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1. Introduction and preliminaries

Let X be an infinite set, ¥y be the group of all bijections of X and S be a semigroup
of total transformations of X with the composition of transformations f and g in S
defined by the formula

fg(x)= f(g(x)), where xeX.

We say that S is a Yx-normal semigroup if
hSh~1=S, for all he%,.

The full transformation semigroup Ty, the semigroups of all 1-1 and all onto
transformations and the group %y itself, are examples of 4,-normal semigroups.
If S is a ¥y-normal semigroup, then for each he %y, the map ¢ of S given by

$(f)=hfh™' (feS)

is an automorphism of S, specifically an inner automorphism of S. Our purpose is to
prove the following:

Theorem 1.1. Every automorphism of a $x-normal semigroup is inner.

The subject of this paper was suggested to the author by G. R. Wood.

The question of whether inner automorphisms exhaust all automorphisms of a %-
normal semigroup has attracted the attention of a number of authors. In 1937 Schreier
[10] was the first to give a positive answer for Ty. Then Malcev [6] extended this result
to every ideal of Ty. Next Sullivan [12] generalized this work and confirmed that if a
semigroup contains all constant transformations (in particular if a %,-normal semigroup
contains a constant transformation) then it possesses only inner automorphisms, while
Fitzpatrick and Symons [3] showed this for a semigroup containing %,. Schein [8,9]
discovered that a ¥y-normal semigroup of 1-1 transformations has only inner automor-
phisms (see [4] for the special case of Baer—Levi semigroups).

Our result subsumes all previously stated results for %,-normal semigroups and
describes completely all automorphisms of every %y-normal transformation semigroup.
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In this paper we use a technique which differs from those used by Sullivan [12] and
Schein [8,9]. The essence is the production of certain maximal right (Section 2) and left
(Section 3) ideals. We note a remarkable duality between properties of these right and
left ideals.

For the purpose of our proof we partition all ¥y-normal semigroups into three types:

1. Semigroups containing a constant map; and constant-free semigroups into:

2. Semigroups of 1-1 transformations; and

3. Constant-free semigroups containing a transformation which is not 1-1.

All automorphisms of semigroups of the first type are inner [12, Theorem 1], so we
can restrict our attention to constant-free semigroups.

We begin with some general notes on ¥y-normal semigroups.

For a function f:X—X we denote the range of f by R(f) (= f(X)) and the partition
of f by n(f) (={f'(x):xeR(f)}.

If S is an arbitrary semigroup of transformations, let
R(S)={R(f):feS} and =(S)={n(f):feS}.
We say that R(S) (n(S)) is normal if for each he %,
HR(S)=R(S) ((m(S)=n(S)),

(by h(R(S)) we mean {h(A): AeR(S)} and by h(n(S)) we mean {h(<): o/ en(S)}, where
h)={h(A): Ae &}).

Lemma 1.2. If S is a $x-normal semigroup, then R(S) and n(S) are normal.
The proof is straightforward. O

We say that a semigroup S is trivial if S={Ay}, where Ay is the identity
transformation of X. In what follows S is non-trivial.

Result 1.3. Every ¥y-normal semigroup S is transitive.

Proof. Take arbitrary x,y in X. We construct f in S such that f(x)=y.

Firstly let x and y be distinct and suppose there exists a ge S with g(x)=z#x. If z=y
we let f=g, otherwise (y,z)g(y,z) is the required f ((y,z) denotes the transposition
interchanging y and z). To construct g, observe that since S is non-trivial there exists a
g S together with distinct ¥ and v in X such that g(u) =v. If u=x we let g=gq, otherwise
g=(u, x)q(u, x).

Now suppose y=x, choose any p in § and let p(x)=w. If w=x we let f=p.
Otherwise choose te S with t(w)=x (using the first part of the proof), then f=tp takes
x to x as required. O

Remark 1.4. We exclude from our consideration %y-normal subsemigroups of %y,
since they are all subgroups of %y, and hence have only inner automorphisms [11].
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2. 9y -normal semigroups of 1-1 transformations

In this section S denotes a ¥y-normal semigroup of 1-1 transformations.
Definition 2.1. Let xeX and
R, ={reS:xe X\R(r)}.
Then £, is a right ideal of S, which we call a point right ideal. O
We will use the following observation based on the normality of R(S) (Lemma 1.2)
and the fact that S is not a subsemigroup of %,, that is R(S) contains proper subsets of

X.

Remark 2.2. Given x,ye X with x#y there exists an A in R(S) with xe X\4 and
yeA. O

Lemma 2.3. Given x,y€ X the following three statements are equivalent:
(i) 2.2,
(i) x=y;
(i) Z,.=2,.

Proof. Implications (ii)=>(iii) and (iii)=>(i) are trivial. We show (i)=>(ii). Suppose x#y
and choose an A€ R(S) with xe X\A, ye 4 (Remark 2.2). If feS with R(f)=A, then
feR\R,, so R.ER,, proving (i)=(ii). O

Define a map 6: X »{%,: xe X} via 6(x)=2,, each xe X.

Lemma 2.4. 0 is a bijection.

Proof. Clearly 0 is onto and Lemma 2.3 ensures 6 is 1-1. ]

Definition 2.5. Given distinct f}, f, €S let

.%fl'f2={res:f1r=f2r}.
Then &, ,, is a right ideal of S (possibly empty), which we call a function right ideal. O

We will show (Result 2.8) that there always exist distinct f,,f, in S such that Z, . is
non-empty. However %, , may be empty. Observe that given f, and f,,

refy,.;, il R)<s{xeX:fi(x)=f(x)}.
Hence if we choose f, and f, which are never equal, then #, . =®.

Let S, for example, be the Baer-Levi semigroup of type (1X|, |X]) [2], that is the
semigroup of all 1-1 transformations f such that |R(f)|=|X\R(f)|=|X| Note that § is
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%y-normal and choose f; €S, then X\R(f;)eR(S) (Lemma 1.2). If f,eS with R(f,)=
X\R(fl), then '%flvf2=q)'

The following notation applies to an arbitrary ¢y-normal semigroup S.

Notation 2.6. Let f,, f, be distinct transformations in S. Then

Dy, 5,={xe X: fi(x)# f2(2)}

and
Df,.f2={{f1(x)>fz(x)}1xE@fl.f2}~ O

Returning to semigroups of 1-1 transformations, we now derive relationships between
point right ideals and function right ideals.

Result 2.7. Let fi, f,€S with Z;  #®. Then

'%fl'f2= n ‘%x.

xe@l.l_f2

Proof. Let re#, ., thatis fir=for. f xe2, ., or fi(x)# fi(x), then xe X\R(r),
so re 4, and since this is true for each xe 9, , we conclude

or

Conversely, if

then for each y in R(r) we have ye X\9,, ., or f,(y)=f2(y) and hence fir= f,r, that is
r€Ry, s, SO

(\ Z.<%;, ¢,

2

which proves the desired equality. ]
Result 2.8. Given xe X there exist fi, f,€8 such that Z,=R;, i,
Proof. On account of Result 2.7 it is sufficient to construct f;, f; such that 2, , ={x}.
Observe that there exists an f in S with

[X\R(N)|z2.
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(For an arbitrary f in S\%y
|X\R(f?)|=|X\R(S)| +|X\R())|

and we replace f with f2).
Using the normality of R(S) (Lemma 1.2) choose an f in S with

xeX\R(f) and |X\R(f)|22
Let f(x)=y and ze X\R(f), z#x. If
g=(x,2)f(x,2)
then g(z) =y and ze X\R(g). We let

h=(y,2), fi=¢gf and fy=hgh™'f.

Then for each u#x:

filw=gfW=gh™'f(u), since f(w#y for u#x

and z¢ R(f);
since gh™Yf(w+y
=hgh™'f(u),
for f(u)#y
and z¢R(g);
= fo(w).
However
fix)=gf(x)=g(y)
while
f2(x)=hgh™f (x)=hgh™'(y) = hg(z) = h(y) =z # g(y),
since ze X\R(g). Hence f(x)+# f5(x) and 2, , ={x}. O

Result 2.9. Given f, and f, in S, &, ,, is a maximal function right ideal if and only if
|@-’l ,le = 1

Proof. Suppose #, ., is a maximal function right ideal, while x, V€D 1) XF)



190 INESSA LEVI

Then

It follows from Result 2.8 that there exist g, and g, with

3

91,02=

Ry
and so

%,hhg%,ﬁﬂ

91,92

a contradiction to the maximality of &, , . Hence |2, ,|=1.
For the converse, suppose 2, , ={x}, some xe X, while there exist g,,g,€S such
that
'%91,92 2'%»[1 S
Since
Ry 0,= () %,  (Result 2.7)
yeg’.'“z
we have
Ry=Ry, . 0,2%;, 1,=Rx (Result 2.7 again),

yed

.8

172

and so Lemma 2.3 ensures 9, , ={x}, that is
‘%91-52=‘%"='%f1-f2' O

Corollary 2.10. Given f, and f, in S, &, , is a maximal function right ideal if and
only if R, ,=R,, some xeX.

Proof. Follows from Results 2.7 and 2.9. O
We show now that each automorphism ¢ of § permutes point right ideals.
Result 2.11. Given xe X,
HR) =%,

for some ye X.
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Proof. Choose f, and f; in S such that &, , =2, (Result 2.8), then
HR) =%, ) =d({r: fir=for})
={¢(r): ¢(f1r) =P f21)}
={¢(r): (f1)$(r) = d(12)$(r)}
={r:¢(f)r'=d(f)r'}

= '%¢(f1),¢(fz)'

Now Corollary 2.10 ensures %, , is a maximal function right ideal, hence
Roir ) ot (= D2y, 1) is a maximal function right ideal, so there exists ye X such that

Roir)orn=2,  (Corollary 2.10)

and thus
R =Ry ), 00 =2y O

Define a map
n:{B:xeX}->{A, xeX}
via n(#,) = P(A,), each B, 8.
Lemma 2.12. 7 is a bijection.

Proof. That n is a mapping is the content of Result 2.11. Similarly by considering
the automorphism ¢ ~! we define a map

({ R :xeX}>{R,:xe X}

via {(,)=¢ N(X,), each &,<S.
Certainly, ( is the inverse of n and so 7 is a bijection. O

We now define a map
h:X—-X via h(x)=y, where n(#,)=4%, each xeX.
It is clear, that
h=0"116,

and so Lemmas 2.4 and 2.12 ensure h is a bijection of X. We call h the bijection
associated with ¢.
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Lemma 2.13. Given f€S,
R(¢(f))=hR(f)).

Proof. Observe that to show R(¢(f))=h(R(f)) it is sufficient to show that
X\R((f)) =h(X\R(/)),

because for the bijection h, h(X\R(f))=X\h(R(f)).
Now if xe X\R(f), that is feZ,, then ¢(f)en(Z&,) =Ry, 50 h(x) € X\R(¢(f)), or

h(X\R(f)) = X\R(¢(/))-

To show the reverse inclusion is true, observe that h™'=0"!5"'6 is the bijection
associated with ¢ ! and so the first part of the proof implies that given ge S,

h™ (X \R() = X\R(¢~'(2))-
In particular taking g =¢(f) we have i~ (X\R(¢(f))) < X\R(¢ ™ 1(¢(f))), or

h(X\R(f)) 2 X\R(¢(f)),
and the equality follows. ' O

We complete our study of automorphisms of ¥5-normal semigroups of 1-1 transform-
ations, that is, semigroups of Type 2, by presenting the following result.

Result 2.14. Let S be a $y-normal semigroup of 1-1 transformations (SE£%y). Then
each automorphism ¢ of S is inner, that is, for some he Gy

¢(f)=hfh~"', foreach feS.

Proof. Consider the bijection h associated with ¢ as defined prior to Lemma 2.13.
Take an arbitrary fe S, xeX and let f(x)=y. Choose A in R(S) with A+ X and xe A.
Let ze X\A and B=(A\{x}) U {z} € R(S) (Lemma 1.2). Choose p and ¢ in S such that
R(p)=A and R(g)=B.

Now R(p)\R(q)=A\B={x}, thus R(fp)\R(fq)={f(x)}={y}. Using Lemma 2.13 we
have:

R($(p)\R(¢(q) = {h(x)}

and

R(¢(SPI\R($(f ) ={h(y)}.

However

R($(/PI\R($(fq))= R(¢(S)d(P)\R($(/) ()
={d(Nh(x)},
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SO

d(Nh(x)=h(y)=hf(x), that is
¢(f)=hfh™". 0O

Remark 2.15. The fact that every %y-normal semigroup of 1-1 transformations
possesses only inner automorphisms was first established by B. M. Schein [8,9]. We
understand that his proof, based on the study of ordered sets of ranges, is quite different
from ours. 0

3. ¥x-normal constant-free semigroups containing a transformation which is not 1-1

Let S be a ¥x-normal constant-free semigroup containing a transformation which is
not 1-1. We prove that all automorphisms of S are inner. We start by showing that
R(S) contains only sets of cardinality |X|.

Lemma 3.1. If S is a 9x-normal constant-free semigroup, then |R(f)|=|X

,each feS8.

Proof. Suppose there is an f in S with |[R(f)|=a<|X|, that is |n(f)|=|R(f)|=a. We
show that there exists an A en(f) with |4|=«. The result is clear when « is finite. Hence
assume « is infinite and denote by a* the cardinal successor of «. Then either «* =|X|
(and so |X| is regular [7,21.14]) or there exists f<|X|, f=a* (and so B is regular
[7,21.14]). The assumption that each Aen(f) has a cardinality less than a implies that
|[un(f)|<|X| or |un(f)|<B<|X| respectively [7,21.18], a contradiction. Hence we can
choose an Aen(f) with |4|Z« and a BeR(S) with BcA and |B|=« (Lemma 12)
together with a ge S such that R(g)=B. Then |R(fg)|=1, so that fg is a constant map
in S, a contradiction which proves |R(f)|=|X|. 0

Let &, be the set of all'doubletons in X.
Definition 3.2. Given Ae %, A={a,,a,}, let
& ,={leS: la,)=Na,)}.
Then £, is a left ideal of S which we call a point left ideal. O

Lemma 3.3. For each Aec%, L +.

Proof. Choose a map f in S which is not 1-1, say f(x)= f(y) for distinct x,ye X. If
he %y is such that {h(x),h(y)}=A then hfh e Z,. O

EMS. - D
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Lemma 34. Given A, Be %, the following three statements are equivalent:
() L,<Zs
(i) A=B;
(ii) &£ ,=L5.

Proof. Implications (ii)=>(iii) and (iii)=(i) are trivial. We show (i)=>(ii).

Let B={b,,b,} and suppose A+#B, say b, € B\A. Choose an le #, (Lemma 3.3)
and let xe R()\I(A U B) (note: |X|=|R()|>|l(4 L B)|, Lemma 3.1). If ye X is such that
I(y)=x, let h=(by,y) and f=hlh~!. We show fe.¥%,\¥p. That fe £, follows from the
fact that h moves only points b, and y, which are not in 4. To show that f¢.%,,
observe that f(b,)=hlh~'(b,)=hl(y)=h(x), while f(b,)=hlh~*(b,)=hi(b,), because
b,#y (else x=I(y)=I(b,)=I(B), contrary to the choice of x). Hence f(b,)+# h(x), because
I(b,)=IB)#x. Thus f(b,)# f(b,) and fe %

Define a map 6: #,—{¥L . Ae P} via §(A)=L,, each Ae 2,
Lemma 3.5. § is a bijection.
Proof. Clearly ¢ is onto and Lemma 3.4 ensures ¢ is 1-1. O

Definition 3.6. Given distinct f}, f,€S let

gfl‘f2={lESZlfl=lf2}.

Then Z, . is a left ideal of S (possibly empty, see Example 3.7 below), which we call a
Junction left ideal. O

We will show (Result 3.10) that for each %y-normal constant-free semigroup S
containing a transformation which is not 1-1 there exist fi, f,€S with £, . #®. In
general, the question of whether f, f,eS generate a non-empty &, ., is the question

of whether the equation If, =If, has a solution [ in S. The example below illustrates
that &£, . may be empty.

Example 3.7. Let S be the dual Baer-Levi semigroup of the type (|X|,|X]) [1], that is
the semigroup of all onto mappings f such that |f~'(x)|=|X| for each xeX. Certainly
S is ¥x-normal. Assume X =N, so that |X|=N,. Fix an arbitrary f, €S and let

A =n(f)={A, A5, As,...}."

Partition each 4;€. such that 4,=A4;0 A}, |A4j|= A}

13

=N,. Let & be the partition of X
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given by
B={A}, A] 0 Ay A30 AS,... ).

Since 4 is a partition of X into ¥, sets, each of cardinality X,, #en(S), and so there
exists f,€8 with n(f;)=%. Suppose le %, [, thatis If;=I1f, and let I ,(A4;)=x. Then
because of the choice of # we have the following chain of equalities:
x=1fi(4,)=1fi(A]) =1f,(4])=1f(45) =1f(45) =1f,(4;)=. ..
thus
x=1fi(4,)=1fi(4;)=...,

that is R(If,)={x} and If, is a constant in S, contradicting the construction of S, so
that £, . =®. (]

Recall that 9, . and D, . (Notation 2.6) were defined for an arbitrary ¥x-normal
semigroup S (f;, f,€S). The following remark is an immediate consequence of the
definition of D, ...

Remark 38. Let f},f,€S, then D, , <%,. d

We proceed with two results deriving relationships between point left ideals and
function left ideals. ’

Result 3.9. Let f; and f, be distinct elements of S, and ¥, #®. Then

gfl'j.z:Aep ag’A.

10d,

Proof. Let leZ, [, thatis, Ifi=If, and so for each xe2, , we have Ifi(x)=
1fy(x) (recall fi(x)# f(x)) s0 1€ L s () ryxy @nd since this is true for each xe P, |
we conclude

le N Lywsn= () ZLa of Zp s (| 2y
xeﬂf I AeDf ! AeDJ. I

1”72 1"72 1772

Conversely, let /e nAsD, s % 4, then for each xe 9, ., 1fi(x)=1f,(x). Now for each
y¢Dr,.1, We have fi(y)=f5(y), so we deduce If, =1f,. That is,

le&, ,, and AREATTE

AED’:":

which proves the desired equality. O
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Result 3.10 Given an A€, there exist f; and f, is S such that
gA - ‘gfx,fz'
Proof. On account of Result 3.9 it is sufficient to construct f; and f, such that

Dflvfz_—-{A}'

Choose an f in %, (Lemma 3.3) and let f(4)=z. Let A={a,,a,}. Since S is
transitive (Result 1.3) there exists g in S such that g(z) =a,. Let h=(a,,a,) and

fi=gf; fo=hfih™ L

Since h moves only points in A and f, e £, (¥, is a left ideal), we conclude f,=hf,.
For each xe X\ f{ }(4) we have:

[H(x)=hfi(x)= fy(x),
s0 D, ;< f7 (). Now if xe f71(A), that is fy(x)=aj, i=1,2, then
. filx)=a;#h(a) =hf,(x)= fy(x),
hence @;, ;,2 1 (4). We conclude

Ds,.5,= 11 (A).

Thus
D, ., ={{fi®), f(®}:xeD,, ;)} (Notation 2.6)
={{/i(x), (0} x€ fT ' (A)}
={{a,ha)}: =12}
={{a1,a:}}
={4},
as required. a

Result 3.11. Given distinct f, and f, in S, £  , is a maximal function left ideal if
and only if D, ;|=1.

Proof. Let £, . be a maximal function left ideal and suppose A,BeDy, ., A#B.
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Then A, Be %, (Remark 3.8). Hence

g-’l'fZ =CED gc (RCSUlt 3.9)

[

1’72

SLNLg
cL, (Lemma 3.4)

=Y

9192

(Result 3.10),
for some distinct gy, g, €S, contradicting the maximality of £, . . Hence |D I fz| =1.
Conversely, suppose D ,2={A}, some A €%, while there exists a function left ideal
2, .4, (81,82€S) such that
&£ 2 gfl' S

g1+:82~

Since %

91,92

=(\sen,, ,,Zs (Result 3.9) we have

m $B=$

g1,892 —2—-
BeD
9,9,

Lsri=Za (Result 3.9 again),

and so Lemma 3.4 ensures D, , ={A}, thatis

g

£

01-02=

gA:gfl‘fl' O

Corollary 3.12. Given f, and f, is S, %, ,, is a maximal left function ideal if and
only if £, . =%, some A€ P,

Proof. Follows from Results 3.9 and 3.11. O
We show now that each automorphism ¢ of S permutes point left ideals.
Result 3.13. Given Ae %,

WL ) =ZLs,

for some Be%,.
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Proof. Choose f; and f; in S such that &, . =<2, (Result 3.10), then

WL D)=ZLs, )=d({L1fi=1f>})
={o(D: ¢(1f) =13}
={¢(D: 6(D(f1) = S()(f2)}
={I:I'o(f)=1'd(/)}
=2 o )65

Now Corollary 3.12 ensures £, is a maximal function left ideal, hence Ly ;) o(r,)
(=é(Z;,,s,) is a maximal function left ideal, so there exists Be % such that

Lonoup=<Lrs (Corollary 3.12).
We conclude
HED=Los.on=Zs o
Define a map
Ly Ae P} { L AeP}
via u(& ) =(Z,), each Z ,<S.
Lemma 3.14. pu is a bijection.

Proof. That u is a mapping is the content of Result 3.13. Similarly by considering
the automorphism ¢ ~! we define a map

E{L AP} {L AP}

via §L)=¢ Y(&,), each ZL,<=S. Certainly, ¢ is the inverse of u and so u is a
bijection. O

We now define a map
AP—-P, via MA)=B, where WL, )=%Lp5 ecach Ae,.
It is clear that

A=0"1pd,
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and so Lemmas 3.5 and 3.14 ensure 4 is a bijection of %,. We call A the bijection of %,
associated with ¢.
We show that A is induced by a bijection h of X, that is

MA)=h(A),

for each Ae%, Note here that not every bijection of % is induced, as shown in
Example 3.15 below.

Example 3.15. Fix 4 and C in %, A#+C and let 2 be a bijection of %, which
interchanges 4 and C and the identity otherwise. Choose Be%,, B={x,y} such that
xeA\C and ye X\(4u C). Note AnB={x} and Bn C=®. Suppose 4 is induced by
he %y, then

h(x)=h(A A B)=h(A) ~ i(B)= X (A) ~ A(B)=C n B=.
Thus 4 is not induced. O

Observe that in the example above we had 2, a bijection of %,, such that
|4~ B|#|M(A) N A(B),
for some A4, B in %,. This leads us to a criterion for a bijection 1 of %, to be induced.

Result 3.16. Let A be a bijection of &#,. Then A is induced if and only if |AnB|=
|/1(A) N l(B)|,for every A,Be%,.

Proof. If A is induced by an he %y, then for every A,Be%, |AnB|=|WAnB)|=
[h(A) Vh(B)| = |A(A) A A(B)|.
For the converse suppose that 4 is a bijection of % such that for every 4,Be %,

|4 ~ B|=|A(4) n A(B). *)

We show that A is induced. This is done in the following three steps.

1. Given x€ X there exists a unique ye X such that for every A,Be %, with A B={x}
we have A(A) n A(B)={y}.

Take a pair A, B in %, with An B={x}, then by the assumption (*) A(4) " A(B)={y},
for some ye X.

Take any other pair C,D in %, with |C A D|=1 and let # =%, be such that:

(o) for every distinct Fy,F,e &, |F,nF,|=1;
() for any FeZ,|AnF|=|BnF|=|CnF|=|DnF|=1.
We show:
C N D={x} iff there exists an & (as described above) with |#|=|X|.

Let AUBUCUD=E, then |E|<8 and |X\E|=|X|.
Assume firstly that C n D={x} and let # ={{x, y}: ye X\E}. Then & satisfies («) and
(B) and |#|=|X\E|=|X]|
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For the converse assume CnD={z}, z#x and # =, satisfies («) and (B). For each
Fe& we have |E n F|> 1. (If not, then

" |[EnF|=[(AuBUCUD)AF|
=[(AnF)u(BAF)u(CAF)u(DNF)|=L
Using condition (ff) we conclude:
AnF=BNnF=CnF=DnF=AnB={x},
or C nD={x}, a contradiction).

Define a map v: # -%(E), where Z(E) is the power set of E, via v(F)=En F, each

Fe# We show v is 1-1. Suppose F(, F, e % with v(F,)=v(F,). Then
1<|[EAF,|=|EnF, A F,|<|F,nF,,
so that |F;nF,|>1, thus F,=F, (condition (x)). However #(E) is finite, so
|7 | < |P(E)| <Ry, or |#|<|X|. We conclude CnD={x}.

Observe now that the definition of the set # depends on.the sets A,B,C and D. We
denote this dependence by & =%(4, B, C, D). Hence C n D={x} iff 3% (A4, B,C, D) with
|# (A, B,C,D)|=|X| iff 3F(M(A), AB), (C), (D)) with |F(X(A), AB), AC), (D))|=|X| (as-
sumption (*))

iff AC) N A(D)={y}.

Now define a map

h: X > X via {h(x)} = A(A) n A(B), where {x}=A N B, for A,Be %, and each xe X.

2. h is a bijection of X.

That h is well-defined is the content of step 1. Observe that the bijection A~1 of &, is
associated with the automorphism ¢~'. By considering ¢ ! and 2~ instead of ¢ and 1
we define a map k: X—>X via {k(x)}=1"'(A4) n 17!(B), where {x}=AN B, for A,Be%,
and each xe X. Then for each xe X

{kh(x)} =k(A(A) N A(B)), where A B={x}
=2"1(A) A A" 1A(B)
=AnB
={x}.

Similarly we can show hk(x) =x, for each xe X. Thus k is the inverse of h, and so his a
bijection of X.



AUTOMORPHISMS OF NORMAL TRANSFORMATION SEMIGROUPS 201

3. Ais induced by h.

To show 4 is induced by h we must show A(4)=h(A) for each A€, From the
definition of h we at once have h(4)=A(A). Take ye A(A4) and let Be%, be such that
AA) " A(B)={y}. Then A~ B={x}, some x€ A4, so h(x)=y and h(A)2(A). The equality
follows. O

Remark 3.17. In view of Result 3.16 our aim now is to show that for every A, Be %,
|4~ B|=|4(4) n A(B)| *)

where 1 is the bijection of %, associated with ¢ as defined prior to Example 3.15.
Observe that (*) is equivalent to the statement

|AnB|=1 ifand onlyif |A(d)AB)|=1, **)
for each A, Be %,.
Indeed (*) certainly implies (**). We show the reverse implication.
Assume (**) holds. If |4 N B|=2, that is 4= B, then A(4)=A(B), and so |/(4) N X B)|=2.
If |4~ B|=1, then by our assumption |4(4) N A(B)|=1. The case |4 n B|=0 follows by

elimination. 0O

The next lemma illustrates the fact that the existence of a transformation f in S which
is not 1-1 provides an extensive variety of elements in n(S).

Lemma 3.18. Given B,,B,=X with B,nB,=® and |B,|=|B,|=3 there exists an
o en(S) with By A,ef, B, A,e.

Proof. Suppose that there exists a transformation f in S such that:
C.,Cren(f) and |C,|,|C,23.
Choose a bijection p of X with
B,=p(C,) and B,<p(C,).
Certainly pfp~'eS. Let
A =n(pfp~ ' N=p(n(f)), A, =p(C,) and A,=p(C,),

then A,,A,e/ en(S) and B,<A4,, B,<A,.

To construct such an f as used above we first show that there exists a g in S such

that

g(x,)=g(x,)=g(x3)=x,, for some distinct x,,x,,x;€X.
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Choose a t in § not 1-1 and let x, x;, x,€ X be such that
t(x,)=tx,)=x.
We assume x=x, (for if x#x; choose seS such that s(x)=x, (Result 1.3) and replace ¢

by st). Let x, € R()\{t™*(x,)} (note: R()\{t~(x,)} # D, else ¢? is a constant in S) and let
x5 € X such that #(x;)=x4. Then

g=(x2’ x4)t(x2, X4)t
is such that g(x,) =g(x,)=g(x3)=x,.
To accomplish the construction of the above f choose distinct z,,z,,z; in
R(g)\{g~'(x,)} together with y,,y,, y;€X such that g(y)=z, i=1,2,3. Let
k=(x1,21)(x2,2.)(x3,23) €9y and f=kgk™'g.
Let kg(z,)=z,. Then

F(x)=f(x2)=f(x3)=24
and

JI=1)=1f(y3) =z,

Now z, #z, (else kg{z,)=z, implies g(z,)=x, or z, eg~(x,), contrary to the choice of
z,). Let Cy = f " Y(z,), C,= f~*(z,). Then |C,|,|C,|23 and C,,C,en(f) as required. [

Remark 3.19. It easily follows from Lemma 3.18 that
L,NLpgFD,
for every A,Be%,. d

Lemma 3.20. Let A,Be?,, A+ B. Then |AnB|=1 iff there is a C in #,, C+ A or B,
such that £ ,Nn Ly< Ze.

Proof. Assume |A N B| =1 and let C=(AuB\AnB). For each | in £, NPy
(Remark 3.19):

I(A)=l(An B)y=I(B)=Il(Au B)=I(C),
so that le Xcand L, N L= Z.
For the converse suppose AN B=® and Ce%, is distinct from A and B. Let C=
{cy1,¢,}. Since [An C|£1 and |B C|<1 assume without loss of generality that ¢, e X\B

and ¢, € X\ A. Choose

Len(S) with Au{c}cA,ed,Bu{c,}cA,e and A;#A, (Lemma 3.18).
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If Ie S has a(l)= .o/, then le(¥ , N L)\ L.
This confirms that |4~ B|=1. a

Lemma 3.21. Let A, B and C be distinct elements of %,. Then
QAHQBEQC l[f QA(A)('\Q;_(B)E,?;‘(C).
Proof. Observe that ¥, n Z 5+ ® (Remark 3.19) and

L NFpsPe Mt (L0 L) SO L)
Now
HEL4NER) =L )N YLB) =L say " ZL i)
by the definition of A. Also ¢(ZL¢) =L ;) so that
HLNE=sP L) Wl LynnZLupmSLucy
and the desired equivalence is established. d
Result 3.22. Given A and B in %,
|AnB|=1 ifand only if |XA)A(B)|=1.
Proof. We have:
|AnB|=1 iff 3C+#4 or B such that £, " £ L (Lemma 3.20)
iff 3 MUC)+#A(A) or A(B) such that L; N L5 S L)
(4 is a bijection and Lemma 3.21)

iff |A(4) " A(B)|=1 (Lemma 3.20 again). O

From Results 3.16, 3.22 and Remark 3.17 we readily deduce

Result 3.23. 1 is induced by a bijection of X. O

Now we are ready to show that a constant-free %;-normal semigroup containing a
transformation which is not 1-1 (that is a semigroup of Type 3), possesses only inner
automorphisms.

Result 3.24. Let S be a constant-free 4 y-normal semigroup containing a transformation
which is not 1-1. Then each automorphism ¢ of S is inner, that is for some he %y

¢(f)=hfh™', for each fe€S.

Proof. Let h be the bijection which induces 4 (Result 3.23). In what follows we use
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the fact that for any distinct x,,x,€ X

d)(z(xl,xz)) = gz({xl 7S -g(h(x,),h(xz))-

Take an arbitrary feS, xe X and let ye X with f(x)# f(y) (that is f ¢.Z,, ). Then

(L {f(x), f(yn) =% the(x), hf ()}

Let ¢(g) €L s ro)- Then geLipy son Or gf(x)=gf(y). It follows that
Pgfe& th(x), k(¥ hence

d(@) (S h(x) = d(g)p(f)h(y).
Note that f ¢ .2, , implies ¢(f) ¢ AL, ,3) O A(f) € L uiny, niyy that is

(S )h(x) # d(SIA(y).

Thus @(g) € L 411, s0mey 2nd we conclude

¢($(f x). f (y))) =1 {OUIR(x), (NIM(YR-

This in turn implies

Z{hf @ hIONS "?(d’(f Wh(x), ¢(f)h(y)}

Hence {hf(x),hf(3)} ={$(f)A(x), $(f)h(y)} (Lemma 3.4).

Since the choice of y is independent of x (providing y# x) we conclude
¢(Ir(x)=hf(x), foreach xelX,
so that
d(f)=hfh™!, as required. 0

Conclusion

We return to
Theorem 1.1. Every automorphism of a 9x-normal semigroup S is inner.

Proof. If S is a semigroup of Type 1, that is, contains a constant transformation,
then we appeal to Sullivan [12, Theorem 1].

If S is a semigroup of Type 2, that is, a semigroup of 1-1 transformations, the result
is given in 2.14 and 1.4.

If S is a semigroup of Type 3, that is, a semigroup containing a transformation which
is not 1-1, then the result is given in 3.24.

This completes the proof of Theorem 1.1. O
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Remark. If X is a finite set and S is a semigroup of transformations of X which is
not contained in %y, then S is ¥y-normal if and only if all automorphisms of S are inner
[13].

However, this is not the case for an infinite set X. While, as we showed, every %,-
normal semigroup S has only inner automorphisms, there are examples [5] of
semigroups which are neither subsemigroups of %,, nor ¢,-normal, yet have only inner
automorphisms.
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