AUTOMORPHISMS OF AN IRREGULAR SURFACE OF GENERAL TYPE ACTING TRIVIALLY IN COHOMOLOGY, II

Jin-Xing CAI

(Received January 16, 2012, revised May 7, 2012)

Abstract

Let S be a complex nonsingular minimal projective surface of general type with $q(S)=2$, and let G be the group of the automorphisms of S acting trivially on $H^{2}(S, \boldsymbol{Q})$. In this note we classify explicitly pairs (S, G) with G of order four.

Introduction. Let S be a complex minimal nonsingular projective surface of general type, and let $G \subset$ Aut S be the subgroup of automorphisms of S inducing trivial actions on $H^{2}(S, \boldsymbol{Q})$. In [Ca1], we proved that $|G| \leq 4$ provided $\chi\left(\mathcal{O}_{S}\right)>188$. In this note, we continue the classification of the pairs (S, G) with $|G|=4$, started in [Ca2]. Whereas there we considered the case $q(S) \geq 3$, here we study the case $q(S)=2$. Our main result is the following.

THEOREM 0.1 (Theorems 2.3 and 3.1). Let S be a complex nonsingular minimal projective surface of general type with $q(S)=2$. Assume that there is a subgroup $G \subset$ AutS, of order 4 , acting trivially in $H^{2}(S, \boldsymbol{Q})$. If $p_{g}(S)>61$, then S is isogenous to a product of curves; in particular, it satisfies $K_{S}^{2}=8 \chi\left(\mathcal{O}_{S}\right)$. Explicitly, the pair (S, G) is as in one of Examples 1.1, 1.2 and 1.3.

Notations. We use standard notations as in [Ha].
For a finite Abelian group G, we denote by \widehat{G} the character group of G. For a representation V of G and a character $\chi \in \widehat{G}$, we let

$$
V_{G}^{\chi}=\{v \in V ; g \cdot v=\chi(g) v \text { for all } g \in G\} .
$$

If G is a cyclic group generated by σ, we shall also use the notation V_{σ}^{c} to denote V_{G}^{χ}, where $c=\chi(\sigma)$. If moreover σ is of order two, $V_{\sigma}^{ \pm 1}$ is also denoted by $V_{\sigma}^{ \pm}$.

The symbol \boldsymbol{Z}_{n} denotes the cyclic group of order n.
Acknowledgments. I am grateful to the referee for his helpful suggestions.

1. Examples. In this section, we construct explicitly pairs (S, G) with $|G|=4$, where S is a complex nonsingular minimal projective surface of general type with $q(S)=2$ and G is the subgroup of automorphisms of S acting trivially on $H^{2}(S, \boldsymbol{Q})$. These surfaces are isogenous to products of curves; in particular, they satisfy $K_{S}^{2}=8 \chi\left(\mathcal{O}_{S}\right)$.
[^0]EXAMPLE $1.1\left(G \simeq \boldsymbol{Z}_{2}^{\oplus 2}\right)$. Let \tilde{B} be a hyperelliptic curve of genus \tilde{g} and τ the hyperelliptic involution of \tilde{B}. Suppose there is a curve F of genus $g=3$ with involutions $\iota, \sigma_{1 F}$ and $\sigma_{2 F}$ such that
(i) the subgroup of $\operatorname{Aut} F$ generated by $\iota, \sigma_{1 F}$ and $\sigma_{2 F}$ is isomorphic to $\boldsymbol{Z}_{2}^{\oplus 3}$;
(ii) ι has no fixed points;
(iii) for $i=1$ and $2, \sigma_{i F}$ induces the identity on $H^{0}\left(\Omega_{F}^{1}\right)_{l}^{-}$.

Let $S=(\tilde{B} \times F) /\langle\tau \times \iota\rangle$, and $\pi: \tilde{B} \times F \rightarrow S$ the quotient map. Then S is a smooth surface with $p_{g}(S)=\tilde{g}, q(S)=2$ and $K_{S}^{2}=8(\tilde{g}-1)$.

Let σ_{i} be the automorphism of S induced by $\operatorname{id}_{\tilde{B}} \times \sigma_{i F} \in \operatorname{Aut}(\tilde{B} \times F)$. We have that the group G generated by $\sigma_{i}(i=1$ and 2$)$ is isomorphic to $\boldsymbol{Z}_{2}^{\oplus 2}$ and acts trivially on $H^{2}(S, \boldsymbol{Q})$. Indeed, (iii) implies that $\left(\operatorname{id}_{\tilde{B}} \times \sigma_{i F}\right)^{*}=\mathrm{id}$ on $H^{1}(\tilde{B}) \otimes H^{1}(F)_{\iota}^{-}$and hence on $H^{2}(\tilde{B} \times F)_{\tau \times \iota}^{1}$. Since $\pi^{*}: H^{2}(S) \rightarrow H^{2}(\tilde{B} \times F)_{\tau \times 1}^{1}$ is an isomorphism and $\pi^{*} \circ \sigma_{i}^{*}=\left(\operatorname{id}_{\tilde{B}} \times \sigma_{i F}\right)^{*} \circ \pi^{*}$, we have that $\sigma_{i}^{*}=$ id on $H^{2}(S, \boldsymbol{Q})$.
1.1.1. A curve F of genus 3 with involutions $\iota, \sigma_{1 F}$ and $\sigma_{2 F}$ satisfying conditions (i)(iii) in Example 1.1.

Let $0, \infty, 1, b_{1}$ and b_{2} be different points of $B:=\boldsymbol{P}^{1}$. For $i=1,2$, let $\hat{\pi}_{i}: \hat{E}_{i} \rightarrow B$ be the double cover branched along points $0, \infty, 1, b_{i}$. Using $\hat{\pi}_{i}$ instead of π_{i}, we may modify the construction in [Ca2, 1.1.1] to give a curve F of genus 3 with involutions $\iota, \sigma_{1 F}$ and $\sigma_{2 F}$ satisfying conditions (i)-(iii) in Example 1.1.

EXAMPLE $1.2\left(G \simeq \mathbf{Z}_{4}\right)$. Let \tilde{B} be a hyperelliptic curve of genus \tilde{g} and τ the hyperelliptic involution of \tilde{B}. Suppose there is a curve F of genus 3 with automorphisms ι, σ_{F} such that
(i) the subgroup of Aut F generated by ι and σ_{F} is isomorphic to $\boldsymbol{Z}_{2} \oplus \boldsymbol{Z}_{4}$;
(ii) ι has no fixed points;
(iii) σ_{F} induces the identity on $H^{0}\left(\Omega_{F}^{1}\right)_{l}^{-}$.

Let $S=(\tilde{B} \times F) /\langle\tau \times \iota\rangle$. Then S is a smooth surface with $p_{g}(S)=\tilde{g}, q(S)=2$ and $K_{S}^{2}=8(\tilde{g}-1)$.

Let σ be the automorphism of S induced by $\operatorname{id}_{\tilde{B}} \times \sigma_{F} \in \operatorname{Aut}(\tilde{B} \times F)$. One checks easily as in Example 1.1 that the group G generated by σ is isomorphic to \boldsymbol{Z}_{4} and acts trivially on $H^{2}(S, Q)$.
1.2.1. A curve F of genus 3 with automorphisms ι, σ_{F} satisfying conditions (i)-(iii) in Example 1.2.

Let F be the hyperelliptic curve given by the equation

$$
y^{2}=\left(x^{4}+1\right)\left(x^{4}+a\right)
$$

where $a \in \boldsymbol{C} \backslash\{0,1\}$. Let τ_{F} be the hyperelliptic involution (given by $(x, y) \mapsto(x,-y)$), and α the automorphism given by $(x, y) \mapsto(\sqrt{-1} x, y)$. Note that $\omega_{j}:=x^{j} \mathrm{~d} x / y(j=0,1,2)$ is a basis of $H^{0}\left(\Omega_{F}^{1}\right)$. We have that $\alpha^{*} \omega_{j}=\sqrt{-1}^{j+1} \omega_{j}$. So $\left(\tau_{F} \alpha^{2}\right)^{*} \omega_{j}=(-1)^{j} \omega_{j}$ and
$\left(\tau_{F} \alpha\right)^{*} \omega_{1}=\omega_{1}$. One checks easily that $\iota:=\tau_{F} \alpha^{2}$ and $\sigma_{F}:=\tau_{F} \alpha$ have the desired properties (i)-(iii) in Example 1.2.

Example $1.3\left(G \simeq \boldsymbol{Z}_{2}^{\oplus 2}\right)$. Suppose there is a curve F of genus 5 with automorphisms $\beta_{1}, \beta_{2}, \sigma_{1 F}, \sigma_{2 F}$ such that
(i) the subgroup of Aut F generated by $\beta_{1}, \beta_{2}, \sigma_{1 F}$ and $\sigma_{2 F}$ is isomorphic to $\boldsymbol{Z}_{2}^{\oplus 4}$;
(ii) $g(F / A)=2$, where $A:=\left\langle\beta_{1}, \beta_{2}\right\rangle$;
(iii) for $i=1$ and 2, $\sigma_{i F}$ induces the identity on $H^{0}\left(\Omega_{F}^{1}\right)_{A}^{\chi_{j}}\left(j=1\right.$ and 2), where χ_{j} is the character of A with $\operatorname{Ker} \chi_{j}=\left\langle\beta_{j}\right\rangle$.

Let \tilde{B} be a hyperelliptic curve of genus \tilde{g} with a faithful action of the group A such that $\beta_{3}:=\beta_{1} \beta_{2}$ is the hyperelliptic involution of \tilde{B}. (In other words, A is isomorphic to the subgroup of automorphisms generated by a non-hyperelliptic involution and the hyperelliptic involution of \tilde{B}.)

Let $S=(\tilde{B} \times F) / A$, where the action of A on $\tilde{B} \times F$ is the diagonal action. Then S is a smooth surface with $p_{g}(S)=\tilde{g}, q(S)=2$ and $K_{S}^{2}=8(\tilde{g}-1)$.

For $i=1,2$, let σ_{i} be the automorphism of S induced by $\operatorname{id}_{\tilde{B}} \times \sigma_{i F} \in \operatorname{Aut}(\tilde{B} \times F)$.
We have that the group G generated by $\sigma_{i}(i=1$ and 2$)$ is isomorphic to $\boldsymbol{Z}_{2}^{\oplus 2}$ and acts trivially on $H^{2}(S, \boldsymbol{Q})$. Indeed, let $\chi_{3}:=\chi_{1} \chi_{2}$, since $\operatorname{Ker} \chi_{3}=\left\langle\beta_{3}\right\rangle$ and β_{3} is the hyperelliptic involution of \tilde{B}, we have $H^{1}(\tilde{B})_{A}^{\chi_{3}}=0$. So

$$
H^{2}(\tilde{B} \times F)_{A}^{1}=W \oplus H^{1}(\tilde{B})_{A}^{\chi_{1}} \otimes H^{1}(F)_{A}^{\chi_{1}} \oplus H^{1}(\tilde{B})_{A}^{\chi_{2}} \otimes H^{1}(F)_{A}^{\chi_{2}},
$$

where $W=H^{0}(\tilde{B}) \otimes H^{2}(F) \oplus H^{2}(\tilde{B}) \otimes H^{0}(F)$. Now (iii) implies that $\left(\mathrm{id}_{\tilde{B}} \times \sigma_{i F}\right)^{*}=$ id on $H^{2}(\tilde{B} \times F){ }_{A}^{1}$. By the argument as in Example 1.1, we have that $\sigma_{i}^{*}=$ id on $H^{2}(S, \boldsymbol{Q})$.
1.3.1. A curve F of genus 5 with automorphisms $\beta_{1}, \beta_{2}, \sigma_{1 F}, \sigma_{2 F}$ satisfying conditions (i)-(iii) in Example 1.3.

Let E be an elliptic curve, and $\pi: C \rightarrow E$ be a double cover branched along two points. Let δ_{1}, δ_{2} be different non-trivial 2-torsion elements of $\operatorname{Pic}^{0} E$. We have a commutative diagram

where $\rho_{i}: E_{i} \rightarrow E(i=1,2)$ is the double cover defined by $\delta_{i}^{\otimes 2}=\mathcal{O}_{E}$.

We have that F is an irreducible (smooth) curve of genus 5. Indeed, $\varrho_{i}: C_{i} \rightarrow C$ is the double cover defined by $\left(\pi^{*} \delta_{i}\right)^{\otimes 2}=\mathcal{O}_{C}$. Since $\pi^{*}: \operatorname{Pic}^{0} E \rightarrow \operatorname{Pic}^{0} C$ is injective, we have $\pi^{*} \delta_{1} \not \not \pi^{*} \delta_{2}$. So C_{1} is not isomorphic to C_{2} over C, which implies F is irreducible.

Let τ_{i} (resp. τ) be the hyperelliptic involution of C_{i} (resp. C). Then τ_{i} is the lift of τ, that is, we have $\tau \circ \varrho_{i}=\varrho_{i} \circ \tau_{i}$. One checks easily that F is $\tau_{1} \times \tau_{2}$-invariant.

Let α_{i}, γ_{i} (resp. γ) be the involutions of C_{i} (resp. C) corresponding to the double covers ϱ_{i}, π_{i} (resp. π). Then γ_{i} is the lift of γ, that is, we have $\gamma \circ \varrho_{i}=\varrho_{i} \circ \gamma_{i}$. One checks easily that F is $\gamma_{1} \times \gamma_{2}$-invariant.

By the construction of C_{i}, we have $\alpha_{i} \gamma_{i}=\gamma_{i} \alpha_{i}$. Since τ_{i} is in the center of $\operatorname{Aut}\left(C_{i}\right)$, we have $\alpha_{i} \tau_{i}=\tau_{i} \alpha_{i}$ and $\gamma_{i} \tau_{i}=\tau_{i} \gamma_{i}$. So $\alpha_{1} \times \mathrm{id}_{C_{2}}, \mathrm{id}_{C_{1}} \times \alpha_{2}, \gamma_{1} \times \gamma_{2}$ and $\tau_{1} \times \tau_{2}$ mutually commute.

Let $\beta_{1}, \beta_{2}, \tilde{\gamma}$ and $\tilde{\tau}$ be the restriction of $\alpha_{1} \times \mathrm{id}_{C_{2}}, \mathrm{id}_{C_{1}} \times \alpha_{2}, \gamma_{1} \times \gamma_{2}$ and $\tau_{1} \times \tau_{2}$ to F, respectively. Let Δ be the subgroup of Aut F generated by $\beta_{1}, \beta_{2}, \tilde{\gamma}$ and $\tilde{\tau}$. Then $\Delta \simeq \boldsymbol{Z}_{2}^{\oplus 4}$.

Let $A=\left\{\mathrm{id}_{\mathrm{F}}, \beta_{1}, \beta_{2}, \beta_{3}:=\beta_{1} \beta_{2}\right\}$. For $j=1,2,3$, let χ_{j} be the character of A with $\operatorname{Ker} \chi_{j}=\left\langle\beta_{j}\right\rangle$. Let $V=H^{0}\left(\omega_{F}\right)$. By the construction of F, we have that $V_{A}^{1}=\left(\varrho_{i} \circ\right.$ $\left.\mu_{i}\right)^{*} H^{0}\left(\omega_{C}\right)$ is of dimension two, and $\operatorname{dim} V_{A}^{\chi_{j}}=1$ for all j.

Let $\left(V_{A}^{1}\right)^{+}=\left(\varrho_{i} \circ \mu_{i}\right)^{*} H^{0}\left(\omega_{C}\right)_{\gamma}^{+}$and $\left(V_{A}^{1}\right)^{-}=\left(\varrho_{i} \circ \mu_{i}\right)^{*} H^{0}\left(\omega_{C}\right)_{\gamma}^{-}$. We have $\operatorname{dim}\left(V_{A}^{1}\right)^{+}=\operatorname{dim}\left(V_{A}^{1}\right)^{-}=1$.

By the construction of F, we have that there are exactly eight $\tilde{\gamma}$-fixed points on F. Indeed, $\gamma_{1} \times \gamma_{2}$ has $4 \times 4=16$ fixed points, eight of which belong to F. So $\tilde{\gamma}$ is a bi-elliptic involution. Since $\tilde{\gamma}$ is the lift of γ, we have that $\tilde{\gamma}$ induces id on $\left(V_{A}^{1}\right)^{+}$.

For $i=1,2$, since $\tilde{\tau}$ is the lift of τ_{i}, which is the hyperelliptic involution of C_{i}, we have that $\tilde{\tau}$ induces -id on $V_{A}^{1} \oplus V_{A}^{\chi_{i}}$. So $g(F /\langle\tilde{\tau}\rangle) \leq 1$. On the other hand, since $\Delta /\langle\tilde{\tau}\rangle \simeq \boldsymbol{Z}_{2}^{\oplus 3}$ is isomorphic to a subgroup of $\operatorname{Aut}(F /\langle\tilde{\tau}\rangle), F /\langle\tilde{\tau}\rangle$ can not be rational. So $\tilde{\tau}$ is a bi-elliptic involution.

In sum, we have that the generators $\beta_{1}, \beta_{2}, \tilde{\gamma}, \tilde{\tau}$ of Δ acting on V are as follows:

	$\left(V_{A}^{1}\right)^{+}$	$\left(V_{A}^{1}\right)^{-}$	$V_{A}^{\chi_{1}}$	$V_{A}^{\chi_{2}}$	$V_{A}^{\chi_{3}}$
β_{1}	1	1	1	-1	-1
β_{2}	1	1	-1	1	-1
$\tilde{\gamma}$	1	-1	-1	-1	-1
$\tilde{\tau}$	-1	-1	-1	-1	1

One checks easily that $\beta_{1}, \beta_{2}, \sigma_{1 F}:=\tilde{\gamma} \tilde{\tau}$ and $\sigma_{2 F}:=\tilde{\gamma} \beta_{1} \beta_{2}$ have the desired properties (i)-(iii) in Example 1.3.
2. ϕ_{S} is generically finite. In this section, we prove Theorem 0.1 in case that the canonical map ϕ_{S} of S is generically finite. We begin with the following lemmas.

LEMmA 2.1. Let S be a complex nonsingular projective surface, and $f: S \rightarrow B$ be a fibration of genus $g \geq 2$. Let σ be a non-trivial automorphism of S with $f \circ \sigma=f$. If σ induces a trivial action on $H^{0}\left(S, \omega_{S}\right)$, then $g(B) \leq 1$.

Proof. Consider the induced action of σ on $f_{*} \omega_{S}$, which is a locally free sheaf of rank g. We have $f_{*} \omega_{S}=\mathcal{E} \oplus \mathcal{F}$, where \mathcal{E} is the eigen-subsheaf of $f_{*} \omega_{S}$ with eigenvalue 1 , and \mathcal{F} is the direct sum of eigen-subsheaves of $f_{*} \omega_{S}$ with eigenvalue $\neq 1$. We claim that $\mathcal{F} \neq 0$ and hence $r:=\operatorname{rank} \mathcal{F}>0$. Otherwise, since the natural map $f_{*} \omega_{S} \otimes \boldsymbol{C}(p) \rightarrow H^{0}\left(F, \omega_{F}\right)$ is an isomorphism, where $p=f(F)$ (cf. [Ha, Chap. III, Corollary 12.9]), we have that σ induces a trivial action on $H^{0}\left(F, \omega_{F}\right)$, which implies $\sigma_{\mid F}$ and hence σ must be trivial, a contradiction.

Let $\mathcal{E}^{\prime} \subset f_{*} \omega_{S}$ be the subsheaf generated by global sections of $f_{*} \omega_{S}$. The assumption that σ induces a trivial action on $H^{0}\left(S, \omega_{S}\right)$ implies that $\mathcal{E}^{\prime} \subseteq \mathcal{E}$. So $h^{0}(B, \mathcal{E})=h^{0}\left(B, f_{*} \omega_{S}\right)$ and hence $h^{0}(B, \mathcal{F})=0$. So by the Riemann-Roch, we have

$$
\operatorname{deg} \mathcal{F}+r(1-g(B))=-h^{1}(B, \mathcal{F}) \leq 0
$$

Since $f_{*} \omega_{S} \otimes \omega_{B}^{-1}$ is semi-positive by a theorem of Fujita [Fu], we have

$$
\operatorname{deg} \mathcal{F}-2 r(g(B)-1)=\operatorname{deg}\left(\mathcal{F} \otimes \omega_{B}^{-1}\right) \geq 0
$$

Combining the two inequalities above, we have $g(B) \leq 1$.
Lemma 2.2. Let S be a complex nonsingular minimal projective surface of general type with $q(S)=2$. Let $G \subset$ AutS be a subgroup of order 4 acting trivially in $H^{2}(S, \boldsymbol{Q})$. Assume that the Albanese map alb : $S \rightarrow \operatorname{Alb}(S)$ of S is surjective. Then $H^{0}\left(\Omega_{S}^{1}\right)=H^{0}\left(\Omega_{S}^{1}\right)_{G}^{\chi}$ for some $\chi \in \hat{G}$ of order at most 2 .

Proof. Let $V=H^{0}\left(\Omega_{S}^{1}\right)$. It is enough to exclude the following two possibilities:
(i) $V=V_{G}^{\chi_{1}} \oplus V_{G}^{\chi_{2}}$, where $\chi_{1} \neq \chi_{2} \in \widehat{G}$, and both $V_{G}^{\chi_{1}}$ and $V_{G}^{\chi_{2}}$ are of dimension one;
(ii) $V=V_{G}^{\chi}$, where $\chi \in \widehat{G}$ is of order 4 .

In case (i), for $i=1,2$, let $\omega_{i} \in V_{G}^{\chi_{i}}$ be a non-zero holomorphic 1-form. Since the Albanese map alb : $S \rightarrow \mathrm{AlB}(S)$ is surjective, by [BPV, p.11, Corollary 1.2], $H^{2}(\mathrm{AlB}(S), \boldsymbol{C}) \rightarrow$ $H^{2}(S, \boldsymbol{C})$ is injective. This implies the natural map induced by cup product $\wedge^{2} H^{1}(S, \boldsymbol{C}) \rightarrow$ $H^{2}(S, \boldsymbol{C})$ is injective. So $\omega_{1} \wedge \omega_{2} \neq 0, \omega_{1} \wedge \overline{\omega_{2}} \neq 0$ in $H^{2}(S, \boldsymbol{C})$, where complex conjugation acts naturally on

$$
H^{1}(S, \boldsymbol{R}) \otimes \boldsymbol{C}=H^{1}(S, \boldsymbol{C})=H^{0}\left(\Omega_{S}^{1}\right) \oplus H^{1}\left(S, \mathcal{O}_{S}\right)
$$

Since G acts trivially on $H^{2}(S, \boldsymbol{C})$, from $\alpha^{*}\left(\omega_{1} \wedge \omega_{2}\right)=\chi_{1}(\alpha) \chi_{2}(\alpha) \omega_{1} \wedge \omega_{2}$ for each $\alpha \in G$, we have $\chi_{1} \chi_{2}=1$ in \widehat{G}. Since $\chi_{1} \neq \chi_{2}$, we have that χ_{i} is of order 4 . Then $G \simeq \boldsymbol{Z}_{4}$. Let σ be the generator of G, such that $\chi_{1}(\sigma)=\sqrt{-1}$ and $\chi_{2}(\sigma)=-\sqrt{-1}$. We have

$$
\sigma^{*}\left(\omega_{1} \wedge \overline{\omega_{2}}\right)=\chi_{1}(\sigma) \overline{\chi_{2}(\sigma)} \omega_{1} \wedge \overline{\omega_{2}}=-\omega_{1} \wedge \overline{\omega_{2}},
$$

which is a contradiction since σ acts trivially on $H^{2}(S, C)$.
In case (ii), we have $G \simeq \boldsymbol{Z}_{4}$. Let σ be the generator of G such that $\chi(\sigma)=\sqrt{-1}$. Let $\omega_{1}, \omega_{2} \in V_{G}^{\chi}$ be linearly independent holomorphic 1-forms. We have $\sigma^{*}\left(\omega_{1} \wedge \omega_{2}\right)=$ $-\omega_{1} \wedge \omega_{2}$. By the argument as above, we get a contradiction.

THEOREM 2.3. Let S be a complex nonsingular minimal projective surface of general type with $q(S)=2$ and $p_{g}(S)>61$. Let $G \subset$ AutS be a subgroup of order 4 acting trivially
on $H^{2}(S, \boldsymbol{Q})$. If the canonical map ϕ_{S} of S is generically finite, then the pair (S, G) is as in Example 1.3.

Proof. Thanks to [X2], by the argument as in [Ca2, 2.3], we have that, if $p_{g}(S)>61$, then S has a fibration

$$
f: S \rightarrow B
$$

of genus $g=5$ or 6 , and ϕ_{S} separates fibers of f and maps them onto a pencil of straight lines on $\operatorname{Im} \phi_{S}$, which is ruled over B, and the numerical invariants of S and B satisfy

$$
\begin{align*}
& K_{S}^{2} \geq \frac{2 g-2}{2 g-5}\left(g p_{g}(S)-6 g+20\right) \tag{2.3.1}\\
& g(B) \leq 1 \tag{2.3.2}
\end{align*}
$$

Since G induces trivial actions on $\operatorname{Im} \phi_{S}$, and hence on B, G is included in $\operatorname{Aut} F$ for a general fiber F of f.
2.4. The case $g=6$ is excluded provided $p_{g}(S) \geq 36$ as in [Ca2, 2.8]. Indeed, by the argument in loc. cit., we may assume that $G \simeq \boldsymbol{Z}_{4}$. Let σ be the element of G of order 2 . We may estimate the upper bound of H^{2} for each σ-fixed curve H and apply [Ca2, Lemma 2.1] to obtain an upper bound for K_{S}^{2}. In our case $q(S)=2$ the inequality in loc. cit. reads

$$
K_{S}^{2} \leq \frac{480}{59}\left(p_{g}(S)-1\right)+\frac{40}{59} .
$$

While (2.3.1) gives

$$
K_{S}^{2} \geq \frac{10}{7}\left(6 p_{g}(S)-16\right)
$$

Combining the two inequalities above, we get $p_{g}(S)<36$, a contradiction provided $p_{g}(S) \geq$ 36.
2.5. From now on, we assume that $g=5$. By [Ca2, Lemma 2.4], $g(F / G)=2$. So G acts freely on F.
2.6. Let $\pi: S \rightarrow S / G$ be the quotient map, and T^{\prime} the minimal desingularization of S / G. Let $h: T \rightarrow B$ be the relatively minimal fibration of the (induced) fiber space $T^{\prime} \rightarrow B$.

Lemma 2.7. We have $g(B)=0$.
Proof. Otherwise, by (2.3.2), $g(B)=1$. Consider the canonical map

$$
\phi_{S}: S \rightarrow \Sigma:=\operatorname{Im} \phi_{S} \subset \boldsymbol{P}^{p_{g}(S)-1} .
$$

Since Σ is ruled over B, we have $q(\Sigma)=g(B)=1$. By the classification of nondegenerate surfaces of minimal degree in $\boldsymbol{P}^{p_{g}(S)-1}$, we have that deg $\Sigma>\operatorname{codim} \Sigma+1=p_{g}(S)-2$. So

$$
K_{S}^{2} \geq \operatorname{deg} \phi_{S} \operatorname{deg} \Sigma \geq 8 \chi\left(\mathcal{O}_{S}\right)
$$

On the other hand, by the argument as in [$\mathrm{Ca} 2,3.1]$, we have

$$
K_{S}^{2} \leq 8 \chi\left(\mathcal{O}_{S}\right)
$$

Combining the two inequalities above, we have $K_{S}^{2}=8 \chi\left(\mathcal{O}_{S}\right)$ and $K_{S}^{2}=\operatorname{deg} \phi_{S} \operatorname{deg} \Sigma$, which implies $\left|K_{S}\right|$ is base-locus free. Consequently, we have
(2.7.1) for each id $\neq \sigma \in G$, since every σ-fixed curve is contained in the fixed part of $\left|K_{S}\right|$ (cf. [Ca1, 1.14.1]), σ has no fixed curves.
(2.7.2) S / G has at most rational double singularities since G acts trivially on $H^{0}\left(\omega_{S}\right)$.

Let T, T^{\prime} be as in 2.6. By (2.7.1) and (2.7.2), we have that $K_{S}=\pi^{*} K_{S / G}, T^{\prime}$ is minimal and $T=T^{\prime}$. So $K_{T}^{2}=2 \chi\left(\mathcal{O}_{S}\right)=2 \chi\left(\mathcal{O}_{T}\right)$. On the other hand, the assumption $g(B)=1$ implies that the Albanese map of S is generically finite. Since G induces trivial actions on B, we have $0 \neq f^{*} H^{0}\left(\omega_{B}\right) \subset H^{0}\left(\Omega_{S}^{1}\right)_{G}^{1}$. By Lemma 2.2, we have that G induces trivial action on $H^{0}\left(\Omega_{S}^{1}\right)$. So $q(T)=2$. By a theorem of Debarre (cf. [De, Theorem 6.1]), we have $K_{T}^{2} \geq 2 p_{g}(T)=2 \chi\left(\mathcal{O}_{T}\right)+2$, a contradiction.

Let C be the image of the Albanese map alb : $S \rightarrow \operatorname{Alb}(S)$.

Lemma 2.8. C is a curve of genus 2 .

Proof. Suppose alb is surjective. By Lemma 2.2, $H^{0}\left(\Omega_{S}^{1}\right)=H^{0}\left(\Omega_{S}^{1}\right)_{G}^{\chi}$ for some $\chi \in \hat{G}$ of order at most 2 . If $\chi=1$, let $h: T \rightarrow B$ be as in 2.6 , then $q(T)=2$. By $[\mathrm{Be} 2$, Lemma, p. 345], h is trivial, and so $p_{g}(T)=0$. This is absurd since $p_{g}(T)=p_{g}(S)>0$.

If χ is of order 2 , then the kernel $\operatorname{Ker}(\chi)$ of $\chi: G \rightarrow \boldsymbol{C}^{*}$ is not trivial. Let σ be the generator of $\operatorname{Ker}(\chi)$. Let $V=H^{0}\left(\Omega_{F}^{1}\right)$. Then $V_{G}^{1} \oplus V_{G}^{\chi}=V_{\sigma}^{1}$. Since $\operatorname{dim} V_{G}^{1}=g(F / G)=2$, this implies $\operatorname{dim} V_{G}^{\chi}=1$. On the other hand, let $r: H^{0}\left(\Omega_{S}^{1}\right) \rightarrow H^{0}\left(\Omega_{F}^{1}\right)$ be the restriction map, and W be its image. We have $\operatorname{dim} W=2$ (since F is a general fiber of f, if $r(\varpi)=0$ for some holomorphic 1-form ϖ of $S, \varpi=f^{*} \varpi^{\prime}$ for some holomorphic 1-form ϖ^{\prime} of B) and $W \subseteq V_{G}^{\chi}$. This is a contradiction.
2.9. For each $\sigma \in G$, denote by $\bar{\sigma}$ the automorphism of C induced by σ. The homomorphism from G to Aut C, sending σ to $\bar{\sigma}$, is injective by Lemma 2.1. Let \bar{G} be its image in Aut C. Then $\bar{G} \simeq G$.

Lemma 2.10. f has constant moduli.
Proof. By Lemma 2.8, we have that $\mu:=\operatorname{alb}_{\mid F}: F \rightarrow C$ is a finite morphism. Let $d=\operatorname{deg} \mu$. By the Hurwitz formula, we have $2 \leq d \leq 4$.

We show that $d=4$, which implies μ is étale, and so f has constant moduli.
Case 1. $G \simeq \mathbf{Z}_{4}$. Let $\sigma \in G$ be a generator of G. By the Hurwitz formula, there exists a $\bar{\sigma}$-fixed point x on C. Since $\bar{\sigma} \circ \mu=\mu \circ \sigma, \mu^{-1}(x)$ is σ-invariant. Since σ has no fixed points on F (cf. 2.5), we have that $\# \mu^{-1}(x)$ divides by 4 and hence $d=4$.

Case 2. $G \simeq Z_{2}^{2}$. Assume $d \leq 3$. We will get a contradiction. Since $\bar{G} \simeq Z_{2}^{2}$ in this case, there exist $\sigma \in G$ such that $\bar{\sigma}$ is the hyperelliptic involution of C. By the Hurwitz formula, there is a point $x \in C$ such that x is $\bar{\sigma}$-fixed and μ is étale over x. So $\mu^{-1}(x)$ is σ-invariant and $d=\# \mu^{-1}(x)$. This implies d divides by 2 since σ has no fixed points on F (cf. 2.5). Hence $d=3$ does not occur.

Now we assume $d=2$. Then $f \times$ alb $: S \rightarrow P:=B \times C$ is generically finite of degree 2. Let $S \rightarrow S^{\prime} \xrightarrow{\pi} P$ be the Stein factorization of $f \times \operatorname{alb}$. Let (Δ, δ) be the (singular) double cover data corresponding to π. Let $l=B \times \mathrm{pt}$ and $l^{\prime}=\mathrm{pt} \times C$. We have $\Delta l^{\prime}=4$
and $\delta \equiv 2 l+m l^{\prime}$ for some m. We show that each singular point of Δ is either a double point or a triple point with at least two different tangents, and hence S^{\prime} has at most canonical singularities. Indeed, if there exists a point $x:=(b, c) \in B \times C$ with mult $_{x} \Delta_{1} \geq 3$, where Δ_{1} is the horizontal part of Δ w.r.t. the projection $P \rightarrow B$, then c must be \bar{G}-fixed since Δ_{1} is $\operatorname{id}_{B} \times \bar{G}$-invariant and $\Delta_{1} l^{\prime}=4$. This is absurd since $\bar{G} \simeq G$ is not cyclic. Now by the double cover formula, we have that

$$
K_{S}^{2}=16(m-2), \quad \chi\left(\mathcal{O}_{S}\right)=3 m-4 .
$$

So S satisfies $K_{S}^{2}=16\left(\chi\left(\mathcal{O}_{S}\right)-2\right) / 3$, contrary to (2.3.1).
2.11. By Lemma 2.10, there exists a finite group A acting faithfully on a general fiber F of f and on some smooth curve \tilde{B} such that f is equivalent to the fiber surface

$$
p:(\tilde{B} \times F) / A \rightarrow \tilde{B} / A,
$$

where the action of A on $\tilde{B} \times F$ is the diagonal action and p is the projection to the first factor (cf. e.g., [Se]).

We have $g(F / A)=q(S)=2$. This implies the projection

$$
q:(\tilde{B} \times F) / A \rightarrow F / A
$$

is equivalent to the Albanese map alb $: S \rightarrow C$. We have $|A|=4$ since the degree of $\operatorname{alb}_{\mid F}: F \rightarrow C$ is 4 by the proof of Lemma 2.10. So A acts freely on F and $S \simeq(\tilde{B} \times F) / A$. In particular, we have $g(\tilde{B})=p_{g}(S)$.
2.12. Let $V=H^{0}\left(\omega_{F}\right)$ and $W=H^{0}\left(\omega_{\tilde{B}}\right)$. We have

$$
\begin{equation*}
H^{0}\left(\omega_{S}\right) \simeq \oplus_{\chi \in \widehat{A}} V_{A}^{\chi} \otimes W_{A}^{\chi^{-1}} \tag{2.12.1}
\end{equation*}
$$

Since ϕ_{S} separates fibers of f and maps them onto a pencil of straight lines on $\operatorname{Im} \phi_{S}$, we have that the image of $H^{0}\left(\omega_{S}\right)$ in $H^{0}\left(\omega_{F}\right)$ is of dimension two. This implies that, among the direct sum factors of the right side of (2.12.1), there are exactly two factors having positive dimension. So

$$
\begin{equation*}
H^{0}\left(\omega_{S}\right) \simeq V_{A}^{\chi_{1}} \otimes W_{A}^{\chi_{1}^{-1}} \oplus V_{A}^{\chi_{2}} \otimes W_{A}^{\chi_{2}^{-1}} \tag{2.12.2}
\end{equation*}
$$

for some $\chi_{1}, \chi_{2} \in \widehat{A}$. Since $\operatorname{dim} W_{A}^{1}=g(\tilde{B} / A)=g(B)=0$ (Lemma 2.7), we have that $\chi_{j} \neq 1$ (the idenity character) for $j=1,2$.
2.13. For each $\sigma \in G, \sigma$ induces an automorphism of $\tilde{B} \times_{B} S$, which is of the form $\operatorname{id}_{\tilde{B}} \times \sigma_{F}$ for some $\sigma_{F} \in \operatorname{Aut}(F)$ under the identification of $\tilde{B} \times_{B} S$ with $\tilde{B} \times F$. We have that $\operatorname{id}_{\tilde{B}} \times \sigma_{F}$ is a lift of σ to $\tilde{B} \times F$, and

$$
\begin{equation*}
\operatorname{alb}_{\mid F} \circ \sigma_{F}=\bar{\sigma} \circ \operatorname{alb}_{\mid F}, \tag{2.13.1}
\end{equation*}
$$

where $\bar{\sigma}$ is as in 2.9.
Let $G_{F}=\left\langle\sigma_{F} ; \sigma \in G\right\rangle$. Clearly, $G_{F} \simeq G$. Since id $\tilde{B}_{\tilde{B}} \times \sigma_{F}$ acts trivially on the right side of (2.12.2) for each $\sigma_{F} \in G_{F}$, we have that G_{F} induces trivial action on $V_{A}^{\chi_{1}} \oplus V_{A}^{\chi_{2}}$, where χ_{1}, χ_{2} are as in (2.12).
2.14. Let Ξ be the subgroup of Aut F generated by A and G_{F}. Then $V_{A}^{\chi_{1}} \oplus V_{A}^{\chi_{2}}$ is a Ξ submodule of V. Let $\rho: \Xi \rightarrow \operatorname{GL}\left(V_{A}^{\chi_{1}} \oplus V_{A}^{\chi_{2}}\right)$ be the corresponding linear representation. By (2.13), we have $G_{F} \subseteq \operatorname{Ker} \rho$. We show that $\rho_{\mid A}: A \rightarrow \operatorname{GL}\left(V_{A}^{\chi_{1}} \oplus V_{A}^{\chi_{2}}\right)$ is injective: indeed, since both V_{A}^{1} and $V_{A}^{\chi_{1}} \oplus V_{A}^{\chi_{2}}$ are contained in $V_{\operatorname{Ker}\left(\rho_{\mid A}\right)}^{1}, \operatorname{dim} V_{\operatorname{Ker}\left(\rho_{\mid A}\right)}^{1} \geq \operatorname{dim} V_{A}^{1}+\operatorname{dim}\left(V_{A}^{\chi_{1}} \oplus\right.$ $\left.V_{A}^{\chi_{2}}\right)=g(F / A)+2=4$ (cf. (2.11)). This implies $\operatorname{Ker}\left(\rho_{\mid A}\right)$ must be trivial. So $G_{F}=\operatorname{Ker} \rho$, and hence G_{F} is a normal subgroup of Ξ. Note that A is a normal subgroup of Ξ. We have that Ξ is the internal direct product of G_{F} and A; in particular, Ξ is an Abelian group.

Now we distinguish four cases according to A and G.
2.15. $A \simeq Z_{4}$ and $G \simeq Z_{2}^{2}$. We show that this case does not occur. Otherwise, let β be a generator of A. Let V be as in 2.12. We have $\operatorname{dim} V_{\beta}^{1}=g(F / A)=2$. By the holomorphic Lefschetz formula, $\operatorname{dim} V_{\beta}^{-1}=\operatorname{dim} V_{\beta}^{i}=\operatorname{dim} V_{\beta}^{-i}=1$.

We have $\bar{G} \simeq \boldsymbol{Z}_{2}^{2}$ (cf. (2.9)). So there is an involution $\sigma \in G$ such that $\bar{\sigma}$ is the hyperelliptic involution of C. The operation of σ^{*} and $(\sigma \beta)^{*}$ acting on eigenspaces of β^{*} is as follows:

	V_{β}^{1}	V_{β}^{-1}	V_{β}^{i}	V_{β}^{-i}
σ^{*}	-1	1	1	1
$(\sigma \beta)^{*}$	-1	-1	i	$-i$

Indeed, since Ξ is Abelian (cf. 2.14), the eigenspace of each eigenvalue of β^{*} is Ξ-invariant. The equality $\sigma^{*}=-\mathrm{id}$ on V_{β}^{1} follows by (2.13.1), and $\sigma^{*}=\mathrm{id}$ on the others since $g(F / \sigma)=$ 3 (cf. (2.5)).

By the above table, we have

$$
\operatorname{tr}(\sigma \beta \mid \bar{V})=-\left(\operatorname{dim} V_{\beta}^{1}+\operatorname{dim} V_{\beta}^{-1}\right)-i \operatorname{dim} V_{\beta}^{i}+i \operatorname{dim} V_{\beta}^{-i}=-3 .
$$

Applying the holomorphic Lefschetz formula to $\sigma \beta$, we have

$$
\begin{equation*}
1-(-3)=1-\operatorname{tr}(\sigma \beta \mid \bar{V})=\frac{a}{1-i}+\frac{b}{1+i}, \tag{2.15.1}
\end{equation*}
$$

where a (resp. b) is the number of fixed points of $\sigma \beta$ such that the induced action of $\sigma \beta$ on the tangent space at each of these points is given by $v \mapsto i v$ (resp. $v \mapsto-i v$). So $a+b=8$. Applying the Riemann-Hurwitz formula to $F \rightarrow F /\langle\sigma \beta\rangle$, we have $8=2 g(F)-2 \geq$ $4(-2+(1-1 / 4)(a+b))=16$, a contradiction.
2.16. $A \simeq \boldsymbol{Z}_{4} \simeq G$. Let γ be a generator of G. By (2.9), $\bar{\gamma}$ is of order 4, and so $g(C / \bar{\gamma})=0$. Applying the topological Lefschetz formula to $\bar{\gamma}$, we have that $\bar{\gamma}$ has $2+$ $2 \operatorname{dim} H^{0}\left(\omega_{C}\right)_{\bar{\gamma}}$ fixed points. Applying the Riemann-Hurwitz formula to $C \rightarrow C / \bar{\gamma}$, we have

$$
2=2 g(C)-2 \geq 4\left(-2+\left(1-\frac{1}{4}\right)\left(2+2 \operatorname{dim} H^{0}\left(\omega_{C}\right)_{\bar{\gamma}}\right)\right) .
$$

This implies $\operatorname{dim} H^{0}\left(\omega_{C}\right)_{\bar{\gamma}}^{-}=0$. So $\bar{\gamma}^{2}$ induces -id on $H^{0}\left(\omega_{C}\right)$, and hence γ^{2} induces -id on $H^{0}\left(\omega_{F}\right)_{\beta}^{1}$. Now by the argument as in 2.15 (consider $\gamma^{2} \beta$ instead of $\sigma \beta$), we get a contradiction.
2.17. $A \simeq \boldsymbol{Z}_{2}^{2} \simeq G$. Let χ_{1}, χ_{2} be as in 2.12 , and let $\chi_{3}=\chi_{1} \chi_{2}$. For $j=1,2,3$, let β_{j} be the generator of $\operatorname{Ker} \chi_{j}$. Then $\beta_{j}(j=1,2,3)$ are non-unit elements of A. Note that $V_{\beta_{j}}^{1}=V_{A}^{1} \oplus V_{A}^{\chi_{j}}, \operatorname{dim} V_{A}^{1}=g(F / A)=2$, and $\operatorname{dim} V_{\beta_{j}}^{1}=g\left(F /\left\langle\beta_{j}\right\rangle\right)=3$. So $\operatorname{dim} V_{A}^{\chi_{j}}=1$ for $j=1,2,3$, and the action of generators of A on $V=H^{0}\left(F, \omega_{F}\right)$ is as follows:

	V_{A}^{1}	$V_{A}^{\chi_{1}}$	$V_{A}^{\chi_{2}}$	$V_{A}^{\chi_{3}}$
β_{1}	1	1	-1	-1
β_{2}	1	-1	1	-1

Let $\bar{\sigma}_{1}, \bar{\sigma}_{2} \in \bar{G}$ be bi-elliptic involutions of C, and $\sigma_{1 F}, \sigma_{2 F} \in G_{F}$ be their corresponding elements, where \bar{G} is as in 2.9 and G_{F} is as in 2.13. For $l=1,2$, let \bar{v}_{l} be a basis of $H^{0}\left(C, \omega_{C}\right)_{\bar{\sigma}_{l}}^{+}$, and $v_{l} \in V_{A}^{1}$ the corresponding element of \bar{v}_{l} under the identification of V_{A}^{1} with $H^{0}\left(C, \omega_{C}\right)\left(\right.$ cf. 2.11). Then v_{1} and v_{2} is a basis of V_{A}^{1}. Note that the action of G_{F} on V_{A}^{1} is the same as that of \bar{G} on $H^{0}\left(C, \omega_{C}\right)$ by (2.13.1), and G_{F} acts trivially on $V_{A}^{\chi_{1}}$ and $V_{A}^{\chi_{2}}$ (cf. 2.13). So the action of generators of G_{F} on $V=H^{0}\left(F, \omega_{F}\right)$ is as follows:

	v_{1}	v_{2}	$V_{A}^{\chi_{1}}$	$V_{A}^{\chi_{2}}$	$V_{A}^{\chi_{3}}$
$\sigma_{1 F}$	1	-1	1	1	-1
$\sigma_{2 F}$	-1	1	1	1	-1

Combining $V_{A}^{\chi_{3}} \neq 0$ with (2.12.2), we have $W_{A}^{\chi_{3}}=0$, and hence $g\left(\tilde{B} / \beta_{3}\right)=0$, i.e., \tilde{B} is hyperelliptic with the hyperelliptic involution β_{3}. So (S, G) is as in Example 1.3.
2.18. $\quad A \simeq \boldsymbol{Z}_{2}^{2}$ and $G \simeq \boldsymbol{Z}_{4}$. Note that G acts freely on F (cf. 2.5), and that A induces a faithful action on F / G (cf. 2.14). Observing that the proof of the case $A \simeq \boldsymbol{Z}_{4}$ and $G \simeq \mathbf{Z}_{2}^{2}$ uses only the properties of representations of G and A on V, by the argument as in 2.15 with the role of G and A being transposed, we have that this case does not occur.

This completes the proof of Theorem 2.3.
3. ϕ_{S} is composed with a pencil. In this section, we prove Theorem 0.1 in the case that the canonical map ϕ_{S} of S is composed with a pencil.

THEOREM 3.1. Let S be a complex nonsingular minimal projective surface of general type with $q(S)=2$ and $p_{g}(S) \geq 23$. Let $G \subset$ AutS be a subgroup of order 4 acting trivially in $H^{2}(S, \boldsymbol{Q})$. If the canonical map ϕ_{S} of S is composed with a pencil, then the pair (S, G) is as in Example 1.1 or Example 1.2 depending on $G \simeq \boldsymbol{Z}_{2}^{\oplus 2}$ or \boldsymbol{Z}_{4}.

Proof. By [Be1, Prop. 2.1], the moving part of $\left|K_{S}\right|$ has no base points. Let

$$
\phi_{S}=\varphi \circ f: S \rightarrow B \rightarrow \operatorname{Im} \phi_{S} \subset \boldsymbol{P}^{p_{g}(S)-1}
$$

be the Stein factorization of ϕ_{S}, and let F be a general fiber of f. Let g be the genus of a general fiber of f. One has $2 \leq g \leq 5$ (cf. [Be1]) and $g(B)=0$ (cf. [X1]).

Since G acts trivially on $H^{0}\left(S, \omega_{S}\right)$, we have that G induces the trivial action on B, and the inclusion $G \hookrightarrow \operatorname{Aut} F$ (cf. [Ca1, 2.2]). In particular, we have that any section of f is G fixed.

Let C be the image of the Albanese map of S.

Lemma 3.2. If $g \leq 4$, then C is a curve (of genus 2).

Proof. If the Albanese map of S is surjective, by Lemma 2.2, $H^{0}\left(\Omega_{S}^{1}\right)=H^{0}\left(\Omega_{S}^{1}\right)_{G}^{\chi}$ for some $\chi \in \hat{G}$ of order at most 2. Then the kernel $\operatorname{Ker}(\chi)$ of $\chi: G \rightarrow \boldsymbol{C}^{*}$ is not trivial. Let $\sigma \in \operatorname{Ker}(\chi)$ be an element of order 2 . Then $H^{0}\left(\Omega_{S}^{1}\right)_{G}^{\chi} \subseteq H^{0}\left(\Omega_{S}^{1}\right)_{\sigma}^{1}$, and so $q(S / \sigma)=2$. The assumption $g \leq 4$ implies that $S / \sigma \rightarrow B$ is a fiber space of genus $g^{\prime} \leq 2$. Hence we have that $g^{\prime}=q(S / \sigma)-g(B)$. This implies $S / \sigma \rightarrow B$ is trivial by [Be2, Lemma, p. 345], and so $p_{g}(S / \sigma)=0$, a contradiction since $p_{g}(S / \sigma)=p_{g}(S)>0$.

Lemma 3.3. The cases $g=2,4$ and 5 do not occur.
Proof. Let M and Z be the moving part and the fixed part of $\left|K_{S}\right|$, respectively. We write $Z=H+V$, and $H=n_{1} \Gamma_{1}+n_{2} \Gamma_{2}+\cdots$ with $n_{1} \geq n_{2} \geq \cdots$, where H (resp. V) is the horizontal part (resp. the vertical part) of Z with respect to f, and $\Gamma_{i}(i=1,2, \ldots)$ are the irreducible components of H, with n_{i} the multiplicity of Γ_{i} in H.

Since $M \equiv \chi\left(\mathcal{O}_{S}\right) F$ (cf. e.g. [Ca1, 2.1.2]), we have

$$
\begin{equation*}
K_{S}^{2}=K_{S}(M+H+V) \geq(2 g-2) \chi\left(\mathcal{O}_{S}\right)+K_{S} H . \tag{3.3.1}
\end{equation*}
$$

We distinguish three cases according to g.
3.3.1. $g=5$. In this case we have that

$$
\begin{equation*}
K_{S} H \geq \frac{8}{5}\left(\chi\left(\mathcal{O}_{S}\right)-8\right) \tag{3.3.2}
\end{equation*}
$$

Indeed, since $n_{1} K_{S / B}+H+V$ is nef, from

$$
\left(\left(n_{1}+1\right) K_{S}-M+2 n_{1} F\right) H=\left(n_{1} K_{S / B}+H+V\right) H \geq 0,
$$

we get $K_{S} H \geq 8\left(\chi\left(\mathcal{O}_{S}\right)-2 n_{1}\right) /\left(n_{1}+1\right)$. So if $n_{1}<5$, we obtain (3.3.2).
Now we can assume that $n_{1} \geq 5$. Then Γ_{1} is a section of f. This implies Γ_{1} and hence the point $F \cap \Gamma_{1} \in F$ is G-fixed. So G is cyclic (of order four).

Let R_{F} be the set of ramified points of the quotient map $F \rightarrow F / G$. Using the Hurwitz formula for $F \rightarrow F / G$ (note that $g(F / G) \geq 1$ and $F \cap \Gamma_{1}$ is a ramification point of index 4 of the quotient map), we have that R_{F} consists of four points and among them there are exactly two G-fixed points. Since $R_{F} \subseteq H_{\text {red }} \cap F$ (cf. [Ca1, 2.4.1]) and $\left(H-n_{1} \Gamma_{1}\right) F=8-n_{1} \leq 3$, we have $\#\left(H_{\text {red }} \cap F\right)=4$ and $H=5 \Gamma_{1}+\Gamma_{2}+\Gamma_{3}$ with $\Gamma_{2} F=1$ and $\Gamma_{3} F=2$.

From $K_{S} \Gamma_{i}=(M+H+V) \Gamma_{i} \geq \chi\left(\mathcal{O}_{S}\right)+n_{i} \Gamma_{i}^{2}$ and the adjunction formula for Γ_{i}, we get

$$
K_{S} \Gamma_{1} \geq \frac{\chi\left(\mathcal{O}_{S}\right)-10}{6}, \quad K_{S} \Gamma_{i} \geq \frac{\chi\left(\mathcal{O}_{S}\right)-2}{2} \quad \text { for } i=2,3 .
$$

$K_{S} H=5 K_{S} \Gamma_{1}+K_{S} \Gamma_{2}+K_{S} \Gamma_{3} \geq(11 / 6) \chi\left(\mathcal{O}_{S}\right)-31 / 3$. This finishes the proof of (3.3.2).
Combining (3.3.1) with (3.3.2), if $\chi\left(\mathcal{O}_{S}\right) \geq 22$, we get $K_{S}^{2} \geq(48 / 5) \chi\left(\mathcal{O}_{S}\right)-64 / 5>$ $9 \chi\left(\mathcal{O}_{S}\right)$, contrary to the Bogomolov-Miyaoka-Yau inequality.
3.3.2. $g=4$. By Lemma 3.2, we have that $\operatorname{alb}_{\mid F}: F \rightarrow C$ is either an étale cover of degree 3 or a ramified double cover, where F is a general fiber of f.

In the former case, we have that f has constant moduli. So it is equivalent to $p:(\tilde{B} \times$ $F) / A \rightarrow \tilde{B} / A$ for some A, \tilde{B} as in 2.11.

We have $g(F / A)=q(S)=2$. So $F / A \simeq C$. This implies $|A|=3$ and $S \simeq(\tilde{B} \times$ $F) /\langle\iota \times \tau\rangle$, where $\iota \in \operatorname{Aut} \tilde{B}$ of order 3 with $g(\tilde{B} / \iota)=0$ and $\tau \in \operatorname{Aut} F$ of order 3 without fixed points.

By the explicit description of S above, f has multiple fibers with multiplicity 3. So $\Gamma_{i} F$ divides by 3 for each i. Thus there are only three possibilities for H :
(a) $H=2 \Gamma_{1}$ with $\Gamma_{1} F=3$;
(b) $H=\Gamma_{1}$ with $\Gamma_{1} F=6$;
(c) $H=\Gamma_{1}+\Gamma_{2}$ with $\Gamma_{1} F=\Gamma_{2} F=3$.

Let D be the horizontal part (w.r.t. f) of the ramification divisor of $S \rightarrow S / G$. We have $D<H$ (cf. [Ca1, 2.4]). Using the Hurwitz formula for the quotient map $F \rightarrow F / G$, which is ramified exactly at points $D \cap F$, we have either (i) $D F=2$ and the ramification index of each points of $D \cap F$ is four, or (ii) $D F=6$ and that of $D \cap F$ is two. Since $D<H$, by the possibilities for H listed above, we see easily that the case (i) does not occur.

Consider therefore the case (ii). Note that $H F=6$, we have $H=D$. This implies that H is contained in sums of fibers of alb. Indeed, if $\operatorname{alb}_{\mid \Gamma}: \Gamma \rightarrow C$ is surjective for some $\Gamma<H$, let $\alpha \in G$ be a non-trivial automorphism such that Γ is α-fixed (such an automorphism exists since $\Gamma<D$), then the induced action of α on C is trivial, a contradiction by Lemma 2.1. Since $\mathrm{alb}^{*}(c) F=3$ for any point $c \in C$, (b) is ruled out; since $H=D$ is reduced, (a) is ruled out. So H is as in (c) with Γ_{1}, Γ_{2} being fibers of alb. Hence $K_{S} \Gamma_{1}=K_{S} \Gamma_{2}=$ $2 g(\tilde{B})-2=2 \chi\left(\mathcal{O}_{S}\right)$. By (3.3.1), $K_{S}^{2} \geq 6 \chi\left(\mathcal{O}_{S}\right)+K_{S} \Gamma_{1}+K_{S} \Gamma_{2}=10 \chi\left(\mathcal{O}_{S}\right)$, contrary to the Bogomolov-Miyaoka-Yau inequality.

In the latter case, we have that

$$
f \times \mathrm{alb}: S \rightarrow T:=B \times C
$$

is generically finite of degree 2 . Let $S \rightarrow S^{\prime} \xrightarrow{\pi} T$ be the Stein factorization of $f \times$ alb. Let $l=B \times \mathrm{pt}$, and $l^{\prime}=\mathrm{pt} \times C$. Let (Δ, δ) be the (singular) double cover data corresponding to π. We have $\Delta l^{\prime}=2$, and $\delta \equiv l+m l^{\prime}$ for some m. This implies that each singular point of Δ is either a double point or a triple point with at least two different tangents, and hence S^{\prime} has at most canonical singularities. By the double cover formula, we have

$$
\begin{aligned}
K_{S}^{2} & =K_{S^{\prime}}^{2}=2\left(K_{T}+\delta\right)^{2}=12(m-2) \\
\chi\left(\mathcal{O}_{S}\right) & =\chi\left(\mathcal{O}_{S^{\prime}}\right)=2 \chi\left(\mathcal{O}_{T}\right)+\frac{1}{2} \delta\left(K_{T}+\delta\right)=2 m-3 .
\end{aligned}
$$

Hence $K_{S}^{2}=6 \chi\left(\mathcal{O}_{S}\right)-6$, and we get a contradiction by (3.3.1).
3.3.3. $g=2$. Since $p_{g}(S / G)=p_{g}(S)>0$, we have $g(F / G)=1$. The commutativity of G implies that the quotient map $F \rightarrow F / G$ has at least two branch points. Applying the Hurwitz formula to $F \rightarrow F / G$, we get a contradiction.
3.4. By Lemma 3.3, we may assume that $g=3$. Then $\operatorname{alb}_{\mid F}: F \rightarrow C$ is an étale double cover by Lemma 3.2. So f has constant moduli, and it is equivalent to

$$
p:(\tilde{B} \times F) / A \rightarrow \tilde{B} / A
$$

for some A, \tilde{B} as in 2.11.
We have $g(F / A)=q(S)=2$. This implies $|A|=2$ and $S \simeq(\tilde{B} \times F) /\langle\tau \times \iota\rangle$, where τ is the hyperelliptic involution of \tilde{B} and ι is an involution of F without fixed points.

For each σ in G, since σ induces trivial action on $B, \tilde{B} \times{ }_{B} S \subset \tilde{B} \times S$ is $\left(\operatorname{id}_{\tilde{B}} \times \sigma\right)$ invariant. Then there is an automorphism σ_{F} of F such that, under the identification of $\tilde{B} \times F$ with $\tilde{B} \times_{B} S$, $\operatorname{id}_{\tilde{B}} \times \sigma_{F}$ equals to the restriction of $\operatorname{id}_{\tilde{B}} \times \sigma$ to $\tilde{B} \times_{B} S$. Clearly, we have $\left(\operatorname{id}_{\tilde{B}} \times \sigma_{F}\right) \circ \pi=\pi \circ \sigma$, where $\pi: \tilde{B} \times F \rightarrow S$ is the induced map. Since σ induces trivial action on $H^{2}(S, \boldsymbol{C})$, we have that σ_{F} induces the identity on $H^{0}\left(\Omega_{F}^{1}\right)_{l}^{-}$. So (S, G) is as in Example 1.1 (resp. Example 1.2) provided that $G \simeq \boldsymbol{Z}_{2}^{2}$ (resp. \boldsymbol{Z}_{4}).

This completes the proof of Theorem 3.1.

References

[Be1] A. Beauville, L'application canonique pour les surfaces de type qénéral, Invent. Math. 55 (1979), 121140.
[Be2] A. Beauville, L'inegalite $p_{g} \geq 2 q-4$ pour les surfaces de type général, Appendice à O. Debarre: "Inégalités numériques pour les surfaces de type général", Bull. Soc. Math. France 110 (1982), 343-346.
[BPV] W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), Springer-Verlag, Berlin, 1984.
[Ca1] J.-X. CAI, Automorphisms of a surface of general type acting trivially in cohomology, Tohoku Math. J. 56 (2004), 341-355.
[Ca2] J.-X. CAI, Automorphisms of an irregular surface of general type acting trivially in cohomology, J. Algebra 367 (2012), 95-104.
[De] O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France 110 (1982), 319-346.
[Fu] T. Fujita, On Kaehler fibre spaces over curves, J. Mat. Soc. Japan 30 (1978), 779-794.
[Ha] R. HARTSHORNE, Algebraic Geometry, GTM 52, Springer-Verlag, 1977.
[Se] F. Serrano, Isotrivial fibred surfaces, Ann. Mat. Pura Apl. (4) 171 (1996), 63-81.
[X1] G. XiAO, L'irrégularité des surfaces de type général dont le système canonique est composé d'un pinceau, Compositio Math. 56 (1985), 251-257.
[X2] G. XiAO, Algebraic surfaces with high canonical degree, Math. Ann. 274 (1986), 473-483.

LMAM, School of Mathematical Sciences
Peking University
Beijing 100871
P. R. China

E-mail address: jxcai@ math.pku.edu.cn

[^0]: 2000 Mathematics Subject Classification. Primary 14J50; Secondary 14J29.
 Key words and phrases. Surfaces of general type, automorphism groups, cohomology.
 This work has been supported by the NSFC (No. 11071004).

