AUTOMORPHISMS OF NORMAL PARTIAL TRANSFORMATION SEMIGROUPS

by INESSA LEVI

(Received 18 March, 1985; revised 16 September, 1986)

1. Introduction. We let X be an arbitrary infinite set. A semigroup S of total or partial transformations of X is called \mathscr{G}_X -normal if $hSh^{-1} = S$, for all h in \mathscr{G}_X , the symmetric group on X. For example, the full transformation semigroup \mathscr{T}_X , the semigroup of all partial transformations \mathscr{P}_X , the semigroup of all 1-1 partial transformations \mathscr{I}_X and \mathscr{I}_X and \mathscr{I}_X and \mathscr{I}_X and \mathscr{I}_X and \mathscr{I}_X .

If S is a \mathscr{G}_X -normal semigroup then for each $h \in \mathscr{G}_X$ the map

$$\phi: f \mapsto hfh^{-1} \quad (f \in S)$$

is an *inner* automorphism of S. The set Inn S of all inner automorphisms of S is a subgroup of the group Aut S of all automorphisms of S. In [3] we showed that if S is a \mathscr{G}_X -normal subsemigroup of \mathscr{T}_X then inner automorphisms exhaust all automorphisms of S, that is

Aut
$$S = Inn S$$
.

The purpose of this paper is to extend the above result to an arbitrary \mathscr{G}_X -normal subsemigroup S of \mathscr{P}_X and therefore to give a complete description of all automorphisms of any \mathscr{G}_X -normal semigroup.

Schreier [10] in 1937 was the first to show that Aut $\mathcal{T}_X = \operatorname{Inn} \mathcal{T}_X$. Since then many authors have described the automorphisms of various \mathscr{G}_X -normal semigroups: Mal'cev [5] (all ideals of \mathcal{T}_X); Liber [4] (\mathscr{I}_X and all its ideals); Gluskin [1] (\mathscr{P}_X); Shutov [8] (the semigroup of all partial transformations shifting at most a finite number of elements); Shutov [9] (all ideals of \mathscr{P}_X); Schein [6, 7] (all \mathscr{G}_X -normal subsemigroups of \mathscr{I}_X , but see [2] for a special case). In [11] Sullivan showed that if S is a subsemigroup of \mathscr{P}_X containing a constant idempotent with the range $\{x\}$, for each $x \in X$, then Aut $S = \operatorname{Inn} S$. In particular if S is a \mathscr{G}_X -normal subsemigroup of \mathscr{P}_X containing a constant map then Aut $S = \operatorname{Inn} S$. Our result completes the task of characterization of all automorphisms of a \mathscr{G}_X -normal semigroup, subsuming previously stated results for \mathscr{G}_X -normal semigroups.

In this paper we continue the development of a technique involving the production of certain maximal one-sided ideals, first introduced in [3]. Here the assumption (made due to [3]) that S contains a proper partial transformation allows us to restrict ourselves to the study of only left ideals. Hence, unlike in [3], a uniform proof is given for the case when $S \subseteq \mathcal{I}_X$ as well as when S contains transformations which are not 1-1.

2. Transitivity. We say that a semigroup S is *trivial* if $S \subseteq \{\Phi, \iota\}$, where Φ is the empty and ι is the identity transformation. In what follows S is non-trivial. The composition of transformations f and g in S defined by the formula

$$fg(x) = f(g(x))$$
, where $x \in X$.

Glasgow Math. J. 29 (1987) 149-157.

In this section we show that each non-trivial \mathscr{G}_{x} -normal semigroup S is transitive. If S also is a constant-free semigroup then it is 2-transitive (Definition 2.3).

For an f in \mathcal{P}_X we denote the range of f by R(f), the domain of f by D(f) and the partition of f by $\pi(f)$ (= { $f^{-1}(x): x \in R(f)$ }). If S is a subsemigroup of \mathcal{P}_X , let

 $D(S) = \{D(f): f \in S\}$ and $\pi(S) = \{\pi(f): f \in S\}.$

We say that D(S) $(\pi(S))$ is normal if, for each $h \in \mathcal{G}_{\chi}$,

$$h(D(S)) = D(S)$$
 $(h(\pi(S)) = \pi(S)),$

where $h(D(S)) = \{h(A) : A \in D(S)\}, h(\pi(S)) = \{h(\mathcal{A}) : \mathcal{A} \in \pi(S)\}.$

The following lemma is straightforward.

LEMMA 2.1. If S is a \mathscr{G}_X -normal semigroup, then D(S) and $\pi(S)$ are normal.

The proof of our next proposition coincides with the proof of result 1.3 of [3].

PROPOSITION 2.2. Every \mathcal{G}_X -normal semigroup is transitive.

DEFINITION 2.3. A semigroup S is 2-transitive if for any two ordered subsets $\{x, u\}$ and $\{y, v\}$ of $X (x \neq u, y \neq v)$ there exists an f in S with f(x) = y, f(u) = v.

LEMMA 2.4. If S is a \mathcal{G}_X -normal constant-free semigroup then each f in S has an infinite range.

Proof. Suppose R(f) is finite. Then either D(f) is finite and $\exists g \in S$ with $|D(g) \cap R(f)| = 1$ (by 2.1), or $\pi(f)$ contains an infinite subset A and $\exists q \in S$ with $R(f) \subseteq B \in \pi(q)$ (by 2.1). In either case S contains a constant map (gf or qf).

PROPOSITION 2.5. Every \mathcal{G}_{X} -normal constant-free semigroup S is 2-transitive.

Proof. Take arbitrary ordered subsets $\{x, u\}$ and $\{y, v\}$ of $X, x \neq u, y \neq v$. We construct an f in S such that f(x) = y and f(u) = v.

Firstly let x, y, u and v be distinct. Choose t in S with t(x) = y (by 2.2) and let $z \in D(t) \setminus \{x, y, t^{-1}(x), t^{-1}(y)\}$ (if such z does not exist then $R(t) \subseteq \{x, y, t(y)\}$, a contradiction to 2.4). Let g = (z, u)t(z, u) and g(u) = (z, u)t(z) = w (here (z, u) denotes the permutation of X interchanging z and u and leaving all other elements of X fixed). Clearly g(x) = y, and if w = v, then f = g. If $w \neq v$, u then let f = (v, w)g(v, w) (since $z \notin \{t^{-1}(x), t^{-1}(y)\}$, $w \neq x$, y, and this ensures f(x) = y).

Thus starting with $t \in S$, t(x) = y, we construct either the required f or a map g with g(x) = y, g(u) = u. Similarly, starting with $s \in S$, s(u) = v, we can construct either the required f or a map q with q(u) = v, q(x) = x. In the latter case we let f = (u, v)g(u, v)q.

Now assume that x, y, u and v are not all distinct. Choose a and b in $X \setminus \{x, y, u, v\}$, $a \neq b$, and with the aid of the first part of the proof construct r, $s \in S$ with r(x) = a, r(u) = b and s(a) = y, s(b) = v. Then f = sr is the required map.

3. Left ideals and automorphisms. Let S be a non-trivial \mathscr{G}_X -normal constant-free semigroup. If $S \subseteq \mathscr{T}_X$, then Aut S = Inn S [3]. Hence we assume that S contains a proper partial transformation and show that all automorphisms of S are inner.

DEFINITION 3.1. Given distinct $f, g \in S$ let

$$\mathscr{L}(f,g) = \{l \in S : lf = lg\}.$$

Then $\mathcal{L}(f, g)$ is a left ideal of S, which we call a function left ideal.

We will show in 3.12 that there always exist $f, g \in S$ with $\mathcal{L}(f, g) \neq \{\Phi\}$. However, $\mathcal{L}(f, g)$ may consist of the empty map. Let S, for example, be the semigroup of all 1-1, onto transformations f with $|X \setminus D(f)| = |X|$. Choose an f in S. Clearly $X \setminus D(f) \in D(S)$, and so we can choose a g in S with $D(g) = X \setminus D(f)$. Then $\mathcal{L}(f, g) = \{\Phi\}$, because for any $l \in S$, lf = lg implies

$$D(f) \supseteq D(lf) = D(lg) \subseteq D(g) = X \setminus D(f),$$

so $lg = \Phi$. But then $D(l) \cap X = D(l) \cap R(g) = \Phi$, the empty set. Thus $l = \Phi$. If $\phi \in Aut S$, then for any $f, g \in S$

$$\phi(\mathcal{L}(f,g)) = \phi(\{l \in S : lf = lg\}) = \{l' \in S : l'\phi(f) = l'\phi(g)\} = \mathcal{L}(\phi(f), \phi(g)).$$

Similar equality holds for $\phi^{-1} \in \text{Aut } S$ and we deduce the following result.

LEMMA 3.2. Any $\phi \in \text{Aut } S$ permutes function left ideals and $\phi(\mathcal{L}(f,g)) = \mathcal{L}(\phi(f), \phi(g))$.

Our aim is to translate the definition of $\mathcal{L}(f, g)$ from the language of transformations to the language of subsets of X (Proposition 3.11), and to obtain a bijection of X associated with ϕ , specifically, with the permutation of function left ideals by ϕ .

DEFINITION 3.3. Let $x \in X$ and

$$\mathscr{L}(x) = \{l \in S : x \in X \setminus D(l)\}.$$

Then $\mathscr{L}(x)$ is a left ideal of S, which we call a *point left ideal*.

Notice that since S contains a proper partial transformation, 2.1 ensures that $\mathscr{L}(x) \neq \Phi$, for any $x \in X$.

LEMMA 3.4. Given $x, y \in X$ the following three statements are equivalent:

(i)
$$\mathscr{L}(x) \subseteq \mathscr{L}(y)$$
; (ii) $x = y$; (iii) $\mathscr{L}(x) = \mathscr{L}(y)$.

Proof. Implications (ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are trivial. To show (i) \Rightarrow (ii) assume $x \neq y$, and choose, by 2.1, an $A \in D(S)$ with $x \in A'$ (= X\A), $y \in A$. If $f \in S$ with D(f) = A, then $f \in \mathcal{L}(x) \setminus \mathcal{L}(y)$, proving (i) \Rightarrow (ii).

Define a map $\theta: X \to \{\mathscr{L}(x): x \in X\}$ via $\theta(x) = \mathscr{L}(x)$, for each $x \in X$. Clearly θ is onto and 3.4 ensures θ is 1-1. Hence the next lemma.

LEMMA 3.5. θ is a bijection.

Let \mathcal{P}_2 be the set of all doubletons $\{a, b\}$ in $X, a \neq b$.

DEFINITION 3.6. Given $A \in \mathcal{P}_2$, $A = \{a, b\}$, let

$$L(A) = \{l \in S : l(a) = l(b)\},\$$

$$\mathcal{L}(A) = L(A) \dot{\cup} (\mathcal{L}(a) \cap \mathcal{L}(b)).$$

Then $\mathcal{L}(A)$ is a left ideal of S which we call a set left ideal.

REMARK. It is convenient to extend Definitions 3.3 and 3.6 by letting

 $\mathscr{L}(\Phi) = S.$

Recall that $\pi(S)$ is normal for \mathscr{G}_X -normal S (Lemma 2.1). Thus $L(A) = \Phi$ for some $A \in \mathscr{P}_2$ if and only if $L(A) = \Phi$ for all $A \in \mathscr{P}_2$, i.e. if and only if $S \subseteq \mathscr{I}_X$. If $S \subseteq \mathscr{I}_X$ then $\mathscr{L}(A) = \mathscr{L}(a) \cap \mathscr{L}(b)$ $(a, b \in A)$ is a degenerate set left ideal. The next lemma reveals that for any $A = \{a, b\} \in \mathscr{P}_2$, $\mathscr{L}(a) \cap \mathscr{L}(b) \neq \Phi$, ensuring that $\mathscr{L}(A) \neq \Phi$.

LEMMA 3.7. There exists an A in D(S) with $|A'| \ge 2$.

Proof. Choose a proper partial transformation f in S and let $x \in X \setminus D(f)$, $y \in D(f)$, f(y) = z. Take g in S with $z \in X \setminus D(g)$ (by 2.1) and let t = gf. Then $x, y \in X \setminus D(t)$ and we let A = D(t).

REMARK 3.8. By applying the arguments of the proof of Lemma 3.7 to the map t instead of f it is easy to produce an $A \in D(S)$ with $|A'| \ge 3$.

LEMMA 3.9. Given A and B in \mathcal{P}_2 , the following three statements are equivalent:

(i) $\mathscr{L}(A) \subseteq \mathscr{L}(B)$; (ii) A = B; (iii) $\mathscr{L}(A) = \mathscr{L}(B)$.

Proof. Implications (ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are trivial. We show (i) \Rightarrow (ii). Assume $x \in B \setminus A$ and let $C = (A \cup B) \setminus \{x\}$. Clearly, $|C| \leq 3$. Using Remark 3.8 and the normality of D(S) (see 2.1) choose an f in S with $x \in D(f)$ and $C \subseteq X \setminus D(f)$. Then $f \in \mathcal{L}(A) \setminus \mathcal{L}(B)$, so $\mathcal{L}(A) \notin \mathcal{L}(B)$, proving (i) \Rightarrow (ii).

NOTATION 3.10. Given f and g in S, let

$$\Delta(f,g) = f(D(f) \setminus D(g)) \cup g(D(g) \setminus D(f)),$$

$$\mathfrak{D}(f,g) = \{\{f(x),g(x)\} : x \in D(f) \cap D(g), f(x) \neq g(x)\}.$$

PROPOSITION 3.11. Let $f, g \in S$ with $f \neq g$ and $\mathcal{L}(f, g) \neq \{\Phi\}$. Then

$$\mathscr{L}(f,g) = \left(\bigcap_{x \in \Delta(f,g)} \mathscr{L}(x)\right) \cap \left(\bigcap_{A \in \mathscr{D}(f,g)} \mathscr{L}(A)\right).$$

Proof. Let $l \in \mathcal{L}(f, g)$, $x \in \Delta(f, g)$ and without loss of generality let f(y) = x for some $y \in D(f) \setminus D(g)$ (Notation 3.10). If $x \in D(l)$, then lf = lg implies that lf(y) = lg(y), and so $y \in D(g)$, a contradiction. Thus $x \notin D(l)$ and

$$l \in \mathscr{L}(x). \tag{1}$$

Now let $A \in \mathcal{D}(f, g)$, $A = \{f(z), g(z)\}$. Then either $l \in \mathcal{L}(f(z)) \cap \mathcal{L}(g(z))$, or $A \cap D(l) \neq \Phi$, and lf = lg implies lf(z) = lg(z), whence $l \in L(A)$. We conclude that

$$l \in \mathscr{L}(A). \tag{2}$$

Since (1) and (2) hold for all $x \in \Delta(f, g)$ and $A \in \mathcal{D}(f, g)$, we deduce that

$$\mathscr{L}(f,g)\subseteq \left(\bigcap_{x\in\Delta(f,g)}\mathscr{L}(x)\right)\cap \left(\bigcap_{A\in\mathscr{D}(f,g)}\mathscr{L}(A)\right).$$

Conversely, let

$$l \in \left(\bigcap_{x \in \Delta(f,g)} \mathscr{L}(x)\right) \cap \left(\bigcap_{A \in \mathscr{D}(f,g)} \mathscr{L}(A)\right).$$

Firstly observe that

$$D(lf) = D(lg). \tag{3}$$

Indeed, assume that $z \in D(lf) \setminus D(lg)$. Then $z \in D(g)$ (otherwise $f(z) \in \Delta(f, g)$ and so $l \in \mathcal{L}(f(z))$, implying $z \notin D(lf)$). Now $f(z) \neq g(z)$ means that $\{f(z), g(z)\} = A \in \mathcal{D}(f, g)$, and so $l \in \mathcal{L}(A)$. Since $g(z) \notin D(l)$, we must also have that $f(z) \notin D(l)$, or $z \notin D(lf)$, a contradiction which proves (3).

Now take $z \in D(lf) = D(lg)$. If f(z) = g(z), then certainly lf(z) = lg(z). If $f(z) \neq g(z)$, then $\{f(z), g(z)\} = A \in \mathcal{D}(f, g)$. Since $l \in \mathcal{L}(A)$ and $A \subseteq D(l)$ we conclude that $l \in L(A)$, or lf(z) = lg(z) again. Thus lf = lg, or $l \in \mathcal{L}(f, g)$.

PROPOSITION 3.12. Given an A in \mathcal{P}_2 and an x in X there exist f, g, p and q in S such that

$$\mathscr{L}(A) = \mathscr{L}(f, g), \qquad \mathscr{L}(x) = \mathscr{L}(p, q)$$

and there is a k in S such that p = kf, q = kg.

Proof. Take an A in \mathcal{P}_2 . On account of Proposition 3.11 it is sufficient to construct f and g such that D(f) = D(g) (and hence $\Delta(f, g) = \Phi$) and $\mathcal{D}(f, g) = \{A\}$. Choose $t \in S$ with $A \subseteq X \setminus D(t)$ (by 3.7) and let c, $d \in R(t)$, where $c \neq d$ (note that S is constant-free). Let $A = \{a, b\}$ and $s \in S$ take c to a and d to b (see 2.5). Then f = st and g = (a, b)f(a, b) = (a, b)f are the required transformations with $\mathcal{L}(f, g) = \mathcal{L}(A)$.

Now let $x \in X$ and choose $k \in S$ such that k(a) = x and $b \in X \setminus D(k)$. (To construct such k choose by 2.1 a map q in S with $a \in D(q)$ and $b \in X \setminus D(q)$, by 2.2 a map p in S which takes q(a) to x, and let k = pq.) It is easy to check that $\mathfrak{D}(kf, kg) = \Phi$ and $\Delta(kf, kg) = \{x\}$, whence 3.11 ensures that $\mathcal{L}(kf, kg) = \mathcal{L}(x)$. We let p = kf, q = kg.

We will show (Proposition 3.14) that each maximal function left ideal of S is either a point left ideal or a non-degenerate set left ideal, and these exhaust all maximal function left ideals.

LEMMA 3.13. For all A in \mathcal{P}_2 and x in X:

- (i) $\mathcal{L}(x) \notin \mathcal{L}(A)$,
- (ii) $\mathcal{L}(A) \subseteq \mathcal{L}(x)$ implies $\mathcal{L}(A)$ is degenerate.

Proof. (i) Let $A = \{a, b\}$ and assume that $a \neq x$. With the aid of Lemmas 2.1 and 3.7 choose a $B \in D(S)$ with $a \in B$ and $b, x \in B'$, together with $f \in S$ such that D(f) = B. Then $f \in \mathcal{L}(x) \setminus \mathcal{L}(A)$.

(ii) If $\mathscr{L}(A) = L(A) \cup (\mathscr{L}(a) \cap \mathscr{L}(b)) \subseteq \mathscr{L}(x)$, then $L(A) \subseteq \mathscr{L}(x)$. Assume $\mathscr{L}(A) \neq \Phi$, then $x \notin A$ and each g such that $A \cup \{x\} \subseteq D(g)$ and g(a) = g(b) (chosen by Lemma 2.1) is in $L(A) \setminus \mathscr{L}(x)$. Thus $L(A) = \Phi$, and so $\mathscr{L}(A)$ is degenerate.

PROPOSITION 3.14. Let $f, g \in S$. Then $\mathcal{L}(f, g)$ is a maximal function left ideal if and only if either $\mathcal{L}(f, g) = \mathcal{L}(x), x \in X$, or $\mathcal{L}(f, g) = \mathcal{L}(A)$, where $\mathcal{L}(A)$ is non-degenerate, $A \in \mathcal{P}_2$.

Proof. Firstly, assume that $\mathcal{L}(f, g)$ is a maximal function left ideal. Let $x \in \Delta(f, g)$. By 3.12 there exist $p, q \in S$ such that $\mathcal{L}(p, q) = \mathcal{L}(x)$. Hence $\mathcal{L}(f, g) \subseteq \mathcal{L}(x) = \mathcal{L}(p, q)$ (by 3.11). The maximality of $\mathcal{L}(f, g)$ implies

$$\mathscr{L}(f,g) = \mathscr{L}(x) = \mathscr{L}(p,q).$$

Similarly, if $A \in \mathcal{D}(f, g)$ then there are also $t, s \in S$ with $\mathcal{L}(t, s) = \mathcal{L}(A)$ (by 3.12) and $\mathcal{L}(f, g) \subseteq \mathcal{L}(A) = \mathcal{L}(t, s)$ (by 3.11), implying that

$$\mathscr{L}(f,g) = \mathscr{L}(A) = \mathscr{L}(t,s),$$

because of the maximality of $\mathcal{L}(f, g)$. Suppose $\mathcal{L}(A)$ is degenerate, then for $a \in A$, by 3.4,

$$\mathscr{L}(f,g) = \mathscr{L}(A) \subseteq \mathscr{L}(a) = \mathscr{L}(l,r),$$

for some $l, r \in S$ (by 3.12), a contradiction to the maximality of $\mathcal{L}(f, g)$.

For the converse, assume that $\mathscr{L}(f,g) = \mathscr{L}(x)$, for some $x \in X$. To show that $\mathscr{L}(f,g)$ is maximal suppose that there are $p, q \in S$ with $\mathscr{L}(p,q) \supseteq \mathscr{L}(f,g)$, that is, by 3.11,

$$\mathscr{L}(x) = \mathscr{L}(f, g) \subseteq \mathscr{L}(p, q) = \left(\bigcap_{y \in \Delta(p, q)} \mathscr{L}(y)\right) \cap \left(\bigcap_{B \in \mathscr{D}(p, q)} \mathscr{L}(B)\right).$$
(4)

If $\mathfrak{D}(p,q) \neq \Phi$, then $\mathscr{L}(x) \subseteq \mathscr{L}(B)$, for every $B \in \mathfrak{D}(p,q)$, contradicting 3.13(i). Thus $\mathfrak{D}(p,q)$ is empty and, for every $y \in \Delta(p,q)$, $\mathscr{L}(x) \subseteq \mathscr{L}(y)$. Lemma 3.4 ensures that $\Delta(p,q) = \{x\}$ and we deduce from (4) that $\mathscr{L}(f,g) = \mathscr{L}(p,q)$.

Finally assume that $\mathcal{L}(f,g) = \mathcal{L}(A)$, $A \in \mathcal{P}_2$, and $\mathcal{L}(A)$ is non-degenerate. If $\mathcal{L}(f,g) \subseteq \mathcal{L}(t,s)$ for $t, s \in S$, then 3.11 implies

$$\mathscr{L}(A) = \mathscr{L}(f,g) \subseteq \mathscr{L}(t,s) = \left(\bigcap_{z \in \Delta(t,s)} \mathscr{L}(z)\right) \cap \left(\bigcap_{C \in \mathscr{D}(p,q)} \mathscr{L}(C)\right).$$
(5)

If $\Delta(t, s) \neq \Phi$, then $\mathscr{L}(A) \subseteq \mathscr{L}(z)$, for each $z \in \Delta(t, s)$, contradicting 3.13(ii). Hence

 $\Delta(t, s) = \Phi$ and, for each $C \in \mathcal{D}(p, q)$, $\mathcal{L}(A) \subseteq \mathcal{L}(C)$. Thus $\mathcal{D}(p, q) = \{A\}$ (3.9) and we deduce from (5) that $\mathcal{L}(f, g) = \mathcal{L}(t, s)$.

It is clear from 3.2 that each automorphism ϕ of S permutes maximal function left ideals. Our aim is to show that ϕ also permutes point left ideals. If all the set left ideals are degenerate, that is $S \subseteq \mathcal{I}_X$, then, as the above proposition reveals, the point left ideals are the only maximal function left ideals. In the next proposition we formulate a property which distinguishes the non-degenerate set left ideals and is preserved under ϕ .

PROPOSITION 3.15. Let $S \notin \mathcal{I}_X$ and $\mathcal{L}(f, g)$ be a maximal function left ideal. Then $\mathcal{L}(f, g)$ is a set left ideal if and only if

$$\forall$$
 maximal function left ideal $L \exists k \in S$ such that $\mathscr{L}(kf, kg) = L.$ (6)

Proof. Assume firstly that $\mathcal{L}(f,g) = \mathcal{L}(A)$ (non-degenerate), $A = \{a, b\} \in \mathcal{P}_2$. We show that (6) holds. If $L = \mathcal{L}(x)$, for some $x \in X$, then we appeal to Lemma 3.12. Hence assume $L = \mathcal{L}(B)$, for some $B \in \mathcal{P}_2$. Choose k in S mapping A onto B (by 2.5). Then D(kf) = D(kg) and so $\Delta(kf, kg) = \Phi$. (Indeed, assume, for example, that $u \in D(kf) \setminus D(kg)$. Then $u \in D(f) = D(g)$, since $\Delta(f, g) = \Phi$, by 3.11 and 3.13(ii), $f(u) \in D(k)$ and $g(u) \notin D(k)$. Thus $f(u) \neq g(u)$, so that by Lemma 3.9 $\{f(u), g(u)\} = A \subseteq D(k)$, a contradiction.) Also, $\mathcal{D}(kf, kg) = \{B\}$, since $kf(u) \neq kg(u)$, for some $u \in D(kf)$, implies that $f(u) \neq g(u)$, or $\{f(u), g(u)\} = A$, again by 3.9, and so by the choice of k, $\{kf(u), kg(u)\} = B$. Proposition 3.11 ensures that $\mathcal{L}(kf, kg) = \mathcal{L}(B)$, proving (6).

For the converse, assume that $\mathscr{L}(f, g)$ satisfies (6) and is a point left ideal $\mathscr{L}(x)$ (Proposition 3.14). Let $L = \mathscr{L}(A)$, $A \in \mathscr{P}_2$, be a non-degenerate set left ideal (recall, $S \notin \mathscr{I}_x$), and $k \in S$ be such that $\mathscr{L}(kf, kg) = \mathscr{L}(A)$. Then by 3.11 and 3.13(ii), $\Delta(kf, kg) = \Phi$, that is D(kf) = D(kg). Since $\mathscr{L}(fg) = \mathscr{L}(x)$, it follows from 3.11 and 3.13(i) that $\Delta(f, g) \neq \Phi$. Assume without loss of generality that x = f(y), where $y \in D(f) \setminus D(g)$. If $x \in D(k)$, then $y \in D(kf) = D(kg) \subseteq D(g)$, a contradiction. Hence $x \notin D(k)$ and so $k \in \mathscr{L}(x)$, which means that kf = kg, a contradiction to the assumption that $\mathscr{L}(kf, kg) = \mathscr{L}(A)$.

PROPOSITION 3.16. Let $\phi \in \text{Aut } S$. Given $x \in X$ there exists $y \in X$ such that $\phi(\mathcal{L}(x)) = \mathcal{L}(y)$.

Proof. Let $x \in X$ and choose $f, g \in S$ with $\mathcal{L}(f, g) = \mathcal{L}(x)$ (by 3.12). Proposition 3.14 ensures that $\mathcal{L}(f, g)$ is a maximal function left ideal. Whence

$$\phi(\mathscr{L}(x)) = \phi(\mathscr{L}(f,g)) = \mathscr{L}(\phi(f),\phi(g)) \quad (by \ 3.2)$$

is a maximal function left ideal. If S contains only degenerate set left ideals then $\mathscr{L}(\phi(f), \phi(g)) = \mathscr{L}(y)$ as required. Hence assume that there are non-degenerate set left ideals. Since $\mathscr{L}(f, g) = \mathscr{L}(x)$, by 3.15 there exists a maximal function left ideal L such that for any $k \in S$, $\mathscr{L}(kf, kg) \neq L$, or for any $k' \in S$, $\mathscr{L}(k'\phi(f), k'\phi(g)) \neq \phi(L)$. With the aid of 3.2 we deduce that $\phi(L)$ is a maximal function left ideal. Then 3.15 ensures that $\mathscr{L}(\phi(f), \phi(g)) = \mathscr{L}(y)$, for some $y \in X$.

Using the above proposition define a map

$$\eta: \{\mathscr{L}(x): x \in X\} \to \{\mathscr{L}(x): x \in X\} \quad \text{via} \quad \eta(\mathscr{L}(x)) = \phi(\mathscr{L}(x)),$$

for each $\mathscr{L}(x)$. Similarly, by considering the automorphism ϕ^{-1} , define a map

$$\xi: \{\mathscr{L}(x): x \in X\} \to \{\mathscr{L}(x): x \in X\} \quad \text{via} \quad \xi(\mathscr{L}(x)) = \phi^{-1}(\mathscr{L}(x)).$$

Certainly ξ is the inverse of η and so we have proved the following.

LEMMA 3.17. η is a bijection.

By Lemma 3.4, $\mathscr{L}(x) = \mathscr{L}(y)$ if and only if x = y $(x, y \in X)$. We can therefore now define a map $h: X \to X$ by h(x) = y, where y is given by $\eta(\mathscr{L}(x)) = \mathscr{L}(y)$, for $x \in X$. Thus, with the notation of 3.5,

 $h = \theta^{-1} \eta \theta.$

By 3.17, h is a bijection; that is, $h \in \mathcal{G}_X$. We call h the bijection associated with ϕ . Now we will prove the main result of this paper.

THEOREM 3.18. If S is a \mathscr{G}_X -normal subsemigroup of \mathscr{P}_X , then Aut S = Inn S.

Proof. If S consists of total transformations we appeal to [3, Theorem 1.1]. If S contains a constant map, the result is given in [11, Theorem 2]. Thus we assume that S is a constant-free semigroup containing a proper partial transformation, and so $\mathcal{L}(x) \neq \Phi$ for every $x \in X$.

Take $f \in S$, $x \in D(f)$ and let f(x) = y. Since $f \notin \mathcal{L}(x)$, also $\phi(f) \notin \eta(\mathcal{L}(x)) = \mathcal{L}(h(x))$, where h is the bijection associated with ϕ . Hence $h(x) \in D(\phi(f))$.

Now observe that for any k in $\mathcal{L}(y)$, $kf \in \mathcal{L}(x)$, hence for any k' in $\mathcal{L}(h(y))$, $k'\phi(f) \in \mathcal{L}(h(x))$. Let $\phi(f)h(x) = z$. If $z \neq h(y)$, we can always choose k' in $\mathcal{L}(h(y))$ with $z \in D(k')$ (Lemma 2.1). But then $k'\phi(f) \notin \mathcal{L}(h(x))$, a contradiction which shows that z = h(y). Thus

$$\phi(f)h(x) = h(y) = hf(x).$$

Since this is true for all x in D(f), we conclude that

$$\phi(f) = hfh^{-1},$$

and, since f is an arbitrary element of S, the result follows.

REFERENCES

1. L. M. Gluskin, Ideals of semigroups of transformations, Mat. Sb. (N.S.) 47 (89) (1959), 111-130.

2. I. Levi, B. M. Schein, R. P. Sullivan and G. R. Wood, Automorphisms of Baer-Levi semigroups, J. London Math. Soc. (2) 28 (1983), 492-495.

3. I. Levi, Automorphisms of normal transformation semigroups, Proc. Edinburgh Math. Soc., to appear.

4. A. E. Liber, On symmetric generalized groups, Mat. Sb. (N.S.) 33 (75) (1953), 531-544.

5. A. I. Mal'cev, Symmetric groupoids, Mat. Sb. (N.S.) 31 (73) (1952), 136-151, translated in Amer. Math. Soc. Transl. 113 (1979), 235-250.

6. B. M. Schein, Symmetric semigroups of one-to-one transformations, Second all-union symposium on the theory of semigroups, Summaries of Talks (Sverdlovsk, 1979), 99.

7. B. M. Schein, Symmetric semigroups of transformations, Abstracts Amer. Math. Soc. 5 (1980), 476.

8. E. G. Shutov, On semigroups of almost identical mappings, *Dokl. Akad. Nauk SSSR* 134 (1960), 292–295.

9. E. G. Shutov, Homomorphisms of the semigroup of all partial transformations, *Izv. Vysš. Učebn. Zaved. Matematika*, 1961, no. 3 (22), 177–184.

10. J. Schreier, Uber Abbildungen einer abstrakten Menge auf ihre Teilmengen, Fund. Math. 28 (1937), 261-264.

11. R. P. Sullivan, Automorphisms of transformation semigroups, J. Austral. Math. Soc. Ser. A. 20 (1975), 77-84.

DEPARTMENT OF MATHEMATICS University of Louisville Louisville Kentucky 40292 U.S.A.