AUTOMORPHISMS OF AN IRREGULAR SURFACE OF GENERAL TYPE ACTING TRIVIALLY IN COHOMOLOGY, II

JIN-XING CAI

(Received January 16, 2012, revised May 7, 2012)

Abstract. Let *S* be a complex nonsingular minimal projective surface of general type with q(S) = 2, and let *G* be the group of the automorphisms of *S* acting trivially on $H^2(S, \mathbf{Q})$. In this note we classify explicitly pairs (S, G) with *G* of order four.

Introduction. Let *S* be a complex minimal nonsingular projective surface of general type, and let $G \subset \text{Aut}S$ be the subgroup of automorphisms of *S* inducing trivial actions on $H^2(S, Q)$. In [Ca1], we proved that $|G| \leq 4$ provided $\chi(\mathcal{O}_S) > 188$. In this note, we continue the classification of the pairs (S, G) with |G| = 4, started in [Ca2]. Whereas there we considered the case $q(S) \geq 3$, here we study the case q(S) = 2. Our main result is the following.

THEOREM 0.1 (Theorems 2.3 and 3.1). Let *S* be a complex nonsingular minimal projective surface of general type with q(S) = 2. Assume that there is a subgroup $G \subset \text{Aut}S$, of order 4, acting trivially in $H^2(S, \mathbf{Q})$. If $p_g(S) > 61$, then *S* is isogenous to a product of curves; in particular, it satisfies $K_S^2 = 8\chi(\mathcal{O}_S)$. Explicitly, the pair (S, G) is as in one of Examples 1.1, 1.2 and 1.3.

NOTATIONS. We use standard notations as in [Ha].

For a finite Abelian group G, we denote by \widehat{G} the character group of G. For a representation V of G and a character $\chi \in \widehat{G}$, we let

 $V_G^{\chi} = \{ v \in V; g \cdot v = \chi(g)v \text{ for all } g \in G \}.$

If *G* is a cyclic group generated by σ , we shall also use the notation V_{σ}^{c} to denote V_{G}^{χ} , where $c = \chi(\sigma)$. If moreover σ is of order two, $V_{\sigma}^{\pm 1}$ is also denoted by V_{σ}^{\pm} .

The symbol Z_n denotes the cyclic group of order n.

Acknowledgments. I am grateful to the referee for his helpful suggestions.

1. Examples. In this section, we construct explicitly pairs (S, G) with |G| = 4, where S is a complex nonsingular minimal projective surface of general type with q(S) = 2 and G is the subgroup of automorphisms of S acting trivially on $H^2(S, Q)$. These surfaces are isogenous to products of curves; in particular, they satisfy $K_S^2 = 8\chi(\mathcal{O}_S)$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14J50; Secondary 14J29.

Key words and phrases. Surfaces of general type, automorphism groups, cohomology.

This work has been supported by the NSFC (No. 11071004).

EXAMPLE 1.1 ($G \simeq \mathbb{Z}_2^{\oplus 2}$). Let \tilde{B} be a hyperelliptic curve of genus \tilde{g} and τ the hyperelliptic involution of \tilde{B} . Suppose there is a curve F of genus g = 3 with involutions ι , σ_{1F} and σ_{2F} such that

- (i) the subgroup of Aut*F* generated by ι , σ_{1F} and σ_{2F} is isomorphic to $\mathbb{Z}_{2}^{\oplus 3}$;
- (ii) ι has no fixed points;
- (iii) for i = 1 and 2, σ_{iF} induces the identity on $H^0(\Omega_F^1)_i^{-1}$.

Let $S = (\tilde{B} \times F) / \langle \tau \times \iota \rangle$, and $\pi : \tilde{B} \times F \to S$ the quotient map. Then S is a smooth surface with $p_g(S) = \tilde{g}, q(S) = 2$ and $K_S^2 = 8(\tilde{g} - 1)$.

Let σ_i be the automorphism of S induced by $\operatorname{id}_{\tilde{B}} \times \sigma_{iF} \in \operatorname{Aut}(\tilde{B} \times F)$. We have that the group G generated by σ_i (i = 1 and 2) is isomorphic to $\mathbb{Z}_2^{\oplus 2}$ and acts trivially on $H^2(S, \mathbb{Q})$. Indeed, (iii) implies that $(\operatorname{id}_{\tilde{B}} \times \sigma_{iF})^* = \operatorname{id}$ on $H^1(\tilde{B}) \otimes H^1(F)_{\iota}^-$ and hence on $H^2(\tilde{B} \times F)_{\tau \times \iota}^1$. Since $\pi^* : H^2(S) \to H^2(\tilde{B} \times F)_{\tau \times \iota}^1$ is an isomorphism and $\pi^* \circ \sigma_i^* = (\operatorname{id}_{\tilde{B}} \times \sigma_{iF})^* \circ \pi^*$, we have that $\sigma_i^* = \operatorname{id}$ on $H^2(S, \mathbb{Q})$.

1.1.1. A curve F of genus 3 with involutions ι , σ_{1F} and σ_{2F} satisfying conditions (i)–(iii) in Example 1.1.

Let $0, \infty, 1, b_1$ and b_2 be different points of $B := \mathbf{P}^1$. For i = 1, 2, let $\hat{\pi}_i : \hat{E}_i \to B$ be the double cover branched along points $0, \infty, 1, b_i$. Using $\hat{\pi}_i$ instead of π_i , we may modify the construction in [Ca2, 1.1.1] to give a curve F of genus 3 with involutions ι , σ_{1F} and σ_{2F} satisfying conditions (i)–(iii) in Example 1.1.

EXAMPLE 1.2 ($G \simeq \mathbb{Z}_4$). Let \tilde{B} be a hyperelliptic curve of genus \tilde{g} and τ the hyperelliptic involution of \tilde{B} . Suppose there is a curve F of genus 3 with automorphisms ι , σ_F such that

- (i) the subgroup of Aut *F* generated by ι and σ_F is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_4$;
- (ii) ι has no fixed points;
- (iii) σ_F induces the identity on $H^0(\Omega_F^1)_{\iota}^-$.

Let $S = (\tilde{B} \times F) / \langle \tau \times \iota \rangle$. Then S is a smooth surface with $p_g(S) = \tilde{g}$, q(S) = 2 and $K_S^2 = 8(\tilde{g} - 1)$.

Let σ be the automorphism of *S* induced by $id_{\tilde{B}} \times \sigma_F \in Aut(\tilde{B} \times F)$. One checks easily as in Example 1.1 that the group *G* generated by σ is isomorphic to \mathbb{Z}_4 and acts trivially on $H^2(S, \mathbb{Q})$.

1.2.1. A curve F of genus 3 with automorphisms ι , σ_F satisfying conditions (i)–(iii) in *Example 1.2.*

Let F be the hyperelliptic curve given by the equation

$$y^2 = (x^4 + 1)(x^4 + a),$$

where $a \in C \setminus \{0, 1\}$. Let τ_F be the hyperelliptic involution (given by $(x, y) \mapsto (x, -y)$), and α the automorphism given by $(x, y) \mapsto (\sqrt{-1}x, y)$. Note that $\omega_j := x^j dx/y$ (j = 0, 1, 2) is a basis of $H^0(\Omega_F^1)$. We have that $\alpha^* \omega_j = \sqrt{-1}^{j+1} \omega_j$. So $(\tau_F \alpha^2)^* \omega_j = (-1)^j \omega_j$ and

 $(\tau_F \alpha)^* \omega_1 = \omega_1$. One checks easily that $\iota := \tau_F \alpha^2$ and $\sigma_F := \tau_F \alpha$ have the desired properties (i)–(iii) in Example 1.2.

EXAMPLE 1.3 ($G \simeq \mathbb{Z}_2^{\oplus 2}$). Suppose there is a curve F of genus 5 with automorphisms $\beta_1, \beta_2, \sigma_{1F}, \sigma_{2F}$ such that

- (i) the subgroup of Aut*F* generated by β_1 , β_2 , σ_{1F} and σ_{2F} is isomorphic to $\mathbb{Z}_2^{\oplus 4}$;
- (ii) g(F/A) = 2, where $A := \langle \beta_1, \beta_2 \rangle$;

(iii) for i = 1 and 2, σ_{iF} induces the identity on $H^0(\Omega_F^1)_A^{\chi_j}$ (j = 1 and 2), where χ_j is the character of A with Ker $\chi_j = \langle \beta_j \rangle$.

Let \tilde{B} be a hyperelliptic curve of genus \tilde{g} with a faithful action of the group A such that $\beta_3 := \beta_1 \beta_2$ is the hyperelliptic involution of \tilde{B} . (In other words, A is isomorphic to the subgroup of automorphisms generated by a non-hyperelliptic involution and the hyperelliptic involution of \tilde{B} .)

Let $S = (\tilde{B} \times F)/A$, where the action of A on $\tilde{B} \times F$ is the diagonal action. Then S is a smooth surface with $p_g(S) = \tilde{g}$, q(S) = 2 and $K_S^2 = 8(\tilde{g} - 1)$.

For i = 1, 2, let σ_i be the automorphism of S induced by $\mathrm{id}_{\tilde{B}} \times \sigma_{iF} \in \mathrm{Aut}(\tilde{B} \times F)$.

We have that the group G generated by σ_i (i = 1 and 2) is isomorphic to $\mathbb{Z}_2^{\oplus 2}$ and acts trivially on $H^2(S, \mathbb{Q})$. Indeed, let $\chi_3 := \chi_1 \chi_2$, since Ker $\chi_3 = \langle \beta_3 \rangle$ and β_3 is the hyperelliptic involution of \tilde{B} , we have $H^1(\tilde{B})_A^{\chi_3} = 0$. So

$$H^{2}(\tilde{B} \times F)^{1}_{A} = W \oplus H^{1}(\tilde{B})^{\chi_{1}}_{A} \otimes H^{1}(F)^{\chi_{1}}_{A} \oplus H^{1}(\tilde{B})^{\chi_{2}}_{A} \otimes H^{1}(F)^{\chi_{2}}_{A}$$

where $W = H^0(\tilde{B}) \otimes H^2(F) \oplus H^2(\tilde{B}) \otimes H^0(F)$. Now (iii) implies that $(\mathrm{id}_{\tilde{B}} \times \sigma_{iF})^* = \mathrm{id}$ on $H^2(\tilde{B} \times F)^1_A$. By the argument as in Example 1.1, we have that $\sigma_i^* = \mathrm{id}$ on $H^2(S, \mathbf{Q})$.

1.3.1. A curve F of genus 5 with automorphisms β_1 , β_2 , σ_{1F} , σ_{2F} satisfying conditions (i)–(iii) in Example 1.3.

Let *E* be an elliptic curve, and $\pi : C \to E$ be a double cover branched along two points. Let δ_1, δ_2 be different non-trivial 2-torsion elements of Pic⁰*E*. We have a commutative diagram

where $\rho_i: E_i \to E$ (i = 1, 2) is the double cover defined by $\delta_i^{\otimes 2} = \mathcal{O}_E$.

We have that *F* is an irreducible (smooth) curve of genus 5. Indeed, $\rho_i : C_i \to C$ is the double cover defined by $(\pi^* \delta_i)^{\otimes 2} = \mathcal{O}_C$. Since $\pi^* : \operatorname{Pic}^0 E \to \operatorname{Pic}^0 C$ is injective, we have $\pi^* \delta_1 \not\simeq \pi^* \delta_2$. So C_1 is not isomorphic to C_2 over *C*, which implies *F* is irreducible.

Let τ_i (resp. τ) be the hyperelliptic involution of C_i (resp. C). Then τ_i is the lift of τ , that is, we have $\tau \circ \varrho_i = \varrho_i \circ \tau_i$. One checks easily that F is $\tau_1 \times \tau_2$ -invariant.

Let α_i , γ_i (resp. γ) be the involutions of C_i (resp. C) corresponding to the double covers ϱ_i , π_i (resp. π). Then γ_i is the lift of γ , that is, we have $\gamma \circ \varrho_i = \varrho_i \circ \gamma_i$. One checks easily that F is $\gamma_1 \times \gamma_2$ -invariant.

By the construction of C_i , we have $\alpha_i \gamma_i = \gamma_i \alpha_i$. Since τ_i is in the center of Aut(C_i), we have $\alpha_i \tau_i = \tau_i \alpha_i$ and $\gamma_i \tau_i = \tau_i \gamma_i$. So $\alpha_1 \times id_{C_2}$, $id_{C_1} \times \alpha_2$, $\gamma_1 \times \gamma_2$ and $\tau_1 \times \tau_2$ mutually commute.

Let β_1 , β_2 , $\tilde{\gamma}$ and $\tilde{\tau}$ be the restriction of $\alpha_1 \times id_{C_2}$, $id_{C_1} \times \alpha_2$, $\gamma_1 \times \gamma_2$ and $\tau_1 \times \tau_2$ to F, respectively. Let Δ be the subgroup of AutF generated by β_1 , β_2 , $\tilde{\gamma}$ and $\tilde{\tau}$. Then $\Delta \simeq \mathbb{Z}_2^{\oplus 4}$.

Let $A = \{id_F, \beta_1, \beta_2, \beta_3 := \beta_1\beta_2\}$. For j = 1, 2, 3, let χ_j be the character of A with Ker $\chi_j = \langle \beta_j \rangle$. Let $V = H^0(\omega_F)$. By the construction of F, we have that $V_A^1 = (\varrho_i \circ \mu_i)^* H^0(\omega_C)$ is of dimension two, and dim $V_A^{\chi_j} = 1$ for all j.

 $\mu_i)^* H^0(\omega_C) \text{ is of dimension two, and } \dim V_A^{\chi_j} = 1 \text{ for all } j.$ Let $(V_A^1)^+ = (\varrho_i \circ \mu_i)^* H^0(\omega_C)^+_{\gamma}$ and $(V_A^1)^- = (\varrho_i \circ \mu_i)^* H^0(\omega_C)^-_{\gamma}$. We have $\dim(V_A^1)^+ = \dim(V_A^1)^- = 1.$

By the construction of F, we have that there are exactly eight $\tilde{\gamma}$ -fixed points on F. Indeed, $\gamma_1 \times \gamma_2$ has $4 \times 4 = 16$ fixed points, eight of which belong to F. So $\tilde{\gamma}$ is a bi-elliptic involution. Since $\tilde{\gamma}$ is the lift of γ , we have that $\tilde{\gamma}$ induces id on $(V_A^1)^+$.

For i = 1, 2, since $\tilde{\tau}$ is the lift of τ_i , which is the hyperelliptic involution of C_i , we have that $\tilde{\tau}$ induces -id on $V_A^1 \oplus V_A^{\chi_i}$. So $g(F/\langle \tilde{\tau} \rangle) \leq 1$. On the other hand, since $\Delta/\langle \tilde{\tau} \rangle \simeq \mathbb{Z}_2^{\oplus 3}$ is isomorphic to a subgroup of Aut $(F/\langle \tilde{\tau} \rangle)$, $F/\langle \tilde{\tau} \rangle$ can not be rational. So $\tilde{\tau}$ is a bi-elliptic involution.

In sum, we have that the generators β_1 , β_2 , $\tilde{\gamma}$, $\tilde{\tau}$ of Δ acting on V are as follows:

	$(V_{A}^{1})^{+}$	$(V_{A}^{1})^{-}$	$V_A^{\chi_1}$	$V_A^{\chi_2}$	$V_A^{\chi_3}$
β_1	1	1	1	-1	-1
β_2	1	1	-1	1	-1
$\tilde{\gamma}$	1	-1	-1	-1	-1
$\tilde{\tau}$	-1	-1	-1	-1	1

One checks easily that β_1 , β_2 , $\sigma_{1F} := \tilde{\gamma}\tilde{\tau}$ and $\sigma_{2F} := \tilde{\gamma}\beta_1\beta_2$ have the desired properties (i)–(iii) in Example 1.3.

2. ϕ_S is generically finite. In this section, we prove Theorem 0.1 in case that the canonical map ϕ_S of S is generically finite. We begin with the following lemmas.

LEMMA 2.1. Let S be a complex nonsingular projective surface, and $f: S \to B$ be a fibration of genus $g \ge 2$. Let σ be a non-trivial automorphism of S with $f \circ \sigma = f$. If σ induces a trivial action on $H^0(S, \omega_S)$, then $g(B) \le 1$.

PROOF. Consider the induced action of σ on $f_*\omega_S$, which is a locally free sheaf of rank g. We have $f_*\omega_S = \mathcal{E} \oplus \mathcal{F}$, where \mathcal{E} is the eigen-subsheaf of $f_*\omega_S$ with eigenvalue 1, and \mathcal{F} is the direct sum of eigen-subsheaves of $f_*\omega_S$ with eigenvalue $\neq 1$. We claim that $\mathcal{F} \neq 0$ and hence $r := \operatorname{rank} \mathcal{F} > 0$. Otherwise, since the natural map $f_*\omega_S \otimes C(p) \to H^0(F, \omega_F)$ is an isomorphism, where p = f(F) (cf. [Ha, Chap. III, Corollary 12.9]), we have that σ induces a trivial action on $H^0(F, \omega_F)$, which implies $\sigma_{|F|}$ and hence σ must be trivial, a contradiction.

Let $\mathcal{E}' \subset f_*\omega_S$ be the subsheaf generated by global sections of $f_*\omega_S$. The assumption that σ induces a trivial action on $H^0(S, \omega_S)$ implies that $\mathcal{E}' \subseteq \mathcal{E}$. So $h^0(B, \mathcal{E}) = h^0(B, f_*\omega_S)$ and hence $h^0(B, \mathcal{F}) = 0$. So by the Riemann-Roch, we have

$$\log \mathcal{F} + r(1 - g(B)) = -h^1(B, \mathcal{F}) \le 0.$$

Since $f_*\omega_S \otimes \omega_B^{-1}$ is semi-positive by a theorem of Fujita [Fu], we have

$$\deg \mathcal{F} - 2r(g(B) - 1) = \deg(\mathcal{F} \otimes \omega_B^{-1}) \ge 0.$$

Combining the two inequalities above, we have $g(B) \leq 1$.

LEMMA 2.2. Let S be a complex nonsingular minimal projective surface of general type with q(S) = 2. Let $G \subset \text{AutS}$ be a subgroup of order 4 acting trivially in $H^2(S, \mathbf{Q})$. Assume that the Albanese map alb : $S \to \text{Alb}(S)$ of S is surjective. Then $H^0(\Omega_S^1) = H^0(\Omega_S^1)_G^{\chi}$ for some $\chi \in \hat{G}$ of order at most 2.

PROOF. Let $V = H^0(\Omega_S^1)$. It is enough to exclude the following two possibilities:

(i) $V = V_G^{\chi_1} \oplus V_G^{\chi_2}$, where $\chi_1 \neq \chi_2 \in \widehat{G}$, and both $V_G^{\chi_1}$ and $V_G^{\chi_2}$ are of dimension one;

(ii) $V = V_G^{\chi}$, where $\chi \in \widehat{G}$ is of order 4.

In case (i), for i = 1, 2, let $\omega_i \in V_G^{\chi_i}$ be a non-zero holomorphic 1-form. Since the Albanese map alb : $S \to AlB(S)$ is surjective, by [BPV, p.11, Corollary 1.2], $H^2(AlB(S), \mathbb{C}) \to H^2(S, \mathbb{C})$ is injective. This implies the natural map induced by cup product $\wedge^2 H^1(S, \mathbb{C}) \to H^2(S, \mathbb{C})$ is injective. So $\omega_1 \wedge \omega_2 \neq 0, \omega_1 \wedge \overline{\omega_2} \neq 0$ in $H^2(S, \mathbb{C})$, where complex conjugation acts naturally on

$$H^1(S, \mathbf{R}) \otimes \mathbf{C} = H^1(S, \mathbf{C}) = H^0(\Omega^1_S) \oplus H^1(S, \mathcal{O}_S)$$

Since *G* acts trivially on $H^2(S, \mathbb{C})$, from $\alpha^*(\omega_1 \wedge \omega_2) = \chi_1(\alpha)\chi_2(\alpha)\omega_1 \wedge \omega_2$ for each $\alpha \in G$, we have $\chi_1\chi_2 = 1$ in \widehat{G} . Since $\chi_1 \neq \chi_2$, we have that χ_i is of order 4. Then $G \simeq \mathbb{Z}_4$. Let σ be the generator of *G*, such that $\chi_1(\sigma) = \sqrt{-1}$ and $\chi_2(\sigma) = -\sqrt{-1}$. We have

$$\sigma^*(\omega_1 \wedge \overline{\omega_2}) = \chi_1(\sigma)\chi_2(\sigma)\omega_1 \wedge \overline{\omega_2} = -\omega_1 \wedge \overline{\omega_2},$$

which is a contradiction since σ acts trivially on $H^2(S, \mathbf{C})$.

In case (ii), we have $G \simeq \mathbb{Z}_4$. Let σ be the generator of G such that $\chi(\sigma) = \sqrt{-1}$. Let $\omega_1, \ \omega_2 \in V_G^{\chi}$ be linearly independent holomorphic 1-forms. We have $\sigma^*(\omega_1 \wedge \omega_2) = -\omega_1 \wedge \omega_2$. By the argument as above, we get a contradiction.

THEOREM 2.3. Let S be a complex nonsingular minimal projective surface of general type with q(S) = 2 and $p_q(S) > 61$. Let $G \subset AutS$ be a subgroup of order 4 acting trivially

on $H^2(S, \mathbf{Q})$. If the canonical map ϕ_S of S is generically finite, then the pair (S, G) is as in *Example* 1.3.

PROOF. Thanks to [X2], by the argument as in [Ca2, 2.3], we have that, if $p_g(S) > 61$, then *S* has a fibration

 $f: S \to B$

of genus g = 5 or 6, and ϕ_S separates fibers of f and maps them onto a pencil of straight lines on Im ϕ_S , which is ruled over B, and the numerical invariants of S and B satisfy

(2.3.1)
$$K_S^2 \ge \frac{2g-2}{2g-5}(gp_g(S) - 6g + 20)$$

$$(2.3.2) g(B) \le 1.$$

Since G induces trivial actions on $\text{Im}\phi_S$, and hence on B, G is included in AutF for a general fiber F of f.

2.4. The case g = 6 is excluded provided $p_g(S) \ge 36$ as in [Ca2, 2.8]. Indeed, by the argument in loc. cit., we may assume that $G \simeq \mathbb{Z}_4$. Let σ be the element of G of order 2. We may estimate the upper bound of H^2 for each σ -fixed curve H and apply [Ca2, Lemma 2.1] to obtain an upper bound for K_S^2 . In our case q(S) = 2 the inequality in loc. cit. reads

$$K_S^2 \le \frac{480}{59}(p_g(S) - 1) + \frac{40}{59}$$

While (2.3.1) gives

$$K_S^2 \ge \frac{10}{7} (6p_g(S) - 16)$$

Combining the two inequalities above, we get $p_g(S) < 36$, a contradiction provided $p_g(S) \ge 36$.

2.5. From now on, we assume that g = 5. By [Ca2, Lemma 2.4], g(F/G) = 2. So G acts freely on F.

2.6. Let $\pi : S \to S/G$ be the quotient map, and T' the minimal desingularization of S/G. Let $h: T \to B$ be the relatively minimal fibration of the (induced) fiber space $T' \to B$.

LEMMA 2.7. We have g(B) = 0.

PROOF. Otherwise, by (2.3.2), g(B) = 1. Consider the canonical map

$$\phi_S: S \dashrightarrow \Sigma := \operatorname{Im} \phi_S \subset P^{p_g(S)-1}.$$

Since Σ is ruled over B, we have $q(\Sigma) = g(B) = 1$. By the classification of nondegenerate surfaces of minimal degree in $P^{p_g(S)-1}$, we have that deg $\Sigma > \operatorname{codim} \Sigma + 1 = p_g(S) - 2$. So

$$K_S^2 \ge \deg \phi_S \deg \Sigma \ge 8\chi(\mathcal{O}_S)$$
.

On the other hand, by the argument as in [Ca2, 3.1], we have

$$K_S^2 \leq 8\chi(\mathcal{O}_S).$$

Combining the two inequalities above, we have $K_S^2 = 8\chi(\mathcal{O}_S)$ and $K_S^2 = \deg \phi_S \deg \Sigma$, which implies $|K_S|$ is base-locus free. Consequently, we have

- (2.7.1) for each id $\neq \sigma \in G$, since every σ -fixed curve is contained in the fixed part of $|K_S|$ (cf. [Ca1, 1.14.1]), σ has no fixed curves.
- (2.7.2) S/G has at most rational double singularities since G acts trivially on $H^0(\omega_S)$.

Let *T*, *T'* be as in 2.6. By (2.7.1) and (2.7.2), we have that $K_S = \pi^* K_{S/G}$, *T'* is minimal and T = T'. So $K_T^2 = 2\chi(\mathcal{O}_S) = 2\chi(\mathcal{O}_T)$. On the other hand, the assumption g(B) = 1implies that the Albanese map of *S* is generically finite. Since *G* induces trivial actions on *B*, we have $0 \neq f^* H^0(\omega_B) \subset H^0(\Omega_S^1)_G^1$. By Lemma 2.2, we have that *G* induces trivial action on $H^0(\Omega_S^1)$. So q(T) = 2. By a theorem of Debarre (cf. [De, Theorem 6.1]), we have $K_T^2 \ge 2p_g(T) = 2\chi(\mathcal{O}_T) + 2$, a contradiction.

Let *C* be the image of the Albanese map alb : $S \rightarrow Alb(S)$.

LEMMA 2.8. C is a curve of genus 2.

PROOF. Suppose alb is surjective. By Lemma 2.2, $H^0(\Omega_S^1) = H^0(\Omega_S^1)_G^{\chi}$ for some $\chi \in \hat{G}$ of order at most 2. If $\chi = 1$, let $h: T \to B$ be as in 2.6, then q(T) = 2. By [Be2, Lemma, p. 345], h is trivial, and so $p_q(T) = 0$. This is absurd since $p_q(T) = p_q(S) > 0$.

If χ is of order 2, then the kernel $\operatorname{Ker}(\chi)$ of $\chi : G \to \mathbb{C}^*$ is not trivial. Let σ be the generator of $\operatorname{Ker}(\chi)$. Let $V = H^0(\Omega_F^1)$. Then $V_G^1 \oplus V_G^{\chi} = V_{\sigma}^1$. Since dim $V_G^1 = g(F/G) = 2$, this implies dim $V_G^{\chi} = 1$. On the other hand, let $r : H^0(\Omega_S^1) \to H^0(\Omega_F^1)$ be the restriction map, and W be its image. We have dim W = 2 (since F is a general fiber of f, if $r(\varpi) = 0$ for some holomorphic 1-form ϖ of S, $\varpi = f^* \varpi'$ for some holomorphic 1-form ϖ' of B) and $W \subseteq V_G^{\chi}$. This is a contradiction.

2.9. For each $\sigma \in G$, denote by $\bar{\sigma}$ the automorphism of *C* induced by σ . The homomorphism from *G* to Aut *C*, sending σ to $\bar{\sigma}$, is injective by Lemma 2.1. Let \bar{G} be its image in Aut *C*. Then $\bar{G} \simeq G$.

LEMMA 2.10. f has constant moduli.

PROOF. By Lemma 2.8, we have that $\mu := alb_{|F} : F \to C$ is a finite morphism. Let $d = \deg \mu$. By the Hurwitz formula, we have $2 \le d \le 4$.

We show that d = 4, which implies μ is étale, and so f has constant moduli.

Case 1. $G \simeq \mathbb{Z}_4$. Let $\sigma \in G$ be a generator of G. By the Hurwitz formula, there exists a $\bar{\sigma}$ -fixed point x on C. Since $\bar{\sigma} \circ \mu = \mu \circ \sigma$, $\mu^{-1}(x)$ is σ -invariant. Since σ has no fixed points on F (cf. 2.5), we have that $\#\mu^{-1}(x)$ divides by 4 and hence d = 4.

Case 2. $G \simeq \mathbb{Z}_2^2$. Assume $d \leq 3$. We will get a contradiction. Since $\overline{G} \simeq \mathbb{Z}_2^2$ in this case, there exist $\sigma \in G$ such that $\overline{\sigma}$ is the hyperelliptic involution of *C*. By the Hurwitz formula, there is a point $x \in C$ such that x is $\overline{\sigma}$ -fixed and μ is étale over x. So $\mu^{-1}(x)$ is σ -invariant and $d = \#\mu^{-1}(x)$. This implies d divides by 2 since σ has no fixed points on *F* (cf. 2.5). Hence d = 3 does not occur.

Now we assume d = 2. Then $f \times alb : S \to P := B \times C$ is generically finite of degree 2. Let $S \to S' \xrightarrow{\pi} P$ be the Stein factorization of $f \times alb$. Let (Δ, δ) be the (singular) double cover data corresponding to π . Let $l = B \times pt$ and $l' = pt \times C$. We have $\Delta l' = 4$

and $\delta \equiv 2l + ml'$ for some *m*. We show that each singular point of Δ is either a double point or a triple point with at least two different tangents, and hence *S'* has at most canonical singularities. Indeed, if there exists a point $x := (b, c) \in B \times C$ with $\operatorname{mult}_x \Delta_1 \geq 3$, where Δ_1 is the horizontal part of Δ w.r.t. the projection $P \to B$, then *c* must be \overline{G} -fixed since Δ_1 is $\operatorname{id}_B \times \overline{G}$ -invariant and $\Delta_1 l' = 4$. This is absurd since $\overline{G} \simeq G$ is not cyclic. Now by the double cover formula, we have that

$$K_S^2 = 16(m-2), \quad \chi(\mathcal{O}_S) = 3m-4.$$

So *S* satisfies $K_{S}^{2} = 16(\chi(\mathcal{O}_{S}) - 2)/3$, contrary to (2.3.1).

2.11. By Lemma 2.10, there exists a finite group A acting faithfully on a general fiber F of f and on some smooth curve \tilde{B} such that f is equivalent to the fiber surface

$$p: (\tilde{B} \times F)/A \to \tilde{B}/A$$
,

where the action of A on $\tilde{B} \times F$ is the diagonal action and p is the projection to the first factor (cf. e.g., [Se]).

We have g(F/A) = q(S) = 2. This implies the projection

$$q: (B \times F)/A \to F/A$$

is equivalent to the Albanese map alb : $S \to C$. We have |A| = 4 since the degree of $alb_{|F} : F \to C$ is 4 by the proof of Lemma 2.10. So A acts freely on F and $S \simeq (\tilde{B} \times F)/A$. In particular, we have $g(\tilde{B}) = p_g(S)$.

2.12. Let $V = H^0(\omega_F)$ and $W = H^0(\omega_{\tilde{R}})$. We have

(2.12.1)
$$H^{0}(\omega_{S}) \simeq \bigoplus_{\chi \in \widehat{A}} V_{A}^{\chi} \otimes W_{A}^{\chi^{-1}}$$

Since ϕ_S separates fibers of f and maps them onto a pencil of straight lines on $\text{Im}\phi_S$, we have that the image of $H^0(\omega_S)$ in $H^0(\omega_F)$ is of dimension two. This implies that, among the direct sum factors of the right side of (2.12.1), there are exactly two factors having positive dimension. So

(2.12.2)
$$H^{0}(\omega_{S}) \simeq V_{A}^{\chi_{1}} \otimes W_{A}^{\chi_{1}^{-1}} \oplus V_{A}^{\chi_{2}} \otimes W_{A}^{\chi_{2}^{-1}}$$

for some $\chi_1, \chi_2 \in \widehat{A}$. Since dim $W_A^1 = g(\widetilde{B}/A) = g(B) = 0$ (Lemma 2.7), we have that $\chi_j \neq 1$ (the idenity character) for j = 1, 2.

2.13. For each $\sigma \in G$, σ induces an automorphism of $\tilde{B} \times_B S$, which is of the form $\operatorname{id}_{\tilde{B}} \times \sigma_F$ for some $\sigma_F \in \operatorname{Aut}(F)$ under the identification of $\tilde{B} \times_B S$ with $\tilde{B} \times F$. We have that $\operatorname{id}_{\tilde{B}} \times \sigma_F$ is a lift of σ to $\tilde{B} \times F$, and

(2.13.1)
$$alb_{|F} \circ \sigma_F = \bar{\sigma} \circ alb_{|F}$$
,

where $\bar{\sigma}$ is as in 2.9.

Let $G_F = \langle \sigma_F; \sigma \in G \rangle$. Clearly, $G_F \simeq G$. Since $\mathrm{id}_{\tilde{B}} \times \sigma_F$ acts trivially on the right side of (2.12.2) for each $\sigma_F \in G_F$, we have that G_F induces trivial action on $V_A^{\chi_1} \oplus V_A^{\chi_2}$, where χ_1, χ_2 are as in (2.12).

2.14. Let Ξ be the subgroup of Aut F generated by A and G_F . Then $V_A^{\chi_1} \oplus V_A^{\chi_2}$ is a Ξ submodule of V. Let $\rho : \Xi \to \operatorname{GL}(V_A^{\chi_1} \oplus V_A^{\chi_2})$ be the corresponding linear representation. By
(2.13), we have $G_F \subseteq \operatorname{Ker}\rho$. We show that $\rho_{|A} : A \to \operatorname{GL}(V_A^{\chi_1} \oplus V_A^{\chi_2})$ is injective: indeed,
since both V_A^1 and $V_A^{\chi_1} \oplus V_A^{\chi_2}$ are contained in $V_{\operatorname{Ker}(\rho_{|A})}^1$, $\dim V_{\operatorname{Ker}(\rho_{|A})}^1 \ge \dim V_A^1 + \dim(V_A^{\chi_1} \oplus V_A^{\chi_2})$ = g(F/A) + 2 = 4 (cf. (2.11)). This implies $\operatorname{Ker}(\rho_{|A})$ must be trivial. So $G_F = \operatorname{Ker}\rho$,
and hence G_F is a normal subgroup of Ξ . Note that A is a normal subgroup of Ξ . We have
that Ξ is the internal direct product of G_F and A; in particular, Ξ is an Abelian group.

Now we distinguish four cases according to A and G.

2.15. $A \simeq \mathbb{Z}_4$ and $G \simeq \mathbb{Z}_2^2$. We show that this case does not occur. Otherwise, let β be a generator of A. Let V be as in 2.12. We have dim $V_{\beta}^1 = g(F/A) = 2$. By the holomorphic Lefschetz formula, dim $V_{\beta}^{-1} = \dim V_{\beta}^i = \dim V_{\beta}^{-i} = 1$.

We have $\overline{G} \simeq \mathbb{Z}_2^2$ (cf. (2.9)). So there is an involution $\sigma \in G$ such that $\overline{\sigma}$ is the hyperelliptic involution of *C*. The operation of σ^* and $(\sigma\beta)^*$ acting on eigenspaces of β^* is as follows:

	V_{β}^{1}	V_{β}^{-1}	V^i_{eta}	V_{β}^{-i}
σ^*	-1	1	1	1
$(\sigma\beta)^*$	-1	-1	i	-i

Indeed, since Ξ is Abelian (cf. 2.14), the eigenspace of each eigenvalue of β^* is Ξ -invariant. The equality $\sigma^* = -id$ on V_{β}^1 follows by (2.13.1), and $\sigma^* = id$ on the others since $g(F/\sigma) = 3$ (cf. (2.5)).

By the above table, we have

$$\operatorname{tr}(\sigma\beta|\bar{V}) = -(\dim V_{\beta}^{1} + \dim V_{\beta}^{-1}) - i \dim V_{\beta}^{i} + i \dim V_{\beta}^{-i} = -3.$$

Applying the holomorphic Lefschetz formula to $\sigma\beta$, we have

(2.15.1)
$$1 - (-3) = 1 - \operatorname{tr}(\sigma\beta|\bar{V}) = \frac{a}{1-i} + \frac{b}{1+i},$$

where *a* (resp. *b*) is the number of fixed points of $\sigma\beta$ such that the induced action of $\sigma\beta$ on the tangent space at each of these points is given by $v \mapsto iv$ (resp. $v \mapsto -iv$). So a + b = 8. Applying the Riemann-Hurwitz formula to $F \rightarrow F/\langle \sigma\beta \rangle$, we have $8 = 2g(F) - 2 \ge 4(-2 + (1 - 1/4)(a + b)) = 16$, a contradiction.

2.16. $A \simeq \mathbb{Z}_4 \simeq G$. Let γ be a generator of G. By (2.9), $\bar{\gamma}$ is of order 4, and so $g(C/\bar{\gamma}) = 0$. Applying the topological Lefschetz formula to $\bar{\gamma}$, we have that $\bar{\gamma}$ has $2 + 2 \dim H^0(\omega_C)_{\bar{\gamma}}^-$ fixed points. Applying the Riemann-Hurwitz formula to $C \to C/\bar{\gamma}$, we have

$$2 = 2g(C) - 2 \ge 4\left(-2 + \left(1 - \frac{1}{4}\right)(2 + 2\dim H^0(\omega_C)_{\bar{\gamma}})\right).$$

This implies dim $H^0(\omega_C)^-_{\bar{\gamma}} = 0$. So $\bar{\gamma}^2$ induces -id on $H^0(\omega_C)$, and hence γ^2 induces -id on $H^0(\omega_F)^1_{\beta}$. Now by the argument as in 2.15 (consider $\gamma^2\beta$ instead of $\sigma\beta$), we get a contradiction.

2.17. $A \simeq \mathbb{Z}_2^2 \simeq G$. Let χ_1, χ_2 be as in 2.12, and let $\chi_3 = \chi_1 \chi_2$. For j = 1, 2, 3, let β_j be the generator of Ker χ_j . Then β_j (j = 1, 2, 3) are non-unit elements of A. Note that $V_{\beta_j}^1 = V_A^1 \oplus V_A^{\chi_j}$, dim $V_A^1 = g(F/A) = 2$, and dim $V_{\beta_j}^1 = g(F/\langle \beta_j \rangle) = 3$. So dim $V_A^{\chi_j} = 1$ for j = 1, 2, 3, and the action of generators of A on $V = H^0(F, \omega_F)$ is as follows:

	V^1_A	$V_A^{\chi_1}$	$V_A^{\chi_2}$	$V_A^{\chi_3}$
β_1	1	1	-1	-1
β_2	1	-1	1	-1

Let $\bar{\sigma}_1, \bar{\sigma}_2 \in \bar{G}$ be bi-elliptic involutions of C, and $\sigma_{1F}, \sigma_{2F} \in G_F$ be their corresponding elements, where \bar{G} is as in 2.9 and G_F is as in 2.13. For l = 1, 2, let \bar{v}_l be a basis of $H^0(C, \omega_C)^+_{\bar{\sigma}_l}$, and $v_l \in V_A^1$ the corresponding element of \bar{v}_l under the identification of V_A^1 with $H^0(C, \omega_C)$ (cf. 2.11). Then v_1 and v_2 is a basis of V_A^1 . Note that the action of G_F on V_A^1 is the same as that of \bar{G} on $H^0(C, \omega_C)$ by (2.13.1), and G_F acts trivially on $V_A^{\chi_1}$ and $V_A^{\chi_2}$ (cf. 2.13). So the action of generators of G_F on $V = H^0(F, \omega_F)$ is as follows:

	v_1	v_2	$V_A^{\chi_1}$	$V_A^{\chi_2}$	$V_A^{\chi_3}$
σ_{1F}	1	-1	1	1	-1
σ_{2F}	-1	1	1	1	-1

Combining $V_A^{\chi_3} \neq 0$ with (2.12.2), we have $W_A^{\chi_3} = 0$, and hence $g(\tilde{B}/\beta_3) = 0$, i.e., \tilde{B} is hyperelliptic with the hyperelliptic involution β_3 . So (S, G) is as in Example 1.3.

2.18. $A \simeq \mathbb{Z}_2^2$ and $G \simeq \mathbb{Z}_4$. Note that *G* acts freely on *F* (cf. 2.5), and that *A* induces a faithful action on *F*/*G* (cf. 2.14). Observing that the proof of the case $A \simeq \mathbb{Z}_4$ and $G \simeq \mathbb{Z}_2^2$ uses only the properties of representations of *G* and *A* on *V*, by the argument as in 2.15 with the role of *G* and *A* being transposed, we have that this case does not occur.

This completes the proof of Theorem 2.3.

3. ϕ_S is composed with a pencil. In this section, we prove Theorem 0.1 in the case that the canonical map ϕ_S of S is composed with a pencil.

THEOREM 3.1. Let S be a complex nonsingular minimal projective surface of general type with q(S) = 2 and $p_g(S) \ge 23$. Let $G \subset \text{AutS}$ be a subgroup of order 4 acting trivially in $H^2(S, \mathbf{Q})$. If the canonical map ϕ_S of S is composed with a pencil, then the pair (S, G) is as in Example 1.1 or Example 1.2 depending on $G \simeq \mathbf{Z}_2^{\oplus 2}$ or \mathbf{Z}_4 .

PROOF. By [Be1, Prop. 2.1], the moving part of $|K_S|$ has no base points. Let

$$\phi_S = \varphi \circ f \colon S \to B \to \operatorname{Im} \phi_S \subset P^{p_g(S)-1}$$

be the Stein factorization of ϕ_S , and let *F* be a general fiber of *f*. Let *g* be the genus of a general fiber of *f*. One has $2 \le g \le 5$ (cf. [Be1]) and g(B) = 0 (cf. [X1]).

Since G acts trivially on $H^0(S, \omega_S)$, we have that G induces the trivial action on B, and the inclusion $G \hookrightarrow \operatorname{Aut} F$ (cf. [Ca1, 2.2]). In particular, we have that any section of f is G-fixed.

Let *C* be the image of the Albanese map of *S*.

LEMMA 3.2. If $g \le 4$, then C is a curve (of genus 2).

PROOF. If the Albanese map of *S* is surjective, by Lemma 2.2, $H^0(\Omega_S^1) = H^0(\Omega_S^1)_G^{\chi}$ for some $\chi \in \hat{G}$ of order at most 2. Then the kernel Ker(χ) of $\chi : G \to C^*$ is not trivial. Let $\sigma \in \text{Ker}(\chi)$ be an element of order 2. Then $H^0(\Omega_S^1)_G^{\chi} \subseteq H^0(\Omega_S^1)_{\sigma}^1$, and so $q(S/\sigma) = 2$. The assumption $g \leq 4$ implies that $S/\sigma \to B$ is a fiber space of genus $g' \leq 2$. Hence we have that $g' = q(S/\sigma) - g(B)$. This implies $S/\sigma \to B$ is trivial by [Be2, Lemma, p. 345], and so $p_g(S/\sigma) = 0$, a contradiction since $p_g(S/\sigma) = p_g(S) > 0$.

LEMMA 3.3. The cases g = 2, 4 and 5 do not occur.

PROOF. Let *M* and *Z* be the moving part and the fixed part of $|K_S|$, respectively. We write Z = H + V, and $H = n_1\Gamma_1 + n_2\Gamma_2 + \cdots$ with $n_1 \ge n_2 \ge \cdots$, where *H* (resp. *V*) is the horizontal part (resp. the vertical part) of *Z* with respect to *f*, and Γ_i (*i* = 1, 2, ...) are the irreducible components of *H*, with n_i the multiplicity of Γ_i in *H*.

Since $M \equiv \chi(\mathcal{O}_S)F$ (cf. e.g. [Ca1, 2.1.2]), we have

(3.3.1)
$$K_{S}^{2} = K_{S}(M + H + V) \ge (2g - 2)\chi(\mathcal{O}_{S}) + K_{S}H.$$

We distinguish three cases according to *g*.

3.3.1. g = 5. In this case we have that

$$(3.3.2) K_S H \ge \frac{8}{5} (\chi(\mathcal{O}_S) - 8)$$

Indeed, since $n_1 K_{S/B} + H + V$ is nef, from

$$((n_1+1)K_S - M + 2n_1F)H = (n_1K_{S/B} + H + V)H \ge 0,$$

we get $K_S H \ge 8(\chi(\mathcal{O}_S) - 2n_1)/(n_1 + 1)$. So if $n_1 < 5$, we obtain (3.3.2).

Now we can assume that $n_1 \ge 5$. Then Γ_1 is a section of f. This implies Γ_1 and hence the point $F \cap \Gamma_1 \in F$ is G-fixed. So G is cyclic (of order four).

Let R_F be the set of ramified points of the quotient map $F \to F/G$. Using the Hurwitz formula for $F \to F/G$ (note that $g(F/G) \ge 1$ and $F \cap \Gamma_1$ is a ramification point of index 4 of the quotient map), we have that R_F consists of four points and among them there are exactly two *G*-fixed points. Since $R_F \subseteq H_{red} \cap F$ (cf. [Ca1, 2.4.1]) and $(H - n_1\Gamma_1)F = 8 - n_1 \le 3$, we have $\#(H_{red} \cap F) = 4$ and $H = 5\Gamma_1 + \Gamma_2 + \Gamma_3$ with $\Gamma_2F = 1$ and $\Gamma_3F = 2$.

From $K_S \Gamma_i = (M + H + V) \Gamma_i \ge \chi(\mathcal{O}_S) + n_i \Gamma_i^2$ and the adjunction formula for Γ_i , we get

$$K_S \Gamma_1 \ge \frac{\chi(\mathcal{O}_S) - 10}{6}, \quad K_S \Gamma_i \ge \frac{\chi(\mathcal{O}_S) - 2}{2} \quad \text{for } i = 2, 3.$$

 $K_S H = 5K_S \Gamma_1 + K_S \Gamma_2 + K_S \Gamma_3 \ge (11/6)\chi(\mathcal{O}_S) - 31/3$. This finishes the proof of (3.3.2). Combining (3.3.1) with (3.3.2), if $\chi(\mathcal{O}_S) \ge 22$, we get $K_S^2 \ge (48/5)\chi(\mathcal{O}_S) - 64/5 > 100$

Combining (5.5.1) with (5.5.2), if $\chi(\mathcal{O}_S) \ge 22$, we get $K_{\overline{S}} \ge (48/5)\chi(\mathcal{O}_S) - 64/5$ 9 $\chi(\mathcal{O}_S)$, contrary to the Bogomolov-Miyaoka-Yau inequality. **3.3.2.** g = 4. By Lemma 3.2, we have that $alb_{|F} : F \to C$ is either an étale cover of degree 3 or a ramified double cover, where *F* is a general fiber of *f*.

In the former case, we have that f has constant moduli. So it is equivalent to $p : (\tilde{B} \times F)/A \to \tilde{B}/A$ for some A, \tilde{B} as in 2.11.

We have g(F/A) = q(S) = 2. So $F/A \simeq C$. This implies |A| = 3 and $S \simeq (\tilde{B} \times F)/\langle \iota \times \tau \rangle$, where $\iota \in \operatorname{Aut}\tilde{B}$ of order 3 with $g(\tilde{B}/\iota) = 0$ and $\tau \in \operatorname{Aut}F$ of order 3 without fixed points.

By the explicit description of S above, f has multiple fibers with multiplicity 3. So $\Gamma_i F$ divides by 3 for each i. Thus there are only three possibilities for H:

- (a) $H = 2\Gamma_1$ with $\Gamma_1 F = 3$;
- (b) $H = \Gamma_1$ with $\Gamma_1 F = 6$;
- (c) $H = \Gamma_1 + \Gamma_2$ with $\Gamma_1 F = \Gamma_2 F = 3$.

Let *D* be the horizontal part (w.r.t. *f*) of the ramification divisor of $S \rightarrow S/G$. We have D < H (cf. [Ca1, 2.4]). Using the Hurwitz formula for the quotient map $F \rightarrow F/G$, which is ramified exactly at points $D \cap F$, we have either (i) DF = 2 and the ramification index of each points of $D \cap F$ is four, or (ii) DF = 6 and that of $D \cap F$ is two. Since D < H, by the possibilities for *H* listed above, we see easily that the case (i) does not occur.

Consider therefore the case (ii). Note that HF = 6, we have H = D. This implies that H is contained in sums of fibers of alb. Indeed, if $alb_{|\Gamma} : \Gamma \to C$ is surjective for some $\Gamma < H$, let $\alpha \in G$ be a non-trivial automorphism such that Γ is α -fixed (such an automorphism exists since $\Gamma < D$), then the induced action of α on C is trivial, a contradiction by Lemma 2.1. Since $alb^*(c)F = 3$ for any point $c \in C$, (b) is ruled out; since H = D is reduced, (a) is ruled out. So H is as in (c) with Γ_1 , Γ_2 being fibers of alb. Hence $K_S\Gamma_1 = K_S\Gamma_2 = 2g(\tilde{B}) - 2 = 2\chi(\mathcal{O}_S)$. By (3.3.1), $K_S^2 \ge 6\chi(\mathcal{O}_S) + K_S\Gamma_1 + K_S\Gamma_2 = 10\chi(\mathcal{O}_S)$, contrary to the Bogomolov-Miyaoka-Yau inequality.

In the latter case, we have that

$$f \times \text{alb} : S \to T := B \times C$$

is generically finite of degree 2. Let $S \to S' \xrightarrow{\pi} T$ be the Stein factorization of $f \times \text{alb}$. Let $l = B \times \text{pt}$, and $l' = \text{pt} \times C$. Let (Δ, δ) be the (singular) double cover data corresponding to π . We have $\Delta l' = 2$, and $\delta \equiv l + ml'$ for some m. This implies that each singular point of Δ is either a double point or a triple point with at least two different tangents, and hence S' has at most canonical singularities. By the double cover formula, we have

$$K_{S}^{2} = K_{S'}^{2} = 2(K_{T} + \delta)^{2} = 12(m - 2),$$

$$\chi(\mathcal{O}_{S}) = \chi(\mathcal{O}_{S'}) = 2\chi(\mathcal{O}_{T}) + \frac{1}{2}\delta(K_{T} + \delta) = 2m - 3.$$

Hence $K_S^2 = 6\chi(\mathcal{O}_S) - 6$, and we get a contradiction by (3.3.1).

3.3.3. g = 2. Since $p_g(S/G) = p_g(S) > 0$, we have g(F/G) = 1. The commutativity of *G* implies that the quotient map $F \to F/G$ has at least two branch points. Applying the Hurwitz formula to $F \to F/G$, we get a contradiction.

3.4. By Lemma 3.3, we may assume that g = 3. Then $alb_{|F} : F \to C$ is an étale double cover by Lemma 3.2. So f has constant moduli, and it is equivalent to

$$p:(B \times F)/A \to B/A$$

for some A, \tilde{B} as in 2.11.

We have g(F/A) = q(S) = 2. This implies |A| = 2 and $S \simeq (\tilde{B} \times F)/\langle \tau \times \iota \rangle$, where τ is the hyperelliptic involution of \tilde{B} and ι is an involution of F without fixed points.

For each σ in G, since σ induces trivial action on B, $\tilde{B} \times_B S \subset \tilde{B} \times S$ is $(\operatorname{id}_{\tilde{B}} \times \sigma)$ invariant. Then there is an automorphism σ_F of F such that, under the identification of $\tilde{B} \times F$ with $\tilde{B} \times_B S$, $\operatorname{id}_{\tilde{B}} \times \sigma_F$ equals to the restriction of $\operatorname{id}_{\tilde{B}} \times \sigma$ to $\tilde{B} \times_B S$. Clearly, we have $(\operatorname{id}_{\tilde{B}} \times \sigma_F) \circ \pi = \pi \circ \sigma$, where $\pi : \tilde{B} \times F \to S$ is the induced map. Since σ induces trivial action on $H^2(S, C)$, we have that σ_F induces the identity on $H^0(\Omega_F^1)^-_{\iota}$. So (S, G) is as in Example 1.1 (resp. Example 1.2) provided that $G \simeq \mathbb{Z}_2^2$ (resp. \mathbb{Z}_4).

This completes the proof of Theorem 3.1.

REFERENCES

- [Be1] A. BEAUVILLE, L'application canonique pour les surfaces de type qénéral, Invent. Math. 55 (1979), 121– 140.
- [Be2] A. BEAUVILLE, L'inegalite $p_g \ge 2q 4$ pour les surfaces de type général, Appendice à O. Debarre: "Inégalités numériques pour les surfaces de type général", Bull. Soc. Math. France 110 (1982), 343–346.
- [BPV] W. BARTH, C. PETERS AND A. VAN DE VEN, Compact complex surfaces, Ergeb. Math. Grenzgeb. (3), Springer-Verlag, Berlin, 1984.
- [Ca1] J.-X. CAI, Automorphisms of a surface of general type acting trivially in cohomology, Tohoku Math. J. 56 (2004), 341–355.
- [Ca2] J.-X. CAI, Automorphisms of an irregular surface of general type acting trivially in cohomology, J. Algebra 367 (2012), 95–104.
- [De] O. DEBARRE, Inégalités numériques pour les surfaces de type général, Bull. Soc. Math. France 110 (1982), 319–346.
- [Fu] T. FUJITA, On Kaehler fibre spaces over curves, J. Mat. Soc. Japan 30 (1978), 779–794.
- [Ha] R. HARTSHORNE, Algebraic Geometry, GTM 52, Springer-Verlag, 1977.
- [Se] F. SERRANO, Isotrivial fibred surfaces, Ann. Mat. Pura Apl. (4) 171 (1996), 63-81.
- [X1] G. XIAO, L'irrégularité des surfaces de type général dont le système canonique est composé d'un pinceau, Compositio Math. 56 (1985), 251–257.
- [X2] G. XIAO, Algebraic surfaces with high canonical degree, Math. Ann. 274 (1986), 473–483.

LMAM, SCHOOL OF MATHEMATICAL SCIENCES PEKING UNIVERSITY BEIJING 100871 P. R. CHINA

E-mail address: jxcai@math.pku.edu.cn