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1. Introduction and preliminaries

Let X be an infinite set, <&x be the group of all bijections of X and S be a semigroup
of total transformations of X with the composition of transformations / and g in S
defined by the formula

fg(x) = f(g{x)), where xeX.

We say that S is a cSx-norma\ semigroup if

1 = S, for all he<$x.

The full transformation semigroup Tx, the semigroups of all 1-1 and all onto
transformations and the group <SX itself, are examples of ^-normal semigroups.

If S is a ^-normal semigroup, then for each h e &x, the map (j) of S given by

<Kf) = hfh~1 (feS)

is an automorphism of S, specifically an inner automorphism of S. Our purpose is to
prove the following:

Theorem 1.1. Every automorphism of a ^x-normal semigroup is inner.

The subject of this paper was suggested to the author by G. R. Wood.
The question of whether inner automorphisms exhaust all automorphisms of a ^x-

normal semigroup has attracted the attention of a number of authors. In 1937 Schreier
[10] was the first to give a positive answer for Tx. Then Malcev [6] extended this result
to every ideal of Tx. Next Sullivan [12] generalized this work and confirmed that if a
semigroup contains all constant transformations (in particular if a ^-normal semigroup
contains a constant transformation) then it possesses only inner automorphisms, while
Fitzpatrick and Symons [3] showed this for a semigroup containing <SX. Schein [8,9]
discovered that a ^-normal semigroup of 1-1 transformations has only inner automor-
phisms (see [4] for the special case of Baer-Levi semigroups).

Our result subsumes all previously stated results for ^-normal semigroups and
describes completely all automorphisms of every ^-normal transformation semigroup.

185



186 INESSA LEVI

In this paper we use a technique which differs from those used by Sullivan [12] and
Schein [8,9]. The essence is the production of certain maximal right (Section 2) and left
(Section 3) ideals. We note a remarkable duality between properties of these right and
left ideals.

For the purpose of our proof we partition all ^-normal semigroups into three types:
1. Semigroups containing a constant map; and constant-free semigroups into:
2. Semigroups of 1-1 transformations; and
3. Constant-free semigroups containing a transformation which is not 1-1.
All automorphisms of semigroups of the first type are inner [12, Theorem 1], so we

can restrict our attention to constant-free semigroups.
We begin with some general notes on $x-normal semigroups.
For a function f:X^>X we denote the range of / by R(f) ( = f(X)) and the partition

of / by n{f){ = {r\x):x e *(/)}).
If S is an arbitrary semigroup of transformations, let

R(S) = {R(f):f 6 S} and n(S) = {n(f): feS}.

We say that R(S) (n(S)) is normal if for each he&x

h(R(S)) = R(S) (h(n(S)) = n(S)),

(by h(R(S)) we mean {h(A):AeR(S)} and by h(n(S)) we mean {h{st):s4en(S)}, where

Lemma 1.2. / / S is a (Sx-normal semigroup, then R(S) and n(S) are normal.

The proof is straightforward. •

We say that a semigroup S is trivial if S = {A^}, where Ax is the identity
transformation of X. In what follows S is non-trivial.

Result 1.3. Every ^x-normal semigroup S is transitive.

Proof. Take arbitrary x,y in X. We construct f in S such that f(x) = y.

Firstly let x and y be distinct and suppose there exists a geS with g(x) = z^x. If z = y
we let f=g, otherwise (y,z)g(y,z) is the required / ((y,z) denotes the transposition
interchanging y and z). To construct g, observe that since S is non-trivial there exists a
q E S together with distinct u and v in X such that q(u) = v. If u = x we let g = q, otherwise
g = (u,x)q(u,x).

Now suppose y = x, choose any p in S and let p(x) = w. If w = x we let f = p.
Otherwise choose teS with t(w) = x (using the first part of the proof), then / = tp takes
x to x as required. •

Remark 1.4. We exclude from our consideration ^-normal subsemigroups of &x,
since they are all subgroups of <&x, and hence have only inner automorphisms [11].
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2. ^-normal semigroups of 1-1 transformations

In this section S denotes a ^-normal semigroup of 1-1 transformations.

Definition 2.1. Let x e X and

&x = {reS:xeX\R(r)}.

Then 9tx is a right ideal of S, which we call a point right ideal. •

We will use the following observation based on the normality of R(S) (Lemma 1.2)
and the fact that S is not a subsemigroup of yx, that is R(S) contains proper subsets of
X.

Remark 2.2. Given x,yeX with x^y there exists an A in R(S) with xeX\A and
yeA. •

Lemma 2.3. Giuen x,yeX the following three statements are equivalent:

(i) * , £ * , ;
(ii) x = y;
(iii) ^ x = ^ r

Proof. Implications (ii)=>(iii) and (iii)=>(i) are trivial. We show (i)=>(ii). Suppose xj=y
and choose an AeR(S) with xeX\A, yeA (Remark 2.2). If feS with R(f) = A, then
/ e 9lx\9ty, so £ , £ £ „ proving (i)=»(ii). D

Define a map 8:X^-{@x:xeX} via 0(x) = ^?x, each xeX.

Lemma 2.4. 0 is a bijection.

Proof. Clearly 9 is onto and Lemma 2.3 ensures 9 is 1-1. •

Definition 2.5. Given distinct / i , / 2 e S let

Then ^/ , , / 2 is a right ideal of S (possibly empty), which we call a function right ideal. •

We will show (Result 2.8) that there always exist distinct fuf2 in S such that ^ / , , / 2 is
non-empty. However ^/1,/2 may be empty. Observe that given fl and /2,

/ l > / 2 iff R(r)

Hence if we choose / i and /2 which are never equal, then <%fi f =<f>.
Let S, for example, be the Baer-Levi semigroup of type (\X\, \X\) [2], that is the

semigroup of all 1-1 transformations / such that |/?(/)| = |Ar\.R(/)| = |Ar|. Note that S is
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^-normal and choose f^S, then .Y\rt(./i)eK(S) (Lemma 1.2). If f2eS with R(f2) =

l 2

The following notation applies to an arbitrary ^-normal semigroup S.
Notation 2.6. Let fu f2 be distinct transformations in S. Then

and

{ { , f 2 } . D

Returning to semigroups of 1-1 transformations, we now derive relationships between
point right ideals and function right ideals.

Result 2.7. Let fuf2sS with 0ts^Si+<$>. Then

xsi t,.f,

Proof. Let redtfitf2, that is f1r = f2r. If xe@fltfl, or /i(x) =£/2(x), then xe!\R(r) ,
so r e ^ x , and since this is true for each xeS>fij-2 we conclude

re f) »x

or

Conversely, if

re

then for each y in R(r) we have yeX\2fiif2, or f1(y) = f2(y) and hence /ir = /2r, that is
r e ^ / i > / 2 , so

I I % J 1 • •/ 2 '

which proves the desired equality. •

Result 2.8. Giuen xeX there exist / i , / 2 eS SMC/I that 0lx = 0ls^Si.

Proof. On account of Result 2.7 it is sufficient to construct fu f2 such that @/ltf2 — {x}.

Observe that there exists an / in S with
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(For an arbitrary / in S\SX

\X\R(f2)\ = \X\R(f)\ + \X\R(f)\

and we replace / with f2).
Using the normality of R(S) (Lemma 1.2) choose an / in S with

xeX\R(f) and \X\R(f)\^2.

Let f(x) = y and zeX\R(f), zf x If

g = {x,z)f{x,z)

then g{z) = y and zeX\R(g). We let

Then for each u =£ x:

fM=gf{u)=gh-lf[u), since f{u)±y for

and z$R(f);

since
= hgh-1f(u),

for

and z

= /2(«).

However

Mx)=gf(x)=g(y)

while

/2(x) = hgh ~ ̂ (x) = hgh - \y) = hg{z) = h(y) = z+g(y),

since zsX\R(g). Hence fl(x)^f2(x) and ^ / i > / 2 = {x}. •

Result 2.9. Giuen / t and f2 in S, 2&j s is a maximal function right ideal if and only if

Proof. Suppose ^/i,f1 is a maximal function right ideal, while x,ytS)fi fi, x=fy.
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Then

* / 1 > / 2 = « .p ^2 (R e s u l t 2 J)

^@x (Lemma 2.3).

It follows from Result 2.8 that there exist gt and g2 with

at —OS

and so

a contradiction to the maximality of 3$fi fi. Hence |^/, ,/2 | = l-
For the converse, suppose 3>fifi = {x], some xeX, while there exist gi,g2£S such

that

Since

*»i«2= fl *y (Result 2.7)

we have

f) ^ = ^ , ^ 2 ^ , , ^ = ^ (Result 2.7 again),

and so Lemma 2.3 ensures ^ 9 i 9 2 = {x}, that is

Corollary 2.10. Giuen / t and f2 in S, &fltf2 is a maximal function right ideal if and
only if &fij-2 = 3$x, some xeX.

Proof. Follows from Results 2.7 and 2.9. •

We show now that each automorphism $ of S permutes point right ideals.

Result 2.11. Given xeX,

for some yeX.
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Proof. Choose /j and f2 in S such that difuf2=Six (Result 2.8), then

, , . , , ) = 4>{{r. f , r = f2r})

Now Corollary 2.10 ensures ^/ , , / 2 is a maximal function right ideal, hence
,f)) is a maximal function right ideal, so there exists yeX such that

, 2 *> (Corollary 2.10)

and thus

#«») = *«/,>.«/,> = *,. D

Define a map

via ri(%J = $(&:), each ^ c S .

Lemma 2.12. f/ is a bijection.

Proof. That rj is a mapping is the content of Result 2.11. Similarly by considering
the automorphism <j>~1 we define a map

via t(@x) = 4>-l(@x), each ^ x s S .
Certainly, C is the inverse of q and so r\ is a bijection. •

We now define a map

/i:X-*Z via ft(x)=j', where r\{0lx)=0ly, each xeAT.

It is clear, that

and so Lemmas 2.4 and 2.12 ensure h is a bijection of X. We call ft the bijection
associated with (p.
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Lemma 2.13. Given feS,

Proof. Observe that to show R((f>(f)) = h(R(f)) it is sufficient to show that

x\m<t>(f))=KX\R(f)),

because for the bijection h, h(X\R(f)) = X\h(R(f)).
Now if xeX\R(f), that is fe0tx, then </>(/) e n(@x) = 3kh(x), so h(x) e X\R(<f>(f)), or

h(X\R(f))^X\R(4>(f)).

To show the reverse inclusion is true, observe that h~l = 9~in~i6 is the bijection
associated with </> ~1 and so the first part of the proof implies that given g e S,

In particular taking g = <Mf) we have ( i - ' ^ ^ l J D l c X W 1 (^(/))), or

and the equality follows. •

We complete our study of automorphisms of ^-normal semigroups of 1-1 transform-
ations, that is, semigroups of Type 2, by presenting the following result.

Result 2.14. Let S be a ^§x-normal semigroup of 1-1 transformations (S^^x). Then
each automorphism <j> of S is inner, that is, for some he(Sx

4>(f) = hfh-\ for each feS.

Proof. Consider the bijection h associated with 0 as defined prior to Lemma 2.13.
Take an arbitrary / e S , xeX and let f(x) = y. Choose A in R(S) with A =f= X and xeA.
Let zeX\A and B = (A\{x})u{z}eR(S) (Lemma 1.2). Choose p and q in S such that
R(p) = A and R(q) = B.

Now R(p)\R(q) = A\B = {x}, thus R(fp)\R(fq) = {f{x)} = {y}. Using Lemma 2.13 we
have:

and

However

R(<Kfp))\RMfq))=R(<Kf)<Mp))\R(<Kf)<Kq))

= {<Kf)Kx)},
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so

), that is

Remark 2.15. The fact that every ^-normal semigroup of 1-1 transformations
possesses only inner automorphisms was first established by B. M. Schein [8,9]. We
understand that his proof, based on the study of ordered sets of ranges, is quite different
from ours. •

3. ^-normal constant-free semigroups containing a transformation which is not 1-1

Let S be a 3?x-normal constant-free semigroup containing a transformation which is
not 1-1. We prove that all automorphisms of S are inner. We start by showing that
R(S) contains only sets of cardinality \X\.

Lemma 3.1. IfS is a cSx-norma\ constant-free semigroup, then \R(f)\ = \X\, each feS.

Proof. Suppose there is an / in S with |i?(/)|=a<|X|, that is |7i(/)| = |i?(/)| = a. We
show that there exists an Aen(f) with |/4|^a. The result is clear when a is finite. Hence
assume a is infinite and denote by <x+ the cardinal successor of a. Then either a+ = |Jf|
(and so |X| is regular [7,21.14]) or there exists /J<|^|, /? = a+ (and so ft is regular
[7,21.14]). The assumption that each Aen(f) has a cardinality less than a implies that
|U7t(/) |<|-^| o r | U 7 t ( / ) | < /*< |^ | respectively [7,21.18], a contradiction. Hence we can
choose an Aen(f) with \A\^a and a BeR(S) with B^A and |B| = a (Lemma 1.2)
together with a geS such that R(g) = B. Then |R(/g)| = l, so that fg is a constant map
in S, a contradiction which proves \R(f)\ = \X\. •

Let !?2 be the set of all doubletons in X.

Definition 3.2. Given A e ̂ 2, A = {au a2}, let

Then i£A is a left ideal of S which we call a point left ideal. •

Lemma 3.3. For each A e 0>2, ̂ CA ± <S>.

Proof. Choose a map f in S which is not 1-1, say f(x) = f(y) for distinct x,yeX. If
he&xis such that {h(x), h(y)} = A then hfh ~1 e <£A. •

E.M.S. D
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Lemma 3.4. Given A,Be0>2, the following three statements are equivalent:

(i) JS^SJS?,;
(ii) A = B;

(Hi) seA=seE.

Proof. Implications (ii)=>(iii) and (iii)=>(i) are trivial. We show (i)=>(ii).
Let B = {bub2} and suppose Aj=B, say i^eBVl. Choose an lei£K (Lemma 3.3)

and let x e R([)\l(A v B) (note: \X\ = \R(l)\ > \l(A u B)\, Lemma 3.1). If yeX is such that
l(y) = x, let h = (buy) and f = hlh~l. We show fe£eA\<eB. That fe&A follows from the
fact that h moves only points bl and y, which are not in A. To show that f^£CB,
observe that f(bl) = hlh-1(b1) = hl(y) = h(x), while f{b2) = hlh-\b2) = hl{b2\ because
b2j=y (else x =/(y) =/(fc2) = '(#), contrary to the choice of x). Hence f(b2) j= h(x), because

Thus AbJ^fib,) and /e i? B .

Define a map ^ : ^ 2 ^ { ^ : ^ e ^ 2 } via ^ ) = JS?̂ , each Ae0>2.

Lemma 3.5. 5 is a bijection.

Proof. Clearly 3 is onto and Lemma 3.4 ensures <5 is 1-1. •

Definition 3.6. Given distinct fu f2eS let

Then JS?/lf/2 is a left ideal of S (possibly empty, see Example 3.7 below), which we call a
function left ideal. •

We will show (Result 3.10) that for each ^-normal constant-free semigroup S
containing a transformation which is not 1-1 there exist fuf2eS with £Cfi fi^=(!>. In
general, the question of whether fu f2eS generate a non-empty &Sl,f2 is the question
of whether the equation //x = lf2 has a solution / in S. The example below illustrates
that ^f/,,/2 may be empty.

Example 3.7. Let S be the dual Baer-Levi semigroup of the type (\X\, \X\) [1], that is
the semigroup of all onto mappings / such that [/^(x^l-X"! for each xeX. Certainly
S is ^--normal. Assume X = N, so that |AT| = X0. Fix an arbitrary ^ e S and let

Partition each /1,-e.s/ such that A^A^uA", |/i;.| = y4"| = X0. Let $& be the partition of X
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given by

® = {A\, A'[ u A2, A"2 uA'3,...}.

Since @b is a partition of X into Ko sets, each of cardinality Ko, SB e n(S), and so there
exists f2eS with n(f2)=@. Suppose /e i? / i r / 2 that is \fx = \f2 and let ll(Ai) = x. Then
because of the choice of @ we have the following chain of equalities:

x = IMA,) = If Ml) = Wi) = IfiWz) = lfM'2) = lfi(A2) = ...

thus

that is R(lfl) = {x} and lfx is a constant in S, contradicting the construction of S, so
that J2V1>/2=<D. •

Recall that ^/1,/2 and £/,,/2 (Notation 2.6) were defined for an arbitrary ^-normal
semigroup S (fuf2eS). The following remark is an immediate consequence of the
definition of D / i / 2 .

Remark 3.8. Let f1,f2eS, then Dfi,fl^&2. U

We proceed with two results deriving relationships between point left ideals and
function left ideals.

Result 3.9. Let fx and. f2 be distinct elements of S, and J*?fi /2=£<b. Then

•2/,./,= n ^.

Proof. Let /eJSf/i/2, that is, lfi=lf2 and so for each xe@fitf2 we have lfi(x) =
If2(x) (recall /i(x)^=/2(x)) so ls£^{fi(x)ji(x)) and since this is true for each xs3)iiSi

we conclude

'e n ^ l M . ^ ) j = n * * or if / l> /2s n ^ -
xeB AsDr r AeD.

Conversely, let lef]AeD/ { 3?A, then for each xeS>fiJ-2, Ifi(x) = lf2{x). Now for each
,,/2 w e n a v e fi(y)=f2(y), so we deduce lfi = If2. That is,

l/2 and f) &A^#fl.f2,
AeD','>

which proves the desired equality. •
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Result 3.10 Given an AeSP2, there exist ft and f2 is S such that

•2'x = -^>/1,/2-

Proof. On account of Result 3.9 it is sufficient to construct ft and f2 such that

Choose an / in Z£A (Lemma 3.3) and let f(A) = z. Let A = {a1,a2}. Since S is
transitive (Result 1.3) there exists g in S such that g[z) = av Let h = (aua2) and

Since h moves only points in A and ft eJ?A (SCA is a left ideal), we conclude f2

For each xeX\fil(A) we have:

so @fitr2^fi\A). Now if xefi\A), that isfl(x) = ai, i=l,2, then

A(x) = fll^<i1) = */i(x) = /2(x)(

hence ^fltf2^fi1(A). We conclude

Thus

./2W}:*e®/ l t / l} (Notation 2.6)

as required. •

Result 3.11. Given distinct fx and f2 in S, •^>fl,/2 is a maximal function left ideal if
and only \f\Dfltf2\ = 1.

Proof. Let ^C/l,f2 be a maximal function left ideal and suppose A,BeDfi fi, Aj=B.
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Then A,Be^2 (Remark 3.8). Hence

f t = f| 2C (Result 3.9)
CeD. ,

<^<£A (Lemma 3.4)

= JS?,1.,1 (Result 3.10),

for some distinct gi,g2eS, contradicting the maximality of S£Si fi. Hence | 0 / / | = 1.
Conversely, suppose Dfi f2 = {A}, some Ae£?2, while there exists a function left ideal

Since Seait9i = []BeDg^B (Result 3.9) we have

^ , = ^ . , , 2 ^ , , ; , = ^ (Result 3.9 again),

and so Lemma 3.4 ensures DgiB2 = {A}, that is

*.>.*-** = * f»fr •

Corollary 3.12. Giuen / x and / 2 is S, ^ / , , / 2 is a maximal left function ideal if and
only ifyfl j - 2 = yA, some Ae0>2.

Proof. Follows from Results 3.9 and 3.11. •

We show now that each automorphism <$> of S permutes point left ideals.

Result 3.13. Given

for some Be&>2.
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Proof. Choose / t and f2 in S such that &fuf2 = £eA (Result 3.10), then

l,f) = <K{1- ' / i = if2})

Now Corollary 3.12 ensures ^ / , , / 2 is a maximal function left ideal, hence •#V(/
( = 0(jSfyiy2)) is a maximal function left ideal, so there exists Be^ 2 such that

% W l ) = ^ . (Corollary 3.12).

We conclude

^ ( ^ ) = ̂ ( / i ) , W 2 ) = ifB. D

Define a map

via fi(J?A) = <t>(&A), each jSf^^s.

Lemma 3.14. /x is a bijection.

Proof. That n is a mapping is the content of Result 3.13. Similarly by considering
the automorphism cj>~1 we define a map

via < (̂jSfJ = 0~1(JSfJ, each S£'A^S. Certainly, £, is the inverse of \i and so /x is a
bijection. •

We now define a map

A : ^ - * ^ via A(A) = B, where ^ ( ^ ' X ) = ^7B> each

It is clear that
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and so Lemmas 3.5 and 3.14 ensure A is a bijection of SP2. We call A the bijection of &2

associated with (j>.
We show that A is induced by a bijection h of X, that is

X(A) = h{A),

for each Ae^. Note here that not every bijection of S?2 is induced, as shown in
Example 3.15 below.

Example 3.15. Fix A and C in 0>2, A=fcC and let A be a bijection of 0*2> which
interchanges A and C and the identity otherwise. Choose Be^2, B = {x,j;} such that
x e /4\C and y e X\(A u C). Note X n B = {x} and B n C = <1>. Suppose A is induced by
h e ̂ x, then

h(x) = /i(/l nB) = h(A) n /i(B) = X(A) nX(B) = C n B = 0>.

Thus A is not induced. •

Observe that in the example above we had A, a bijection of &2, such^that

for some A,B in ^2. This leads us to a criterion for a bijection A of &2 to be induced.

Result 3.16. Let X be a bijection of 0>2. Then X is induced if and only if \A n B\ =
\X(A) n A(B)|,/or every A,Be0>2.

Proof. If A is induced by an he&x, then for every v4,£e^2, |4nB| = |/i(/inB)| =
/l)nft(B)| = |A(^)nA(B)|.
For the converse suppose that A is a bijection of ^2 such that for every A, B e SP2

\A n B\ = \X(A) n X(B)\. (*)

We show that A is induced. This is done in the following three steps.
1. Given xeX there exists a unique yeX such that for every A,BeSf2 with A n B = {x}

we have X(A) n X(B) = {y}.
Take a pair A,B in S>2 with AnB = {x}, then by the assumption (*) X(A) n X(B) = {y},

for some yeX.
Take any other pair C,D in SP2 with |CnD| = l and let J ^ c ^ be such that:

(a) for every distinct FuF2e^,|Fi n F 2 | = 1;
0?) for any Fe&,\AnF\ = \BnF\ = \CnF\ = \DnF\ = l.
We show:

Cr\D = {x] iff there exists an J5" (as described above) with |jf | = |x|.

Let / 4 u B u C u D = £, then |£ |^8 and pr\£| = p^.
Assume firstly that CnD = {x} and let & = {{x,y}:yeX\E}. Then & satisfies (a) and

(j8) and ^ l = | | | |
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For the converse assume CnD = {z}, zj^x and !F<=,5P2 satisfies (a) and (/?). For each
F e & we have |£ o _F| > 1. (If not, then

= \{A n F) u (B n F) u (C n F) u (£> n F)| ^ 1-

Using condition (/?) we conclude:

or CnD={x}, a contradiction).
Define a map v:&-*&(E), where SP(E) is the power set of £, via v(F) = EnF, each

F E J * : We show v is 1-1. Suppose F1,F2eJzr with v(F1) = v(F2). Then

1 < |£ n F j = |£ n Fx n F2| ̂  |Ft n F2|,

so that |F 1 nF 2 |> l , thus F1=F2 (condition (a)). However &{E) is finite, so
| # - | ^ ( £ ) | < K 0 , or |^ |< |X| . We conclude CnD = {x}.

Observe now that the definition of the set & depends on^the sets A, B, C and D. We
denote this dependence by &r = &r(A,B,C,D). Hence CnD = {x} iff 3 &{A, B, C, D) with
\&(A,B,C,D)\ = \X\ iff 3^W^),A(B),A(C),A(D)) with \^{X{A),k{B),X{C)A<iD))\ = \X\ (as-
sumption (*))

iff X{C)r\X{D) = {y}.

Now define a map

ft: X->X via {/J(X)} = l(^) n A(B), where {x} = An B, for A, B e &2 and each xeX.

2. h is a bijection of X.
That h is well-defined is the content of step 1. Observe that the bijection I'1 of SPZ is

associated with the automorphism <p~l. By considering <f>~1 and A"1 instead of <£ and X
we define a map k.X^X via {fe(x)}=A~1(/l) n l " 1 ^ ) , where {x}=AnB, for ^
and each xeX. Then for each xeX

{kh(x)} = k(X{A)nX(B))t where ,4nB = {x}

= X~1X(A)nX-lX(B)

Similarly we can show /ifc(x) = x, for each xeX. Thus fe is the inverse of h, and so h is a
bijection of X.
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3. X is induced by h.
To show X is induced by h we must show X(A) = h(A) for each Ae^2. From the

definition of h we at once have h(A)^X(A). Take yeX(A) and let Be^2 be such that
X(A) n X(B) = {y}. Then Ar\B = {x], some xeA, so JI(X) = J> and /i(,4) 2 A(,4). The equality
follows. •

Remark 3.17. In view of Result 3.16 our aim now is to show that for every A,B&2?2

\AnB\ = \X(A)nX(B)\ (*)

where X is the bijection of 0>2 associated with <j> as defined prior to Example 3.15.
Observe that (*) is equivalent to the statement

\AnB\ = l if and only if \X(A)nX(B)\ = l, (**)

for each A,Be0>2.
Indeed (*) certainly implies (**). We show the reverse implication.
Assume (**) holds. If \A n B\ = 2, that is A = B, then X(A) = X(B), and so \X(A) n X(B)\ =2.

If |/4nB| = l, then by our assumption \X(A) n A(B)| = 1. The case |y4nB| = 0 follows by
elimination. D

The next lemma illustrates the fact that the existence of a transformation f in S which
is not 1-1 provides an extensive variety of elements in n(S).

Lemma 3.18. Given BUB2£X with Bxr\B2 = Q> and |B1| = |B2| = 3 there exists an
with B1^A

Proof. Suppose that there exists a transformation f in S such that:

CuC2en{f) and I d ^ C ^ S .

Choose a bijection p of X with

B^piCJ and B2<=P(C2).

Certainly pfp'1 e S. Let

and A2=p(C2),

then AuA2esfen(S) and B^AU B2^A2.
To construct such an / as used above we first show that there exists a g in S such

that

g{xi)=g{x2)=gix3) = x1, for some distinct xux2,x3eX.
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Choose a t in S not 1-1 and let x,x1,x2eX be such that

We assume x = xt (for if x=^=xt choose seS such that s(x) = xt (Result 1.3) and replace t
by st). Let x4e/?(t)\{t~1(x1)} (note: R(t)\{rl{x1)}i=<^, else t2 is a constant in S) and let
x 3 eX such that r(x3)=x4. Then

g = (x2,x4)t(x2,x4)t

is such that g(x1)=g(x2)=g(x3) = xl.
To accomplish the construction of the above / choose distinct zuz2,z3 in

Hxi)} together with yl,y2,y3eX such that g(y,) = z;, i=l,2,3. Let

/c=(x1,z1)(x2,z2)(x3,z3)e^ and f = kgk~ig.

Let fcg^^z^ Then

and

Now ZLJ=Z4 (else 'cg(z1) = z1 implies g(z!) = X! or z1Gg"1(x1), contrary to the choice of
zx). Let C1=/"1(zi) . C2 = f~l(zti). Then |C1|,|C2|^3 and C i . C j e ^ / ) as required. •

Remark 3.19. It easily follows from Lemma 3.18 that

for every A,BeSP2. D

Lemma 3.20. Let A,Be0>2, A± B. Then \AnB\ = l iff there is a C in 0>2,Cj=A or B,
such that <£A

Proof. Assume |/4nB| = l and let C = (Av B)\(An B). For each / in
(Remark 3.19):

= l(A nB) = l(B) = l(A uB)

so that leSec and SeA n <£B<^<£C.
For the converse suppose Ar\B = Q> and C e ̂ 2

 ls distinct from A and B. Let C =
{cx,c2}. Since \A n C\ ^ 1 and \B n C\ ^ 1 assume without loss of generality that cl eX\B
and c2 e XX^. Choose

with ^ u {cy)^A1es4,Bu {c2}^A2es/ and ^ !^>1 2 (Lemma 3.18).
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If leS has n(l)=jn?, then /e{&A n SeB)\Sec.

This confirms that \A n B\ = 1. D

Lemma 3.21. Let A,B and C be distinct elements of ^2- Then

J?AnJ?B^J?c iff ^ u l n ^ B 1 c ^ ( C ) .

Proof. Observe that ^An^B + <D (Remark 3.19) and

J?AnJ?BzJ?c iff 4>(i^ni?B)E<H^c).

Now
<K#A n <?B) = <\>{S£A) n 4>{S£B) = <£X(A) n J?l{B),

by the definition of X. Also (t>(^Cc) = ̂ WY s o t n a t

^ . n ^ c ^ ) iff ^m)n^XiB)z£CMC),

and the desired equivalence is established. •

Result 3.22. Given A and B in 0>2,

\AnB\ = l if and only if \l(A) n X{B)\ = 1.

Proof. We have:
|4 n B\ = 1 iff 3 C j= A or B such that =Sf A n &B £ &c (Lemma 3.20)

iff 3 X(C) ± X(A) or X(B) such that &MA) n &X(B) S ^ A ( C )

(A is a bijection and Lemma 3.21)

iff \X(A)nX{B)\ = l (Lemma 3.20 again). •

From Results 3.16, 3.22 and Remark 3.17 we readily deduce

Result 3.23. X is induced by a bijection of X. •

Now we are ready to show that a constant-free ^-normal semigroup containing a
transformation which is not 1-1 (that is a semigroup of Type 3), possesses only inner
automorphisms.

Result 3.24. Let S be a constant-free ^x-normal semigroup containing a transformation
which is not 1-1. Then each automorphism (j> ofS is inner, that is for some

\ for each feS.

Proof. Let h be the bijection which induces X (Result 3.23). In what follows we use
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the fact that for any distinct xux2sX

Take an arbitrary feS,xeX and let yeX with f{x)J-f(y) (that is f^£C{x<y]). Then

Let <p{g)E(p(^'{fix)ifiy))). Then gei?(/(x)j /(>)) or g/(x)=g/(y). It follows that
),*o-)}, hence

Note that f^Se[x,y) implies <£(/) $4>(Se{x<y)) or (/>(/) £ if{h(x),„,,,)), that is

Thus 4>(g)e£emfmxhlp(fWy)) and we conclude

This in turn implies

3?{hf(x), hf(y)) —

Hence {hf(x),hf(y)} = {4>{f)h(x),<P(f)h(y)} (Lemma 3.4).

Since the choice of y is independent of x (providing y =/= x) we conclude

<f>{f)h{x) = hf(x), for each x e l ,

so that
<p(f) = hfh~1, as required. •

Conclusion

We return to

Theorem 1.1. Every automorphism of a cSx-norma\ semigroup S is inner.

Proof. If S is a semigroup of Type 1, that is, contains a constant transformation,
then we appeal to Sullivan [12, Theorem 1].

If S is a semigroup of Type 2, that is, a semigroup of 1-1 transformations, the result
is given in 2.14 and 1.4.

If S is a semigroup of Type 3, that is, a semigroup containing a transformation which
is not 1-1, then the result is given in 3.24.

This completes the proof of Theorem 1.1. •
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Remark. If AT is a finite set and S is a semigroup of transformations of X which is
not contained in yx, then S is ^-normal if and only if all automorphisms of S are inner
[13].

However, this is not the case for an infinite set X. While, as we showed, every gx-
normal semigroup S has only inner automorphisms, there are examples [5] of
semigroups which are neither subsemigroups of ^Sx, nor ^-normal, yet have only inner
automorphisms.
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