The particular representation we have
exhibited on AL is called the Fock representation.

We can exhibit the annihilator a(f) as explicitly as we described the creator
a(f)* by expanding the determinant expression for {f Ay, A - Ay, |x A A x>
in terms of its first row:

CIAYI N Ayl Ao Axyd
= A Aya(f) (e A Ax))

= Z (= 1)j+1<f|xj> Y A Ayplxg Aee /\xj—l /\xj+1 N ANx s
i=1

so that "
a(f)(x Ao Axy) = Z (— 1)j+1<f|xj>x1 Ao Ax oy Axgp g A Ay,
i=1

With E a projection on #, we denote by U,(E) and U(E) the x-algebra and
C*-algebra, respectively, on #® generated by {a(f):E f = f}. We write W, and A
in place of Wy(I) and A(I). The C*-algebra A is the CAR algebra and its action on
AP is called its Fock representation. The state ¢, of U for which qSO(A) {Dy|ADy>
is called the Fock (vacuum) state of . Note that each a(f) is in its left kernel
A (dola(f)*a(f))=0); so that each product of annihilators and creators (mono-
mial) in which an annihilator appears to the right is in 2. Now each monomial
is a sum of monomials in which all creators are to the left of all annihilators (we say
that such a monomial is Wick-ordered — and anti-Wick-ordered if all creators are to
the right of all annihilators); so that ¢, annihilates all Wick-ordered monomials
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in A, other than I. These monomials span the null space of ¢, on U,. g isa
state of W and ¢ < 2¢,, then a(f) is in the left kernel of . Thus ¢ and ¢, have the
same null space in A, and agree at I. Hence o = ¢b; and ¢ is a pure state of .
Exactly the same considerations apply to the restriction of ¢, to U(E), for each
projection E on 4. Thus the restriction of ¢, to U(E) is pure.

The Hilbert space ., obtained from J# by assigning an element f to each f
in #, defining (¢/+g) to be cf +7 and {f|g> to be {g|f>, produces #,
anti-Fock space, and @, is the anti-Fock vacuum. The mapping f—a(f)* (=a(f))
is a representation of the CAR (over #), the anti-Fock representation; and the
mapping a(f) — d(f) extends to a *-isomorphism, 4 — A, of the CAR algebra 2
over # onto the CAR algebra W over # .The state ¢, of U defined by
A= {Py|AD,> is the anti-Fock state of W. Each a(f)* is in the left kernel of ¢,;
so that, replacing a(f) by a(f)* and using anti-Wick-ordered monomials instead
of Wick-ordered monomials in the argument above, we have that the restriction
of ¢, to each U(E) is pure.

Since ¢, 18 pure and &, is cyclic for 2, the weak-operator closure, A~, of A,
is B(A#), the algebra of all bounded operators on #. Similarly A(E)™ E,
= B([U(E)P,]), where E, is the projection (in (EY) with range [W(E)P,]. If U,
is (I—2E), then Uy®,=®,, a(g)Uz = Ugalg), for each g in (I —E)(#), and
a(fYUg= — Uga(f), for each f in E(). If A, is an even monomial in A,(I — E)
(that is, 4, is the product of an even total number of annihilators and creators)
and A, is an odd monomial in W,(I — E), then 4, and A, U lie in A(EY. Since
Ay (E) and N,(I — E) generate A, and @, is cyclic for A, ;

A =[Uo o] =[WE) AU — E) Do ] = [U(E) WEY P, ] .

Thus E, has central carrier I in A(E)"; and the mapping 1, of QI(E)‘EO onto
A(E)~ which assigns A to AE, is a #-isomorphism. R

Now, a(f)®,=0 and, when Ef=0, a(f) (U(E)Po)=(0). Thus a(f)E,=0
and Eqa(f)*=0, when E f=0; so that E,AE,=1E, when A is in W, (I — E).
It follows that B—>E0BEO isa (completely ) positive, linear mapping of Z(#%)
onto A(E)~ E,. The composition of this mapping with 1, is a completely-positive,
linear mapping, vy, of Z(#) onto A(E)~. By construction of y,,

pelalx)*...ax)*ayy)...ay,) = a(Ex,)*...a(Ex,}*a(Ey,)...a(Ey,,) .

More generally:

Proposition 2.1. If T is a linear transformation of one Hilbert space, 5, into
another, A, and | T|| =1, then the mapping

a(x,)*...a(x)*ay,)...a(y,) > a(Tx,)*...a(Tx)* a(Ty,)...a(Ty,)

extends (uniquely) to a completely-positive, linear mapping wr of the CAR algebra,
W ., over H into the CAR algebra, W, over A .

Proof. It # =H @K, A =H @A, P(h,)=(h,0) for b,V in #, Q(k k)
=(k, O) for k, k’~ in 2, and T'(h, h')=(Th, 0), then there is a unitary transformation
U of # onto A such that QU P = T. The mapping a( f)— a(U f) extends, uniquely,
to a =-isomorphism of Ay onto . The composition of the restriction of this
isomorphism to A z(P) and yg is r.
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Wenote that the characterization of 7 as the result of distributing T'throughout
a Wick-ordered monomial is independent of the ordering only if T is an isometry;
for wr(a(f)a(fy)=vyr(I —a(f)*a(/)=I—a(T /)*a(T f)*a(T/)a(T f)*, when
I/ ll=1, unless T[T f>=1.

If Ae B(A#)and 0< A <1, we call ¢;oy 41 the gauge-invariant, quasi-free state
of A with one-particle operator A. We write ¢, for this state and note that there
is no conflict between this notation and the designation of the Fock and anti-Fock
states of by ¢, and ¢, (i.e. these states are quasi-free with one-particle operators 0
and I, respectively). Note that

balalf,)*...alf)* alg,)...a(g,)
= ¢ (a(A* f,)*...a(A* fi)*a(A%g,)...a(A%g,))
={Bo|a(A% f,)...a(A* [)a(A g,)*...a(A%g,)* By )
=(AEf N NABS | AFg Ao N Ag,)
=det({A f;| ATg;p) = det({g;| A f>)
=det({gi| A/ =Cgi A AguAfy A NAS .

Proposition 2.2. I E is a finite-dimensional projection on A" with {e,, ...,e,} an
orthonormal basis for E(#), then ¢p(T)=Ce A+ Ne,|Tle, A Aey)d.

Proof. Let {e;} be an orthonormal basis for #’, and T be a Wick-ordered
monomial in annihilators and creators corresponding to basis elements. Then
ey Ao Ne,|Tleg A+~ Ne,)) is O unless T has the form afe;, , )*...ale;, )

.ale;)...ale;,), with {iy. ..., i,} an m-element subset of {1, ...,n}, in which case its
value and that of ¢¢(T) is x(o). If T does not have this form pz(T) =0, s0 ¢(T)=0.
Thus our equality holds.

If follows that ¢y is pure when E is a finite-dimensional projection on .
More generally, if E is any orthogonal projection on J# and g is a state of U such
that g < 2¢ then the restrictions of ¢ to MW(E) and A(I — E) coincide with those
of ¢; and ¢,, respectively. Using the fact that monomials 4 and A" in %, (E) and
W, (I — E), respectively, commute or anti-commute and that Wick-ordered
monomials are in the left or right kernels of ¢, while anti-Wick ordered monomials
are in the left or right kernels of ¢, (other than cI, ¢ % 0), we conclude that g(4A4")
=0(A)o(A’). The same is true for A in A(E) and A" in W(I — E). Thus ¢ = ¢ and
¢ 1s pure.

If0< A, <1 with Ay(F A}) in B(H#), using the Spectral Theorem, there is a
one-dimensional projection E; on s and a positive number ¢ such that 0 < A4, =1
and 0= A4, <1, where A, =A,+tE; and A4,=A,—tE,. Computing with an
orthonormal basis {e;} for # such that E; e; = e, we have that ¢, =3(¢,4, +d4,).
To see this, note that

P, (ale;)* ...ale;)*ale;)...ale;,))
={e; N Ne; |Ae; N NAge; >,
where k=0, 1, 2; and that Aye;=Ae;= A,e;, when j=+ 1. Thus ¢, is pure if and
only if 4 is a projection.
From the foregoing, if E is a finite-dimensional projection, ¢ is a pure, gauge-
invariant, quasi-free state equivalent to the Fock state. Conversely, if E is a projec-
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tion on one-particle space # and ¢ is equivalent to the Fock state, then E is a
finite-dimensional projection. This follows as a special case of [12; Theorem 2.87.
A direct proof is not difficult. If ¢ =w |, for some unit vector x of #, then
1= ¢plale)* a(e )) w.(ae )*a(ej)), where {e;} is an orthonormal basis for E(#).
Thus afe; )* for each j. If

X = Y Civoipejrjm€iy N Neg Ny Ao Nef

iy <o < <o < om
where {e}} is an orthonormal basis for (I — E) (), then

0= a(e)*x—zc e/\eix/\"'/\ei,./\e;‘l/\"'/\e}m;

i dnifiejm
so that je {i;,...,i,} unless ¢; ;.; . =0.If E(#) is infinite-dimensional, we
can choose jnotin {i,,...,i,}; and x = 0, contradicting the assumption that x is a
unit vector. Thus E is a ﬁnite-dimensional projection.

3. Automorphisms Preserving Gauge-Invariant, Quasi-Free States

Our main result is contained in the following theorem.

Theorem 3.1. If N is the CAR algebra in its Fock representation on the complex
Hilbert space # of antisymmetric tensors over # and o is an automorphism of U
whose transpose 4 carries the set of gauge-invariant, quasi-free states onto itself,
then, either the Fock state is mapped onto itself by 8 and there is a unitary operator U
on # such that a(a(f))=a(U f), or the Fock state is mapped onto the anti-Fock
state by & and there is a conjugate-linear, unitary operator W on # such that
ala(f)) = a(W f)*.

The proof of Theorem 3.1 will be effected with the aid of the following results
(3.2-3.13). During its course, we will note, in the case where d(¢,) = ¢, that U
implements « (see Section 2).

Lemma 3.2. The image of ¢, under & is either ¢, or ¢;.

Proof. Since d(¢,) is pure and, by assumption, a quasi-free, gauge-invariant
state of U; d(¢y) = ¢, for some projection E, on # (see Section 2). If  is the
representation of U on #, determined by d),LO, then the mapping
A®y—>n(n”(A)xp,, where Xg, is a unit vector in J, such that ¢g(4)
= (x| m(A) x5, for all 4 in A, extends to a unitary transformation U of %‘“’
onto . If E, is neither O nor I, there is a unit vector f'in E () and a unit vector g
orthogonal to E, (). We shall arrive at a contradiction from this assumption,
so that E,, is either 0 or I and &(¢,) is either the Fock or anti-Fock state.

If E, is the projection on # with {x:{x|f> =0, E;x=x} as range then
Pro(A) = b, (a(f) Aa(f)*), for ¢, (a(f)a(hya(hy*a( f)*) =0, when E;h=h or when
h= f; and ¢, (a(f)a(ky* a(k)a(f)*) = dg,(a(f)a(f)*a(k)* a(k))=0, when Eok=0.
Thus ¢, is equivalent to ¢ ; and there is a vector x in 5, such that ¢ (4)
= {xg, |n(A)xg . Similarly, if E, is the projection on # with range generated
by E () and g, then ¢, (A) = ¢z (a(g) Aa(g)*), for all A in U; and there is a vector
Xp, in H, such that ¢y, (4)=Cxp,|n(4)xg,> = (nlalg))xg, [n(A)n(a(g)*)xg,>.
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Since 7 is irreducible, xg, =c,n(a(g)*)xg,, and, similarly, xz, = con(a(f)*)xg,,
where ¢, and ¢, are scalars of modulus 1. Now,
27 ¥ (xp, +x5,) = (a2 co f + c29))*)xp, (= X5) 5

so that ¢p(4) = {xp|n{d)xp), for all A4 in A, where F is the projection on # with
range generated by E, () and ¢, f +c,g. If Ux; =x and Ux, = x, then, since
U, =xg,, Do+ x,=2%x,. Noting that UAU "' =xr(x"*(A4)), for each A in U,
wehave (x, | AX,> = (xp, |lUAU  Yxg, > =<xp, |n(0” (A))Xg,> = g, (2 ' (4)) Sim-
ilarly (x;]Ax,>=¢pl0™*(4)) and (Po|ADP,> =y (¢~ (4). Thus w,, |A and
w,,| A are pure, gauge-invariant, quasi-free states which transform under 4 into
¢r and ¢y, . Since ¢y and ¢y, are equivalent to ¢y, w, | and w,,| W are equiva-
lent to ¢,. From Proposition 2.2, x; and x, are product vectors in Z#¥. But
@, + x, =2%x,, and each product vector lies in an n-particle space. Thus x, and
x, are multiples of @,; and ¢, = ¢,, contrary to the choice of E, different from 0.

In case &(¢o) = ¢, (o) = o, Where o == g and o(a(f))=a(W, f)* with W,
a conjugate-unitary operator on s (obtained, for example, by transforming each
linear combination of elements in an orthonormal basis for # into the linear
combination resulting from replacing each coefficient by its complex-conjugate).
Since ¢ determines an automorphism of % which interchanges the Fock and anti-
Fock states and which maps the set of gauge-invariant, quasi-free states onto
itself; & maps the set of gauge-invariant, quasi-free states onto itself. If we prove
that there is a unitary operator U, on # such that o (a(f))=a(U, f), then
a{a(W, [} =a(U, f), and a(a(f))=a(U, W§ f)*, with W the conjugate-unitary
operator U, Wi on .

We assume, henceforth, that &(¢,) = ¢, and use the notation of Theorem 3.1
throughout the remainder of this section. With this assumption, U, constructed
in Lemma 3.2, is a unitary operator on /% which carries product vectors onto
product vectors. Although the components of the argument proving that are to be
found in the proof of Lemma 3.2, we make the statement and proof explicit in
Lemma 3.3. Note that the automorphism ¢, above, is a special case of the larger
class of Bogoliubov transformations. In Section 2, we introduced the notation T
to denote a certain transformation on #4 arising from T defined on . In
Lemma 3.3 and the results following, we construct a unitary operator U on #.
We will eventually locate a unitary operator U on # for which U is the transfor-
mation on #¥ arising from it — justifying this notation.

Lemma 3.3. There is a unitary operator U on % which implements o and maps
product vectors onto product vectors.

Proof. Since d(¢o)= ¢y, the mapping A®,—a(A4)P, extends to a unitary
operator U on #® such that UAU* = a(A). We show that U(x, A---Ax,)is a
product vector, for all x,, ..., x, in 5. Since x; A --- A x,, is a scalar multiple of the
wedge-product of an orthonormal set of vectors (a basis for [xy,..., x,], when
x; A--- A x,=*0), we may assume that {x,, ..., x,} is an orthonormal set. If E is
the projection with range [xi, ..., X, I, @g, =@y, ... s ,» ffom Proposition 2.2. As
o is implemented by a unitary operator on A5, &(¢g,) is a vector state of 2. By
assumption, d(¢y ) is a gauge-invariant quasi-free state of A (equivalent to ¢y,
from the preceding remark). Thus &(¢g) =, A..A,, |2 where y, A-- Ay,
=U*(x A - Ax,).
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A linear transformation (such as U, above) which is defined on a subspace of
H® and maps product vectors onto product vectors will be said to be a product
linear transformation (or product unitary, etc.).

Lemma 3.4. The intersection of an infinite, commuting family of m-dimensional
projections each pair of which has m-1 dimensional intersection is m-1 dimensional.

Proof. Since each projection is m-dimensional, each is the sum of m one-
dimensional projections. Since the family is commutative, we can find an orthogo-
nal set of one-dimensional projections such that each projection of our commuting
family is the sum of m of them. In this way, our problem reduces to showing that if
S= 1S, where {S,} is an infinite family of sets each of which has m elements

a
and such that each pair has intersection with m-1 elements, then () S, has m-1

a
elements (in other words, each S, contains S,n S,, when a % b). Suppose S, does not
contain S,nS,. Then S,n S, and S, S, are distinct m-1 element sets; so that their
union has at least m elements. As this union is contained in S, it coincides with S_;
and S, £ S,uS,. By the same token, with ¢ +d, S, does not contain both S,n S, and
"~ 'S, S, ; so that §, is contained in either S,uS, or S,uS,. But this contradicts the
assumption that {S,}, and, hence, uS, are infinite.

Proposition 3.5. If V is an isometric, linear mapping of an infinite-dimensional
subspace A" of A onto a set of product vectors in K\, then () [Vx] has dimen-
sion m-1. ([V x] is the subspace of H determined by V x.)

Proof. With {e;} an orthonormal basis for %, Ve, =x; A Ax,,
Vey=y,; A Ay, and V(e, +e,)=z, A--- Az, we have

Xy A AXF Y AN Ay =2 N Az,

Some z;, say z;, is not in [x,,...,x,]. Thus z; Ax; A~ Ax, Ay;=0; and
[yio oo Vel €Elz¢, x¢, .. X, 1. Since Ve, and Ve, are not 0, [x,,...,x,] and
[Vis ... V] are m-dimensional subspaces of [z, x4, ..., X,,.J, & space of dimension
m+1. Thus [x,, ..., x, ][y, .., V] has dimension at least m— 1; and

Ve, =xAv A Avy_1, Vea=yAvo A Ao, g,
with {x,v{,...,0,_.} and {y,v;,...,v,_,} orthonormal sets. In addition,
0=(Ve |Ve,)={x|yydet({v;|v;>))=<{x|y>. Hence, E, and E, commute,
where E; is the orthogonal projection on # with range [Ve;]. Thus {E;} is an

infinite, commuting family of projections on . such that E; E, () has dimension
m— 1 when j+ k. From Lemma 3.4, () E;(-#) has dimension m— 1.
j

Lemma 3.6. If V is a product isometry of A} into #L, with A a subspace
of H#, then V has range in some . If n<m and A is infinite dimensional then
[V, A Ax)IN[V(y A -+ Ayl has dimension at least m—n.

Proof. If {e;} is an orthonormal basis for " and {i,...,i}, {j;,....J,} are
disjoint sets of indices,

L=L(e;, +ej)Ne, N Ney Ney,, N Ney les, N Ney Ney (N Ney >
={V(ei,+ej)Ne, N~ Neg Ney, N Ney )|V, A Ney Ney [N Ney ).
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Replacing V(e A=~ Aey Aey, N Ne )by Vie, Ney, Ao Ney Ney, [N+ Ney )
in the preceding computation, it follows that both (product) vectors lie in the same
space A, as Ve, +e;)Ne, A~ Ne, Ne, N Ne,) does. Applying this
result to successive replacements of i,, is, ..., i, by j,, j3, -.., j,, One concludes that
Viej, N---Nej Ney,, A Ney ) lies in #,®. Thus V maps 4@ into #, since
{e;, A+~ Ae; }is an orthonormal basis for 7.

Since [x,,...,x,] has dimension n—1, its orthogonal complement and
[yis ..., v.] are not disjoint. Let z, be a unit vector in their intersection. Then
[Vigg Axa A Ax)In[Vix, A+ Ax,)] has dimension at least m—1, from
Proposition 3.5; for x> V(x Ax, A--- Ax,) is an isometric linear mapping of
A O[xy, ..., x,] onto a set of product vectors in #@! Let z, be a unit vector in
[y, ..., yu] orthogonal to [z, x5, ..., x,]. Then

[V, Axa A Ax)n[Vizg Azy Axs A Ax,)]
has dimension at least m — 1; so that its intersection with
[Viz, Axag A Ax )NV A Ax,)]

has dimension at least m—2 (both are subspaces of the m-dimensional space
[V Axy Ao Ax)]). Thus [V, Azy Axz A Ax)In[V(x; A+~ Ax,)] has
dimension at least m—2. If we have found mutually orthogonal unit vectors
ZyyeenZy_q N [yy, .., ¥,] such that [V(z; A-- Az, Ax,A--Ax,)] and
[V(x; A--- Ax,)] have an intersection of dimension at least m — k+ 1, choose a
unit vector z, in [y,....,y,] orthogonal to [z, ....Zx_(sXgs1s..-»X,]. Then
(Vi A Az Axp A= Axy)] and [V, A Azg Axppy A< AXx,)] have
intersection of dimension at least m— 1. Thus [V(z, A--- Az, Axpy A Ax,)]
and [V(x; A--- Ax,)] have intersection of dimension at least m— k. Finally,
zy A ANzy=cy A Ay, and [V, A Ax)]n[V(y, A--- Ay,)] has dimen-
sion at least m — n.
Lemma 3.7. For each n, U maps #° onto #.

Proof. From Lemma 3.6, U maps #“ into some /9. Since U* satisfies the
same hypotheses as U, U* maps #9 into #? (again, from Lemma 3.6). Thus U
maps # onto #. For some orthonormal sets {x,,...,x,} and {y;,...,y,} in
H, Uxy A Ax)=e; A Ne, and Uy, A~ Ay)=eps, A Aey,, where
{e(, ..., 5,3 is an orthonormal set in . If n < m, from Lemma 3.6,

[eg, ..vepdnlenris mern (=(0)

has dimension at least m — n. Thus m <n. Applying this conclusion to U*,n < m;
so that m=n.

We denote the dimension of a (finite-dimensional) subspace E of # by d(E).

Proposition 3.8. If V is a product isometry of A, into #,°, where n < mand #
is an infinite-dimensional subspace of #, and

d([V(e, N Neg In[Vie, N Ne)])=m—n

for some e;,....e; ,e;,...,e;, where {e;} is an orthonormal basis for A, then

d( N [V(xl/\---/\xn)]> =m—n.

----- Xn

! Without loss of generality we assume that {x,,...,x,} and {y,, ..., y,} are orthonormal sets.
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Proof. We write E, for [V(e, A---Ae,)], Eg, for
[Vieg, - A e, NeNey N Ne )],

and F, for E;n E;,. If zliesin ) E,, then, with x, ..., x,in ",z A V(x, A--- Ax,)=0,
k

since zA Ve, A--- N )=0forall ky, ..., k,. Hence ze [V (x; A -+ Ax,)]. Tt will
suffice to show that d (ﬂ Ek)z m—n (equivalently, that E;nE;CE, for each k).
k

Proposition 3.5 establishes our result when n= 1. Suppose we have proved it for
values less than n.

Sincexy A - AX oy AXpp y A Axy o V(KA AXxo g Ay AXp A Axy)
is an isometric, linear mapping of (# O[e; N, into #?; d(F,)zm—n+1,
from Lemma 3.6. If d(F;)>m—n+1, then, since d(E;,nE;)=m—1 (from
Proposition 3.5 —as argued in Lemma 3.6); d(E;n E;) > m — n, contrary to assump-
tion. Thus d(F;)=m—n+ 1. Our inductive hypothesis applies, and d ( h E;iP)
=m—n+1.Since () Ep CEj ; Kook

Kook

d (( N E,;ir) mEj) :d<<k1,0,knEEir) mEijj-i,_) =m—n=d(E,NE).

But ( N )Emr NE;SE,nE;. Thus
Kivnr ok,

EnE;C ﬂ Ep CF, .
-

k n

In particular, we have established (under the induction hypothesis) that if
d(E;nE)=m—n then ENE;CE, provided one of the k.., k is in
{its . slps J1s - s jus- (In our argument k, =i,).

Having proved that d(F;)=m—n+1 and E,nE;CF,, it follows that F; is
generated by E;nE; and a unit vector f, orthogonal to it. Moreover {f;, ..., f,}
are linearly independent. To see this, note that () E;, is m— 1 dimensional, from

t
Proposition 3.5, so that E;, is generated by () E;, and a unit vector g, orthogonal to
() E;,. In addition, t
t

0=(Viej N---Ne;,_ NeNej (N Ne)WWiej A Nej _ New Ney (N Nej)>
=<9, -

Thus no Ej is contained in the union of the others (for g, is orthogonal to that

union). Now f, is not in () Ej,; for, otherwise f, is in E;, hence, in E;n E;, contrary

t
to the choice of f,. Thus f, and ﬂ E;, generate Ej; ; so that a linear relation among

t
{fi, ..., f,} would entail that some Ej, is contained in the union of the others. By
the same token, if F, has dimension m —n + 1 or greater and ¢ isnotin {iy, ..., i,}, F,
contains a unit vector f, orthogonal to E;NE; and linearly independent of
{fi>.. f,}. Recalling that E;nE;CF, (as established before), and F,CE; (by
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definition of F)); we see that d(E;) would exceed m. Thus d(F,)=m—n when
té{iy,....i,}; so that E;nE;C F, CE,. (We now have that

d{fVie, N---Ne )In[Vie, N Nej Ney, Nej, [ N A e;))=m—n
when k, ¢ {i,,...,1,}; and, from the first part of this proof,

Fo SE=[Vie, N Ney)l
Since . . . . 3 .
kre {lla e lna]la -'~’Jr—1> kr’]r+1’ -~~=Jn}')

Lemma 3.9. The equality,
A([x1, . X - N [20, 00s 2,])
=d([UCci A Ax)I0 [0, A Az)])
is valid for finite and infinite intersections.

Proof. We establish the assertion of the lemma, first, for the intersection
[xys..0x,00[24, ..., 2,] of two n-dimensional subspaces of #. If {v,,..., v} 1s an
orthonormal basis for this intersection, changing notation, we can write
Xy N Axyo Aoy A A, and 2z A Az, Avg Ao Av, in place  of
x; A Ax, and z; A~ Az, In Lemma 3.7 we noted that U maps #,* into
HP; so that y A Ay, = Uy A Ay, Av, A~ Avy is a product
isometry of (#O[vy,...,v,])¥, into #@. From Lemma 3.6,

[OCe A Ax)IN[U G A Az)]
has dimension at least k. Applying this to U~1, we see that
AU, A Ax ][0z A Az))=k=d([x,, ..., x,]"[21s ..., 2,]) .

Let wy, ..., w, be an orthonormal basis for [x;,...,x,]MN---n{zy,...,2z,]; and
let ty, ..., t,_,, Uy, ..., u,—, be an orthonormal set of vectors in # O [wy, ..., w,].
Then, from the preceding,
ACT @ A Aug_, Awg A - Aw)INTO@ A - Ay_, Aw A Aw)])=r.

Moreover y, A - Ay,_,— U(y1 A Ay, Aw; A~ Aw,)is a product isometry
of (#O[w,,.., w9, into #®. From Proposition 3.8,

d( N [OG A Ay, Aw, /\~~/\w,)]) =r.
Yisen

wYn-r
Thus d([U(x, A Ax)]n--n[U@E, A Az))=r. Applying this to U1,

we have
r=d([x;, A Ax ][z, A Az,])

2d([U(x, A Ax )] [U A Az)D),
from which our lemma follows.
Corollary 3.10. With e, a unit vector in

d( N [U(xl/\---/\xn_l/\eo)])zl.

153 Xn—1
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Lemma 3.11. For each unit vector eq in #, Ue, lies in

N [0 A Ax,_; Aeg).

Proof. From Corollary 3.10, there is a unit vector f; which generates
() LU A Ax,ogAeg)]. Thus U(x A Ax,y Aeg)=xi A Axp_ A fy.

Now d( O [O*@ A Ayy_y A fl)]) = 1, from Corollary 3.10 and

Flaeees Yn—1

t=d( ) [U*U(x1A~-Axn_1Aeo)J)

XisesXn—1

=4[ 1) (0% A Ay A S]]

LreeeaXn—1

1\%

d(m N [0 A Ay Afo]) =1;

sy ¥n—1

so that each [U*(y, A--- Ay,_, A f,)] contains e,. Thus
U*(JH N Ny g N =Yi N Ay Neg

Suppose f; is not a scalar multiple of Uey(=e,). Then {f,|e,>+0, where
e, is a unit vector in [ey, f] orthogonal to e;. Let {¢;};~; , . be an orthonormal
basis for #; and let 4 be U aley)* a(eO)U* Then

A(fi Ney, A Ne;)=Ualegy*aleg) (eg A éj, A+ Ae})
=file, A Ne; .

Finite sums, Z¢; ;... ale;)*...ale; ) a(e;)...ale; ) (= B), form a norm-
dense subset of 2. Let ¢ be |<f1 |e2>|/5 and choose B such that |A— B| <&. Then

&> (A~ Bey|* 2 le,41%,
(examining the coefficient of e,),
&> [(A—Be,[I* Zlcol*

where ¢, is the coefficient of I in the sum representation of Band all ¢; , ¢; appearing
in this sum are among ey, ..., e, _, (so that 4 and all terms of B other than ¢,/
map e, to 0 or a multiple of a basis element other than e,,), and

&2 > (A~ B)e,y|* Z|co + ¢,/
(examining the coefficient of e,).

Thus  |col <& leayl<e and ey, <2e.

The only terms in the sum for B that yield multiples of e; A e, ., A~ Aey .,
when B acts on

fl /\em+2/\ /\em+n
(=<eslfives Nepia Ao Neyyy+<eal fioea Nepia Ao Neyyy)
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are cyl, ¢, 1a*(ey)aley), and c,.,a*(e,)ale,). Thus

I f1lex)?/25 =¢?
Z[(A=B)(fi Neyia A Ayl

so that zKexl f1> —colesl f10 _52;1<e1|f1> —02;z<ez|f1>12

[<Sileadl/3
2 [KSileal = leol [Kfileadl = lea | I filed] = leapal K f1le2)]
> filep| —4e=I[{f1lel/5

a contradiction. Thus f; = c’e, for some scalar ¢’

Lemma 3.12. There is a sequence {c,} of complex scalars of modulus 1 such that
U(x1 A Ax)=c(Ux, A~ AUx,), where U is the restriction of U to one-

particle space.
Proof. Let {e;} be an orthonormal basis for 5. Then

Ueje () [0 A Ax,_1Aey)]
for all j and n. Thus U(ej1 A+ Ne;)and Ue; A --- A Ue; differ by a phase factor.
Say .
U, N---Ne;)=cUe; A---AUe;,

and .
Ule, Nejpy A= Nej)=c'Ue; AUey, A---AUe;,

Writing f for (e;, +e,)/)/2 and ' for (ce;, +c'e.)/)/2, U(f ANej A+ Aej)
=Uf'ANUe, A---AUe;,. Since U(f Nej, A--Ne;)=c"UfAUe;, A---AUe;,
and U f'— c”Uf is orthogonal to Uejz,... Ue; ; we have U f'=Uc"f. Thus
ce; +ce =c"e; +"e;; and ¢=c"=c. Changing basis elements successively,
we conclude that U( A Ney=cUe; A~ AUe;, for all ji, ..., j, Writing
¢, for ¢, we have U(xl/\ /\x)—c (le A- /\Ux) Of course ¢, =1; and
Ud,=d,.

Lemma 3.13. For all x,,...x, in # and n=0,1,2,...0(x, A Ax,)
=Ux; A---AUx,.

Proof. From Lemma 3.12, there is a sequence {c, } of scalars of modulus 1 such
that U(x, A---Ax,)=c,(Ux, A AUx - If {e;} is an orthonormal basis for #,
sois{Ue;}. ertef for Ue;. SmceUa(e)U (f /\f NN f)=¢, U( N--Nej)
=Cy—;Cy (f A - /\f )and Ua(e)U*(f A- fjn)=0 ifj¢ {1 .- ,],,}; we have
that Ua(e)U*[]f(“)—cn Cy a(f)[%“

Writing ¢, for ¢,_;¢, (so that ¢} =1), we show that ¢,=¢,_;=--=1.
Let Zci i, Jza(fll)* a(fi )*a(f;,)...a(f;) (=B) be chosen such that
|4~ Bj <g, where A= Ua(e,)U*. Suppose i,, coosbp3 fis oo j, are less than m.
Then, examining the coefficient of f,, ., A A f 10

&> A=B) (fy A fuia Ao A S 1P Zleh = col?

This inequality holds for n=1,2, ..., s0 that |c, —¢,_] <2¢ for all positive .
Thus 1 =cy=cy = and¢,=¢,_ ;= =co=1.
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Proof of Theorem 3.1. We know that U implements o (Lemma 3.3) and is the
product unitary operator on # corresponding to U on #, when &(¢,)= ¢,
(Lemma 3.13). The case in which &(¢,)= ¢; is reduced to this case following the
proof of Lemma 3.2. To conclude the proof, we note that a(a(f))=a(U f), or,
equivalently, that a{a(f)*)=a(U f)*. For this, observe that

a(@(f ) (fL A A f)

Ta(fysU*(fy A A f,)

Ta(f)*(U* fy A+ AU*f,)

U(f AU*f, A~ AU*TL,)

(UNNFLN- NS,
=a(U (i N NS,

for all fi,..., f,in #. Thus a(a(f)*) = a(U f)*.

I

I

ll

4. Product Unitary Operators on n-Particle Space

In the preceding section, after showing (Lemma 3.3) that U is a product
unitary operator on Fock space, we make no further use of the hypothesis that U
induces an automorphism of A until Lemma 3.11. With this hypothesis, it is
proved (Lemma 3.13) that U is induced by a unitary operator on one-particle
space. The fact that this same result is valid for a product unitary operator defined
only on n-particle space is proved in the theorem that follows.

Theorem 4.1. If U is a product unitary operator on n-particle space %(“) there
is a unitary operator U on one-particle space # such that U (x; A Ax,)
=Ux; A+ AUx,.

We prove this theorem with the aid of the following lemmas (notation as in
Theorem 4.1). Again, the argument will justify the use of the notation U.

Lemma 4.2. If {e;} is an orthonormal basis for #, there is a unit vector f; in
N (O, A Ax,_, Ney)l such that {f;} is an orthonormal basis for H.

Proof. To show that { ;] f;> =0, when j#+ k, we may assume that j and k are
in {1, ...,n+1}. Let E; be the n-dimensional space,

[Oe, A Aejy Nejuy A Aeyy Jhj=1,on+ 1,

and E be the space E, V E,. From Lemma 3.9, E,nE,, E,nE;, and E,NE; are
n— 1 dimensional; and E; N E,NE; is n —2 dimensional, when j#+ 1, 2. Thus E is
n+ 1 dimensional; and E,, E, contain unit vectors v,, v,, respectively, that lie in
E; but not in E;nE,nE;. It follows that E;nE,nE; and v, generate an n— 1
dimensional subspace of E; N E; (which is, therefore, E; N E)). As v, is in E, but not
in E,nE,;nEj, v, is not in E;NE}; so that E;nE,nE;, v, and v, generate an
n-dimensional subspace of E;, which is therefore, E;. Thus E; is a subspace of E.
Let f; be a unit vector in E (unique up to a phase factor) orthogonal to E;. From
Section 2 and Lemma 3.9, E; and E, are perpendicular, when j=+ k; and both are
subspaces of E. Hence f; is in E; and f, is in E;, when j # k. Since f; is orthogonal
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to E;; {f;l fi» =0, when j=+ k. Thus {f}, ..., f,4+,} is an orthonormal basis for E,
and E;=[fy,.... fi—1> fi=1s - fu+1]. Hence f; generates () E,. From Corol-

k*j

lary 3.10, ﬂ (O A A x,-1/\e)] is a one-dimensional space
(contained iﬁ”h"ﬁk>; so that f; generates it.
k+j

Lemma 4.3. If U is a product unitary operator on #® and {e;} is an orthonormal
basis for #, there is an orthonormal basis { f;} for # such that U(e A Ney)
=fi NN fi foralliy, .. i,

Proof. From Lemma 4.2, we can find an orthonormal basis {f/} such
that fje ﬂ [O(x A Ax,_ (Aeyl for all j Thus Uley, A Aey)

.....

Ci,.. f,l/\ /\f, , where |c;
n+ 1/n
’(H ) . With f; as ¢; f},

U(el/\--‘/\ej_l/\ejﬂ/\ o Neyyq)
=GN Afi AN flaa N A Sy
—C(Cl Ci—1Cjs1-- n+1)f1/\"'/\fj—1/\fj+1/\"'/\fn+1
=f1/\"'/\fj—1/\fj+1/\"‘/\fn+1~

Suppose, now, that we have chosen fi, ..., f,,, m>n, so that f is a multiple
of f; and U(e Ao Ne)=fi, N NSy, when 1=i <ip <.+ <i,<m. Suppose
U(el/\ Aey_ Nepe)=C fih-ANf_iAfiyy and Uley A - /\e Negyit)
=c"fo N N fu N fi . From Lemma 4.2, there is a vector f such that

Uler A Ney i Aemrr Feas )=FiAAful i Af

|=1. Let ¢, be ¢;_j—1j+1..n+1, and let ¢; be

ll l

™

and .
U(QZ/\"'/\en/\(em+1+en+1)):Cf2/\“‘/\fn/\f‘
Since
L O Ao Memen )= iAo A fut AC s+ )
an

Ules A Ney AMepr i Feus )= Fa Ao NS N gt + frunr) s

f=Cfor1+ fusrandef=c"fo o1+ furi- Thus (¢ = ¢") fuy 1 Hle— 1) foe1=0;
andc=1,c=c".

Applying this conclusion to step-by-step replacements, we have that
(7(63,.1/\---/\ein/\eerl)chl-l/\~~-/\fin/\f,,’,Jrl for one phase factor ¢ and all
i,...,i, less than m+ 1. Defining f,,,, to be ¢ f,,, our induction yields the
basis {f}

Proof of Theorem4.1. With {e;} and {f}} as in Lemma 4.3, let U be the unitary
operator on # for which Ue;=f}, j=1,2,.... Then U(e AN Ney)
=Ue A---AUe ; so that U(xl/\ /\x,,)—le/\ -AUx, for all Xgsoner Xy
in Jf
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