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1. Introduction. We let X be an arbitrary infinite set. A semigroup S of total or
partial transformations of X is called %x-normal if hSh™'=S, for all h in %, the
symmetric group on X. For example, the full transformation semigroup Jy, the
semigroup of all partial transformations %, the semigroup of all 1-1 partial transforma-
tions Sy and all ideals of T, Py and $5 are Yx-normal.

If S is a 9Yx-normal semigroup then for each 4 € 95 the map

¢:f—>hfh™ (feS)

is an inner automorphism of S. The set Inn S of all inner automorphisms of S is a
subgroup of the group Aut S of all automorphisms of S. In [3] we showed that if S is a
Yx-normal subsemigroup of Iy then inner automorphisms exhaust all automorphisms of

S, that is AutS=InnS.

The purpose of this paper is to extend the above result to an arbitrary %y-normal
subsemigroup S of Py and therefore to give a complete description of all automorphisms
of any %x-normal semigroup.

Schreier [10] in 1937 was the first to show that Aut 7y =Inn Jy. Since then many
authors have described the automorphisms of various %x-normal semigroups: Mal’cev [5]
(all ideals of Jx); Liber [4] ($x and all its ideals); Gluskin [1] (%x); Shutov [8] (the
semigroup of all partial transformations shifting at most a finite number of elements);
Shutov [9] (all ideals of %y); Schein [6, 7] (all Yx-normal subsemigroups of $, but see
[2] for a special case). In [11] Sullivan showed that if S is a subsemigroup of %y containing
a constant idempotent with the range {x}, for each xe€ X, then AutS=InnS. In
particular if § is a 9y-normal subsemigroup of %, containing a constant map then
Aut S =Inn S. Our result completes the task of characterization of all automorphisms of a
%x-normal semigroup, subsuming previously stated results for 9x-normal semigroups.

In this paper we continue the development of a technique involving the production of
certain maximal one-sided ideals, first introduced in [3]. Here the assumption (made due
to [3]) that S contains a proper partial transformation allows us to restrict ourselves to the
study of only left ideals. Hence, unlike in [3], a uniform proof is given for the case when
§ c $x as well as when § contains transformations which are not 1-1.

2. Tranmsitivity. We say that a semigroup S is trivial if S c {®, 1}, where ® is the
empty and ¢ is the identity transformation. In what follows § is non-trivial. The
composition of transformations f and g in S defined by the formula

fg(x)=f(g(x)), where xeX.
Glasgow Math. J. 29 (1987) 149-157.
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In this section we show that each non-trivial %y-normal semigroup S is transitive. If §
also is a constant-free semigroup then it is 2-transitive (Definition 2.3).

For an f in Py we denote the range of f by R(f), the domain of f by D(f) and the
partition of fby a(f) (= {f~'(x):x e R(f)}). If § is a subsemigroup of Py, let

D(S)={D(f):feS} and =(S)={n(f):feS}.
We say that D(S) ((S)) is normal if, for each h € Gy,
h(D(S))=D(S) (h(z(S))=n(S)),

where h(D(S)) = {h(A): A € D(S)}, h(7(S)) = {h(4): A € n(S)}.
The following lemma is straightforward.

LemMmaA 2.1. If S is a Gx-normal semigroup, then D(S) and n(S) are normal.
The proof of our next proposition coincides with the proof of result 1.3 of [3].

ProposITION 2.2. Every Gx-normal semigroup is transitive.

DEerINITION 2.3. A semigroup S is 2-transitive if for any two ordered subsets {x, u}
and {y, v} of X (x #u, y #v) there exists an fin S with f(x) =y, f(u) =v.

Lemma 2.4. If S is a 9y-normal constant-free semigroup then each f in S has an
infinite range.

Proof. Suppose R(f) is finite. Then either D(f) is finite and Jge S with
ID(g)NR(f)|=1 (by 2.1), or n(f) contains an infinite subset A and Iq €S with
R(f) < B € n(q) (by 2.1). In either case S contains a constant map (gf or gf).

. ProposiTION 2.5. Every 9x-normal constant-free semigroup S is 2-transitive.

Proof. Take arbitrary ordered subsets {x, u} and {y, v} of X, x#u, y#v. We
construct an f in § such that f(x) =y and f(u) = v.

Firstly let x, y, u and v be distinct. Choose ¢ in § with #(x) =y (by 2.2) and let
ze D(O\{x, y, t7'(x), t7'(y)} (if such z does not exist then R(t) < {x, y, t(y)}, a
contradiction to 2.4). Let g =(z, u)t(z, u) and g(u) = (z, u)t(z) = w (here (z, u) denotes
the permutation of X interchanging z and u and leaving all other elements of X fixed).
Clearly g(x) =y, and if w=uv, then f =g. If w+#wv, u then let f = (v, w)g(v, w) (since
z¢{t7'(x), "'(y)}, w#x, y, and this ensures f(x) =y).

Thus starting with ¢ € S, t(x) =y, we construct either the required f or a map g with
g(x)=y, g(u)=u. Similarly, starting with s €S, s(u)=v, we can construct either the
required f or a map g with g(u) = v, q(x) = x. In the latter case we let f = (i, v)g(u, v)q.

Now assume that x, y, u and v are not all distinct. Choose a and b in X\{x, y, u, v},
a#b, and with the aid of the first part of the proof construct r, s €S with r(x)=a,
r(u)=b and s(a) =y, s(b) =v. Then f = sr is the required map.

3. Left ideals and automorphisms. Let S be a non-trivial 9x-normal constant-free

semigroup. If S ¢ T, then AutS =Inn S [3]. Hence we assume that S contains a proper
partial transformation and show that all automorphisms of § are inner.
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DeriniTiON 3.1. Given distinct f, g € S let
L(f,g)={leS:If =lg}.
Then £(f, g) is a left ideal of S, which we call a function left ideal.

We will show in 3.12 that there always exist f, g € S with Z(f, g) # {®}. However,
Z(f, g) may consist of the empty map. Let S, for example, be the semigroup of all 1-1,
onto transformations f with [X\D(f)| =|X|. Choose an f in S. Clearly X\D(f) € D(S),
and so we can choose a g in S with D(g) = X\D(f). Then £(f, g) = {®}, because for any
leS8, If =lg implies

D(f)=2D(If) = D(lg) = D(g) = X\D(f),

so lg = ®. But then D(/)N X = D(I) N R(g) = ®, the empty set. Thus / = .
If € Aut S, then forany f,ge S

o(L(f,8)) = o({leS:if =lgh) ={I'e S:I'¢(f) = I'p(2)} = L(¢(f), ().

Similar equality holds for ¢ ' € Aut S and we deduce the following result.

LEMMA 3.2. Any ¢ e AutS permutes function left ideals and ¢(Z(f, g)) =
Z(o(f), ¢(8))-

Our aim is to translate the definition of £(f, g) from the language of transformations
to the language of subsets of X (Proposition 3.11), and to obtain a bijection of X
associated with ¢, specifically, with the permutation of function left ideals by ¢.
DeriniTION 3.3, Let x € X and
Fx)={leS:xe X\D(I)}.
Then Z(x) is a left ideal of S, which we call a point left ideal.
Notice that since § contains a proper partial transformation, 2.1 ensures that

L(x) # D, for any x € X.

LemMA 3.4. Given x, y € X the following three statements are equivalent:
(i) L) L(y); (i) x=y; (i) Lx)=ZL(y)

Proof. Implications (ii) = (iii) and (iii))=> (i) are trivial. To show (i) > (ii) assume
x+#y, and choose, by 2.1, an Ae D(S) with xe A’ (=X\A4), yeA. If feS with
D(f)= A, then f e L(x)\Z(y), proving (i) > (ii).

Define a map 6:X— {£(x):x € X} via 8(x) =£(x), for each x € X. Clearly 68 is
onto and 3.4 ensures 8 is 1-1. Hence the next lemma.

LemMA 3.5. 6 is a bijection.

Let %, be the set of all doubletons {a, b} in X, a #b.
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DEFINITION 3.6. Given A € %5, A ={a, b}, let
L(A)={leS:l(a)=1(b)},
Z(A) = L(A)U(ZL(a) N L(b)).
Then Z(A) is a left ideal of S which we call a set left ideal.
RemMaRrk. It is convenient to extend Definitions 3.3 and 3.6 by letting
Z(®)=S.

Recall that x(S) is normal for 4y-normal § (Lemma 2.1). Thus L{A) = ® for some
Ae® if and only if L(A) = for all A€ %, i.e. if and only if S c Fy. If S ¢ Fyx then
L(A)=ZL(a)NZL(b) (a, b € A) is a degenerate set left ideal. The next lemma reveals that
for any A = {a, b} € #,, L(a) N L(b) # P, ensuring that L(A) # D.

LeMMA 3.7. There exists an A in D(S) with |A'|=2.

Proof. Choose a proper partial transformation f in S and let x € X\D(f), y € D(f),
f(y) =z. Take g in § with z € X\D(g) (by 2.1) and let ¢t = gf. Then x, y € X\D(¢) and we
let A=D().

Remark 3.8. By applying the arguments of the proof of Lemma 3.7 to the map ¢
instead of f it is easy to produce an A € D(S) with |4'|=3.

LemMa 3.9. Given A and B in P,, the following three statements are equivalent:
(i) L(A)<c Z(B); (ii) A =B, (iii) £(A)= Z(B).

Proof. Implications (ii) 5> (iii) and (iii) = (i) are trivial. We show (i) > (ii). Assume
x € B\A and let C = (A U B)\{x}. Clearly, |[C|<3. Using Remark 3.8 and the normality
of D(S) (see 2.1) choose an fin § with x € D(f) and C < X\D(f). Then f € L(A)\L(B),
so L(A) ¢ £(B), proving (i) = (ii).

NortaTion 3.10. Given fand g in §, let
A(f, 8) =f(D(FI\D(g)) Ug(D()\D(f)),
2(f, 8) = {{f(x), gx)} :x e D(f) N D(g), f(x) #g(x)}.
ProposiTiON 3.11. Let f, g € S with f #g and L(f, g) # {®}. Then

Proof. Let le Z(f, 8), x € A(f, g) and without loss of generality let f(y)=x for
some y € D(f)\D(g) (Notation 3.10). If x € D(l), then If = Ig implies that If(y) = lg(y),
and so y € D(g), a contradiction. Thus x ¢ D(/) and

le £(x). (1)

https://doi.org/10.1017/50017089500006790 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500006790

AUTOMORPHISMS OF TRANSFORMATION SEMIGROUPS 153

Now let A € Z(f, g), A ={f(2), g(z)}. Then either l € Z(f(z)) N £(g(z)), or AN D(l)#
@, and If = lg implies If(z) = lg(z), whence [ € L(A). We conclude that

le Z(A). )
Since (1) and (2) hold for all x € A(f, g) and A € D(f, g), we deduce that

20.0e( N 2w)n( O 2@).

xeA(f.8) €D(f.8)

Conversely, let

le(x N .,‘t’(x))ﬂ(Ale’g)fé’(A)).

€A(f.g)

Firstly observe that
D(if)= D(lg). 3)

Indeed, assume that z € D(If)\D(lg). Then z € D(g) (otherwise f(z) € A(f, g) and so
le #(f(z)), implying z ¢ D(If)). Now f(z) # g(z) means that {f(z), g(z)} = A € D(f, g),
and so /€ £(A). Since g(z) ¢ D(l), we must also have that f(z) ¢ D(I), or z ¢ D(If), a
contradiction which proves (3).

Now take z € D(If) = D(lg). If f(z) =g(z), then certainly If (z) =lg(z). If f(z)+
g(z), then {f(z),g(z)} =A € D(f, g). Since le £(A) and A c D(I) we conclude that
le L(A), or If(z) = lg(z) again. Thus If =lg, or l € Z(f, g).

ProrosiTioN 3.12. Given an A in P, and an x in X there exist f, g, p and q in S such
that

2(A)=2£(f,8), Lx)=ZL(p,q)
and there is a k in S such that p = kf, q = kg.

Proof. Take an A in %,. On account of Proposition 3.11 it is sufficient to construct f
and g such that D(f) = D(g) (and hence A(f, g) =®) and 2(f, g) = {A}. Choose te$§
with A € X\D(¢) (by 3.7) and let c, d € R(t), where ¢ #d (note that § is constant-free).
Let A={a,b} and se€S take ¢ to a and d to b (see 2.5). Then f=st and
g = (a, b)f(a, b) = (a, b)f are the required transformations with Z(f, g) = £(A).

Now let x € X and choose k € § such that k(a) =x and b € X\D(k). (To construct
such k choose by 2.1 a map ¢ in § with a e D(g) and b € X\D(g), by 2.2 amap p in §
which takes g(a) to x, and let k =pgq.) It is easy to check that @(kf, kg) =P and
A(kf, kg) = {x}, whence 3.11 ensures that L(kf, kg) = £(x). We let p = kf, q = kg.

We will show (Proposition 3.14) that each maximal function left ideal of S is either a

point left ideal or a non-degenerate set left ideal, and these exhaust all maximal function
left ideals.
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Lemma 3.13. Forall A in %, and x in X:

(i) L(x) & 2£(A),

(i) L(A) c Z(x) implies £(A) is degenerate.

Proof. (i) Let A = {a, b} and assume that a # x. With the aid of Lemmas 2.1 and 3.7
choose a B € D(S) with a € B and b, x € B’, together with f € § such that D(f) = B. Then
f e Zx)\Z(A).

(i) If L(A) = L(A) U (L(a) N L(b)) < £(x), then L(A) c £L(x). Assume L(A)# D,
then x ¢ A and each g such that AU {x} = D(g) and g(a) = g(b) (chosen by Lemma 2.1)
is in L(A)\&Z(x). Thus L(A) = P, and so £(A) is degenerate.

ProposiTION 3.14. Let f, g € S. Then 2(f, g) is a maximal function left ideal if and
only if either L(f, g) = £(x), x € X, or L(f, g) = L(A), where L(A) is non-degenerate,
AeP.

Proof. Firstly, assume that #(f, g) is a maximal function left ideal. Let x € A(f, g).
By 3.12 there exist p, g € S such that £(p, q) = £(x). Hence £(f, g) =« £(x)=ZL(p, q)
(by 3.11). The maximality of £(f, g) implies

L(f, 8) = £(x)=Z(p, q)-
Similarly, if A € 2(f, g) then there are also ¢, s € § with £(¢, s) = £(A) (by 3.12) and
ZL(f, g) = L(A) = Z(1, s) (by 3.11), implying that
L(f,8) = 2(A) = <L, 5),
because of the maximality of Z(f, g). Suppose £(A) is degenerate, then for a € A, by
34,
Z(f, 8) = Z(A) e L(a) = £(, r),

for some /, r € § (by 3.12), a contradiction to the maximality of £(f, g).
For the converse, assume that Z(f, g) = £(x), for some x € X. To show that £(f, g)
is maximal suppose that there are p, g € S with Z(p, q) 2 £(f, g), that is, by 3.11,

2w =29 2po=( 0 2o)n( N «B). @)
yeA(p.q) Bed(p,q)
If 9(p, q)# @, then L(x) c £(B), for every B € 9(p, q), contradicting 3.13(i). Thus
%(p, q) is empty and, for every y € A(p, q), L(x)c £(y). Lemma 3.4 ensures that
A(p, q) = {x} and we deduce from (4) that £(f, g) = L(p, q)
Finally assume that ¥(f, g)=%(A), A€%, and F(A) is non-degenerate. If
L(f, g)c ZL(t,s) for t, s € S, then 3.11 implies

2 =2t9=209=( 0 #@)n( 0 2©). ©

If A(t,s)#®, then L(A)c ¥(z), for each z € A(t, s), contradicting 3.13(ii). Hence
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A(t, s) =@ and, for each Ce D(p, q), £(A) = ZL(C). Thus D(p, q) ={A} (3.9) and we
deduce from (5) that £(f, g) = Z£(, 5).

It is clear from 3.2 that each automorphism ¢ of $ permutes maximal function left
ideals. Our aim is to show that ¢ also permutes point left ideals. If all the set left ideals
are degenerate, that is S ¢ $y, then, as the above proposition reveals, the point left ideals
are the only maximal function left ideals. In the next proposition we formulate a property
which distinguishes the non-degenerate set left ideals and is preserved under ¢.

ProposITION 3.15. Let S ¢ $x and L(f, g) be a maximal function left ideal. Then
Z(f, g) is a set left ideal if and only if

V maximal function left ideal L 3k € S such that L(kf, kg) = L. 6)

Proof. Assume firstly that Z(f, g) = £(A) (non-degenerate), A={a,b} e P. We
show that (6) holds. If L = £(x), for some x € X, then we appeal to Lemma 3.12. Hence
assume L = %(B), for some B e %, Choose k in § mapping A onto B (by 2.5). Then
D(kf)= D(kg) and so A(kf, kg)=®. (Indeed, assume, for example, that u e D(kf)\
D(kg). Then u € D(f) = D(g), since A(f, g)=®, by 3.11 and 3.13(ii), f(u) € D(k) and
g(u) ¢ D(k). Thus f(u)#g(u), so that by Lemma 3.9 {f(u), g(u)}=AcD(k), a
contradiction.) Also, D(kf, kg) = {B}, since kf(u)# kg(u), for some u € D(kf), implies
that f(u)#g(u), or {f(u),g(u)} =A, again by 3.9, and so by the choice of k,
{kf(u), kg(u)} = B. Proposition 3.11 ensures that L(kf, kg) = £(B), proving (6).

For the converse, assume that Z(f, g) satisfies (6) and is a point left ideal £(x)
(Proposition 3.14). Let L =%(A), A€ %, be a non-degenerate set left ideal (recall,
S ¢ £.), and k € S be such that L(kf, kg) = £(A). Then by 3.11 and 3.13(ii), A(kf, kg) =
®, that is D(kf)= D(kg). Since Z(fg)= ZL(x), it follows from 3.11 and 3.13(i) that
A(f, g) # . Assume without loss of generality that x = f(y), where y €e D(f)\D(g). If
x e D(k), then ye D(kf)=D(kg) = D(g), a contradiction. Hence x ¢ D(k) and so
k € £(x), which means that kf = kg, a contradiction to the assumption that £(kf, kg) =
F(A).

PROPOSITION 3.16. Let ¢ € Aut S. Given x € X there exists y € X such that ¢(L(x)) =
Z(y).

Proof. Let x € X and choose f, g € § with £(f, g) = £(x) (by 3.12). Proposition 3.14
ensures that £(f, g) is a maximal function left ideal. Whence

P(ZL(x)) = ¢(L(f, 8)) = L(#(f), ¢(g)) (by3.2)

is a maximal function left ideal. If S contains only degenerate set left ideals then
Z(d(f), ¢(g)) = Z(y) as required. Hence assume that there are non-degenerate set left
ideals. Since £(f, g) = £L(x), by 3.15 there exists a maximal function left ideal L such that
for any k € S, L(kf, kg) # L, or for any k' € S, L(k'¢(f), k' $(g)) # ¢(L). With the aid
of 3.2 we deduce that ¢(L) is a maximal function left ideal. Then 3.15 ensures that
2(6(f), $(g) = (), for some y € X.
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Using the above proposition define a map
n:{Zkx):x e X}=>{ZL(x):xe X} via n(L(x))=p(L(x)),
for each £(x). Similarly, by considering the automorphism ¢!, define a map
E{P(x):xeX}—>{P(x):xeX} via E(L(x))=¢ (L(x)).
Certainly & is the inverse of  and so we have proved the following.
LemMma 3.17. 0 is a bijection.

By Lemma 3.4, £(x) = %(y) if and only if x =y (x, y € X). We can therefore now
define a map h: X — X by h(x) =y, where y is given by n(£(x)) = £(y), for x € X. Thus,
with the notation of 3.5,

h=8""96.

By 3.17, h is a bijection; that is, # € Gx. We call h the bijection associated with ¢.
Now we will prove the main result of this paper.

THeOREM 3.18. If S is a Gx-normal subsemigroup of Py, then Aut§ =1InnS.

Proof. If S consists of total transformations we appeal to [3, Theorem 1.1]. If §
contains a constant map, the result is given in [11, Theorem 2]. Thus we assume that S is
a constant-free semigroup containing a proper partial transformation, and so £(x) # ®
for every x € X.

Take feS, xeD(f) and let f(x)=y. Since f ¢ L(x), also ¢(f)¢n(L(x))=
Z(h(x)), where h is the bijection associated with ¢. Hence h(x) € D(¢(f)).

Now observe that for any k in £(y), kf € £(x), hence for any k' in £(h(y)),
k'¢(f) € L(h(x)). Let ¢(f)h(x)=2z. If z# h(y), we can always choose k' in L(h(y))
with z e D(k') (Lemma 2.1). But then k'¢(f) ¢ £(h(x)), a contradiction which shows
that z = h(y). Thus

¢ ()h(x) = h(y) = hf (x).

Since this is true for all x in D(f), we conclude that

o(f) =hfh™,

and, since f is an arbitrary element of S, the result follows.
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