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In this paper we are concerned with some properties of (algebraic)*-
automorphisms and *-isomorphisms of semi-simple L*-algebras. As a consequence
of the inner product uniqueness theorem for L*-algebras established earlier ([4],
see Theorem 1 below), it follows that every ^-isomorphism φ of a semi-simple
L*-algebra L is necessarily topological and moreover φ is a semi-L*-isomorphism
if L is simple (Corollary to Theorem 1). From these res alts we deduce that a
*-isomorphism of a semi-simple Z/*-algebra can be expressed in terms of partial
semi-L*-isomorphisms (Theorem 2).

We give some conditions under which a "^-automorphism is automatically
unitary. While a ^-automorphism of any finite-dimensional simple L^-algebra is
unitary (Corollary to Proposition 2), this result holds for an infinite-dimensional
simple L*-algebra provided it is of classical type (Theorem 3). Under additional
conditions on the auto norphism, the same result holds also for the general
simple L*-algebra (see §2). Actually, it is our conjecture that the result is valid
even without the additional conditions.

We introduce a notion of regularity for automorphisms of semi-simple
L*-algebras and show by means of a category argument that such automorphisms
exist whenever the Z/*-algebras are separable (Theorem 4). For automorphisms
which are inner, a criterion for regularity is obtained (Proposition 7) which
coincides with the one given by Gantmacher for the regularity of automorphisms
of semisimple Lie algebras.

1. Preliminaries and structure of ^-isomorphisms. Let L be a real or
complex Lie algebra of arbitrary dimension. L is called an L*-algebra if (i) L
is equipped with an inner product relative to which it is a Hubert space; (ii)
L is closed for a ^-operation x-*x* which satisfies the connecting relation

where [ ] as usual stands for the Lie bracket.
If the centre of L (as a Lie algebra) is zero, L is called semi-simple. L is

called simple if it is of dimension greater than one and contains no closed ideals
other than {0} and L.
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If L is a real semi-simple L*-algebra, its complexification L = L + V"~1 L

can be made into a complex (semi-simple) L*-algebra by extending to L the

operations of L in the following way. If 2 i = ^ + V " l yu (/=1,2), z = x+*/—l y

belong to L, we set

(a) [zl9 z2] = [xl9 x2] - [yl9 y2] + *J~-i {[xl9 y2] + [y l f x2]}

(b) <2!,22] = <ΛΓlf x2> + <yi ,y s > + Λ/ —1 {<3>i,^2> — <^i,3;2>}

(c) 2*=.r*—Λ/—1 y*

L is called a real form of the complex algebra L.
Every semi-simple L*-algebra L has an orthogonal decomposition L = Σ φ L t ,

with Li simple. (This has been established for complex L by Schue [8]. Though
his proof (involving theoiy of complex Banach algebras) cannot apparently be
adapted for real L, a proof for this case is easily obtained by using the simple
decomposition of the complexification L.)

Let L, L be two semi-simple L*-algebras (both real or both complex).
A Lie algebra isomorphism φ of L onto U is called a *-isomorphism if φ is a
*-map, i. e., (<px)* = φx* for all x in L. An isomorphism φ is called a sentiΊJ*-
ίsomorphism if there exists a (positive) constant k such that

<<px,φy> = k<x,y> for all :r,3> in L ;

g=k is called the gauge of ̂ >.
A semi-L*-isomorphism is automatically a ^-isomorphism (cf. [3, Lemma 4]).

If k (or g) = 1, the semi-L*-isomorphism is called an L*-isomorphism. Note that
the L*-isomorphisms of a semi-simple L* algebra L are just its unitary Lie
isomorphisms.

THEOREM 1. Let L be a real or complex centre-free Lie algebra closed
for a ^-operation. Let < > 1 $ < > 2 be two inner products on L such that
relative to < >1 ( < > 2 ) L is a (semi-simple) L*-algebra Lλ (L2). Then
< > ! afid < > 2 are topologically equivalent. Further, if Lx is simple so
is L2 and the two inner products are multiples of each other.

The proof of these assertions when L is complex will be found in [4]. The
extension of the first of these assertions for the case where L is real is easily
obtained by passing to the complexification L, while that for the second, though
not deduciblecl) from that for L, can be proved ab initio in exactly the same
way as for the complex case.

because, when L is simple, L need not always be simple.
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COROLLARY. Let L, L be two semi-simple L*-algebras. Every
^-isomorphism φ of L onto L' is topological. Also, if L is simple φ is a
semi-L*-isomorphism.

PROOF. Introduce in L a second inner product < > i by setting <x,y>i
= <φx,<py>. Then, by Theorem 1, < > i is equivalent to the original inner
product of L, which means φ is topological. The second assertion of the corollary
obviously follows from the corresponding assertion of Theorem 1.

DEFINITION 1. Let L, U be two semi-simple L^-algebras (both real or
both complex). A map φ of L into L' is called a partial semi-L*-isomorphism
if there exists a closed ideal J of L such that the restriction φr (of φ to /) is
a semi-L*-isomorphism and if further φ maps the orthogonal complement I1- to
{0}.

PROPOSITION 1. A partial semi-L*-isomorphism φ of L is a *-
homomorphism of L which is bounded', \φ\ = g, g being the gauge of ψχ.

PROOF. Since 7, as a closed ideal of L, is a semi-simple L*-subalgebra, it
follows that φIy and hence φ, is a *-map. Further, since [I, / x] = {0}, if

zι = xt +yι(xι € / , yt €'JJ-), i = 1,2

then

+ 3Ί, χ2 + yJ = φ{[χu *Λ + Lyi. y%S)

The homomorphism property of φ now readily follows from this relation.
Finally,

^\\φτχV^ .

N i I N I + W 1 = = ll̂ li2 = 9 '

and consequently

THEOREM 2. A ^-isomorphism φ of a semi-simple L*-algebra L has the
form

φ = Sip*

where φ{ are partial semi-L*-isomorphisms.
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PROOF. Let L = ΣφLi be the orthogonal decomposition of L with Lt

simple. By Theorem 1, φ is topological and its restriction to LL is a semi-L*-

isomorphism. Now define a linear mapping by setting

φtx — φx if x € Lh φLX = 0 if x±.LL.

Then it is clear that φt is a partial semi-L*-isomorphism of L and φ~^φL.

2. Unitariness conditions for ^-automorphisms. We begin with

PROPOSITION 2. If an automorphism φ of a finite-dimensional simple

LF-algebra L leaves the class of Cartan subalgebras {in the L*~sense)r^

invarianti then φ is *-preserving and unitary.

PROOF. First of all, since L is simple, by a result due to Schue [8, 2.5],

the inner product < > of L and the Cartan scalar product ( ) are connected

by the relation

(1) <Λ\ y*> = S(xy y) , (x, y e IS)

where £ is some positive number independent of x, y. (Though this result has

been established by Schue only when L is complex, his proof applies equally

to the real case.) We next observe that if L is real then

(1') <z, τv*> = 8(z, w) , (z,w£ L)

even though L may fail to be simple. This observation follows from (1) and

the first part of Lemma 6.1 [7, p. 154],

We now make the following notational convention. L will denote the

complexification of L if L is real and L itself if L is complex, φ will denote

accordingly the extension of φ to L (<p{x-\-+j — l y)—<px + *J — l φy) or φ

itself. It is now clearly sufficient to prove the assertions of Proposition 2 for <p.

To prove φ is "^-preserving it is enough, in view of linearity of φ, to show

that φ maps self-ad joint elements into self-ad joint elements. Let z be a self-adjoint

element of L. Then there exists a Cartan subalgebra H containing z. Let Δ = [a]

be the root system relative to H. Then there are elements &„, h« e H with

( 2 ) a(h) = <h,K> =(A,AL),

these are also Cartan subalgebras in the Lie algebra sense (see [8, p. 71]).
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where ha is known to be self-ad joint [8, p. 72]. Since (1'), ( 2 ) imply ha = Sha>

it follows that ha is also self-adjoint. Now φ being an automorphism, φha — ha>
where ά is a root relative to φH. Thus ψha is selfadjoint for each ha> and
since the ha span H, it is clear that φz is self-adjoint, as we wished to show.

It remains to prove that φ is unitary. But this now readily follows from
(Γ) since φ is "^-preserving.

COROLLARY. Every ^'-automorphism of L is unitary.

The rest of the present section is concerned with some generalisations of
the above corollary to infinite-dimensional simple Z/^-algebras.

THEOREM 3. Let L be either a complex simple L*-algebra of classical
type or a real form of such an algebra. Then a *-automorphism φ of L is
unitary.

PROOF. We adopt the notational convention introduced in Proposition 2. L
is therefore a complex simple //^-algebra of classical type and so, by definition,
is semi-L^-isomorphic (say under a map ψ) to one of the standard algebras LAy

LB, Lc. (For the definitions of the standard algebras see [5], or [8, Theorem 3]
(separable case).) By Theorem 1, φ is a semi-L^-automorphism of L.

Let Δ={a] be the root system of L relative to a Cartan subalgebra H of
L, and g0 the gauge of ψ. Denote by p{H) the range of values of ||tf|| (=||λ«||)
as a varies in Δ. Then, using explicitly the root systems for LΛ., LBy Lc

determined in [5], we obtain

if L is of type A,

1 1
if L is of type B and H of type 1,

if L is of type B and H of type 2,

if L is of type C.

K\ffo' 0o '

Since with H, φH is also a Cartan subalgebra (of the same type too), it
follows that

( 1 )



168 V. K. BALACHAiNDRAN

On the other hand, if φha = ha>, then

( 2 ) \\a\\ = g\\a'\\,

where g is the gauge of φ. The relations (1) , (2 ) can clearly subsist only if
g = 1. This means φ, and hence <p, is unitary.

COROLLARY. Every ^-automorphism of a separable simple LP-algebra
is unitary.

This follows from Theorem 3 and Schue's result that every separable
(infinite-dimensional) simple L*-algebra is of classical type [8, Theorem 3],

PROPOSITION 3. Let φ be a ^-automorphism of a complex simple
L*-algebra L such that φ leaves some Cartan subalgebra H of L set-wise
invariant, H=φH. Then φ is unitary.

PROOF. AS in Theorem 3, we obtain the relation

( 2 ) \\ct\\ = g\\a'\\

where Δ = [a] is the root system relative to H = H, g the gauge of φ — φ
and a—>ά is now a bijective mapping of Δ onto itself. By Corollary 1 to
Proposition 2 of [1], we have for any two roots a, βz Δ ( | | Λ | | ^ | | / S | | )

(2') ||<z|| = Hill orV2" ||£||

(assuming here, as we may, that L is infinite-dimensional). The relations (2) ,
(2') clearly imply that g = 1, i. e., that φ is unitary.

PROPOSITION 4. Let Lbe a complex simple L*-algebra. A ^-automorphism
φ {of L) whose spectrum contains a number λ0 of unit modulus is unitary.
In particular, any *-automorphism φ admitting a non-zero fixed point is
unitary.

PROOF. By the Corollary to Theorem 1, φ is a semi-L^-automorphism:

<<px, φy> = g2<x, y>, Or, y € L ) .

It follows that - 2 - is unitary, so that φφ* = g2l = φ*φ9 where / is the identity

operator. The last equations imply that φ is normal. Since λ0 ^ o{φ\ the spectrum
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of <pt it results from the spectral mapping theorem that

Therefore g = | λ0 i —1> whence φ is unitary.

3. Semi-regular and regular automorphisms.

DEFINITION 2. Let L be a semi-simple L*-algebra. Let D be a bounded
derivation (in the Lie algebra sense) of L. We set

D2

eD = / + D + - ^ Γ + , ( / = identity)

Then eD is a bounded operator which is moreover, by a standard reasoning, an
automorphism of L. In particular, for D = ad α (α € L) we write <pα for £ a d α.
If α is a normal element (i. e., [α, α*] = 0), we call φa an zn/i^r automorphism.

DEFINITION 3. An automorphism φ of L is called semi-regular if 1 is
an eigenvalue of φ and further the 1-eigensubspace L1 contains a maximal
abelian subalgebra of L. (Observe that the 1-eigensubspace of an automorphism
is always a subalgebra.)

Let φa be an inner automorphism. Since a is normal, it is contained in a
Cartan sutalgebra H. Since H is abelian it is clear that LχZ)H, and a Cartan
subalgebra being maximal abelian [8, p. 70], φa is semi-regular. More generally,
if D is a bounded derivation annihilating some Cartan subalgebra, then eD is
semi-regular.

PROPOSITION 5. Every semi-regular *-automorphism φ of a semi-simple
L^-algebra L is unitary.

PROOF. The hypothesis on φ clearly implies that the 1-eigensubspace Lx

of L contains a Cartan subalgebra H. Then, with the notational convention in
Theorem 2, i f is a Cartan subalgebra of L. Let

L = ί f Θ Σ φ y β (Θ denoting orthogonal sum)

be the root space (or Cartan) decomposition of L relative to H (see [9]). Since

φ leaves H element-wise invariant, it follows that
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where ha is the vector of H such that x(h) = <h, ha> for all h in H. Now
choose for each positive root a a vector vazVa with \\va\\ = 1, then ϋα* ζ V.β

([8, p. 73]). Let

Then

— φha — ha — [vay v*'\ .

Therefore λ«λ_α = 1. Again ψ-v* — (&va)* = λ«τ>ί, whence λ_« = λ*. Hence
|λ»β| = l, which means | |^t;β | | = l. On the other hand, msince φh — h, we have
trivially ||^Λ|| = || A|| for all hz H. These conclusions plus the mutual orthogonality
of the Va and H imply that φ (and so φ) is unitary.

PROPOSITION 6. For an inner automorphism φho of a semi-simple
L*-algebra L, the following assertions are equivalent:

(i) <pho is a *-map;
(ii) φho is unitary
(iii) h0 is skew-adjoint.

PROOF. That (i) =>(«') follows from the previous proposition, while
(ii) => (i) is just a particular case of the general fact that an L* isomorphism (or
even a semi-L^-isomorphism) is automatically a *-map.

We shall now prove that (i)=>(iii). With the previous notational convention,

if (i) holds than φ,lϋ is a *-map of L. Further, it is clear that if va z Va then

But φnίv*) = (φhlva))*, so that eaVlo)=e'aiho). Therefore

a(hQ) + aζh^) = 0, or a{lι 4- h$) = 0 .

The arbitrariness of the root a and the 'total' property of the set Δ = {a} of
roots [1, Lemma 6] now imply h* = — h0.

To complete the proof of the theorem we have only to show that (iii) ̂ >(ii).
But this readily follows since (assuming (iii))

φll = <p-ho = φhl = (φht)*. q. e. d.

In view of the above proposition we call an inner automorphism φ^ with
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ho skew-adjoint, an inner L*-automorphism.

DEFINITION 4. A semi-regular automorphism φ of L is called regular if
the 1-eigensubspace Lγ is a maximal abelian subalgebra.

PROPOSITION 7. An inner automorphism φho is regular if and only if
the 1-eigensubspace Lx of L is abelian (cf. [6, Theorems 5, 8]).

PROOF. Suffices to prove that if Lx is abelian then φhΰ is regular. Since h0

is a normal element there exists a Cartan subalgebra H of L containing Λo.
Since H is abelian, φho leaves H pointwise invariant, and therefore HdLγ. But
H as a Cartan subalgebra is maximal abelian. Consequently H=LX and <phQ is
regular.

COROLLARY. For a regular inner automorphism φhφ the 1-eigensubspace
Lγ is a Cartan subalgebra.

PROPOSITION 8. An inner automorphism <p,lQ of a semi-simple L is
regular if and only if for some Cartan subalgebra H (of L) containing hQ

we have

J ^ ^ ) > f°r al1 a^^

-where Δ is the root system of L relative to H. In particular, if φ^ is
regular then h0 is a regular element in the sense of [2] (z. e., the null
space No of ad h0 in L is a Cartan subalgebra).

PROOF. Suppose first that <pho is regular. Then by Corollary to Proposition
7, Lx = H is a Cartan subalgebra of L. If the condition in Proposition 8 is not
satisfied for H, we must have

ea{ho)= 1 for some az Δ .

It follows that if va z Va, then

This means VacLι = if, which is absurd. Hence the condition must hold.

Next, suppose the condition holds relative to some Cartan subalgebra H.
Then in particular, a(h0) Φ 0 for all a <= Δ so that by Theorem 1 of |_2], h0 is
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a regular element. Further NODH, whence by maximality property of Cartan

subalgebras N0 = H. This clearly implies that LXΌH. Let now

be the root space decomposition of L. For x <= Lu we can write

x = A + Έ,va(va € T^).

Then

A + Σϋ« = a; = <?ad Λoα: = A + Σ<?α(Λo)x>Λ.

It follows that eamva = va for all a. But by our supposition ea{ho)Φl. Hence

z;α = 0, x=h^H9 and Z,! = ί/. Thus £>Λo is regular as we wished to show.

THEOREM 4. Let L be a separable semi-simple L*-atgebra. Then there

exist regular inner automorphisms of L. If L is compact^ or complex,

then there exist even regular inner L*-automorphisms.

PROOF. First let L be real and L be its complexification. Let H be a

Cartan subalgebra which is the complexification of a Cartan subalgebra H of L,

and Δ the root system of L relative to H. Since L is separable, so is L, and

consequently Δ = {oil} is countable. Define

Pn.i = {A€ H:

where n runs through all integers. Each PnΛ is either empty or a hyperplane

of H. In any case PnΛ is non-dense (see footnote in [2, p. 162]). It follows by

Baire's category theorem that we can choose an hx^H with ai(hι)φ2n7tΛ/-Ί

for any i or n. Then by Proposition 8, <phι is a regular inner automorphism of

L.

Next, let L be compact. Then A* = —Ax and <?>Λι is a regular inner /*-
automorphism (Proposition 6). Finally, if L is complex we take its compact
from LA, i. e., the real L^-algebra Lk of all skew-adjoint elements of L ([3, p. 523]).
Choose a hx^Lk as above. Then <phι=e&dhι taken over L, gives a regular inner
L*-automorphism of L.

REMARK. It was shown in [2] that a non-separable type A complex simple
L*-algebra LA contains no regular element. More generally, it can be shown,

<3> i.e., every element of L is skew-adjoint.
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using BessePs inequality and the criterion for regular element [2, Theorem 1],
that every complex semi-simple L*-algebra admitting an uncountable subset of
mutually orthogonal roots contains no regular element. The L*-algebras L
admitting such an orthogonal subset of roots include besides the non-separable
simple algebras LA, LB, Lc also all semi-simple L with uncountably many
simple components. In view of Proposition 8 none of these algebras which
are all, of course, non-separable has a regular inner automorphism.
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