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ABSTRACT

We extend the methods of Wiles and of Taylor and Wiles from GL, to higher rank unitary groups and establish
the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge—Tate numbers), minimally ramified,
l-adic lifts of certain automorphic mod / Galois representations of any dimension. We also make a conjecture about the
structure of mod / automorphic forms on definite unitary groups, which would generalise a lemma of Thara for GLs.
Following Wiles’ method we show that this conjecture implies that our automorphy lifting theorem could be extended to
cover lifts that are not minimally ramified.

1. Introduction

In this paper we discuss the extension of the methods of Wiles [W] and
Taylor-Wiles [TW] from GLy to unitary groups of any rank.

The method of [TW] does not extend to GL, as the basic numerical co-
incidence on which the method depends (see Corollary 2.43 and Theorem 4.49
of [DDT]) breaks down. For the Taylor-Wiles method to work when considering

a representation
r: Gal(F/F) — G(Q,)
one needs

[F: Q](dimG — dimB) = Z H’(Gal(F,/F,), ad’7)

v|oo

where B denotes a Borel subgroup of a (not necessarily connected) reductive group
G and ad’ denotes the kernel of the map, ad — adg, from ad to its G-coin-
variants. This is an ‘oddness’ condition, which can only hold if I is totally real
(or ad” = (0)) and 7 satisfies some sort of self-duality. For instance one can expect
positive results if G = GSp,, or G = GO(n), but not if G = GL, for n> 2.

In this paper we work with a disconnected group ¥, which we define to be
the semidirect product of GL, x GL; by the two element group {1, j} with

1

Je wy =W .
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The advantage of this group is its close connection to GL, and the fact that Galois
representations valued in the /-adic points of this group should be connected to
automorphic forms on unitary groups, which are already quite well understood.
This choice can give us information about certain Galois representations

r: Gal(F/F) — GL,(Q)),

where F is a CM field. If ¢ denotes complex conjugation then the representations
r which arise all have the following property: There is a non-degenerate symmetric
pairing (, ) on Q) and a character x : Gal(F/F) — Q/ such that

(o, coc™y) = x(0){x, )
for all o € Gal(F/F). Let F* denote the maximal totally real subfield of F. By
restriction this also gives us information about Galois representations

r: Gal(F/F*) — GL,(Q))

for Whi(il there is_ a non-degenerate bilinear form (, ) on Q’; and a character
x : Gal(F/F*) — Q) such that

(9, 0) = x(0)(x,)

and
(ox, 09) = x(0)(x,)

for all o € Gal(F/F™").

In this setting the Taylor-Wiles argument carries over well, and we are able
to prove R =T theorems in the ‘minimal’ case. Here, as usual, R denotes a uni-
versal deformation ring for certain Galois representations and T denotes a Hecke
algebra for a definite unitary group. By ‘minimal’ case, we mean that we con-
sider deformation problems where the lifts on the inertia groups away from /[ are
completely prescribed. (This is often achieved by making them as unramified as
possible, hence the word ‘minimal’.) That this is possible may come as no surprise
to experts. The key insights that allow this to work are already in the literature:

1. The discovery by Diamond [Dia] and Fujiwara that Mazur’s ‘multiplicity
one principle’ (or better ‘freeness principle’ — it states that a certain nat-
ural module for a Hecke algebra is free) was not needed for the Taylor—
Wiles argument. In fact they show how the Taylor-Wiles argument can
be improved to give a new proof of this principle.

2. The discovery by Skinner and Wiles [SW] of a beautiful trick using base
change to avoid the use of Ribet’s ‘lowering the level’ results.
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3. The proof of the local Langlands conjecture for GL, and its compatibility
with the instances of the global correspondence studied by Kottwitz and
Clozel. (See [HTT].)

Indeed a preliminary version of this manuscript has been available for many years.
One of us (R. T)) apologises for the delay in producing the final version.

We will now state a sample of the sort of theorem we prove. (See Corol-
lary 4.4.4.)

Theorem A. — Let n € Z>, be even and let | > max{3,n} be a prime. Let S be
a finite non-empty set of rational primes such that if ¢ € S then ¢ # 1 and ¢ 1 mod [ for
1=1,...,n Also let

r: Gal(Q/Q) — GSp,(Z))

be a continuous rreducible representation with the following properties.

1.1 ramifies at only finitely many primes.

2. 7|Ga1(@ Q) i crystalline.

3. dimg, ar'(r ®q, Bpr) Q0 = 0 unless i € {0, 1,....,n— 1} in which case it
has dimension 1.

4.1f ¢ € S then 1|, o, i unramified and | Q(](Frobq) has eigenvalues {og' : @ =
0,1,...,n—1} for some o.

S5.Af p ¢ SU{L} is a prime then r(lg,) is finite.

6. The image of r mod [ contains Sp,(F)).

7.rmod [ arises from a cuspidal automorphic representation 1wy of GL,(A) for which
0,00 has trivial infinitesimal character and, for all q € S the representation 7, , 15
an unramified twist of the Steinberg representation.

Then r arises from a cuspidal automorphic representation 7w of GL,(A) for which my
has trivial infinitesimal character and 7w, 15 an unramified twist of the Steinberg representation.

We also remark that we actually prove a more general theorem which among
other things allows one to work over any totally real field, and with any weight
which is small compared to /, and with 7 with quite general image. (See The-
orems 4.4.2 and 4.4.3))

Let us comment on the conditions of this theorem. The sixth condition is
used to make the Cebotarev argument in the Taylor-Wiles method work. Much
weaker conditions are possible. (See Theorem 4.4.3.) One expects to need to as-
sume that r is de Rham at /. The stronger assumption that it be crystalline and
that the Hodge-Tate numbers lie in a range which is small compared to [ is
imposed so that one can use the theory of Fontaine and Laffaille to calculate
the relevant local deformation ring at /. The assumptions that r is valued in the
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symplectic group and that the Hodge-Tate numbers are different are needed so
that the numerology behind the Taylor-Wiles method works out. This is probably
essential to the method. The condition on 7|g,, for g €S says that the represen-
tation looks as if it could correspond under the local Langlands correspondence
to a Steinberg representation. The set S needs to be non-empty so that we can
transfer the relevant automorphic forms to and from unitary groups and so that
we can attach Galois representations to them. As the trace formula technology im-
proves one may be able to relax this condition. The condition that r(lg,) is finite
for p ¢ SU{/} reflects the fact that we are working in the minimal case. It is a very
serious restriction and seems to make this theorem nearly useless for applications.

Our main aim in this paper was to remove this minimality condition. Our
strategy was to follow the arguments of Wiles in [W]. We were not able to succeed
in this. Rather we were able to reduce the non-minimal case to an explicit con-
jecture about mod/ modular forms on unitary groups, which generalises Ihara’s
lemma on elliptic modular forms. We will explain this more precisely in a moment.
After we had made this paper public one of us (R. T.) found a new approach to
the non-minimal case, which bypasses Wiles’ level raising arguments and treats the
minimal and non-minimal cases simultaneously using a form of the Taylor-Wiles
argument. Thus in some sense this part of the present paper has been super-
seded by [Tay]. However we still believe that our present arguments have some
value. For one thing they would prove a stronger result. In [Tay] a Hecke algebra
is identified with a universal deformation ring modulo its nmilradical. This does not
suffice for special value formulae for the associated adjoint L-function. However
the method of the present paper would provide this more detailed information
and prove that the relevant universal deformation ring is a complete intersection,
if one assumes our conjectural generalisation of IThara’s lemma. In addition we
believe that our conjectural generalisation of Ihara’s lemma may prove important
in the further study of arithmetic automorphic forms on unitary groups.

To describe this conjecture we need some notation. Let F* be a totally real
field and let G/F" be a unitary group with G(FY) compact. Then G becomes an
inner form of GL, over some totally imaginary quadratic extension F/F*. Let v
be a place of F* with G(F') = GL,(F") and consider an open compact subgroup
U = ]_[w@oo U, C G( ;i”l Let [ be a prime not divisible by ». Then we will
consider the space o/ (U, F)) of locally constant functions

GEFH\G(AZ)/U — F.

It is naturally an admissible representation of GL,(F!) and of the commutative
Hecke algebra

T = Im(Q) F.[UNG(F!)/U,] — End(«/(U, ),
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with the restricted tensor product taken over places w 7# v for which the isomorph-
ism between G(F!) and GL,(F!) identified U, with GL,(0p+,). Subject to some
minor restrictions on G we can define what it means for a maximal ideal m of T
in the support of o7 (U, F) to be Eisensten — the associated mod/ Galois repre-
sentation of Gal(F/F) should be reducible. (See Section 3.4 for details.) Then we
conjecture the following

Conjecture B. — For any ¥, G, U, v and [ as above, and for any irreducible
G(F)-submodule

7 C (U, F)

either 7w 1s generic or i has an Eisensten prime of T n ils support.

In fact a slightly weaker statement would suffice for our purposes. See Sec-
tion 5.3 for details. For rank 2 unitary groups this conjecture follows from the
strong approximation theorem. There is another argument which uses the geometry
of quotients of the Drinfeld upper half plane. An analogous statement for GLy/Q
is equivalent to Ihara’s lemma (Lemma 3.2 of [I]). This can be proved in two
ways. Thara deduced it from the congruence subgroup property for SLo(Z[1/2]).
Diamond and Taylor [DT] found an arithmetic algebraic geometry argument. The
case of GLy seems to be unusually easy as non-generic irreducible representations
of GLy(F!) are one dimensional. We have some partial results when n = 3, to
which we hope to return in a future paper. We stress the word ‘submodule’ in
the conjecture. The conjecture is not true for ‘subquotients’. The corresponding
conjecture is often known to be true in characteristic 0, where one can use trace
formula arguments to compare with GL,. (See Section 5.3 for more details.)

An example of what we can prove assuming this conjecture is the following
strengthening of Theorem A.

Theorem G. — If we assume Comjecture B then Theorem A remains true without the
Assumption 5.

We remark that to prove this theorem we need Conjecture B not just for
unitary groups defined over Q, but also over other totally real fields.

We go to considerable length to prove a similar theorem where instead of as-
suming that 7 is automorphic one can assume that it is induced from a character.
(See Theorems 5.6.1 and 5.6.2.) Along the way to the proof of these latter the-
orems we prove an analogue of Ramakrishna’s lifting theorem [Ra2] for ¥,. (See
Theorem 2.6.3 and, for a simple special case which may be easier to appreciate,
Corollary 2.6.4.)

One of the problems in writing this paper has been to decide exactly what
generality to work in. We could certainly have worked in greater generality, but in
the interests of clarity we have usually worked in the minimal generality which we
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believe will be useful. In particular we have restricted ourselves to the ‘crystalline’
case. It would be useful, and not very difficult, to include also the ordinary case.
It would also be useful to clarify the more general results that are available in the
case n=2.

In the first chapter of this paper we discuss deformation theory and Galois
theory. We set up the Galois theoretic machinery needed for the Taylor-Wiles
method (see Proposition 2.5.9) and also take the opportunity to give an analogue
(see Theorem 2.6.3 and Corollary 2.6.4) of Ramakrishna’s lifting theorem [Ra2]
for ¢,. In the last section of this chapter we go to considerable lengths to prove
a version of this lifting theorem when the mod/ representation we are lifting is
induced from a character of a cyclic extension. This strengthening is needed to
prove modularity lifting theorems for these same mod / representations. (It will be
used to construct a lift whose restriction to some decomposition group corresponds,
under the local Langlands correspondence, to a Steinberg representation.) This
chapter was originally written in the language of deformation rings, but at the
referees’ suggestion we have rewritten it in Kisin’s language of framed deformation
rings to make it easier to read in conjunction with [Tay].

In the second chapter we discuss automorphic forms on definite unitary
groups, their associated Hecke algebras, their associated Galois representations and
results about congruences between such automorphic forms. In the final section
of this chapter we put these results together to prove an R =T theorem in the
minimal case (see Theorem 3.5.1). In the third chapter we use base change argu-
ments to deduce (minimal) modularity lifting theorems for GL, (see Theorems 4.4.2
and 4.4.3).

In the final chapter we discuss our conjectural generalisation of Ihara’s lemma
(Conjecture I), and explain how it would imply a non-minimal R =T theorem
(Theorem 5.4.1) and non-minimal modularity lifting theorems (see Theorems 5.5.1
and 5.5.2). In the last section we explain how to generalise these theorems to
some cases where the residual representation has a small image in the sense that
it is induced from a character. This is where we use the last section of chapter
one. Some of the results in this chapter depend on previously unpublished work
of Marie-France Vignéras and of Russ Mann. Marie-France has kindly written up
her results in an appendix to this paper. Russ has left academia and as it seems
unlikely that he will ever fully write up his results (see [Man2]) we have included
an account of his work in another appendix.

For the reader interested only in the main results of [Tay| and [HSBT], there
is no need to read Chapter 4 or the appendices of this paper. These other papers
do not depend on them. (There is also no need to read Sections 3.5 and 4.4.)

Finally we would like to express our great gratitude to the referees who did
a wonderful job. This paper is not only more accurate, but also (we believe) much
more readable thanks to their efforts.
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2. Galois deformation rings

2.1. Some algebra. — As explained in the introduction we are going to be
concerned with homomorphisms from Galois groups to a certain disconnected
group ¥,. In this section we define %, and make a general study of homomor-
phisms from other groups to ¥,.

For n a positive integer let ¥, denote the group scheme over Z which is the
semi-direct product of GL, x GL, by the group {1, j} acting on GL, x GL; by

1

e Wy = et w.

(If x is a matrix we write x for its transpose.) There is a homomorphism v :
¢, — GL, which sends (g, ) to u and j to —1. Let 4" denote the connected
component of ¥,. Let g, denote Lie GL, C Lie¥, and ad the adjoint action of ¥,
on @, Thus for x € g we have

(ad(g, ) (x) = grg™"

and

(ad())) () = —'.

We also write g? for the subspace of g, consisting of elements of trace zero. Over
Z[1/2] we have

g, = (0).
Suppose that T" is a group, that A is a subgroup of index 2. Whenever we
endow I' with a topology we will assume that A is closed (and hence also open).
Lemma 2.1.1. — Suppose that R is a ring and yy € I'— A. Then there is a natural
byection between the following two sets.

1. Homomorphisms r: T — 4,(R) that induce isomorphisms U/AN = 4,/4°.
2. Triples (p, i1, (5 ), where p: A — GL,(R) and p : T' — R* are homomorphisms
and

(,):R"xR"— R
s a perfect R lnear painng such that for all x,y € R" and all 6 € A we have
(%, p(r ) = =) (9, 1), and 11 (8)(x,9) = (p(8)x, P(MSyy ).
Under this correspondence pu(y) = (vor)(y) for all y € I', and
(x,0) = %A™Y,

where 1(Yo) = (A, —u(¥0))j. If T' and R have topologies then under this correspondence
continuous 1’s correspond lo continuous p°.
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Note that in the special case y; = 1 the pairing (, ) is either symmetric or
anti-symmetric.

If »: T — 9,(R), it will sometimes be convenient to abuse notation and
also use 7 to denote the homomorphism A — GL,(R) obtained by composing the
restriction of 7 to A with the natural projection 4’ — GL,.

Lemma 2.1.2. — Suppose that R is a ring and that (, ) s a perfect bilinear pairing
R" x R" = R, which satisfies

(x,9) = (=1, »).
Say

(%) ='x]y

Jor J € M,(R). Let dp/n : T'/A = {*1}. Suppose that p : T — R* and p : T —
GL,(R) are homomorphisms satisfying

(pW)x, p(Y)) = n(y)(x, )
Jor all y €T and x,y € R". Then there is a homomorphism
r: T — 94,(R)
defined by
r(8) = (p(8), n())
i de A, and
ry) = (W] (=D'u)y
if y e I' = A. Moreover
vor =8, .

Let us introduce induction in this setting. Suppose that I is a finite index
subgroup of I' not contained in A and set A" = A NI'. Suppose also that
x : ' > R* is a homomorphism. Let v : I" — ¥,(R) be a homomorphism
with vor = x| and A’ = (*) ' (GL,(R) x R*). Suppose ¥ € ' — A’ and that 7
corresponds to a triple (o', x|, (, )) as in Lemma 2.1.1. We define

LAY /.
Indp 37 : T = Gy (R)
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to be the homomorphism corresponding to the triple (p, x, {, )) where p acts by
right translation on the R-module of functions f : A — R” such that

S(©&'8) = p'(8)f ()

for all ¥ € A’ and § € A. We set

(o SY=D x®(F@).S (rdwy "))

SeA\A
This construction is independent of the choice of y, and we have
r.A.
Vo (Indr,ﬁA/X 7’) = X.

We will sometimes write Indg}x for IndII:;’AA’,X, although it depends essentially on A
as well as IV, T" and .
Now we consider the case that R is a field.

Lemma 2.1.3. — Suppose that k s a field of characteristic # 2 and that r : T —
G,(k) such that A =r""(GL, x GL)(k). If ce T — A and ¢* =1, then

dim; g~ = n(n + n(v o r)(c))/2
Jor n=1 or —1.
Progf. — We have r(c) = (A, —(vo1)(c))j where ‘A= —(or)(c)A. Then
g ={g e M,(H) : A —n(von(9)'(gA) = 0}.
The lemma follows. m]

Lemma 2.1.4. — Suppose that k 1s a field, that yo € I' — A, that x : ' = k> is
a homomorphism and that

oA —> GL,(k)

~

is absolutely rreducible and satisfies xp" = p'°. Then there exists a homomorphism
r: T — 9,(k)

such that r|a = (p, x1a) and 1(yo) € 4,(k) — GL,(k).
If a € k™ define

7o T —> 9,(k)
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by 1ala =p and, if y € U'— A and 1(y) = (A, 1) j, then
Ta(¥) = (A, 1) J.
This sets up a bijection between GL,(k)-comugacy classes of extensions of p to T — 94,(k)
and k* [ (k).
Note that vor, =vor. Also note that, if k s algebrawcally closed then r s unique up

to GL, (k)-comjugacy.
If T' and R have topologies and p s continuous then so is r.

Proof. — There exists a perfect pairing
(,Y: K" x K — k&

such that x(8){(p(8)7'x,7) = (x, p()/OS)/O_l)y) for all 6 € A and all x,» € £. The
absolute irreducibility of p implies that (, ) is unique up to A*-multiples. If we
set

(x,0) = (1, o))

then x(8){(p(8)~'x,») = (x, ,0()/05)/0_1))))’ for all § € A and all «x,y € £*. Thus

for some € € £*. As

()= x)(, )

we see that &2 = x(yy)%. The first assertion now follows from Lemma 2.1.1. For
the second assertion note that conjugation by a € £* C GL,(k) leaves p unchanged
and replaces (, ) by o*(, ). O

Lemma 2.1.5. — Suppose that T" 1s profinite and that
r: ' — 94,(Q)

is a continuous representation with A = r~'(GL, X GL)(Q). Then there exists a finite
extension K/Q, and a continuous representation

7T — 9,(0x)

which s GL,(Q)-conjugate to .
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Proof. — By the Baire category theorem, the image r(I") is a Baire space. It
is also a countable union of closed subgroups:

(D) = (D) n%,(K))
K

where K runs over finite extensions of Q; in Q,. Thus one of the groups 7(I") N
¢,(K) contains a non-empty open subset of 7(I'), and hence is of finite index in
r(T"). Tt follows that »(I') C ¥4,(K) for some (possibly larger) finite extension K/Q,.
A standard argument using the compactness of A shows that there is a A-invariant
Ok-lattice A C K". (Choose any lattice and add it to all its translates by elements
of A.) We may further suppose that the (, )-dual lattice A* contains A. (If not
replace A by a suitable scalar multiple.) Choose a maximal A-invariant Og-lattice
A* DM D A such that M* D M, and replace A by M. Then if A* DN D A 13
any A-invariant Ok-lattice with N/A simple, we must have N* NN = A. We con-
clude that A*/A must be a direct sum of simple Og[A]-modules. Replacing K by
a ramified quadratic extension and repeating this procedure we get a A-invariant
Ox-lattice A with A* = A. The lemma now follows from Lemma 2.1.1. O

Deformation theory works well for absolutely irreducible representations I' —
GL,(k). In the case of homomorphisms r: I' = %,(k) with A = '(GL, x GL,)(k),
it works well if 7|, is absolutely irreducible. However it seems to work equally well
in slightly greater generality. To express this we make the following definition. For
our applications to modularity lifting theorems and to the Sato—Tate conjecture
the case 7|n absolutely irreducible will suffice, so the reader who is only interested
in these applications can simply read “r[5 absolutely irreducible” for “Schur”.

Definition 2.1.6. — Suppose that k is a field and r: T — 9,(k) is a homomorphism
with A = "' (GL, x GLy)(k). Let yo € T —A. We will call r Schur if all irreducible A-
subquotients of k" are absolutely wrreducible and if for all A-invanant subspaces k" O W, D Wy
with k'/W1 and Wy wrreductble, we have

Wy (vor) 2 (K'/W)".
This s independent of the choice of yy.

Note that if 7|o 1s absolutely irreducible then 7 is certainly Schur.

Lemma 2.1.7. — Suppose that k is a field and r: T — 9, (k) i&s a homomorphism
with A = 1" (GL, x GL))(k). If r is Schur then the following assertions hold.

1.7r|a 15 semusimple.
2.If 7 : T — 4,(k) is another representation with A = (r)"'(GL, x GLy)(k) and

trr|a = trr'|a, then v s GL,(k*)-conjugate to r.
3. 1f k does not have characteristic 2 then g}; = (0).
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Proof. — We may suppose that £ is algebraically closed.
Choose yy € I' — A. Suppose that r corresponds to (7[a, i, (,)) as in

Lemma 2.1.1, and let V C & be an irreducible A-submodule. Then (£*/V+t)?
is isomorphic to VY(vor), and so we can not have V C V1. Thus #* =V @ V+
as A-modules. Arguing recursively we see that we have a decomposition

FEV, ...V,
and

(7>:<’>1J—-"J—<a>ra

where each V; i3 an irreducible £[A]-module and each (, ), is a perfect pairing
on V,. The first part of the lemma follows. Note also that for ¢ # ; we have
V; ZV,; as k[A]-modules and VI ZV/(wor).

Note that if p and 7 are representations A — GL, (k) with p semi-simple and
multiplicity free and with trp = tr7, then the semisimplification of 7 is equivalent
to p. Thus 7'[o has the same Jordan—Holder factors as 7|5 (with multiplicity). Thus
7’ satisfies the same hypothesis as r and so by part one 7|5 is also semisimple.
Hence 7|5 = 7]a, and we may suppose that in fact 7|5, = r|a. Then corresponding
to our decomposition

=V, &...eV,
we see that 7 corresponds to

(rlAv/’L’<’ )1 1.1 <’ >7)

while 7" corresponds to

las o 0 L Lo ()

for some p; € £*. Conjugation by the element of GL,(k) which acts on V; by

J; takes r to 7.
For the third part note that

gnA = Endk[A](Vl) D...P Endk[A](Vy) =K.

Then yy sends (ay,...,@,) to (—offl, ey =) = (—ay, ..., —a,), where *; denotes
the adjoint with respect to (, );,. Thus g}; = (0). O

We now turn to the case that R is a noetherian complete local ring. We
first recall the well known case of homomorphisms to GL,(R), before studying
homomorphisms to ¥%,(R).
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Lemma 2.1.8. — Let R be a noetherian complete local ring. Let A be a profinite group
and p : A —> GL,(R) a continuous representation. Suppose that p mod my s absolutely
urreducible. Then the centraliser in GL,(R) of the image of p is R*.

Proof. — It suffices to consider the case that R is Artinian. We can then
argue by induction on the length of R. The case R is a field is well known.
So suppose that I is a non-zero ideal of R with mgl = (0). If z is an element
of Z¢r,®)(Imp) then we see by the inductive hypothesis that z € R*(1 + M,()).
With out loss of generality we can suppose z = 1+ 9y € 1 + M,(I). Thus y €
(ad(p mod mg))~ ®r/mg I =1, and the lemma is proved. |

Lemma 2.1.9. — Let R D S be noetherian complete local rings with mg NS = mg
and common residue field. Let A be a profimite group and let p, p" : A —> GL,(S) be
continuous representations. Suppose that for all ideals 1 CJ of R we have

Zyin,mgyn (Im (o mod 1)) — Zi v, (g ) (Im (0 mod J)).

(This will be satisfied if, for instance, p mod mg s absolutely irreducible.) If p and p' are
compugate in GL,(R) then they are comjugate in GL,(S).

Proof. — It suffices to consider the case that R is Artinian (because S =
li_r)nS/IﬂS as I runs over open ideals of R). Again we argue by induction on the
length of R. If R is a field there is nothing to do. So suppose that I is an ideal of
R and mgI = (0). By the inductive hypothesis we may suppose that p mod INS =
o modINS. Thus p' = (1 + ¢)p for some cocycle ¢ € Z'(A, ad(p mod mg)) ®
INS). As p and p’ are conjugate in R, our assumption (on surjections of cen-
tralisers) tells us that they are conjugate by an element of 1 4+ M,(I). Hence
[¢] = 0 in H'(A, ad(p mod ms)) ® I. Thus [¢] = 0 in H'(A, ad(p mod mg)) ®
(INS), so that p and p’ are conjugate by an element of 1+ M,(INY). O

Lemma 2.1.10 (Carayol). — Let R D S be noetherian complete local rings with
mg NS = mg and common residue field. Let A be a profimite group and p : A —>
GL,(R) a continuous representation. Suppose that p mod my is absolutely irreducible and that
trp(A) CS. If 1 is an wdeal of R such that p mod 1 has wmage in S/INS, then there
s a 1, + M,(D)-comugate p" of p such that the image of p' is contained n GL,(S). In
particular there s always a 1, + M, (mg)-comjugate p" of p such that the image of p' is
contained . GL,(S).

Proof. — A simple recursion allows one to reduce to the case that mgl = (0)
and dimg;m, [ = 1. Replacing R by the set of elements in R which are congruent
mod I to an element of S we may further assume that S/INS = R/L. If IC S
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then R =S and there is nothing to prove. Otherwise R = S@®I with multiplication
(s, D), 1) = (55, 5T+ 7).

Note that mgR = mg, that R/mg = (S/mg)[€]/(¢?) and that an element r € R
lies in S if and only if » mod mg lies in S/mg. Suppose we know the result for
S/mg C R/mg. Then we can find A € M,(I) such that

(ln - A)p(ln + A) mod mg
is valued in GL,(S/mg) so that
(1, = A)p(l, + A)

is valued in S. Hence the result would follow for S C R.
Thus we are reduced to the case S =k is a field, R = k[€]/(€?) and I = (e).
Extend p to a homomorphism

o0 k[A] — M,(R).

Note that p mod € is surjective onto M, (k), and write J for the kernel of p mod e.
If § € k([A] and y €] then

tr p(8)(p(y)/€) = 0.
Thus
tr M, (k) (p(y)/€) = (0)
and p(y) = 0. We deduce that p factors through (o mod €) : A[A] — M, (k), i.e.
p(8) = (p mod €)(8) + ¢((p mod €)(8))e
where
¢ = M, (k) —> M, (k)
is a k-linear map satisfying
P(ab) = ap(b) + Pp(a)b.
There is an element A € M, (k) such that

b(b) = Ab — bA.
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(See for instance Lemma 1 of [Ca]. Alternatively it is not hard to check that

A=) "o,
J=1

will work, where ¢;; denotes the matrix which has a 1 in the intersection of the

l‘t/z th

row and j” column, and zeros elsewhere.) Then

(L, — Ae)p(1 + A¢) = (p mod €)
is valued in M, (k), and the lemma follows. O

Finally in this section we turn to analogous results for homomorphisms into

“,(R).

Lemma 2.1.11. — Let R be a complete local noetherian ring with maximal ideal myg
and residue field k = R/my of characteristic > 2. Let T be a group and let v: T — 4,(R)
be a homomorphism such that A = r~'(GL, x GL;)(R) has index 2 in T. Suppose moreover
that r mod mig s Schur. (Which is true if, for instance, r|x mod my s absolutely irreducible.)
Then the centraliser of v m 14 M,(mg) w {1}.

Progf. — This lemma is easily reduced to the case that R is Artinian. In this
case we argue by induction on the length of R, the case of length 1 (i.e. R =4%)
being immediate. In general we may choose an ideal I of R such that I has
length 1. By the inductive hypothesis any element of the centraliser in 14 M, (mg)
of the image of » lies in 1 + M,(I). It follows from Lemma 2.1.7 that this cen-
traliser is {1}. O

Lemma 2.1.12. — Suppose that R D S are complete local noetherian rings with
mr NS =mg and common residue field k of characteristic [ > 2. Suppose that I" is a profinite
group and that v : T — 4,(R) is a continuous representation with A = r~'(GL, x GL;)(R).
Suppose moreover that r|x mod mg s absolutely wrreducible and that trr(A) CS. Then r s
GL,(R)-comjugate to a homomorphism v : T — 9,(S).

Proof — By Lemma 2.1.10 we may suppose that r(A) C (GL, x GL))(S).
Choose yp € I' = A and suppose 7(yp) = (A, —u)j with A € GL,(R). Then

Iy = Arlx(vonAT.
It follows from Lemma 2.1.9 that we can find B € GL,(S)-conjugate with

rI = Br[X(vo B
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It follows from Lemma 2.1.8 that A = aB for some o € R*. As R and S have
the same residue field we may choose B so that @ € 1 + mg. Then a = B for
some B € R* and

(BL,, Dr(v)(BL, D™ € 4,(S).
Thus

(BL,, Dr(BL,, D7

is valued in %,(S), as desired. O

We remark that this lemma does not remain true of the hypothesis that
r|a mod mR is absolutely irreducible is weakened to r mod mg is Schur.

2.2. Deformation theory. — In this section we will discuss the deformation
theory of homomorphisms into ¥,. This closely mirrors Mazur’s deformation theory
of representations of Galois groups, but the section gives us an opportunity both to
generalise the results to ¢, and to set things up in a way that will be convenient
in the sequel. At the referees’ suggestion we include a discussion of Kisin’s framed
deformations which originally appeared in [Tay].

Let [ be an odd prime. Let £ denote an algebraic extension of the finite
field with [ elements, let & denote the ring of integers of a finite totally ramified
extension K of the fraction field of the Witt vectors W(k), let A denote the maxi-
mal ideal of O, let Cgé denote the category of Artinian local O-algebras for which
the structure map € — R induces an isomorphism on residue fields, and let %4
denote the full subcategory of the category of topological &-algebras whose objects
are inverse limits of objects of 42. The morphisms in 42 and %, are continuous
homomorphisms of -algebras which induce isomorphisms on the residue fields.
Also fix a profinite group I' together with a closed subgroup A C I' of index 2.
Also fix a continuous homomorphism

7: T — 94,k

and a homomorphism x : I' — 0%, such that A = 7 1(GL, x GL;)(k) and
vo7=x. Let S be a finite index set. For ¢ € S let A, be a topologically finitely
generated profinite group provided with a continuous homomorphism A, — A. In
applications I will be a global Galois group and A, will be a local Galois group.
We will sometimes write 7|5, for the composite

A, — A = GO(k) — GL, ().

We will want to distinguish between ‘liftings’ of representations and conjugacy
classes of liftings, which we will refer to as ‘deformations’.
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Definition 2.2.1. — By a lifting of 7 (resp. 7|a,) to an object R of €z we shall mean
a continuous homomorphism r: T — 4, (R) (resp. r: A, — GL,(R)) with r mod mg =7
(resp. = Tla,) and (in the former case) vor = x. We wil call two bflings equivalent
if they are compugate by an element of 1 4+ M,(mr) C GL,(R). By a deformation of 7
(resp. T|a,) we shall mean an equivalence class of liftings.

Let T CS. By a T-framed lifting of 7 fo R we mean a tuple (r; a,),er where r 1s
a bfling of T and o, € 1 +M,(mg). We call two framed bflings (r; a,),er and (7'; oz’q)qu
are called equivalent if there is an element B € 1, + M,(mg) with ¥ = BrB~" and
o, = Pa,. By a T-framed deformation of 7 we shall mean an equivalence class of framed
Lftings. If 'T =S we shall simply refer to framed liftings and framed deformations.

Note that we can associate to a 'U-framed deformation [(r; o)) ,et] of T both a defor-
mation [r] of 7 and, for ¢ € T, a bfting aq_lrlAqaq of Tla,- (Here we define 1|, m the
same manner we defined T|a, above.)

For ¢ € S there is a universal lifting (no¢ deformation)
unl\ A N GLn(Rloc)

of 7|5, over an object quoc of 5. As A, is topologically finitely generated, quoc is
noetherian. (A lifting is determined by the images of a set of topological generators
for A,.) Note that quoc has a natural (left) action of 1, +Mﬂ(mR1qoc). (An element
gel, + M,,(leqoc) acts via the map quoc — quoc under which r;‘“i" pulls back to

—1 . .
gr,;”"¢"".) There are natural isomorphisms

I_IOI'I'I/C (lelm/(mig,c, )L), /f) = Hom% (R]qoc’ k[E]/(Ez)) =~ Zl(Aq, ad 7—,)

The first is standard. Under the second a cocycle ¢ € Z'(A,, ad7) corresponds to
the homomorphism arising from the lifting

(1 4+ 9e)7|a,

of 7|a,- The action of Mn(leoL / (leOL,)\)) on RIOC/ (leOL,
Zl(Aq, ad7) which can be descrlbed as follows. Recall that we have an exact

sequence

A) gives an action on

(0) > H(A,, ad7) — ad7 — Z'(A,, ad7) - H'(A,, ad7) — (0).

If eHomk(lem/(mRbc,)u) k) corresponds to z € Z! (A, ad7), then B €

n(lenr / (lem,)\)) takes z to z plus the image of Y¥(B) € adr. In particular
there 1s a bgectlon between Mn(mth / (m?
and subspaces of H' (A,, ad7).

Let R be an object of 45 and I be a closed ideal of R with mgl = (0).
Suppose that 1, and 7, are two liftings of 7|5, with the same reduction mod I

Rioe> 1)) invariant subspaces of Z! (A,, ad7)
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Then

y = nmn()~ -1

defines an element of Hl(Aq, ad7) ®; I which we shall denote [rn—7]. In fact this
sets up a bijection between Hl(Aq, ad7) ®; I and (1 + M, (I))-conjugacy classes of
lifts which agree with r; modulo I. Now suppose that r is a lift of 7|5, to R/L

For each y € A, choose a lifting r?)j) to GL,(R) of r(y). Then
o~~~ -]
(v, &) > r(y5)r(8) r(y)

defines a class obsg 1(7) € HQ(Aq,ad?) ®; I which is independent of the choices
made and vanishes if and only if 7 lifts to R.

Now suppose that 7, is a lifting of 7|5, to & corresponding to a homo-
morphism o : qu(’c — 0. There is also a natural identification

Homg (ker oo/ (ker o), K/ 0') = Zl(Aq, adr, ® K/0).

This may be described as follows. Consider the topological O-algebra & @ K/O€
where €2 = 0. Although & @ K/Oe is not an object of %, it still makes sense
to talk about liftings of 7, to & @ K/0Oe. One can then check that such lift-
ings are parametrised by Z'(A,, adr, ® K/€). (Any such lifting arises from a lift-
ing to some O @ A"NO/0€) On the other hand such liftings correspond to
homomorphisms quoc — O ® K/0Oe lifting o and such liftings correspond to

Homg(ker o/ (ker @)?, K/ O).

Defimition 2.2.2. — If ¢ € S then by a local deformation problem at ¢ we mean
a collection 2, of lftings of ¥|a, to objects of Cp satisfying the following conditions.

1. (k, 7|a,) € 2,

2.1f R,n) € D, and if f: R — S is a morphism in 6y then (S, [ or) € 9,

3. Suppose that (Ry,n) and Ry, m) € D, that 1, (resp. 1) is a closed ideal of
Ry (resp. Ry) and that [ : Ry/1; = Ry/ly is an isomorphism in 6y such that
Sy mod 1)) = (n,mod Iy). Let Rs denote the subring of Ry @ Ry consisting of
pairs with the same image in Ry/1;, = Ry/ly. Then (Rs,r ®n) € 2,.

4.1f (R, 1) is an inverse system of elements of D, then

(imR;, limr) € Z,.
5.9, is closed under equivalence.
6.If R — S is an wjective morphism in €y and of r: A, — GL,(R) s a lifiing
of Tla, such that (S,r) € I, then (R,7) € 9,

(Compare with Section 23 of [Maz].)



AUTOMORPHY OF L-ADIC REPRESENTATIONS 19

Lemma 2.2.3. — If .7 is a 1n+M”(mR}Ioc) imvariant ideal of qu(’“ then the collection
of all lftings r over rings R such that the kernel of the induced map qu(’c — R contains I

is a local deformation problem. Moreover every local deformation problem 2, arises in this way
Jfrom some 1, +Mn(leqm) mvariant ideal .9, of quoc.

Proof. — The first assertion is clear. Consider the second assertion. Let J
denote the set of ideals .# of quoc such that (quoc/ A, r;‘“i") € 9,. The second and
sixth conditions on ¥, tell us that a lifting (R, 7) of 7|5, lies in &, if and only
if the kernel of the corresponding map qu(’c — R lies in J. The first condition
on 9, tells us that J is non-empty, the third condition tells us it is closed under
finite intersections and the fourth condition tells us that it is closed under arbitrary
nested intersections. Thus J contains a minimal element . which is contained in
all other elements of J. The second condition on %, tells us that any ideal of
quoc containing % lies in J, and the second assertion follows. |

Defimition 2.2.4. — Suppose D, s a local deformation problem corresponding to an
ideal I, of quoc. We will write L, = L,(2,) for the image in H'(A,, ad7) of the annihilator
L; mn Zl(Aq, ad?) of £/(FN (m2,.., 1) C leqoc/(m2 A) under the isomorphism

loc 9 loc »
R’] R’]

Hom, (ngoc / (m2

R}]{)(‘J )\‘)a k) ; Zl(A(], ad ;).
Because I, s lﬂ—i-Mn(leqoc) mvariant we see that L; is the pramage of L, Zl(Aq, ad7).
We remark that

Hom, (leqm / (milqoc ,

~ 7l

I ), k) =1,

and the exact sequence in the paragraph after Definition 2.2.1 shows that
dimy L; =’ 4+ dim; L, — dim; H*(A,, ad 7).

Lemma 2.2.3. — Reep the above notation and assumptions. Suppose that R s an
object of 6 and 1 is a closed ideal of R with mgl = (0). Suppose also that r, and ry are
two liftings of ¥|a, with the same reduction mod 1. Suppose finally that r s in 9,. Then
roo1s in Dy if and only if [ry — ] € L.

Proof. — Suppose that 7; corresponds to «; : qu(’“ — R. Then ay = o) + B
where

,B:Rl;’“—)I

satisfies
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= Plx+) = Bx) + B
— B(w) = Bx)ar(p) + ai(x)(y);
—and Bls = 0.

Thus B is determined by Blm,
q

to and is determined by an O-linear map:

2

and B is trivial on (leqoc,

A). Hence B gives rise

B Mg /(mf@qoc, A) — L
A straightforward calculation shows that
[rp — 1] € Hl(Aq, ad7)
is the image of

B € Hom (1111{1qoc/(1112 )\), I) = Zl(Aq, ad?) ®; L.

loc 9
Rloc

The homomorphism ¢ vanishes on .%. Thus we must show that B vanishes
on £ if and only if B maps to L, ®; I, ie. if and only if

ﬁ € Hom (mR};Xi/(mQ )\., %), k) ®k L

R%]oca
This is tautological. ]

Again let 7, be a lift of 7|5, to & corresponding to a homomorphism « :
R — . Suppose that 7, is in Z,. We will call a lift of 7, to 6 @ K/Ce of type
9, if it arises by extension of scalars from a lift to some & @ A"~0/0¢ which
is in ,. Such liftings correspond to homomorphisms quoc/ S, — O ®K/Oe which
lift o. Because .7 is 1,Z+Mﬂ(mR}]00) invariant, the subspace of Zl(Aq, adr, @ K/0)
corresponding to

Hom, (kera/((kera)*, .%), K/€) C Homg(kera/(kera)*, K/O)
is the inverse image of a sub-&-module
L,(r) C H'(A,, adr, ® K/ O).

Thus a lift of 7, to O@K/0¢ is of type Z, if and only if its class in Z'(A,, ad7,®
K/0) maps to an element of L, (7).

Defimition 2.2.6. — We will call 9, liftable if for each object R of 6,5, for each
ideal 1 of R with wgl = (0) and for each lifting v to R/1 in D, there is a lfling of r
to R. This s equiwvalent to qu(’c /S, being a power series ring over O.
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We now turn to deformations of 7: " — %4,(k).

Definition 2.2.7. — Let . be a collection of deformation problems P, for each q € S
and let T CS. We call a T-framed bfting (R, r; ) et of T of type & of for all g€ S
the resinicion (R, 7|,) € D,. For q €T this is equivalent to requiring (R, a;lr| A,0) lo le
mn D, If a T-framed lifiing s of type 7, so is any equivalent T-framed lifting. We say that
a 'T-framed deformation s of type . if some (or equivalently, every) element is of type 7.
We  let Def;T denote the functor from 6y to sets which sends R o the set of T-framed
deformations of T to R of type L. If T =S we shall refer simply to framed deformations
and write Defym,. If ' T =0 we shall refer simply to deformations and write Defy.

We need to introduce a variant of the cohomology groups H'(T", ad 7). More
specifically we will denote by H;,’T(F, ad7) the cohomology of the complex

Cly (T, ad?) = C'(T', ad ) & P C' (A, ad /M,
ges

where qu = (0) unless g€ S—T and ¢ =0 in which case

M) = C°(A,, ad7),
or g€ S—T and : =1, in which case M; = L; denotes the preimage of L, in
Cl(Aq, ad7). The boundary map is

Cl, (I, ad?) — CZ (T, ad7)

(D, (V) —> (39, (Pla, — 3Vy)).

If T=0 we will drop it from the notation. If T =S we will drop the . from

the notation.
We have a long exact sequence

() -

— H) (I ad) — H'(T,ad?) - PH (A, ad) -
geT

— H}, (I ad?) — H'(I" ad?) - ( @ H'(A,.ad?)/L,)

qeS=T

o(PH' (A, adP) —

qeT

- H}, (T ad) - H'(T,ad?) —»  PH (A, adD) -

q€S

— H;T(F, ad7) — H*(, ad?) —

Note that the dimensions of H!(I',ad7) and H};’T(F, ad7) are either both finite
or both infinite.

(At least one of the authors thinks it is helpful to write that this is a special
case of a ‘cone construction’.)
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Lemma 2.2.8. — Suppose that all the groups H (T, ad7) and H'(A,, adT) are finite
and that they all vamsh for v sufficiently large. Set

x(T, ad7) = Z(—l)fdimk H/(T, ad 7),

and
x(A,, ad7) = Z(—l)fdimk H'(A,, ad7),
and
xr1(Tad?) = (=1)' dim; HY, (T, ad 7).
Then
Xz(C ad?) = (T ad?) — Y x(A,, ad?)
q€S
+ ) (dim, L, — dim; H'(A,, ad 7).
qeS=T

The next result is a variant of well known results for GL,.

Proposition 2.2.9. — Reep the above notation and assumptions, and also assume that
7 1s Schur. Then Defym,T is represented by an object RE,T of 6o. (If T =10 we will denote
it ROV, while if T =S then we will denote it RE))

1. There is a tautological morphism
N R loc 0
QRS — RS
qeT

and a canonical 1somorphism

Hom, (mRET/(m;ET, A, leqm)qu, k) = H}’T(F, ad7).

If HU(T, ad7) is finite dimensional then RE,T s a complete local noetherian O-alge-
bra.

2. The choice of a universal lifting 3™ : T — G,(RY™) determines an extension of the
tautological map

univ Or
R7Y — R

lo an isomorphism

~

iv Oy
R;’m [[Xq,i,j]]qET; 1,7=1 n Ryl .

,,,,,
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Proof. — First we consider representability. By properties 1, 2, 3 and 4 of
9, we see that the functor sending R to the set of all T-framed lifts of 7 to R of

type - is representable. By property 5 we see that Def(/D/r is the quotient of this
functor by the smooth group valued functor R +— ker(GL,(R) — GL,(k)). Thus
by [Dic] it suffices to check that if ¢ : R = R’ in %, if (r;,)er is a T-framed
lift of 7 to R, and if g € 1 + M,(mp/) takes ¢(r; @,),er to itself, then there is
a lift g of g in 1+ M,(mg) which takes (r; ,),er to itself. In the case T # ¢ this
is clear, in the case T =@ it follows from Lemma 2.1.11.

Recall that

Hom, (mRET / (mf{ur, A, ng]o«) o1 k)
2

= Hom (RET/(leqoc)qu’ k[e]/(EQ))

is 1somorphic to the subspace of DefyD,T(k[e]/ (€?)) consisting of elements giving
trivial liftings of 7|5, for ¢ € T. Any T-framed lifting of 7 is of the form

((ln + ¢6)7a ln + aqe)qu

with ¢ € Z!(T,ad 7). It is of type & if Pla, € L; for ¢ € S. Tor ¢ € T, it gives
rise to a trivial lifting of 7[5, if and only if

(1, — 6, (L, + ¢la,&)Fla, (1, + 4,) = Fla,.
Thus
Hom,, (mRET / (m;ET, A, leqoc)qu, k)
is in bijection with the set of equivalence classes of tuples
(93 aq)(]ET
where ¢ € Z1(T, ad7); a, € adr;
Pla, = (ad7la, = L)g,

for all ¢ € T; and ¢[s, € L; for ¢ € S—T. Two tuples (¢; a,),er and (¢'; a;)qu
are equivalent if there exists b € ad7 with

¢ =¢+(1,—adb
and

a’qzaq—i—b

for all ¢ € T. The first part of the proposition follows.
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Note that by Lemma 2.1.11 the centraliser in 1, + M, (mguw) of (;‘,Ili" is {1,}).
Thus

(5™ L K ig=1,n)

is a universal framed deformation of 7 over RJ™[[X,; 1l es:ij=1,.,.- The second

q€S

part of the proposition follows. ]

Definition 2.2.10. — We will use the following abreviations:
R, = @
geT

and
T = OlX,i 1ler; ij=1,.n-

Thus we have a canonical map
R, — R

and the choice of a universal lifing 1™ : T — 9,(RY™) determines a map
T — RS

such that

Lemma 2.2.11. — Suppose that R is an object of 65 and that 1 is a closed ideal of
R with mgl = (0). Suppose that (r; &t,),er is a T-framed lfting of 7 to R/1 of type 7.
Suppose moreover that for each q € T (resp. ¢ € S—'T) we are given a lfting 7, of a;lrl A%
(resp. rla,) 1o R in D, For each y € T pick a lfting r’(;) of 7(y) to 9,(R). For each
qe 'l pick a lfting &'q of a, to 1,4+ M,(mg). Set

$(r.8) = 1) B) 1) — L,
For g€l (resp. g€ S—"T) and § € A, set

v,8) =& O F®) " — 1,
(resp.

V,8) = @7 " — 1,).

Then (¢, (Y,)) es defines a class obsy g 1(7; 0t)) et € Hé’T(F, ad 7)1 which s independent
of the various chowes and vanishes if and only if (r,ct,),er has a T-framed hfling (7. &'q)qu
of tpe S to R with

~_

Y § =
o, rlAqaq—

7
Jor all g €T.



AUTOMORPHY OF L-ADIC REPRESENTATIONS 25

Proof. — We leave the proof to the reader. |

Corollary 2.2.12. — Suppose that 7 is Schur and H (T, ad7) is finite dimensional
Jor © < 2. Then RE,T i the quotient of a power series ring in

dim, Hly’T(F, ad7)

variables over RﬁfT. If 9, s lfiable for q € S —"T then it will suffice to quotient out by
dim, HQy’T(F, ad7)

relations and so RE,T has Rrull dimension at least

dim; HY, (I, ad ) — dim;, H (', ad7) + 1 4+ ) (dimR™/.% — 1).

qeT

Moreover R;I}i" has Krull dimension at least

dim; HY(T', ad 7) — dim; H3(T", ad7) + 1 + Y _ (dimRY /.7 — * — 1).
q€S

Corollary 2.2.13. — Suppose that 7 s Schwy, that Hé,’T(F, ad7) = (0) and that
ecach 9, s lifiable for ¢ € S—"T. Then RE“ is a power series ring in dim; Hy, (T, ad7)
variables over RI}CT

Finally in this section we turn to a slighty different type of result. Suppose
that that 7 is Schur and o : RY"Y — & corresponds to a deformation [r] of 7
to 0. Let H(I',adr ® K/O) denote the kernel of

H'(I', adr® K/0) — @ H'(A,. adr @ K/O)/L,(1,).
q€S
The next lemma is immediate.

Lemma 2.2.14. — Reep the notation and assumptions of the previous paragraph. Then
there is a natural isomorphism

Homy (kera/ (kera)?, K/0) Z HL(T, adr ®, K/ 0).

2.3. Galois deformation theory. — In this section we specialise some of the
results of the previous section to the case of Galois groups.

Let [, k, K, 0 and A be as at the start of the previous section. We will let
€ denote the /-adic cyclotomic character and write M(n) for M ®z, Z,(€"). Also
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let ¢, denote a primitive m" root of unity. We will consider a totally real field F*

and a totally imaginary quadratic extension F/F* split at all places above /. Let S
denote a finite set of finite places of F* which split in F, and let F(S)/F denote
the maximal extension unramified outside S (and infinity). We will suppose that S
contains all the primes of F* above /. For I' we will consider the group Gp+g =
Gal(F(S)/F*) and for A the group Gps = Gal(F(S)/F). Note that F(S)/F* may
ramify at some places outside S which ramify in F/F*. If vJoo is a place of F*
we will write ¢, for some element of the corresponding conjugacy class of complex
conjugations in Gp+s. For each v € S choose a place 7 of F above v and let S
denote the set of 7 for v € S. (Thus S and S are in bijection with each other.) If
v € S then for A, we will consider

GF; = Gal(F;/F;) —> GF,S-

(Note that Gy, = Gal(F:r/Fj), but the Gyg conjugacy class of the map to Gyg
depends on the choice of 7]o.) We will write I, for the inertia subgroup of Gy,
and Frob; for the geometric Frobenius in Gp,/Ip..

Let

T GF+,S —> %l(/f)

be a continuous homomorphism such that Gpg = 7 '(GL, x GL))(k). Let x :
Gp+s = O a continuous lift of vo7. For v € S let &, be a local deformation
problem for 7|g,.. To it we have associated a subspace L, C H'(Gp, ad7) and an
ideal .Z of RIL,OCf Together this data defines a global deformation problem for 7
which we will denote

S = (F/F,S,S, 0.7, x. A D }wes)-

We will write Lj for the annihilator in H'(Gy., ad7(1)) of the subspace L,
of H'(Gy., ad7) under the local duality induced by the pairing

ad7 x (ad7)(1) — k(1)
(x, ) —> tr(xy).

If TCS will also write ngJ.’T(GFJr,Sv ad7(l)) for the kernel of the map

H'(Gy+ s, ad (1)) — @D H'(Gy, ad 7(1)) /L

veS—T

The next lemma is immediate.
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Lemma 2.3.1. — Suppose that
S = (F/F*,S,S, O, 7, 1. {D)res)

is a deformation problem as_above. Suppose also that S' DS s a finite sel of primes of F*
which split in ¥ and that S" DS consists of one prime of ¥ above each element of S'. Define
a deformation problem

S = (F/F S, S, 0,7 x,AD }es)

where, for ve S we have P = 9, and for v € S' =S the set D, consists of all unramified
(i.e. mummal) bfis. If T C S then DefyD,T s naturally isomorphic to DefST. If 7 s Schur
then RE,T = RE}“.

Lemma 2.3.2. — Suppose that
S = (F/F", 8,8, 0.7, x A D }es)

s a deformation problem as above. Suppose that R C S contains only primes v for which
— 1l

—7 15 unramified at v,
— D, consists of all unramified (i.e. mimmal) bfis of TG

Define a new deformation problem
S = (F[F*.S,5, 0.7, X AP )ies)

where for v € S — R we set D= D, and for v € R we let D= consists of all lfiings
of Tl '
Suppose that ¢ : RGN — O and let ¢r denote the composite of ¢ with the natural
map Rg“;;l,i‘v —» R;Biv. Also let 1y denote ¢(r;?iv). Then
lg,, ker ¢ / (ker ¢r)*
<lg,kerg/(ker)” + Y "1g, H'(Gy., (ad 1) (€ ).

veR

Proof — As described at the end of Section 2.2 a class
[¥] € H, (Gpe s, adry A/ 0)

corresponds to a deformation (1 + ve)r, of 7, mod AN. This deformation corres-
ponds to an element of H}(Gw,s,adnp ® AN/0) if and only if (1 + Ye)ry s
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unramified at all » € R if and only if ¥(Iy,) = 0 for all » € R. Note that, for
v € R, we have
HI(IF;, adry Qg )\_N/ﬁ) = Hom (IF;, adr, Qg A_N/ﬁ)
= (adry) ®p A/ O(™).

Thus we have an exact sequence
(O) — H}(GF+’S, adr¢ X )\._N/ﬁ) — H}/(Gpﬂs, ad T ® )\._N/ﬁ) —
— P H"(Gr.. (ad ) ® AN/O) (™).

veR
Taking a direct limit and applying Lemma 2.2.14 we then get an exact sequence
0)— Hom(ker¢/(ker¢)2, K/ﬁ) — Hom(ker¢R/(ker or)%, K/ﬁ) —
— P H(Gr.. (adry) ® K/O(€ ™))
veR

and the lemma follows. O

We will require a lemma from algebraic number theory, which may be
known, but for which we do not know a reference.

Lemma 2.3.3. — Let | be a prime, k an algebraic extension of ¥, and O the ring
of ntegers of a finile totally ramified extension of the field of fractions of W(k). Let A denote
the maximal ideal of O. Let EJD be a Galois extension of number fields with [1[E : D].
Let 'S be a fimite set of finite places of D containing all places dinding 1, and let E(S)/E
be the maximal extension unramified outside S. Thus E(S)/D s Galois. Let M be a finile
length O-module with a continuous action of Gal(E(S)/D). Then

lg, H'(Gal(E(S)/D), M) — lg,, H'(Gal(E(S)/D), M)
—lg, HX(Gal(E(S)/D), M) + Y _lg,, H'(Gal(D./D,), M)

v|oo

=[D:Q]lg, M.

Proof. — Note that places outside S may ramify in E/D and hence in
E(S)/D. Nonetheless, as /{[E : D], the lemma may be proved in exactly the same
way as the usual global Euler characteristic formula. We sketch the argument.

Firstly one shows that if there is a short exact sequence

0) > M; > My, — M3 — (0)

and the theorem is true for two of the terms, then it is also true for the third.
To do this one considers the long exact sequences for the cohomology groups
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H/(Gal(E(S)/D), M;) and Hi(Gal(D,/D,), M,). The key point is that
coker(H2(Gal(E(S) /D), My) —> H2(Gal(E(S)/D), M3))
is isomorphic to
coker ( EB H’(Gal(D,/D,), M) —> QB H’(Gal(D,/D,), My)).
v|oo v]oo
This follows from the equalities
H’(Gal(E(S)/D), M;) = H*(Gal(E(S)/E), M) ®®/D)
= (P H(GalE,/E,), M)

w|oo

— @ H*(Gal(D,/D,), M,)

|00
= GB H'(Gal(D,/D,), M,).
v|oo

(See for instance (8.6.13)11) of [NSW] for the second isomorphism.) Thus we are
reduced to the case that M i1s a A-module.

Next choose a subfield L of E(S) which contains E(¢), which is totally
imaginary and which is finite and Galois over D. Suppose that M is a Gal(L/D)-
module. Let L D KD D and let R,(Gal(LL/K)) denote the representation ring for
Gal(LL/K) acting on finite dimensional k-vector spaces. Define a homomorphism

xx : Ri(Gal(L/K)) ®2 Q — Q
by
xxIM] = dim; H'(Gal(E(S)/K), M) — dim; H°(Gal(E(S)/K), M)
— dim; H*(Gal(E(S)/K), M) + Z dim; H(Gal(K,/K,), M).
oo
This is well defined by the observation of the previous paragraph. We need to
show that

XD = [D : Q] dlmk

It 1s easy to check that

xo © Indéie) = Xk
As Ry(Gal(L/D)) ® Q is spanned by Indgyi’x) Ri(Gal(L/K)) as K runs over
intermediate fields with L/K cyclic of degree prime to /, it suffices to prove that
xxk = [K : Q]dim;, when K is an intermediate field with L/K cyclic of degree
prime to /.
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Now assume that L D K D D with L/K cyclic of degree prime to /. Define
Xk : Rp(Gal(L./K)) —> Ry (Gal(L/K))

TM] =Y [M® Indgt/ %) £] + [H' (Gal(E(S)/L), M)]

v]|oo

— [H*(Gal(E(S)/L), M)] — [H*(Gal(E(S)/L), M)],

where w denotes a place of L. above ». This is well defined because L totally imag-
inary implies H*(Gal(E(S)/L), M) = (0) (see for instance (8.6.13)(i) of [NSW]).
Note that Xg([M]) = [M(—1)] ® Xk ([£(1)]). Moreover as [{[L: K] we see that

xx = H’(Gal(L/K), ) o Xk,
so that

xx(IM]) = H(Gal(L/K), [M(=1)] ® Xk ([k()])).
Thus it suffices to prove that

X ([(D)]) = [K : Q][ Ind;j "™ £].

As E(S) is the maximal extension of L unramified outside S one has the
standard formulae

[H(Gal(E(S)/L), k(1))] = [k(1)]
and
[H' (Gal(E(S)/L), k(1))] = [OL[1/S]* ® k()] + [Cls(L)[/] Qg 4]
and
[H*(Gal(E(S)/L), k(1))]
= [Cls(L) @ k] — [K] + Y _ [P Br(L)[!] @, k],

veS w|o

where Clg(L) denotes the S-class group of L (i.e. the quotient of the class group
by classes of ideals supported over S) and Br(L,) denotes the Brauer group of L,.
Using these formulae the proof is easily completed, just as in the case of the usual
global Euler characteristic formula. O

Lemma 2.3.4. — Reep the notation and assumptions of the start of this section.

1.H), (Gyp+ s, ad7) = (0) for i> 3.
2. H;,T(Gw,s, ad7) = H(Gy+5,ad7) if T=0 and = (0) otherwise.
3. dim; H}, 1(Gys s, ad 7) = dim; H(Gy+ s, ad 7(1)).
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4. (.'111'1‘1,1C H;,T(GFJUS’ ad 7) = dlmk Hﬂl(/l’T(GFJrﬁs, ad 7(1))

. x7.1(Gpr s, ad7) = anoo ”(”"'X(Cv))/Q‘i'Zvesz (dim, HO(GFD, ad7)—dim; L,).
6.
dimk H;,T(GFJUS’ ad 7)

= dll’l’l/C HO(GF+’S, ad 7_’) + dlmk H}(KL,T(GF"VS’ ad 7_’(1))
— dim; H(Gy 5, ad /(1)) = > n(n+ x(c,))/2

v|oo
+ Y (dim; L, — dim; H'(Gy,. ad 7))
veS—T

where we drop the term dim; HY(Gy+ s, ad7) if T # 0.

Proof — TYor the first part we use the long exact sequences before
Lemma 2.2.8, and also the vanishing of H'(Gg+ s, ad 7) = H'(Gy.g, ad 7) ¢4/ ) and
H(Gy,,ad7) for » € S and i > 2. For the second part we use the long exact
sequences before Lemma 2.2.8.

For the third and fourth parts one compares the exact sequences

H!(Gy+ 5,ad?) —> ( @D H'(Gy., ad7)/Ls)

veS—T

&(EPH' (Gr..ad)

veT

P H*(Gr..adf) «— H*Gpes ad?) «—  H (G s, ad7)

veS
H’, (Gyr s, ad7?) —> (0)
and
H!(Gprs,ad?) — (@D H'(Gr. ad7)/Ls)

veS—T

o(EPH' (Gr. ad7))

ve’l
|

i

P H Gy adf) «— HA(Gprs,ad?) «— HYy, (Gyrs, ad /(1))

veS

H(Gg+ g, ad 7(1))Y —> (0).
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(The latter exact sequence is a consequence of Poitou—Tate global duality and the
identifications H'(Gyp+ s, ad7) = H (Gyg, ad 7) ¢4/ ) for i=1,2 and

H'(Gy+ s, (ad7)(1)) = H'(Gys, (ad 7)(1) 5/

for 1 =0,1))

The fifth and sixth parts follow from Lemma 2.2.8, Lemma 2.3.3, the local
Euler characteristic formula and Lemma 2.1.3. (We remark that by the local Euler
characteristic formula we have

> x(Gr, ad?) = w’[F": Q].)

veS

The final part follows from the previous parts. ]

Combining this with Lemma 2.2.12 we get the following corollary.

Corollary 2.3.5. — Reep the notation and assumptions of the start of this section.
Suppose also that 7 is Schur. Then RE“ is the quotient of a power series ring in

dim; HY, (Gprs,ad7(1) + Y (dim, L, — dim; H'(Gy. ad 7))
veS—T

— dim; H (G 5, ad 7(1) — > n(n+ x(c,))/2

v|oo

variables over RI;ZT If one further assumes that 9, is lflable for v € S — T then it will
suffice to quotient by

dim;, H}iﬂ’T(GFﬂS, ad7(1))
relations and so RE, has Krull dimension at least

1+ Y (dimRY/.Z— 1)+ Y (dim; L, — dim; H*(Gy,, ad 7))

vel veS=T
— dim; H(Gp+ 5, ad 7(1) = > n(n+ x(c,))/2.
v|oo

Thus R}I)i" has Krull dimension al least

1+ ) (dimRY/.%—n’ — 1)

veS

— dim; H'(Gpe s, ad 7(1)) = Y n(n + x(c,))/2.

v|oo
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Corollary 2.3.6. — Reep the notation and assumptions of the start of this section.
Suppose also that v s Schwy, that HlfL (Gr+s, ad7(1)) = (0) and that each D, s lfiable
Jor all v e S. Suppose moreover that for v € S not dividing | we have

dirnk Lv = dlmk HO(GFD, ad ;)v
while for vl we have

dim, L, = [F] : Q/In(n — 1)/2 + dim; H*(Gy,, ad 7).

Then x(c,) = —1 for all v|oo, the cohomology group H°(Gyp+s,ad7(1)) = (0) and
Ry = 0.
2.4. Some Galois local deformation problems. — In this section we specialise the

discussion still further by considering some explicit local deformation problems %,
for 7|g,.. We will continue to use .7 to denote the ideal of R corresponding to
2, and L, to denote the subspace of H'(Gy., ad7) corresponding to deformations
of 7 to k[€]/(€®) of type 9,

2.4.1. Crystalline deformations. — In this section we suppose that [ = p and
that F; is unramified over Q, = Q,. We will also suppose that K contains the
image of all Q,-linear embeddings of fields I — K.

We first recall a (covariant) version of the theory of Fontaine and Laf-
faille [FL], which will play the key role in this section. Let Fr: Op. — OF. denote
the arithmetic Frobenius. Let .#Z.%;5 denote the category of finite 0. ®z, O-mod-
ules M together with

— a decreasing filtration Fil' M by 0. ®z, O-submodules which are @, direct
summands with Fil°M =M and Fil'"'M = (0);
— and Fr®I-linear maps @' : FiI'M — M with &gy = O and
> @' Fil'M = M.
Let 4% denote the full subcategory of objects killed by A. There is an exact,
fully faithful, covariant functor of O-linear categories Gy from #.%;7 to the cat-
egory of finite 0-modules with a continuous action of Gy.. Its essential image is
closed under taking sub-objects and quotients. The length of M as an &-module
is [£(7) : F/] times the length of Gy(M) as an ¢-module. (Here k(7)) denotes the
residue field of 2.) For any objects M and N of #%;5 (vresp. M%), the map

Ext\yz (M,N) — Extg[GF;](G;(M), G->(N))
(resp.
Ext .z, (M, N) — Extyg,;(Go(M), Gz(N))
= H' (G, Homy(Gz(M), Gz(N))))
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i1s an injection. Moreover
~ 0
Hom 4z, (M, N) —> H(Gg,, Homg(G3(M), G3(N))).

We explain how to define G7 in terms of the functor Ug of [FL]. First we
define a contravariant functor

Hom( , ¥3/Op3{l — 2})
from # %5 to itself. Then we set
G;(M) = Us(Hom(M, F3/Op {1 — 2}))(2 — D).

If M is an object of #.%s5 we define Hom(M, F5/Or5{l—2}) € M Fp7 as follows.

— The underlying -module is Homg, (M, I3/ Oy 3).
— Fil*Hom(M, F;/ Oyl — 2}) = Homg, .(M/ Fil'”"' ™M, F5/ O 7).
— If € Homg, .(M/ Fil""'™*M, F3/ 0y 7) and if m € ®'Fil' M set

() m) = 1T Frf (@) (m).
To check that ®“f is well defined one uses the exact sequence
-2 -2
0) —> @FﬂiMe @FﬂfM - M - (0)
=1 =0
(m) > (lm; —mipy);
(m) > dm.
To check that
Homg, ;(M, F3/ 0% 3) = Z ®“ Homy, .(M/ Fil ™' ™ M, F;/ Oy 7)

it suffices to check that

Homyg, ,(M[!], ¥3/ Oy 3) = Z ®“ Homg, (M[/]/ Fil'"™ ' M[1], ¥5/ Ok ).

But M[/] = @, ®'gr' M[/] and

®* Homg, .(M[/]/ Fil'"'~*"M[l], ¥;/ Oy 5
= Homg, ("7 gr' " M[!], F5/ Oy ).

In this section we will assume that 7 is in the image of Gy and that for
each ¢ and each 7:F;— K we have

dim; (gr' G5! (7le,.)) ®az 0 < 1.
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We will let 25 consist of all lifts 7 : Gy, = GL,(R) of 7|g,. such that, for
each Artinian quotient R" of R, r ®g R’ 1s in the essential image of Gy It is easy
to verify that this is a local deformation problem and that Ly = Ls(%5) will be
the image of

Ext',; (G7'(P, G;'(7)) = H'(Gp, ad?).
(This was first observed by Ramakrishna [Ral].)

Lemma 2.4.1. — D5 is lflable.

Progf. — Suppose that R is an Artinian object of %, and I is an ideal of
R with mgl = (0). Suppose also that r is a deformation in %5 of ﬂGF; to R/L
Write M = G;Tl(r) and for T : F; — K write My = M Q61502,0,701 O. Then
Fil' M = - Fil' Mz for all i. Let mz < ...<mz,_; denote the indices ¢ for which
Fil' Mz # Fil'™ Mz. Also set mz, = 00 and mz_; = —00.

As M/mgM = G5 '(7) we see that we can find a surjection (R/I)" — M5z
such that (R/I)' — Fil"* Mz for all i (where (R/I)’ C (R/I)" consists of vectors
whose last n— i entries are zero). Counting orders we see that (R/I)" = Mz, and
hence (R/I)" = Fil"**“M; for all i. Define an object N = @-N; of 4%+ with
an action of R as follows. We take Ny = R” with an Ofj-action via 7. We set
Fiy Ny = R’ where Mz i > J > mz,—1—;. Then N/I = M as filtered Ory ®z, R-
modules. Finally we define ®"% : Fil"*" N3y — Nz,po,, by reverse recursion on 1.
For : = n—1 we take any lift of ®"%~! : Fil"*"' Mz — Mz,pon,- In general we
choose any lift of ®"% : Fil"™ My — Mzcpop, which restricts to ["5H17"%ipmei!
on FiI""*' Nz. This is possible as Fil""*' Mz is a direct summand of Fil"* Ms.
Nakayama’s lemma tells us that ). ®"% FiI"™ N3 = Nzopop, so that N is an object
of MFp7. As our lifting of r we take Gz(N). O

We will need to calculate dim; L. To this end we have the following lemma.

Lemma 2.4.2. — Suppose that M and N are objects of M5 Then there is an

exact sequence

(0) = Hom, 4, .(M, N) — Fil’ Homg, .g, (M, N) —
— Homg, ¢, 011 (gr M, N) — Ext}%fw(M, N) — (0),

where Fil' HomﬁF]@Zlﬁ(M, N) denotes the subset of Homm,mzlﬁ(M, N) consisting of elem-
ents which take FiV M to FiI'V N for all j and where gt M = @, gr' M. The central map
sends B to (B, — DLA).
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Proof. — Any extension
©O)— N—E—M — (0)

in A% can be written E = N@® M such that FiI'E = FI'N @ FiI' M (and such
that N — E is the natural inclusion and E — M is the natural projection). Then

i ‘bf\f o
q’E—(o cpg,l)

with «o; € Homﬁva@Zlﬁ’Fr@l(griM, N). Conversely, any
a = (ai) € Homﬁyf®zlﬁ,Fr®l(nga N)

gives rise to such an extension. Two such extensions corresponding to o and o/
are 1somorphic if there is a f € Homg, ;¢, ¢(M, N) which preserves the filtrations
and such that for all ¢

lﬁ q)i\] Oll _ (I)i\] Ol; 1ﬂ|gri1\’l
o 1) o @)oo o J)lo 1 )

The lemma now follows easily. O
Corollary 2.4.3. — RKeep the above notation. We have
dim; Ly — dim; H*(Gg., ad7) = [F7: Q Jn(n — 1)/2.
Hence RY°/.9 is a power series ring over O in
n* 4 [Fy: Q n(n — 1)/2
variables.
Progf — If M is an object of #F;7 and if T:F;— K set
Mz = M Qo 507,001 O-
Thus FiI' M = @, Fil' Mz and @' : Fil' Mz — Mz,-1. We have

Fil’ Homg, g, 0 (M., N) = @5 Fil’ Hom, (Mz, N7)

and

Homy, -6, 0101 (gt M, N) = 5 Hom, (gr Mz, Negpy ).

T

Note that

dim; Fil’ Homy (G=' (97, G5 (P)z) = n(n + 1)/2
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and that
: —1 = —1 = 2
dim; Hom, (gr G; (7)z G; (r);oFrfl) =n.

The first part of the corollary follows. The second part follows from the first part,
Lemma 2.4.1 and the discussion immediately following Definition 2.2.2. m]

Corollary 2.4.4. — If n=1 then
Ly = H'(Gg/Ip., ad 7).

Proof. — One checks that Ly D H'(Gy./Iy., ad7) and then uses the equality

of dimensions. O
The next lemma 1s clear.
Lemma 2.4.5. — If Flo,. = ;5 then

H'(Gr., ad?) = (D H'(Gr.. Hom(s,. 5))
]
and Lz = @l—’ j-(L;)l-, i» where (Liz); ; denotes the image of
Ext',; (G5'(), G5'(5)) — H'(Gg., Hom(;, 5)).

2.4.2. Ordinary deformations. — This section is not required for our appli-
cations to modularity lifting theorems and the Sato—Tate conjecture, and can be
skipped by those readers whose only interest is in these applications. Our discussion
1s rather unsatisfactory as we were unable to find the right degree of generality
in which to work. In the first version of this manuscript we worked in greater
generality, but the result was so complicated that some of the referees urged us to
remove the section all together. Rather than do so we have restricted ourselves to
the easiest possible case. We hope that the result is more readable. We also hope
that future investigators will either not need to rediscover our messy but more
complete results, or that they will be able to find a more transparent approach.

A referee has reminded us of previous work of Tilouine [Ti] and Mauger
[Mau] along similar lines.

We again assume that p = [. For : = 0,...,n — 1 choose characters y,; :
Gp. — 0% with the following properties.

1. 7 has a decreasing filtration {ﬁl} by k[Gp,]-submodules such that for : =
0,..,n—1 we have an isomorphism ﬁi? = k(x,.0)-

2. If X,; denotes the reduction of y,; modulo A then for z < ; the ratio
Xu:i/ Xy, 18 meither trivial nor the cyclotomic character.
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The second of these two conditions can be weakened, but we have not been able
to determine exactly how far. Note that the second condition implies that the
filtration {Fil} is unique.

We will take Z, to be the set of all lifts » of 7 to objects R of %5 such
that R" has a decreasing filtration {Fil'} by R[Gy.]-submodules such that

I. Fill @ £ = Tl for all 4, and
2. Iy. acts on gr'R" by x,..

It follows from the first of these properties that the Fil' are free over R and direct
summands of R". Moreover for i = 0,...,n — 1 the graded piece gr'R” = R(x/)
where x; i1s an unramified twist of y,; which reduces modulo my to x,, mod A.

Lemma 2.4.6.

1. If such a filtration {Fil'} exists then it is unique.
2. Suppose that R — S is an injective morphism in 65 and that r: Gy, - GL,(R)
s a lift of Tl If (S,7) € D, and {¥ils} is the corresponding filtration of S" then

(Fily NR") ®r S — Filg.
3. D, s a local deformation problem.
Proof. — The third part follows from the first two. For the first two parts,
arguing inductively it suffices to treat the case of Fil"'. For i =0, ...,n—2 choose

o; € Gg, with ¥, ;(0;) # X,,-1(0). Let Pi(X) denote the characteristic polynomial
of r(0;). Modulo mg we have a factorisation

P(X) = (X = You1(09))"Q,(X) mod mg

with Qi(xy,ﬂ,l(ai)) # 0 mod mg. By Hensel’s lemma we may lift this to a factori-
sation

Pi(X) = Ri(X)Q.(X)
where Q; lifts Q, and R, lifts X =X1(0)). Let

n—2
e=[]Qi).
=0

Then ¢ acts as zero on gr'R" (resp. griS") for i =0, ...,n— 2 (because Q;(r(0;))
does). On the other hand ¢ is an isomorphism on Fil""' R" (resp. Fili ' S"), so that
Fil' ' R" = ¢R" (resp. Fili™'S" = ¢S"). The first part follows immediately. In the
case of the second part note that ¢t" # (0). Choose y € R” such that the image
of ¢ in &' is non-zero. Then Fili™' S" = Sey so that Fili™' N R” = Rey. The second
part of the lemma follows. |
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Lemma 2.4.7. — 9, is lfiable.

Proof. — Suppose that R is an object of 65 and I is a closed ideal of R
with mgl = (0). Suppose also that r is a deformation in &, of 7 to R/I. Let {Fil'}
be the corresponding filtration of (R/I)". We will show by reverse induction on i
that we can find a lifting fil of Filr to R such that Tl — Fil compatibly
with Fil'*'r < Fil'r and Fil'/Fl™ = R(x..ly.) as a R[Iy.]-module.

The case :=n—1 is trivial. Suppose that Fil"' has been constructed. Also
choose a lifting gr' of gr's such that Ip. acts by x,.. We will choose Fil' to be
an extension of gr' by il which lifis Fil'z. Such extensions are parametrised by
some fibre of the map

HI(GF;, Homg (g1, ﬁlm)) — HI(GF;, Homg (gr'r, Fili+1r)).
Thus it suffices to show that this map is surjective. This would follow if
H? (GF;, Homk(grif, Fili'H?)) ®;: I =(0).

However locally duality tells us that H?(Gy., Hom,(gr'7, FiI'"'7)) is dual to
H’(Gyg, Hom, (Fil't'7, gr'7)(1)), and this latter group vanishes, because, for j >,

Yy,ie/ymj # 1. .
Lemma 2.4.8. — RY“/.7 is a power series ring in
2 4 [Fs: Quln(n — 1)/2
variables over O'. Moreover
dim; L, — dim; H(Gg, ad 7) = [F5: QJn(n — 1)/2.
Proof. — From the previous lemma and discussion immediately following

Definition 2.2.2, we see that the two assertions are equivalent. Moreover they
are both equivalent to the space of liftings of type %, of 7 to k[e]l/(¢*) having
dimension #* + [F;7: Q,n(n — 1)/2.

Let B, denote the Borel subgroup of GL, consisting of upper triangular ma-
trices. Without loss of generality we may suppose that 7 maps Gy, to B,(k) so that
the diagonal entries of 7(0) reading from the top left are (x,,_;(0), ..., X,0(0)).
The space of liftings of type %, of 7 to k[€]/(¢*) maps surjectively to the space
of filtrations {Fil'} of k[€]/(€?) lifting {ﬁl} with kernel the space of liftings of
7 to B,(k[€]/(¢*)) such that for o € Iy the element 7(o) has diagonal entries
(Xyn-1(0), ..., X, 0(0)) reading from the top left. For the rest of this proof, we will
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call such a lift suitable. Thus it suffices to show the space of suitable lifts to
B, (k[€]/(€®)) has dimension n(n+ 1)/2 + [F5: QIn(n — 1)/2.

We will prove this by induction on n. The case n = 1 is clear. (A lift is
specified by specifying a lift of any element lying over Frobenius.) For general n

7= (77/ 71),0@).
0 7v,0

By the argument in the proof of the last lemma we see that the space of suitable
lifts of 7 to B,(k[€]/(€*)) maps surjectively to the sum of the space of suitable lifts
of ¥ to B, 1(k[€]/(€?)) and the space of lifts of X.0 to (k[e]/ (€?))* which agree
with %, o on Ip. Thus by the inductive hypothesis it suffices to show that the set
of lifts of 7 to B,(k[€]/(€?)) of the form

(7 YU,OW)
0 YU,O

has dimension (1 + [F5: Q )(n —1).
However the latter space can be identified with a fibre of the surjective
linear map:

write

2 (Grs, X007 ® klel/(€)) = 21 (G, T,07)-
This map has kernel Z'(Gg, 7;&?’ )€, which has dimension

n— 14 dim; H' (Gy,, X, %) — dim; H(Gr,, X,07)
which (by the local Euler characteristic formula) equals

n—1+[F;: Q(n— 1)+ dim, H* (G, X, 7).

As we saw in the proof of the last lemma H?*(Gyg, X;é?’) = (0) and this lemma

follows. o

2.4.3. Unrestricted deformations. — Suppose now that [ # p. We can take 9,
to consist of all lifts of 7 in which case L, = H'(Gy, ad7). In this case, by the
local Fuler characteristic formula,

dim; L, — dim; H(Gy,, ad 7) = dim; H(Gy., (ad 7)(1)).

Lemma 2.4.9. — If H Gy, (ad7)(1)) = (0) then H*(Gy., ad7) = (0), 2, is

liftable, and R is a power series ring in n® variables over O.

(In fact these four conditions are probably all equivalent.)
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2.4.4. Mimmal deformations. — Again suppose that p # [. In this section
we will describe certain lifts of 7 which can be considered ‘minimally’ ramified.
We will show that these lifts constitute a liftable, local deformation problem and
calculate the dimension of the corresponding R!°°/.#. However first we must discuss
a general classification of lifts of 7.

If ¢ € Z., is not divisible by /, we will write T, for the semidirect product
of Z, = {(o,) by Z= (¢,) where ¢, acts on Z; by multiplication by g¢.

Let Pp. denote the kernel of any (and hence every) surjection Ip. — Z,. Then
Py. has pro-order prime to /. Also set Ty = Gg./Pp. = Tns

Lemma 2.4.10. — The exact sequence
(0) — Pp. —> Gy, —> T —> (0)
splits, so that Gy, becomes the semudirect product of Py, by .. We will fix one such splitting.

Progf. — Let S denote a Sylow pro-/~subgroup of Ip. so that S = Z,; Let
¢ denote a lift to Gy, of Frobs' € Gy./Ip.. The conjugate ¢S¢~" is another Sylow
pro-l-subgroup of Ip. and hence an Ip.-conjugate of S. Thus premultiplying ¢ by
an element of Ip. we may suppose that ¢ normalises S. The group topologically
generated by S and ¢ maps isomorphically to Ty, and we have our desired split-
ting. O

Suppose that 7 is an irreducible representation of Py, over £. We will write G,
for the group of o € Gy, with 7@ ~ 7. We will also write T; = G;/Pp. C Ty.. Then
T: =T ny)eeoe and the splitting Ty, <> Gy; restricts to a splitting Ty — G.

The proof of the next lemma uses standard techniques of what is sometimes
called Clifford theory (see Section 11 of [CR]).

Lemma 2.4.11.

1. 1{dim; t and t has a unique deformation lo a representation T of Pp. over O.

2.t has a unique (up lo equivalence) extension to G, N Ip.. Moreover T has a unique
extension G, N g, with determinant of order prime to L.

3.T has an extension to G, with detT(G, N 1) having order prime to . Choose
such an extension, which we will also denote T, and let T also denote its reduction
modulo A.

Progf. — The first part is true because Pp. has pro-order prime to /.

Any Sylow pro-/-subgroup of G; NIy maps isomorphically to G; N Iy, /Pp..
Let o, denote a topological generator of a Sylow pro-l-subgroup of G; NIp. The
kernel of 7 i1s normal in G;. The conjugation action of some power o' of o,
on the image tPp is trivial. Because o; € G;, there is an automorphism A of



42 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

the vector space underlying T such that t(o,g0,") = At(9)A™"' for all ¢ € Pp.
Then we see that z = A" lies in the centraliser Z. of the image of 7. As 7 1s
irreducible we see that Z; is the multiplicative group of a finite extension of £
and so is a torsion abelian group with order prime to /. Moreover Z/I’Z acts
on Z. by letting 1 act by conjugation by A. As H*(Z/I'Z,Z.) = (0) we see that
there is w € Z; with 27! = wAwA™)(A?wA™)... (A" 'wA!™") = @WA)'A™". We
can extend 7 to G; NI by sending o, to wA. Now write A for wA. Any other
extension sends o, to #A for some u € Z, with u(AuAfl)...(AlbfluAI*/b) equalling
an element of Z, of /[-power order, ie. equalling 1. As H'(Z/I'Z,7Z.) = (0) we
see that u = v 'AvA™! for some v € Z,. Hence our second extension of Tlp,. IS
v"'to, ie. our extension is unique up to equivalence. Similarly the lifting 7 has
a unique extension to G; NIy with determinant of order prime to /. (Argue as
before but choose A with detA having order prime to /, which is possible as for
z € 0% we have det(zA) = z%™7 det(A). Then take Z, to be the set of elements
of the centraliser of T(Pp.) with order prime to /. The same argument shows
the existence of one extension with determinant of order prime to / and also its
uniqueness.)

Let ¢, € G, lift a generator of G,/(G, NIy). As T and 7% are equivalent
as representations of G, NI, the representation T extends to G,. ]

If M is a finite O-module with a continuous action of Gy. then we set
M, = Homp, (7, M).
It is naturally a continuous T,-module.

Lemma 2.4.12. — Suppose that M is a finite O-module with a continuous action
of Gp,. Then there is a natural isomorphism

M = P Indi (7 @6 M),
[7]
where [t] runs over Gr;-comugacy classes of wrreducible k[Py.]-modules. Moreover
Homg, (M, M) = @) Homq, (M., M.).
[7]

Proof. — We have a decomposition

M = @’f Qs M,,
[]

where [t] runs over isomorphism classes of irreducible A[Pp;]-modules. The em-
bedding T ® s M, < M is G,-equivariant and the image is the biggest submodule
all whose simple O[Py.]-subquotients are isomorphic to 7. Moreover o € Gy, takes
the image of T ®y M, to 7° ® M. The lemma follows. O
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Corollary 2.4.13. — Suppose R s an object of Cfé . The map
7 > (71)[1']

sels up a byection between deformations r of v (as a Gy.-representation) to R, and tuples
(r:)ir) of deformations of 7. (as T -representations) to R, where [t] runs over Gy, -conjugacy
classes of wrreducible k[Py.]-modules.

Defimition 2.4.14. — Let p be an m dimensional representation of 'L, over k, and let

p denote a bfting of p to an object R of Cfé. We will call r minimally ramified if for
all v the natural map

ker(p(aq) - lm)i ®R k —> ker(ﬁ(aq) - lm)i

s an isomorphism.

We call a bfting v of 7 to a representation of Gy, over an object R of Cfé minimally
ramified ¢f, for all wrreducible k[Py.]-modules T, the deformation r. of 7y s mummally ramified
(as a representation of T,).

For this definition to make sense we need to make two remarks. Firstly, for
any g € 1,,+M,,(mg) a lifting p (resp. 7) is minimally ramified if and only if gpg™'
(resp. grg™!) is. Secondly, in the case of T,, the definition of minimally ramified
does not depend on the choice of generator o, of Z;. (Indeed if o, is another
generator of Z; then ,o(aq’) = p(o,)" for some a € Z-, not divisible by /. Then
p(]) = 1, = (p(0)) = L) (L, + p(a,) + . + p(o,)™") so that ker(p(e]) = 1,)' D
ker(p(o,) — 1,)". Similarly ker(p(o,) — 1,)" D ker(p(c,) — 1,)', so the two kernels
are in fact equal.)

We remark that if 7|, is unramified then minimally ramified lifts are just
unramified lifts. 0

Lemma 2.4.15. — Suppose that R is an object of Cp. Let A € M, x,,(R) and let
A denote its image in M, o, (k). We can find bases e, ..., ¢,, of R"™ and f;, ..., f,, of R™
such that Ae; =f; for i=1,...,7 and Aeg € Mg 11 B ... B MR [y, for i =141, ..., my.
Moreover the following are equivalent.

1.AG=0 for i=r+1,..., m.
2. (kerA) @g & = kerA.
3. (kerA) g k — kerA.
4. (ImA) ®g £ = ImA.
5. (ImA) ®g £ — ImA.

Proof. — Choose a basis ¢, ...,e, of & so that ¢,,...,¢, 15 a basis of
kerA. Let f; = Ag; for i1 =1, ...,7 and extend f, ..., f, to a basis f|, ...,fm1 of k™.
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Lift 2y, ...,%,, to a basis e, ...,¢, ¢, ...,e:@ of R™. Also lift fl,...,fml to a basis
fi=Ae, . fy = A, fii1y s fuy of R For 1 =74 1,...,my write A, = Z;il a; f;
with each ¢; € mp and set
6 =¢ — Z age;.
J=1
Then ey, ..., ¢, is a basis of R™ with A¢ = for : =1, ...,r, while A¢; € mg /41 ®
e Mg f, for =041, ..., mo.

Now consider the second part of the lemma. The first condition implies the
second, which implies the third. Suppose the third condition is satisfied. Then
ker A is a submodule of Re, ) @ ... & Re,, which surjects under reduction modulo
mg onto k¢ @ ... De,. We deduce that kerA =Rey) @ ... ® Re,,, and the first
condition follows.

Similarly the first condition implies the fourth which implies the fifth. Sup-
pose the fifth condition is satisfied. Let X = A(Re4; @ ... D Re,,), so that ImA =
Rfi®..®Rf B X We deduce that X ®g £ = (0), so that X = 0 and the first
condition follows. O

Corollary 2.4.16. — Suppose that R — S s a morphism Cfé and that A €
M, xm, (R) satusfies the conditions of the equivalent conditions of the lemma. Then so does the
image of A M, ., (S).

Corollary 2.4.17. — Suppose that R — S s an injective morphism in CK,;[ and that
A € M, sm, (R). Suppose that the image of A in M, s, (S) satisfies the equivalent conditions
of the lemma, then so does A € M, xp, (R).

Corollary 2.4.18. —  Mmmally ramified bfts mn the case of T, (resp. Grg;) define
a local deformation problem D' (resp. 2,) in the sense of Definition 2.2.2.

We claim that a lifting o of an m-dimensional representation p of T, over k
to R an object of Cfé is minimally ramified if and only if there is an increasing
filtration {Fil'} of p by T, -invariant direct summands such that p(o,) acts trivially
on each grip = Fil'p/ Fil™'p and

Fil' @ k —> ker(p(a,) — 1,))

under the natural map Fil' ®z £ — p. Moreover in this case there is a unique
such filtration, namely Fil' = ker(p(o,) — 1,)'. To see this first note that if p is
minimally ramified then it follows from Nakayama’s lemma that ker(p(o,) —1,)" is
a direct summand of p for all . Conversely if {Fil'} is a filtration as above then
ker(p(o,) — 1,)' D Fil'p. On the other hand, as the rank of (0(o,) — 1,)" equals m
minus the R-rank of Fil'p, we see that we must have equality ker(p(o,) — 1,)" =
Fil'p and our claim follows.
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Lemma 2.4.19. — Suppose that p : T, —> GL, (k) is a continuous representation.
The universal munimally ramified lifting ring Rg‘in for P is a power series ring i m> variables

over O.

Progf. — The filtration ker(p(o,) — 1) of k" defines a closed point of some
flag scheme over £. Let the formal completion of this flag scheme at this closed
point be Spf Ry and let {Fil| . R’} denote the universal lifting of {ker(ﬁ(aq)—lm)i}

to a filtration by direct summands of R7,. If we set

m; = dim; ker(p(o,) — 1,)'/ ker(p(a,) — 1,)""
then

R = O[[X1, ooy Xum=1)=3 mimi—1)/211-

Also let P C GL, /R be the parabolic subgroup consisting of elements which
stabilise {Fil . }. Note that p: T, — P(k). Also note that we have a natural map

univ
R — R%m"

determined by {ker(o(o,) — 1,)').
For ¢ a positive inﬁeger l¢t P; the subgrqup of GL,,, 4my.0+../Roc which pre-
serves the filtration {Fil/ . /Fil .} of RZ /Fil . RZ. Thus P, = P and there are

natural maps P, = P,,. Let p; denote the composite
T, = P(k) — Pi(k).

Consider the following functor from Artinian local Ry-algebras to sets. It sends
R, — R to the set of continuous homomorphisms p; : T, — P;(R) which lft
p; : T, — P;(k) and for which p;(o,) acts trivially on each grf' R™ for j> 1. We

univ

shall call such lifts p;, minimally ramified. This functor is represented by
o e T, — P;(R),

for some complete noetherian local R.-algebra R;. There are natural maps
R, — R,_;.

Moreover Ry, = R%lin and for 7> 0 we have R, = R,.
It suffices to prove that for all : the ring R;_; is a power series ring over
R; in m;(m; + m;y, + ...) variables. Write

univ _ lmi X univ _ A B
101'71 (Uq) - ( 0 Ioll_mlv(o_q)) 101'71 (¢q) - (0 p;lnl\f(¢q)) .
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We require only one relation

X
P, — 1

The reduction modulo mg, , of the matrix

X

has the same rank as p, ;(o,) — 1, which is my, + my» + .... Choose my; +
Mm;yo+ ... linearly independent rows of Y mod mg, . Then the liftings of X and the
m; columns of (A B) not corresponding to the selected rows of Y mod my, , are

(A B) ( ) = X(1 4 p"(0,) 4 . + P2 (5" ) p ().

arbitrary, and the liftings of the remaining columns of (A B) are then completely
determined. Thus R;_; is indeed a power series ring in

mi(mis1 + mizo + ...) +m;
variables over R;, and the lemma follows. |

Corollary 2.4.20. — Reep the notation and assumptions of the lemma. Minimally
ramified lftings are lftable. Moreover

dim; L,(2)') = dim; H(T,, ad ).
(See Definition 2.2.4 for the definition of Lv(.@UT) - Hl(Tq, ad p).)

Proof. — 'The first assertion is immediate. The second follows from the dis-
cussion immediately following Definition 2.2.4. O

Corollary 2.4.21. — Suppose that 7 : Gy, — GL,(k) s a continuous representation.
Define a local deformation problem P, to consist of all minimally ramified Ufis of 7.

1. D, s bftable.
2. The space L, of deformations of 7 to k[€]/(€*) has dimension equal to the dimension
of H(Gy., ad7).

3. The corresponding quotient R/ % is a power series ring in n*

variables over O.

Proof. — 'The first two parts follow from the previous corollary using the
equivalence of categories of Corollary 2.4.13 and the equality

dim; H' (G, ad7) = ) _ dim; H'(T, ad 7,)
[7]

(see Lemma 2.4.12). The third part follows from the first two. ]
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Lemma 2.4.22. — Suppose that [1#7(Iy.) and that D, consists of all minimal lifis
of 7. Then L, = H"(Gy./Ip., (ad 7)').

Progf- — A lifting of 7 is minimal if and only if it vanishes on ker7[y_. Thus
L, = H'(Gp/(ker 7|y,.), ad 7).
However H'(7(Iy.), ad7) = (0) so that
H'(Gy,/Ir,, (ad ") —> H'(Gy,/(ker 7l.), ad 7)

and the lemma follows. O

2.4.5. Discrete series deformations. — Let n = md be a factorisation and let
7, Gp. — GL,(0)

be a continuous representation such that

1. 7,® k is absolutely irreducible,
2. every irreducible subquotient of (%@k)lIF; 1s absolutely irreducible,

3. and 7, @k E7,Q k() for i=1,....,m.

The second condition is probably unnecessary, but it is harmless for applications
and simplifies this section, so we include it. Note that in particular we have

k() F k
for i=1,...,m.
Lemma 2.4.23.
1. There s a factorisation d = didy and a representation
5,0 G —> GL4(0),

where Y/ V5 is the unramified extension of degree d,, such that SU|IF§ Q¢ k 1s absolutely
wrreducible and not 1somorphic o s comjugate by any element of Gy, — Gy, and such
that

~ ~ GF;(
r, = IndGF% Sy

2.1f R is an object of Cfé and p : Gp. — GLy(R) satisfies
Pl =7l ®o R
then

p = IndG;‘,N’(SU ®e R(X))
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or some umquely determuined unramified character x : Gy — R*. In particular
quety X :

p F p()

Jor 1=1,...,m.
3.1f R s an object of Cfé and 1 is an ideal of R then

ZGLd(R)(?v(IF;)) - ZGLd(R/I) (;;(IF;))

Progf. — Let 7; be an irreducible (and hence absolutely irreducible) subrepre-
sentation of 7|, ® 4. Let H C Gy, denote the group of o € Gy, such that 77 = 7.
Because H/Iy, is pro-cyclic we can extend 7; to a representation of H. Then there
is an H-equivariant embedding

;1 ® Homlpa(;h;; ®ﬁ k) — Z} ®ﬁ k’

and the image is the biggest Ip.-submodule of 7, ® 5 £ isomorphic to a direct sum
of copies of 7|. Because 7, ®¢ k is absolutely irreducible we see that the map

Indy)”™ (71 ® Homy, (71, 7, ® £) —> Tolyy. @ k

is an 1somorphism and that HomIF;(il,?v ®g k) 1s an absolutely irreducible H/Iy,-
module, which must therefore be one dimensional. Twisting 7; by a character of
H/Ir, we may assume that

7 @k =1Ind." 7,
where 7, . is absolutely irreducible. Thus
Tl ®k=1& .. &7,

where each 7; is irreducible, where 7; Z 7; if ¢ #j, and where 4, =[Gy, : H] and
dydim; 7; = d. Note that H is nothing else than Gy

We claim that ;Z"IF; =n®..PHr, where r; is a lifting of 7. We prove this
modulo A’ by induction on ¢, the case ¢ =1 being immediate. So suppose this is
true modulo A'. As Iy has cohomological dimension 1 we see that we may lift
1, to a continuous representation 7 : Ip. = GLgim7 (O/A). Then 7|5, mod A/t
differs from r @ ... ®r; by an element of 0

H'(Ip., ad7, @ k) = EB H' (I, Hom(7,, 7).
i,

For 7 #; we have Hom(7;, f/)IF;. = (0) so

H' (I ad?, ® &) = D H' (@, ad 7).

Hence 7|, mod A" =1, @ ... ® 1y, as desired.
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The group H must stabilise the subspace r and so we can extend 7 to
a representation s, of H which embeds into 7,|y and lifts 7;. The first part of the
lemma follows.

For the second part we are assuming that we have a decomposition

,0|ng = Qs R)P®...® (1, ®¢ R).

The submodule 7 ®5 R of p is stable by H and so we can extend r ®4 R to
a representation p; of H which embeds into p|y. We see that

Ind," o, = p.

Let ¢y denote the lift to H of a topological generator of the pro-cyclic group
H/Ip.. As 7| 1s absolutely irreducible, it follows from Lemma 2.1.8 that
(s, ®s R)(dn) and p1(¢n) differ by multiplication by an element of R*, 1.e. that
p1 =5, ®s R(x) for some character x : H/Ip, — R*.

If

Indg, (s, ® R(0) = Indg, 5 ® R(x)
for two characters x, x' : H/Ip. = R* then
5 ®e R(x) =5, ®0 R()).
But
Homy(s, ® R(x), 5, ® R(x") = Homy, (s, 5,) (' x )"
=R((x D"
by Lemma 2.1.8. Thus we see that x = x’, and the second part of the lemma

follows.
For the third part simply note that by Lemma 2.1.8

Zor,wy (7,(I)) = (R4,

Defimition 2.4.24. — Suppose that R s an object Cfé and
p : Gp. — GL,(R)

is a continuous representation. We will say that p is T,~discrete series if there is a decreasing
Sfiltration {Fil'} of p by R-direct summands such that

Lgr'p = (e0)@) for i=1,...,m—1, and
2.2’ Py, = (Tl ®6 R).

Lemma 2.4.25. — If p is 7,-discrete series then the filtration {Fil'} as in the definition
s umque.
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Progf. — Suppose that {Fili} and {Fil}} are two such filtrations. Suppose also
that

gl p = Inng(sy ® X;)-
From our assumptions on 7, we see that
e|gF§ mod A # 1
for 1=1, ..., m. However

Thus
¥o = x1€° mod my

for some 0 < <m. If ip > 1 then

X1€" = x0T = x1€" mod mg
for some 0 < ¢ < m, which would give a contradiction. Thus x; = x, mod my
and

0 ~ 0
gr o Qr k= gr, o ®r k.
Note that gr}p is the maximal submodule of p/ Fil;“,o all whose simple

R[Gy;]-subquotients are isomorphic to grj(-),o ® k(€'). Thus by reverse induction on
i we see that Fil| p = Filjp. O

Lemma 2.4.26. — If T is 7,-discrele series then the set D, of 7, discrele series liflings
of T form a local deformation problem.

Proof — 'The first two conditions of Definition 2.2.2 are immediate. The
third and fourth follow from Lemma 2.1.8, the third part of Lemma 2.4.23 and
Lemma 2.4.25. The fifth condition is also immediate. Let us verify the sixth condi-
tion. Suppose that R < S is an injective morphism in %”ép and that
p: Gp. — GL,(R) is a continuous representation such that p thought of as valued
in GL,(S) is 7,-discrete series. Let {Filé} be the corresponding filtration of S" and
set Fily = Fili N R". Note that all simple R[Gy.] subquotients of gri are isomorphic
to gri ®s k(7). Thus the same is true for all simple subquotients of gry and hence
for (Fily)s/(Fili!)s. By part two of Lemma 2.4.23 we see that the grd ®g k(i) are
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non-isomorphic for i =0, ...,m — 1 and hence (Fily)s = Fil;. In particular the re-
duction map gives a surjection Fily — Fily ®s £ C £". Choose a basis ¢, ..., ¢, of £"
adapted to {Fily ®s £}. We now see that we can lift it to a basis ¢,...,¢, of R"
so that ¢ € Filﬁ whenever ¢ € FiliS ®s k. Then each Filé has a basis consisting
of a subset of the {¢}, so that the same is true of Fil{{. Thus each Filf{ is a dir-
ect summand of R" and grf{ ®r S = gré. The sixth condition of Definition 2.2.2
now follows from Lemma 2.1.9, Lemma 2.1.8 and the third part of Lemma 2.4.23.

O

For the rest of this section we will assume that 7 is 7,-discrete series and let
2, denote the set of 7,-discrete series lifts.

Lemma 2.4.27. — 9, is lftable.

Proof. — We will argue by induction on m. The result for m = 1 follows
from part 2 of Lemma 2.4.23.

Let R be an object of Cfé and let T be an ideal of R with migI = (0).
Suppose that 7 is a 7,-discrete series lifting of 7 to R/I. Let {Fil'} be the corres-
ponding filtration of 7. By the inductive hypothesis we may choose a 7,-discrete
series lifting 7 of r/ Fil"'r to R. It will suffice to show that the natural map

H'(Gy,, Homg (7, (gr’7) (m — 1)))
!
H'(Gy,, Homg (r/ FiI" 7, (gr°) (m — 1))
is surjective. The cokernel of this map equals the kernel of
H?(Gy., Hom; (7/ FiI"'7, (gr’F) (m — 1)) ®; 1
1
HQ(GF;, Homg (7, (gr’7)(m — l)))
Using local duality we see that it will suffice to show that
H°(Gy,, Homg (g1, 7/ FiI"™'7')(2 — m)) ®& RY
i
H’(Gy,, Homy (g7, 7/ FiI"™' 7)(2 — m)) @, 1Y
1s surjective, where MY denotes the Pontriagin dual of M. However the composites
k= HO(GF;, Homk(grof, grm_Q?) 22— m))
— H’(Gy,, Homy(gr"7, 7/ FiI"~'7)(2 — m))
and
R = H° (GF;., Hompg (gror’, ar" 4y (2 — m))
— H"(Gy,, Homg (gr'7, 7'/ FiI" ™' #)(2 — m))
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are isomorphisms, because

HO(GF;7 Homg (gr’7, gr'r') (2 — m)) = (0)

and
HO(GFF, Homk(grof, grif) 22— m)) = (0)
for 1=0,...,m — 3. The lemma follows. O
Lemma 2.4.28. — RY/.7 is a power series ring in n* variables over O.
Proof. — We will prove by induction on m that the dimension of the space

of 7,-discrete series liftings of 7 to k[e]/(€?) is n°. The lemma will follow because
7,-discrete series lifts are liftable.

If m =1 then it follows from part 2 of Lemma 2.4.23 that the space of
7,-discrete series deformations of 7 to k[€]/(€®) has dimension 1. Thus the space of
7,-discrete series liftings has dimension:

1+ #* — dim, H (G, ad 7) = #’.

Now suppose that m > 1. To choose an 7,-discrete series lifting of 7 to
k[€]/(€®) is equivalent to choosing

~a lift A oof FiI"'F to (k[€l/ (€)™

— an 7,-discrete series lift 7, of 7/Fil"™'7 to k[€]/(€);

— a lifting » of FiI"™'7 to k[€]/(€?) such that r, = ar'r (m — 1);

— an element of a specific fibre of

2" (Gy,, Homyqex (1, 1)) —> Z' (G, Homy (7/ Fil"~'7, Fil"~'7)).

~77L—1

The space of choices for Fil has dimension m(n — m). The space of choices
for 1, has dimension (n—m)* by inductive hypothesis. The space of choices for
then has dimension

m* — dim, HO(GFF, ad grOF) =m’ — 1.
Finally as in the proof of the last lemma, we see that
2" (Gr;, Homygey e (1, 1)) —> Z'(Gy., Homy(7/ Fil"~'7, FiI"~'7))
is surjective with kernel Z'(Gy., Hom,(7/ Fi"~'7, FiI"~'7)). Thus any fibre has di-

mension
dim; Z' (Gy;, Hom,(7/ FiI"~' 7, Fil"~'7))
= m(n — m) — dim; H’(Gy,, Hom,(7/ FiI"~'7, FiI"~'7))
+ dim; H'(Gy., Hom,(7/ FiI"~' 7, Fil"~' 7))
= m(n — m) + dim; H*(Gy,, Hom,(7/ Fil"~' 7, Fil"~'7))
= m(n — m) 4 dim; H’(Gy,, Hom,(Fil"~'7, 7/ FiI"~'#)(1)).
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(We are using the exact sequence in the paragraph following Definition 2.2.1, the
local Euler characteristic formula and local duality) As in the proof of the last
lemma we see that

k = H"(Gy,, Hom, (Fil"~'7, 7/ FiI"~'7)(1)).
Thus the space of 7,-discrete series liftings of 7 to k[€]/ (¢?) has dimension
mn—m) + (n—m)?> + m* — 1)+ (m(n—m) + 1) = >
The lemma follows. O
Corollary 2.4.29. — Reep the notation of the lemma. Then
dim; L, = dim; H(Gy., ad 7).
The next lemma is self-explanatory.

Lemma 2.4.30. — Suppose that d =1 and m = n. Define Fil' ad7 to be the set of
x in adF such that xFil't C FM'F for all i. If D, is the set of discrete series lifls of 7l G
then

L, = H' (Gy/1p., k1,) @ ker(H'(Gg, ad’ 7) — H'(Gy., ad 7/ Fil'ad 7)).

2.4.6. Taylor—Wiles deformations. — Suppose that No'= 1 mod /, that 7 is un-
ramified at 7 and that 7|GF; = wfv@fv where dim; wfv =1 and 5, does not contain wfv
as a sub-quotient. Take %, to consist of all lifts of 7|GF; which are (1 +M,(mg))-
conjugate to one of the form ¥ @ s where v lifts ¥,, and where s lifts 5, and is
unramified. Then &, is a local deformation problem and

L, = L(2,) = H(Gy./Iy,, ad5,) @ H' (Gy,, ad ¥,).
Note that in this case
lg, L, —1g, H(Gg., ad 7) = 1g, H' (I, ad ¥,) 7 = 1.

We will write A, for the maximal [-power quotient of the inertia subgroup of
G%E It is cyclic of order the maximal power of [ dividing N7 — 1. If r is any
deformation of 7|g,. in &, over a ring R then detr: A, - R* and so R becomes
an O[A,]-algebra. 1f a, denotes the augmentation ideal of O[A,] then R/a,R is
the maximal quotient of R over which r becomes unramified at v.
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2.4.7. Ramakrishna deformations. — Suppose that (N7) # 1 mod/ and that
lor. = V.e® Y, D5, where ¥, and 5, are unramified and 5, contains neither v,

nor ¥,€ as a sub-quotient. Take Z, to consist of the set of lifts of 7|y which are
(1 + M, (mg))-conjugate to a lift of the form

e *x 0
0 v 0
0O 0 s

with ¢ an unramified lift of % and s an unramified lift of 5,. Then &, is a local
deformation problem and L, =L,(%,) is

H! (GFF/IF;, k (102 8)) ® H'(Gy, Hom(¥,, ¥,€))

® H'(Gy./I., ad 5,).
Then
dim, L,
= 2 4 dim; H'(Gy./Ip., ad 5,)
= 2 4 dim; H(Gy, ad 5,)
= dim; H*(Gy., ad 7).

Moreover ¥, is liftable. (Because if R is an object of %5 and if I is a closed ideal
of R then

H' (G, R(€)) - H'(Gp, (R/D)(€)).)

2.4.8. One more local deformation problem. — Suppose again that (N?) # 1 mod !
and that 7], = 1//6 @b 1// @ 5,, where K[’ and §, are unramified and 5, contains
neither v, nor ¥,€ as a sub-quotient. Take &, to consist of the set of lifts of 7l Gy
which are (1 4+ M, (mg))-conjugate to a lift of the form

l/fl %k 0
0 ¥, 0
0 0 =

with ¥ (resp. ¥,) an unramified lift of ¥ (resp. ¥,) and s an unramified lift
of 5,. Note that %, includes all unramified lifts and all Ramakrishna lifts (see
Section 2.4.7). It is a local deformation problem and L, =L,(%,) is

H'(Gy./1y, Hom(y,€, ¥,€) @ Hom(y,, ¥,)) ® H'(Gy., Hom(¥,, ¥,€))

® H'(Gg./Ip., ad5,).

Then

dimk Lv =3+ dll’l’l/C H1 (GFLN/IF;v ad EU)

= 3 + dim; H’ (Gp;, ads,) = 1 4 dim, H° (G, ad 7).
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We remark that this deformation problem is only used in the proof of The-
orem 2.6.3, where its function is to compare unramified deformations with Ra-
makrishna deformations.

2.5. An application of the Cebotarev density theorem. — We will keep the notation
and assumptions established at the start of Section 2.3. In this section we will
lay the groundwork for the Taylor-Wiles arguments we will use to prove our
modularity lifting theorems. More specifically we will use the Cebotarev density
theorem and our Galois cohomology calculations to construct the sets of auxiliary
primes on which the method relies. To be able to do this we will need to put
some restrictions on the image of 7. The condition we will need to impose we have
called ‘big’. This condition is somewhat ugly, but we failed to find a more natural
formulation. It is however usually easy to verify in specific cases. The terminology
‘big’ is perhaps unfortunate. If the cardinality of a subgroup H C ¥,(k) is large
compared to the cardinality of ¥,(k) then the H is often ‘big’ in our technical
sense. However there are also many subgroups H C ¥,(k) whose cardinality is not
large which are also ‘big’ in our technical sense. We apologise for our lack of
imagination in nomenclature.

Definition 2.5.1. — We will call a subgroup H C 9,(k) big if the jollowing condi-
lions are satisfied.

~HNY (k) has no [-power order quotient.

~H(H, g,(k) = (0).

~H'(H, g,(k) = (0).

—For all wreducible k[H]-submodules W of @,(k) we can find h € HN %O(k) and
a € k with the following properties. The o generalised eigenspace Vyo of h in k" s
one dimensional. Let 1,4 @ K" — Vo (resp. v.4) denote the h-equivariant projection
of K" to V. (resp. h-equivariant ujection of V)4 nto k"). Then 1w, ,0Woy, 4 # (0).

Sumalarly we call a subgroup H C GL,(k) big if the following conditions are satisfied.

—H has no -power order quotient.

~H(H, g, (%)) = (0).

~H'(H, g)(®)) = (0).

— For all irreducible k[H]-submodules W of g°(k) we can find h € H and o € k
with the following properties. The o generalised eigenspace Vo of h m k' is one
dimenswnal. Let 1,4 : K" — Vo (resp. 1,4) denote the h-equivariant projection of k"
0 Vg (resp. h-equivariant wjection of 'V, into k"). Then 1,4, 0 Wo g, # (0).

(Recall that §° denotes the trace zero subspace of Lie GL, C Lie%,.)

We note that the fourth property will also hold for any non-zero F,[H]-
subspace W of g,(£k). (Because it holds for W if and only if it holds for its £-linear
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span.) Also note that, if H C ¥,(k) surjects onto ¥,(k)/9°(k) and if HNZ(k) is
big, then H is big.

At the referee’s suggestion, we will digress here to give some examples of
big subgroups H C ¥,(k), which will be needed later.

Lemma 2.5.2. — Suppose that | > 2n—1 1is a prime; that k s an algebraic extension
of Fi; and that H C GL, (k). Suppose that

—H has no [-power order quotient,
~H contains Symm"~" SLy(F)), and
~H'(H, g)(®)) = (0).

Then H s big
Proof. — As a SLy(F))-module we have
ad Symm”™' = 1 @ Symm? @ Symm* @ ... @ Symm?*" 2.

(That ad Symm"™" is semi-simple follows for instance from [Se2].) As 22—2 < [—1
each factor in this decomposition is irreducible. In particular

H°(H, g, (k) = (0).

Let T denote the torus of diagonal elements in SLo(F,) and let ¢ denote
a generator of T. Let D = (ad7)'. As n <[ we can decompose

Symm"! |1 =V, ®V, @ ..oV,

where the V; are the eigenspaces of ¢ and each is one dimensional. Let i ; de-
note the injection V; <> Symm"™' and 7,; denote the t-equivariant projection
Symm"™" — V;. Thus 7,;i,; = 1. As 2n <[+ 1 we see that

n—1
D = P Hom(V;, V;)
7=0

has dimension 7z and that, for 1 =0,...,n—1

dim D N Symm* = 1.
For each i = 0,...,n — 1 choose j such that the projection of D N Symm?* onto
Hom(V;, V;) is non-trivial. Then

7, (D N Symm™)i, ; # (0). g

Corollary 2.5.3. — Fix positive integers m and n. There is a constant C(mn®)
such that for any prime | > C(mn*) and any finite extension k/¥, of degree at most m
the group GL,(k) has the following property. Any subgroup H C GL, (k) which contains
Symm" ™' SLo(F)), but has no [-power order quotient, is big
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Proof. — Using the lemma one just needs to check that H'(H, gg(k)) = (0).
However [Se2] tells us that g,(£) is semi-simple as an H-module. The result then
follows from Theorem E of [N]. O

Corollary 2.5.4. — Suppose that | > 2n — 1 w5 a prime; that k 15 an algebraic
extension of ¥;; that K C k s a fiute field and that H C GL, (k). Suppose that

£ Symm"™' GLy(K) D H D Symm" ™" SLy (k).
Then H s big

Progf. — It follows from the lemma that it suffices to show that
H'(SLy(#), ad Symm"™" ) = (0).

(Note that /4[H : Symm" ' SLy(k)].) As in the proof of the lemma we have a de-

composition

ad Symm"™' = 1 @ Symm? @ Symm* @ ... @ Symm?* 2.
Let B (resp. T) denote the subgroup of SLy(£") consisting of upper triangular (resp.
diagonal) matrices and let U denote the Sylow /-subgroup of B. Thus

n—1
H' (SLy(¥), ad Symm™™") — @ H' (U, Symm™)®.

=0

As [>n+1 it follows from Lemma (2.7) ¢) of [CPS] that for : =0,...,n—1 we
have

H'(U, Symm*)® = (0).
The lemma follows. O

Lemma 2.5.5. — Suppose that n is even; that [ > max{3,n} s a prime; that k is
an algebraic extension of ¥;; that K C k s a fiute field; and that H C GL,(k). Suppose that

k* GSp,(K) D H D Sp, (k).
Then H s big

Proof. — For definiteness we suppose that Sp, is defined by the skew-sym-

metric matrix

0 L
J_<—1n/2 0)’
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ie. Sp, = {g € GL, : gJ¢ = ]J}. Define H-submodules R;, R, and Ry of g,(k)
as follows. Ry consists of scalar matrices. R; consists of matrices A such that
AJ+J'A = 0. Finally Ry consists of matrices A such that trA =0 and AJ—J'A=0.
FEach is preserved by H’. As > n we see that

ad:R()@Rl@RQ

and each R; is an irreducible Sp, (F;)-module. (The latter fact is because each R;
is a Weyl module with [-restricted highest weight.) Thus H’(H, g°(k)) = (0).
Choose « € F with &*> # 1 and take & to be the diagonal matrix

diag(a, 1, ..., 1,a™', 1,..., 1)

in Sp,(F;). If 1 (resp. m,) denotes the injection of (resp. projection onto) the o
eigenspace in £" then

7Ry # (0)

for j=0, 1 and 2.
Finally it will suffice to check that

H'(Sp,(K), g.,(k) = (0),

or simply that Hl(Spn(/f’), gg(k)) = (0). (Because Sp,(£) has no quotient of [-power
order.) Let B, denote the Borel subgroup of elements of Sp, of the form

a b
0 ‘a!

with a upper triangular. Then (ad7)®® = R,. Also let T, denote the subgroup
of Sp, consisting of diagonal elements. Identify the character group X*(T,) with
Z"? by

. —1 —1 An/2
(d], cees Cl,,/Q) dlag (tl, cees Zf,,/Q, tl Y eeey tﬂ/Q) = till"'t”/Q .

Corollary 2.9 of [CPS] tells us that Hl(Spn(k’), g%(k)) = (0). (According to foot-
note (23) on p. 182 of [CPS], because /> 3, we may take ¥ of Corollary 2.9
of [CPS] to consist of (1,-1,0,...,0), (0,1,—1,...,0), ..., (0,0,...,1,—=1), and
(0,0,...,0,2). Then that corollary tells us that

dimH'(Sp,(K), g, (k) =2(n/2—1)+1—(n—1)=0.) -

Lemma 2.5.6. — Suppose that [ > n is a prime; that k s an algebraic extension
of ¥y that K C k s a fiute field; and that H C GL,(k). If n = 2 suppose further that
[> 3 and #K > 5. Suppose that

k*GL,() D H D SL,(k).
Then H s big
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Proof. — As [>n we see that
0
g.(k) = g,(k) D k1,

as H-modules and that g’(k) is an irreducible SL,(F,)-module. We deduce that
H'(H, g, (k) = (0).
Choose a € F with &* # 1 and take £ to be the diagonal matrix

diag(c, ol LD

in SL,(F)). If 4 (resp. m,) denotes the injection of (resp. projection onto) the o
eigenspace in " then

7287 (Biy # (0)
and
okl 7 (0).
Finally it will suffice to check that
H'(SL, (%), 8,(k)) = (0),

or simply that H'(SL,(k), gg(k)) = (0). (Because SL,(£") has no quotient of /[-power
order.) But this follows from Table (4.5) of [CPS]. ]

These examples are by no means exhaustive. We will discuss another example
later (see Lemma 2.7.5). We wonder whether in any irreducible compatible system
of de Rham A-adic representations from the absolute Galois group of a number
field into ¢, with distinct Hodge-Tate numbers, the image of the corresponding
mod A representation will be big for all but finitely many A.

We now turn to the Galois theoretic part of the Taylor-Wiles argument in
this context.

Defiation 2.5.7. —  Suppose that
S = (F[F,8,S, 0,7, X, A Dihes)

s a global deformation problem and that 'I' C S. Let Q be a fimile set of primes v & S of
F* which split in ¥ and for which

Nv =1 mod /.

Let Q denote the set consisting of one choice v of a prime of ¥ above each element of Q.
For v e Q suppose also that 7lg,. = ¥, D5, where dimy =1 and 5 does not contain
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as a sub-quotient. Then we define a second global deformation problem

Z(Q) = L(Q, {(¥,}eq) = F/FH,SUQ,SUQ, 6,7, x, (D)csua),

where for v € Q we take Py to consist of all Ufis of 7|GF; which are (1 + M, (mg))-conju-
gate to one of the form W @ s where ¥ lifts V¥, and where s Ufts 5 and is unramified. (See
Section 2.4.6.)

If ve Q then we will write A, for the maximal l-power order quotient of the inertia
subgroup of G%E We will also write

Aqg =]]A.

veQ)

and ar.q for the ideal of Fr[Aq) generated by the X,;; (for ve 'l and i,j =1,...,n)
and the 8 — 1 for 6 € Aq. If 7 15 Schur we have

Or univ
RyéQ)/aT’Q = Ry .
The next lemma follows immediately from Corollary 2.3.5.

Lemma 2.5.8. — Reep the notation and assumptions of the start of Section 2.3. Also
suppose that 7 s Schur and that for ve€ S =T we have

{[Fj L Qln(n—1)/2 if |l
0

dim, L, — dim; H(Gy., ad 7) = £ o
i v1L.

Let (Q, {¥,}eq) be as in Defimition 2.5.7. Then R

2.7, be topologically generated

loc
G

loc  __
over R}fT = R/(Q)’T by

dim; HY ). (Gpe . ad 7(1) +#Q — Y [Ff : QJn(n — 1)/2

vel, o)l
— dim; H'(Gye s, ad 7(1) — n ) (1 + x(c.))/2
v|oo
elements.
Proposition 2.5.9. — Keep the notation and assumptions of the start of Section 2.3.

Let qy € Z~y. Suppose that 7 s Schur and that the group 7(Gyepy) 15 big Suppose also
that for v € S ="' we have

Ft: —1 if oll
dim, L, — dim, H(Gy.. ad7) = | 0 * Qn(e = 1)/2 it o]
“ 0 if ofl.

Set g to be the larger of dimy ngJ.’T(GF*,Sa ad7(1)) and qo. For any positive integer N we
can find (Q, Q, {¥,}ieq) as in Definition 2.5.7, with the following properties.
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—#Q =¢ = g
~If v€ Q then No=1mod X
fRE/?Q, 7 can be topologically generated over RﬁfT = Rl;c(q)j by

#Q — Y [FF:Qn(n—1)/2—nY (1 + x(c)/2

veT, o)l v|oo

elements.

Progf — Suppose that (Q, {JU}UGQ) is as in Definition 2.5.7. We have a left
exact sequence

(0) — H'(Gyr s, (ad7)(€)) —> H'(Gy+ s0q, (ad ) (€)) —>

— P H' (.. (ad7)(e) .
veQ)

H' (I, Hom(,, 5,)(€))*"" = Hom(,, 5,)q,. = (0)
and
H'(Ig;, Hom(s,, ¥,)(€)“"" = Hom(5,, ¥,)c,. = (0)
we have a left exact sequence
(0) — H'(Gyp+g, (ad7)(€)) —> Hl(GFJrqsuQ’, (ad7)(€)) —

— @ (H' (.. (ad5)() " @ H' (I, (ad ¥7,)(€) "),
veQ)

and hence a left exact sequence
(0) — Hiy). (Grosuq. (ad ) (€)) —> Hy (Gre s, (adP)(€) —>

— @ H'(Gr/Tk.. (ad¥,)(e) = k.
veQ veQ

The latter map sends the class of a cocycle ¢ € Z'(Gy+ s, (ad7)(€)) to

(7TFmb;, ¥, (Froby) © ¢(Frobs) o Z.Frob;,x//p(Frob;))veQ-

(We are using m,, (resp. 4,4) to denote the k-equivariant projection onto (resp.
injection of) the o eigenspace of 4.

By Lemma 2.5.8 it suffices to find a set Q of primes of F* disjoint from S
with #Q) > ¢p and such that
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—1if v € Q then v splits completely in F({n);
—1f » € QQ then 7(Frob,) has an eigenvalue v, (IFrob;) whose generalised

eigenspace has dimension 1; B
~ Hy. (Gpes, (@d1)(€)) = B,eq H'(Gr/ T, (ad ¥,)(€)).

(If necessary we can then shrink Q) to a set of cardinality ¢ with the same proper-
ties.) By the Cebotarev density theorem it suffices to show that if ¢ is an element
of the group Z'(Gyp+s, (ad7)(€)) with non-zero image in H'(Gy+ s, (ad7)(€)), then
we can find o € Gy, such that

— 7(0) has an eigenvalue o whose generalised eigenspace has dimension 1;
— 00 P(0) 0454 # 0.

Let L/F(¢x) be the extension cut out by ad7. If ¢’ € Gp then 7(0'0) € £*7(0)
and ¢(0'0) = ¢(0’) + ¢(0). Thus it suffices to find o € Gp() such that

— 7(0) has an eigenvalue o whose generalised eigenspace has dimension 1;
— T © (¢(GL) + ¢(0)) © ia,a ?é 0.

It even suffices to find o € Gal(LL./F(¢{x)) such that
— 7(0) has an eigenvalue o whose generalised eigenspace has dimension 1;
— Toa © ¢(GL) o ia,a 75 0.

As 7(Gprp) 18 big, so is 7(GF+(£,N))- Thus HY(Gal(LL/F(¢n)), ad7) = (0). We de-
duce that [¢] # O implies that ¢(Gyp) # (0). Then the existence of a suitable o

follows from our assumptions. ]
2.6. Lifting Galois representations. — In this section we will prove a generali-

sation of Ramakrishna’s lifting theorem for Galois representations [Ra2]. We keep
the notation and assumptions at the start of Section 2.3.

Defimition 2.6.1. —  Suppose that ad7 is a semisimple k[Gy+]-module. If W C ad 7
15 a k[Gy+]-submodule we will define
H,, (Gpr s, W)
= H1 (GF+,Sv W) N H}(Gpﬂs, ad 7_’)
= ker (H' (Gy+ 5, W) — EB H'(Gp,, W)/ (Lz N H'(Gp,, W)))
7S
and
HY. (Gy+ 5, W(1))
= Hl(GF*',Sy W(l)) N Hi(/i (Gprs,ad7(l))
= ker (H'(Gy+ 5, W(1)) — @D H'(Gr.. W)/(L N H' (G, W(1)))).

veS
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We will call W (resp. W(1)) insubstantial if H}(GFtS,W) = (0) (resp. H}ZL(GFﬁS,
W) = (0)).

Definition 2.6.2. —  Suppose that
S = (F/F", 8,8, 0.7 x A D }es)

is a global deformation problem. Let Q be a finite set of primes v & S of ¥+ which split in
F and for which

Ny # 1 mod /.

Also let Q denote a set consisting of one choice of a prime ? of ¥ above each element v of Q.
For v € Q suppose also that 7|, = t,® 3, with t, =V, ®V,€ where dim; Y, =1 and 5,
does not contain , or W€ as a sub-quotient. Then we define a global deformation problem

Z1Q] = Z1Q, {¥,}heql = F/F,SUQ,SUQ, O, 7, %, (Z}hesin)

where for v € Q. we take P, to consist of all lifts of 7lg,. which are (1+M,(my))-conjugate
to one of the form t @ s where t is an extension of an unramified Uft ¥ of W, by Ve, and
where s s an unramified Uft of 5. (See Section 2.4.7.) We also define a second new global
deformation

2101 = .71Q. (V.}eo
= (F/F*,SUQ,SUQ, 0,7, . {Z}es U{Z}eq)

where for v € Q. we take P, to consist of all lifts of 7|a,. which are (1+M,(mg))-conjugate
to one of the form t@® s where t is an extension of an unramified Lfi of W, by an unramified
lift of W€, and where s is an unramified lifi of 5. (See Section 2.4.8.)

If ve Q we will let 7wy (resp. vy, resp. 7wy, resp. 1g.) denote the Gr,-equivariant

projection T —» Vr, (resp. inclusion W, —> 7, resp. projection ¥ —» €, resp. inclusion € —> 7).

We now state our main lifting theorem for Galois representations. We believe
such theorems have some intrinsic interest. In addition we will need to apply this
theorem in the following situation. We will have a mod [ representation which is
induced from a character (and hence provably automorphic). We will need to find
an [-adic lift whose restriction to the decomposition group at some prime corres-
ponds (under the local Langlands correspondence) to a Steinberg representation.
(Such a lift will never itself be induced from a character.)

The conditions of the following theorem are unfortunately rather complicated.
We apologise for this. They deserve clarification. However the theorem does suffice
for our purposes. The reason for introducing the submodules Wy and W, of ad7
is that Ramakrishna’s method [Ra2] may not work to kill cohomology classes on
all of ad7. However sometimes in applications we will know for other reasons that
there are no cohomology classes supported on these parts of adr.
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Theorem 2.6.3. — Keep the notation and assumptions of the start of Section 2.4. In
addition make the following assumptions.

—For all veS the local deformation problem 2, is lfiable and
F —1)/2 if oll

dim; L, — dim; H*(Gy., ad7) = [F7 2 Qln(n —1)/2 1 v

U 0 if vtl.

— For each infinite place v of ¥ we have x(c,) = —1.
—ad7r and (ad7)(l) are semusimple k[Gy+]-modules and have no wrreducible constituent
m common.

~H' (7 (Grry)s 8u(R) = (0) for i=0 and 1.

Suppose that Wy and W, are Ggr-submodules of adr with Wy and W, (1) wnsubstan-
tial. Suppose moreover that for all wrreducible k[Gy+ s]-submodules W and W' of g,(k) with
W & Wy and W ¢ Wy we can find o € Gps and o € k* with the following properties:

—€(0) # 1 mod L.

—The o generalised egenspace Vi, of 7(0) and the ae(o) generalised eigenspace
Vouwew) of 7(0) are one dimensional. Let 154 (1eSp. loae)) denole the inclusions
Voo = K (resp. Vogew)y = k'). Let w5y @ K' — Voo (1P Tone) @ K —
Vo ae()) denote the o-equivaniant projections.

- ia,ae(a)naa ¢ WO-

- (izr,ae(a)nzr,ae(a) - ia,ana,a) ¢ Wl-

“ g © Wo Z.a,ote(a) 75 (0)

~Tyq OW 0 lyy 7 Mo ae() © W O Uy ge) Jor some w' € W'

(We note that this property will also hold for any non-zero ¥,[Gy+ s]-subspaces W and W’
of 9.(k) with W & Wy and W ¢ W,. Because it holds for W and W' of and only if u
holds for thewr k-lnear spans.)

Then we can find (Q, {lﬁ,}veg) as i Defimtion 2.6.2 such that

Ryl =0

In particular there is a lifting v : Gyr sug — 9,(O) of T umramified at all but finitely
many primes, with v or= x and such that for all v € S the restriction 7|, les in .

Proof — We will continue to use the notation of Definition 2.6.2. If the
cohomology group H}ZL(GFﬁS, ad7(1)) = (0) then the proposition follows at once
from Corollary 2.3.6 (with Q = ). In the general case we need only show that
we can find a prime v ¢ S of F* which splits in F such that

— Nov =1 mod /.
— 7lgp. = L, D35, where ¢, = ¥, ®v¥,€ and neither ¥, nor ¥,€ is a subquotient
of 3,
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dimy, H%f/[{v}])l (Gr+ sup» (@d P (1) < dim Hy,, (G s, (ad P)(1)).

- H}[{v}](GFtsu{v},Wo) = (0) and Hg_c/[{v}])J_(GF*,SU{v}aWl(l)) = (0), 1e. W,
and W;(1) remain insubstantial for .7[{v}].

(Then one can add primes v as above to S recursively until
Héz[Q])L(GFtSUQ, (ad 7_')(1)) = (0))

So let v ¢ S be a prime of F* which splits in F such that

— Nv# 1 mod /.
— Tlay, = ,®35, where 7, =¥, @¥,€ and neither ¥, nor ¥,€ is a subquotient
of §,.

— Z'%GJT% ¢ WO and iﬁenﬁ,e — Z.@TL'@ ¢ W].

Note that there are left exact sequences
(0) = Hy(Gres, ad ) — Hyypy) (Gresup, ad7) — H' (s, ki rg,))

and
(0) — H;’[{v}] (GF"',SU{U}a ad 7) — H;[{y}]’(GF_'—,SU{U}’ ad 7) e
— HI(GFF/IF;, k(iﬁ‘eﬂ@e - Z@JT%))
and
(0) = H!yyp: Gresops @d (1) — HY (Gre s, (ad (1)) —
— H'(Gy/Iys, ((ad D)/ k(i 75,)) (1))
It follows from Lemma 2.3.4 (and the discussions of Sections 2.4.7 and 2.4.8) that
dimy HY. G+ s, (ad P)(1)) — dimy H! .y, (Gre soga, (ad 7)(1)
= dim; H},(Gy+ s, ad 7) — dim; H ) (G sugey ad 7)

+ dim; L, — dim H(Gy, ad 7)
= dim; Hy,(Gy+ s, ad7) — dim; Hy ) (Gpr sugy» ad 7) + 1.

Moreover because iy 7w, ¢ W, we see that H'(Gy., Wy) N L, is contained in
H'(Gy. /I, Wy) and so

Hly’[{y}](GFtsu{y}, Wy) C H}(Gw,s, Wop) = (0).
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Similarly because (i 75 — 15 7y) € Wi we see that

H'(Gp,, Wi (1) N Ly € H'(Gg/Ti, Wi(1))
and so

HPI(/[{U}]J.(GF"',SU{U}’ Wi(1)) C H_lc/J.(GF*',S’ Wi (1)) = (0).

Thus the prime v will have the desired properties if

Hy. (Gpr s, (@d ) (1) = H' G/ T, ((ad D)/ k(i c705)) (1))
and

Hy (Gy+ s, ad ) > Hpp) (Gre sugy ad )

— H'(Gp/1g., k(i 70y e — 1y 70y )

are both non-trivial. (From the non-triviality of the first map we would then deduce
that

dim; H'y1 (Gy s, (ad 7)(1)) = dimy Hy g,y (G sugy» (@d D (1) + 1,
so that
dim; H,(Gy+ s, ad 7) > dimy Hly[{v}], (Gr+,supy» ad 7)
and, in fact,
H., (Gp+ s, adF) —> H}[{v}],(GF+,SU{U}, ad7).)
Suppose that H}gL(GFtS, (ad7)(1)) # (0). It follows from Lemma 2.3.4 that
dimH. (Gy+ 5, ad7) = dimH',, (Gy+ s, (ad 7)(1)) > 0.

Choose a non-zero class [¢] € H}%(Gpﬂs, (ad7)(1)) and a non-zero class [¢"] €
H}(GFﬂs, ad7). By the Cebotarev density theorem it suffices to show that we can
choose 0 € Gy and « € £ with the following properties.

= Ol # 1.
— 7(0) has eigenvalues o and oe(o) and the corresponding generalised eigen-

spaces U and U’ have dimension 1. Let ¢ (resp. ) denote the inclusion
of U (resp. U) into £" and let m (resp. ') denote the o-equivariant pro-
jection of £" onto U (resp. U’).

—im ¢ W,.

— i/’ —um ¢ Wy
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—mo@(o)ol #0.
—mo@’'(0)oi#m 0o¢’(0)o7.

Let L denote the extension of F({;) cut out by ad7. Replacing o by oo
with ¢’ € G, we need only show that we can find 0 € Gy and o € k£ with the
following properties.

= Ol # 1.
— 7(0) has eigenvalues o and oe(o) and the corresponding generalised eigen-

spaces U and U’ have dimension 1. Let ¢ (resp. ) denote the inclusion
of U (resp. U') into £* and let 7 (resp. ') denote the o-equivariant pro-
jection of £" onto U (resp. U").

—/m ¢ W,.

— i/’ —um ¢ Wy

— mo@p(Gy)od #0.

— o' mo¢(0’)oi—m" 0¢"(0') 0o is not identically zero on Gi.

Note that ¢(Gr) ¢ Wy and ¢"(Gr) ¢ W, (because H}(Gw,s,wo) = (0) and

H_lc/L(GF‘*',S’WI(l)) = (0)). Hence the existence of o follows from the assumptions
of the theorem. O

Because the hypotheses of this theorem are so complicated we give a concrete
illustration of the theorem. It will not be needed in the sequel. We will write CI(F)
for the class group of a number field F.

Corollary 2.6.4. — Suppose that n > 1 is an integer, that ¥ is a totally real field
and that ¥ is a totally imaginary quadratic extension of ¥t. Suppose also that | > n is
a prime with the jfollowing properties.

— 1 is unramified in F*.

—All primes of ¥ above | split in F.

— [1# CIE)Gav+), the order of the Gal(¥/F*)-comvariants C1(F).

Suppose finally that
T GF+ - gn(F/)

s a continuous, surjective homomorphism such that
~ 7 H(GL,(F) x GL,(F)) = Gy;
—T7lgp only ramifies at primes which are split over F*;
—vori(c) =—1 for any complex compugation ¢;
—for any place w of ¥ above | then 7|, 15 mn the image of G, and for each
1=0,...,0—2 we have

dimk(w) gri G;lﬂ(}pw < 1.
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Then there s a finite extension k/F, such that v lfis to a continuous homomorphism
r: Gpr — Y,(W())

which ramifies at only fimitely many primes and which s crystalline at all primes of ¥ above |
(with Hodge—Tate numbers all between 0 and [ — 2).

Proof. — We apply the theorem. We take & = W(k) for a suitably large
finite extension k/F;, We take S to be the set of places above / or below a prime
of I at which 7|, is ramified. For o|/ we take &, as in Section 2.4.1. For v € S
with 01/ we take &, as in Section 2.4.4. As [>n we have ad7 = kl,® ad’7 and
both summands are irreducible Gg-modules. As F7(¢;) is linearly disjoint from
F over F* (look at ramification above /) we have that H"(7(Gp+(), £1,) = (0)
and H'(7(Gp+(,)), k1) = (0). Clearly H°(#(Gy+()), g°(F)) = (0). By [CPS] (see
Table (4.5)) we have that H'(SL,(F)), M, (F)"=") = (0), and so Hl(?(GFﬂm), g’(k))
= (0). We take Wy =£1, and W; = (k1,)(1). Then

H, (Gy+.5, Wo) = ker (H'(Gy+, £1,) — @D H'(Iy.. £1,))

= ker (H'(Gy+, £1,) — @HI(IF;, k1))

= ker (H'(Gy. k1) — @DH' (i, 51,) """

= Hom(CI(F)/(c — 1) Cl(iT), k) = (0).

(Note that if 7 is a prime of F ramified over F* then Hl(IF;, kl,) — H'(Iy, k1,).)
Also

Hy. (G s, W) = ker (H' (Gy+, (k1,)(1)) — EBHl(IF;, (k1)(1))).

(Note that if 7 is a prime of F ramified over F' then
H' (T, (k1,)(1)) = H'(y;, (k1,)(1)).)

By, for instance, Theorem 2.19 of [DDT] we see that
H,. (Gprs, W) = (0).

The rest of the hypotheses of the theorem are easy to verify and the corollary
follows. O
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2.7. An example. — In this section we will specialise the theorem of the last
section to the case where we will require it: 7 will be induced from a character
and we will be looking for a lift » with the property that the restriction to some
decomposition group corresponds (under the local Langlands correspondence) to
a Steinberg representation.

Fix a positive even integer n and choose a second positive integer k, greater
than (n— 1)((n + 2)"* — (n — 2)"?)/2"*!. (This number is too large for its precise
value to matter, what matters is that there is some constant «, which depends
only on n which will suffice.)

In this section we will consider the following situation.

— M/Q is a Galois imaginary CM field of degree n with Gal(M/Q) cyclic
generated by an element T.
— (> 1+4«k, 1s a prime which splits completely in M and is = | mod n.
— Q #F /[ is a finite set of rational primes, such that if ¢ € Q then ¢ splits
completely in M and (]i Z1lmod/ for i=1,...,n
E Gal(Q/M) — le 1s a continuous character such that
— 09° = €'
— there exists a prime w|/ of M such that for : =0, ...,n/2 — 1 we have
Oli, =€
—1f vy, ..., v, are the primes of M above ¢ € Q) then {9_(Frobvz.)} = {oeqq_f:
J=0,..,n—1} for some «a, € FZX;
Let S(6) denote the set of rational primes above which M or 0 is ramified.
It includes /.
— E/Q is an imaginary quadratic field linearly disjoint from the normal clo-
sure of Mker9(§1) /Q in which every element of S() U Q splits; and such
that the class number of E is not divisible by /.

The referee asks the good question: are there any examples where all these
conditions are met? The answer is ‘yes’. One example is given in the proof of
Theorem 3.1 of [HSBT]. We remark that the primes in Q) will be those at which
the lift we construct will correspond (under the local Langlands correspondence)
to a Steinberg representation.

i Set L/Q equal to the normal closure over Q of the composite of E and
M (g). Also let (EM)* denote the maximal totally real subfield of EM. Then

9_|Ga1(L/EM) extends to a homomorphism, which we will also denote 0,
6 : Gal(L/(EM)") — %, (F))

such that 6(c) = (1,1,7) and vof = €' Let 7: Gal(LL/Q) — %,(F,) denote the
induction with multiplier €'~ from (Gal(L/(EM)"), Gal(L/EM)) to (Gal(L/Q),
Gal(LL/E)) of 6. (See Section 2.1.)
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We have an embedding
Gal(L/EM) — (F,)"? x F¥
_ _r _n/2-1
a— @(a),0 (v),...,0 (); €()).

Fix a primitive n" root of unity ¢, € F,. Suppose o = (ay, ..., Ayo_1) € (F/X)"/ 2 and
B e F,X satisfy B2 = ag..qyo_1. I n/2 <i<n—1 set o; = oz;_ln/g. Let T'yp=T
denote the group generated by (F,X)”/ ?x F and two elements C and T satisfying

~(C?=1 and T =1,

— CTCT ™" = (g, «.es dypo1s 1);

= T(ag, ..., ayo-1; T = (ay, ..., An/2—15 bl_nao_l; b);

— and C(ag, ..., @13 HC = (0" "y, ..., B3 b).

Define characters E : I' = F/ by

- E(T) = é‘m
— B(C) = —1,
— and E(do, cees Q215 b) = b:
and © : (F x F,CT"%) - F, such that

- O(ay, ..., Anj2—15 b) = ay,
— and ®(CT"?) = B.

Note that

— O(CTCT™) = ap...a;.; (because we have (CTCT HT(CT'CT)T™! =
CTHCT-D), and
— O(TICT’T™) = B(ag...0;_1)"" (because (CT'CT)T(CTY*HT~" = CT"?).

Let Ty = [y 0 denote the subgroup generated by ((F))*)®/**! and by C and T.
The next lemma tells us that for many calculations we can replace the group
Gal(L/Q) by the more concrete groups I' and I'.

Lemma 2.7.1. — There exist o and B such that the embedding
Gal(L/EM) — (F,)"? x F¥
extends to an embedding
J:Ga(L/Q) = T

satisfying
~EBoj=¢
~-Boy=0;
— the wmage of j contains To;
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— some complex comjugation maps to C;
—and some lifling T € Gal(L/E) of the generator T of Gal(EM/E) = Gal(M/Q)
maps to T.
If such an embedding exists for some o it also exists for any element of a((F))*n)®"/2,

Proof. — Note that EM and Q (¢;) are linearly disjoint over Q. Thus we may
choose a lifting T € Gal(LL/E) of the generator 7 of Gal_(EM/E) = Gal(M/Q)
with €(T) =¢,. Also choose a complex conjugation ¢ € Gal(Q/Q). Then €(c7"/?) =1

and so

0(T") = 0(c(cT"*)e(cT?))

= (60)(T"?)
— E({_‘Eﬂ/?)lfn
= 1.

Also note that €(cT¢t™') = 1. Setting a; = érl(c?c?_l) we get a homomorphism
j:Gal(L/Q) < T

extending the embedding Gal(L/EM) — (F/X)"/2 x F and which sends T to T
and ¢ to C. We have E o) =¢€. Note that

- - 5 o~ -~ T~~~ —gn/2-1 ~ —~

(T = 0(T*T™*) =0(TTHO(TT™...0  (TT™h,
and so for some choice of B we have ® oj = 6.

Choose a place u of E above [. Let A denote the subgroup of the image of
IndCHEE

Gal(E/EM)

of EM above u. For any integer : define B; to be

6 generated by the decomposition groups above u. Let w be a place

— —p if i=4modn and 0 <7 <n/2—1, and
— i+ 1—3n/2 if i=¢ymodn and n/2 <14 <n—1.

Note that B; + Bit,o = 1 —n. We have

n—1 n—1

[Tt = [TF —a— @)

=0 1=0
The composite map

n—1
HFZX N (F/X)n/Q-l—l

=0
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sends
n—1 n—1 n—1 n—1
Bi Bi—1 Bit1-n/2 1—n
(a;); —> (l |ail, a' a; ,( al-) )
i=0 i=0 i=0 i=0

Moreover by part three of Lemma 2.7.2 below we see that the image has index
dividing «,. Thus the image of j contains I'y.
Finally note that

((ag, +ves aypo—1; DD =1

and

C(ag, ., @yo—1; DTC((ag, .., aypo—1; DT ' = (050062, vess Oln/Q—ld;/QQ,l; 1)-
(These two equalities follow directly from the relations defining I':

((ag, .., @yo—1; DT
. -1, -1 -1 .
= (Cl(), ceny dn/g_], 1)(@1, ceey dn/g_], do y 1)(Cl0 g ooey an/Qfl’ 1)
—1 —1 . n
...(a1 s ees Qo5 403 I)T

and

Cag, ..., ayy9-1; HCH(CTCT Y (ap, ..., Q215 ™!

= (a0s vy @215 D)7 (s wees yjo—1; (@0, ooy @ya—1; 17 O

Here 1s the evaluation of a determinant that was used in the proof of the
last lemma. The first two parts are only needed to help prove the third part.

Lemma 2.7.2. — We have the following evaluations of determinants.

1. For an n X n determinant:

(1 500 0 0)
1l ¢ b0 --- 00
1 ¢ ¢ b 00
det . i l=C—-n""
l ¢ ¢ ¢ c b
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2. For an n X n determinant:

(a

>~
>
>~
>~
=

c a b - b
c ¢ a b b b

det . ) N =6Ca—0)"—bla—c)")/(c—b).
c ¢ ¢ ¢ a b

~
N
(Y
(Y
(Y
(Y
IS

N—

3. For an (n+ 1) x (n+ 1) determinant:

(0 1 2 3 n—2 n—1 2n—1
n 0 1 2 e n—3 n—2 2n— 1
n+1 n 0 1 n—4 n—3 2n—1

det : :
2n—3 2n—4 2n—5 2n—6 0 1 2n— 1
n—2 2n—3 2n—4 2n—5 --- n 0 2n— 1

\22—1 20—1 20—1 2u—1  2u—1 2u—1 2@2n—1))
= (=1)"@u— D((n+ 1"+ (2 — 1)")/2.

Proof. — TYor the first part subtract the penultimate row from the last row,
then the three from last row from the penultimate row and so on finally sub-
tracting the first row from the second. One ends up with an upper triangular
matrix.

For the second matrix let A, denote the determinant. Subtract the first row

from each of the others and expand down the last column. Using the first part,
we obtain

a b b b b
c—a a—5b O 0 0
A, =bla—c)" ' +(@—bdet|c—a ¢=b a=b 0 0
c—a ¢c—b ¢c—b ¢c—b -+ a—2»b

=bla—o)" "+ (a—bA,_,.

The second assertion follows easily by induction.

For the third matrix subtract the second row from the first, the third from
the second and so on, finally subtracting the penultimate row from the two from
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last row. One obtains

[ —n 1 1 1 1 1 0
-1 - 1 I 1 0
e ! 1 1 0
det : . :
e e S —n 1 0
2n—2 2n—3 2n—4 2n—5 --- n 0 2n—1

\22—1 21—1 22—1 2n—1 =1 2n—1 2@2n—1))
Then add half the sum of the first n — 1 rows to the penultimate row making it
n—1 n—1n—1n—1 -+ n—1 (n—1)/2 2n—1.

Now subtract 1/2 of the last column from each of the first n columns. This leaves
the first » — 1 rows unchanged and the last two rows become

-1/2 -1/2 -1/2 -1/2 - —=1/2 —n/2 2n—2
0 0 0 o --- 0 0 2@n—1).

Thus the determinant becomes

(—n 1 1 1 11

-1 - 1 1 - 1 1
-1 -1 —n 1 11
(2n — 1) det ) .
-1 -1 -1 -1 —n 1
\-1 -1 =1 =1 - =1 —n
The result follows on applying the second part. ]

There i3 a homomorphism
O (F)” xF;,C) — 4(F)

extending ®|(f7)n/szlx and with vo ® = B, Tt takes C to (1,1, 7). Consider I,
the induction of ©® from (((F,)"2 x F,C), (F)"2 x F}) to (T, ((F,)"? x FX,T))
with multiplier E'™". (See Section 2.1.) Then I has a basis consisting of functions
¢ for i=0,...,n—1 with ¢(TV) = d; for j=0,...,n—1. Let f, ..., -1 be the dual
basis of TV. I (ag, ..., ays_1; b) € (F, )2 xF} set a; = b'""al,, for i=n/2,...n—1.
Then we have

— Te;=¢_y (with e = ¢,));

— (ag, ey @yo—1; b)ei = aje; for 1 =0, ...,n—1;

- Thi=/-1;

— and (ag, -, @913 b) fi = a; 'f; for i=0,...,n— 1.
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Moreover

(6, 6) = L'dtg...0ti 18

We have 7 =10j.

Then I' acts on adl via

-~ Te®f =61 ®fi-1;

= (ag, ... ayo—1; b)e; @ f; = a;/aje; ® fj;

—C®f=—-¢ 0. 6Qf i 0<j<i1=<n—1;

—and C¢ ®f = —{é_f(al-...aj-_l)_lej- fif 0<i:<j)j<n-—1.
Hence if 0 <7 <j<n/2—1 then

- CT"P4 ® f = =& a0 1642 ® fitn/25

— CT" 6100 ® firnpo = —CJ i o160 @ f;

- CT"/QZJ Qfi = —5{, ‘o o -'-ajqeﬂrﬂ/z ® fi4ny2s

— CT" 00 ® frvnso = —g“,jf/ai_l...aj-__llef,- ® fi;

= CT"6 @ fpnpy = £y oot G lyo16 @ fiino:

- CT"/QQ ® Jitn2 = C,]fiaal---a,-:llaj---an/%lfi ® fitn2;

— CT"P0 @ ff = C,ﬁfjao---aifl%fl---Ol,f/lz_1€]'+n/2 ® fi;

—and CT"g4,0 ® fi = &gty 05y iy @ -

For j=1,...,n/2 =1 let W/jE denote the span of the vectors

¢ @ firj F &7 ujorivi @ fujoti
for : = 0,...,n—1 (and where we consider the subscripts modulo 7). Then Wi
is a [-invariant subspace of adl. The space WJr is isomorphic to the 1nduct10n
from ((F, )2 F/,CT"?) to T of ®/ v, The space W™ is isomorphic to the
induction from ((F )”/ 2 x Ff, CT"?) to T of ®/OY times the order two character
with kernel (F )”/2

If ¥ is a character of F/((F )”/2 x F/) with x(C) = —1 let W, denote the
span of

a0 ®fi+ x(Det fi + .. + (1) ey @ fr1.

Then W, is an I'-invariant subspace of adl on which I' acts via .

Let W, /o denote the span of the vectors ¢®f,o for : =0, ...,n—1 (with the
subscripts taken modulo 7). Then W,y is a I'-invariant subspace of adI isomorphic
to the induction from ((F, )2 x F,CT"?) to T' of ®/0O™". We have

n/2—1 n/2—1

adl =W, 0 (PW)e(Pw)e(Pw)
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Lemma 2.7.3. — The restrictions to T5=" of the 2n — 1 representations W, \/\/j-i
(for y=1,..,n/2 —1) and W, are all irreducible, non-trivial and pairwise non-isomorphic.

Progf. — It suffices to show the following:

—If 1 <j<n/2 then ® # O on ((FZX)"")EB"/2 x {1}.
- If1<j,)/)<n/2 and 0 <k <n—1 then

/0" £ e /e""

on ((F/X)"")EB”/Q x {1} unless j =5 and k= 0.

These facts are easily checked because (/ —1)/k, > 4. O

Proposition 2.7.4. — Reep the notation and assumptions listed at the start of this
section. There is a continuous homomorphism

r:Gg — %(0g)

such that
—r Ufls 7;
—Vor= 61_",'
—r 15 ramified at only finitely many primes, all of which split in E;
—Jfor all places v|l of B, rlgam, v, @ crystalline
—for all T € Hom(E, Q) above a prime v|l of E;

dimg, gr'(7 @ g, Bpw) /) = 1

Jor 1=0,....,n—1 and =0 otherwise;

—for any place v of E above a rational prime q € Q, the restriction rlséal(E JE2)

(Frob,) has eigenvalues {og™ : j=0,...,n— 1} for some

i
SS

unramified and r Gal(E, /E,)

aeQf.
Proof. — Consider the following deformation problem for 7
S = (E/Q, 81,81, 0.7, €™ (D )es),
where S; = QUS(Q_) and O denotes the Witt vectors of F,. For v € S; we define

P, (and L,) as follows.

— If v =1 the choice of Z, is described in Section 2.4.1.
—Ifve Q_then 9, is as in Section 2.4.5 with m=n and 7, = 1.
— If v € S(O) — {{} then &, is as in Section 2.4.4.

Also set Wy = @X W, Cad7 and /g : Gg — Gal(E/Q) = {£1}.
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Then H}l (Gg,s,» Wo) 1s the kernel of the map from HI(GQ, Wy) to

PH'de. Wo) &P (H'(g,. Wie) @ @D H'(Gg,. W))).
1¢Q veQ X#OE/Q

(To calculate the local condition at /[ use Lemma 2.4.5 and Corollary 2.4.4. To
calculate the local condition at v € S(0) — {{} use Lemma 2.4.22. To calculate the
local condition at v € Q use Lemma 2.4.30.) Because [ does not divide the order
of the class group of E we see that

ker (H'(Gg. Wi, o) — @D H'(g,. Wy, ) = (0).
On the other hand if x # dg/q then

ker (H'(Gq. W,) — P H'(g..W,) @ HH(Gq,. W)
$Q =)

is contained in Hom(Clg (EM), £), where Clg(EM) denotes the quotient of the
class group of EM by the subgroup generated by the classes of primes above
elements of (). Because the maximal elementary / extension of EM unramified
everywhere is linearly disjoint from L over EM, the Cebotarev density theorem
implies that we can enlarge Q so that Hom(Clg (EM), k) = (0). Make such an
enlargement. Then ngl (Gg.s,» Wo) = (0).

Moreover H}%IL(GQ,W(;E/Q(I)) is the kernel of the restricion map from

Hl (GQ_7 W(SE/Q(I)) to

(H'(Gg,, Wi, o (1))/H'(Gg,/Ig,, Wi, o)) @ EB H'(Ig,, Wo).
v#£l

From Theorem 2.19 of [DDT] we deduce that

#ngll- (GQ,Sl ) W(SE/Q(I)) = #ngl (GQ_,Sl ) W5E/Q) = 17

Le. ngﬁ(GQ,Sn Wi o (1)) = (0).
Now consider a second deformation problem

Q% = (E/Q,7 SQ’ §27 ﬁ: 7, Elin7 {@v}UESQ)-

Here Sy =S, UQ/, where Q' will be a set of primes disjoint from S, such that
if ¢ € Q' then

j'(Frobq/) = T(ao((]/), ey dn/271((]/)§ b(‘]/))
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with 6(¢)" =1 and ¢,b(¢") # 1. Thus the eigenvalues of 7(Irob,) are the 2" roots
of b(¢)"* each with multiplicity 1, and €(Froby) # 1. Set a;4,/9(¢) = b(g) ' "a;(¢) !
for 1 =0,...,n/2 — 1. Yor v € Q' choose an unramified character ¥, of Gg, with
X, (Froby)" = b(¢)"?, and let &, and L, be as in Section 2.4.7 with ¥ = ¥,. Let 7,
(resp. ¢, resp. 7., resp. 7) denote the projection onto the x,(Frobs) (resp. inclusion
of the ,(Frob;), resp. projection onto the b(¢)¢,x,(Frob,), resp. inclusion of the
b(¢)¢,x,(Froby)) eigenspace of Froby in 7. Then 77, is in the A-span of

n—1

Z b(q) €%, (Froby) ™ (a1 (¢)..ai(¢)) " a1 (¢)...q)(¢ )e; ® .

i,j=0
Thus l.;T[Z, ¢ WO and so H}Q(GQ,SQ’ Wo) C Hl(/l (GQ,SU Wo) = (0)
On the other hand Jm) — ¢, is in the A-linear span of

n—1

Z((b(q/)é“n)i*j — DX, (Frob,) 7 (a1(¢)-.ai(¢) " ar(g)..a(()e @ f

i.j=0
and so 77! —,m, & Wy (because b(¢')¢, # 1). Thus
H,, (Gg.s. Wa(1)
= ker (H., (Gg.s,, Wo(1) — €D H'(Gg, /Ig,. B),
q/EQf
where the map onto the factor Hl(GQq, /IQq,,k) is induced by A —— m,A7 for
veS, with o|¢, ie by

n—1

n—1
Z xie; ® fi > Z x(b(g)E,)"

i=0 =0
If [¢] € HQL(GQ,SI,WO(I)) then the extension Py of EM cut out by ¢ is
1
nontrivial and /-power order and hence linearly disjoint from L over EM. Because
HE(Z%(GQ,S”W(;E/Q(I)) = (0) we see that ¢(Gal(Py/EM)) € W;, o (1). Thus we can
choose b # ¢~ so that

n—1

n—1
Z xie; ® fi > Z x(bL,)'
i=0

i=0
is not identically zero on ¢(Gal(P,/EM)). Then choose ay, ..., a,0-1 € le and
o € Gal(LP,/Q) such that j(0) = T(ay, ..., ay2-1; b) and, if

n—1

$(0) = $:i(0)6 ®;

=0
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then

n—1

> (b2)' i) # 0.

=0
Let ¢ ¢ S| be a rational prime unramified in LP, with Frob, = o € Gal(LP;/Q).
Then if ¢ € Q' and b6(¢') = b then [¢] ¢ H,l(ﬂ (Gq.s,» Wo(1)). Thus we can choose
2
Q' and the b6(¢) for ¢ € Q' such that

Hly. (G, Wo(1)) = (0),

Make such a choice.

Finally we will apply Theorem 2.6.3 with W; = W, to complete the proof
of the lemma. In the notation of Theorem 2.6.3, given W and W', each equal
to W,/o or some \Nf, we will show that the conditions of Theorem 2.6.3 can be
verified with o a lift of T(ay, ..., a,0-1; b) € I'y for a suitable ay, ..., a,9—1, b. We
shall suppose that " =1 but that b # ¢!, so that €(0)" = 1 but €(o) # 1. For

1=0,..,n/2 =1 write a;4,9 = b'"a; ', There is a decomposition

= V.

Mn:bn/Q

into o-eigenspaces, where o acts on V, as u and where V, is the span of

-1 n—1 _—1  —1
o+ pa; e+ ..+ 0 a a6,

Let ¢, denote the inclusion V, — 7 and let m, denote the o-equivariant projection
r— V,, so that m,y, = Idy,. Note that

. 1 B . .
— ZME(U)NM = ZZ/:O d]...dj(d]...di) 1,U/l fe(cr)lel- ®\]jf ¢ W()

. . —1 _ . -
— and Lue(@) T pe(o) — Wiy = ZZ]':O d]...(lj(d]...al‘) IMl */(G(O')l J — 1) ¢ W().

Moreover

= 7,6 ® frvn2) ety = €(0) T W (@1 inya) T
— 7,6 Q fir; F &7 euyorin R foyrt ety = (@1 ---ai1) " W e(0) P (1 £ 02 (g,)™%);
= e (& @ fins2) ety — Tl ® fivny2)iy = (€(0)"* — D" (i1 @ivnsa) ™"
— and o) (6 Q4 F &7 tuprivi Rfoyoti)ineto) — T (6@ fini F &P luatin ® ool =
(1 £ (&) ) (e(0) — D (@41 .-a4)) 7"
Let B (resp. y) denote a primitive (n/2)" (resp. (22)") root of 1. Then we have:

— In the cases W, W' € {W,,», W, ...,Wﬂ_/zfl} taking b = u =1 will satisfy
the conditions of Theorem 2.6.3.
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— In the cases W, W' € {Wn/Q,WT, "'7W:_/271} taking b =1 and pu = §n_1 will
satisfy the conditions of Theorem 2.6.3.

~If W, W € {Wf, ..., W,,_,} taking b=¢, '8 and u = ¢y will satisfy the
conditions of Theorem 2.6.3. m]

Lemma 2.7.5. — Reep the notation and the assumptions of the beginning of this
section. Then 7(Gyr)) 15 big

Progof. — This follows from Lemmas 2.7.1 and 2.7.3, the fact that [ does
not divide #7,(Gg) and the following calculations.

— Take ay € (F/)* with ag # 1 and take o € Gy, with j(0) = (ap, 1, ..., 1; 1)
€ Ag. Then

To,00 Wy lo,ap 7 (0).

— Take (ao, ..., dn/g_]) € (FZX)@?I/Q and o S GF({]) with j(O') =
T(ao, ..., ayjo-1; ¢71). Also take u to be the product of ¢! with a primitive
(2n)" root of 1. Set Qinsy = ¢ 'a; for i=0,...,n/2 — 1. Then

. _ ., n/2 —1
ot @ fivnprloy = W7 (i1 ixnyo)

and

oy (& ® firj F 8 eupsins ® fopoai) iy = (1 F (18) ™)/ (a1 i)~
Thus 77, Wyiv # (0) and 7,, Wi, # (0). 0

3. Hecke algebras

3.1. GL, over a local field: characteristic zero theory. — In this section let p be
a rational prime and let F, be a finite extension of Q,. Let Oy, denote the
maximal order in F,, let p, denote the maximal ideal in O, let k(w) = Op,/ 9w
and let ¢, = #k(w). We will use @, to denote a generator of g, In situations
where the particular choice of generator does not matter. Fix a set X = X(F,) of
representatives in O, for k(w) such that 0 € X. Also let K denote an algebraic
closure of Q,. Also fix a positive integer n. We will write B, for the Borel subgroup
of GL, consisting of upper triangular matrices.

We will use some, mostly standard, notation from [HT] without comment.
For instance n-Ind, H, Sp,, JL, rec and R,. On the other hand, if 7w 1is an irre-
ductble smooth representation of GL,(F,) over K we will use the notation () Jor the l-adic
representation associated (as in [Tat]) to the Weil-Deligne representation

rec,(r” @ | |17,
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when it exists (i.e. when the eigenvalues of rec(7r” ® | |17/%)(¢,) are [-adic units
for some lift ¢, of Frob,). In [HT] we used 7(mw) for the semisimplification of
this representation.

For any integer m > 0 we will let Uy(w™) (resp. U;(w™)) denote the subgroup
of GL,(0Oy,) consisting of matices whose last row is congruent to (0, ..., 0, %) (resp.
0, ...,0,1)) modulo @”. Thus U,;(w") is a normal subgroup of Uy(w") and we

have a natural identification

Uo(@") /Ui (") = (OF,/9,)"

by projection to the lower right entry of a matrix. We will also denote by Iw(w)
the subgroup of GL,(0y,) consisting of matrices which are upper triangular mod-
ulo g, and by Iw;(w) the subgroup of Iw(w) consisting of matrices whose diagonal
entries are all congruent to one modulo g,. Thus Iw;(w) is a normal subgroup
of Iw(w) and we have a natural identification

Iw(w)/ Iwi (w) = (k(w)™)",

under which diag(ay, ..., o,) maps to (o, mod g,, ..., o, mod @,).
We will let ¢, ; denote the matrix

@y, 1]' 0
0 lﬂfj '

We will also let w, denote the m x m-matrix with (w,); =1 if :+7=m+ 1 and
(w,)j = 0 otherwise. Finally we will let w,; denote the matrix

li—l 0
0 Wy 1— .

For j=1,...,n let Tfj) denote the Hecke operator
[GL.(OF,) S, GL.(OF, )]
For j=1,...,n—1 and for m >0 let Ug) denote the Hecke operator
[Uo (") G, jUo(@™)]
or
[U1(@") G,/ Ur (@™)].

If W is a smooth representation of GL,(F,) and if m; > my > 0 then the action
of UY) is compatible with the inclusions

WU@™) — WUi@™) — y\Ui @)
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(This follows easily from the coset decompositions

Ui (") 6.0,/ Ur ™) = | [ 6U: (")
Lb

and
Uo (") 6 jUo (™) = ]_[ bUp (™)
Lb
where I runs over j element subsets of {1,...,n — 1} and & runs over elements of
B,(F,) with

— b, =, if rel and =1 otherwise,
—by,eX if s>r, and =0 unless r €1 and s ¢ L.

See [Manl].)

If « € I has non-negative valuation we will write V, for the Hecke oper-

ators
[U()(w) (1”0‘1 2) Uo<w>]

[Umw) (1”01 2) Ul(w>] .

If W is a smooth representation of GL,(F,) then the action of V, is compatible
with the inclusion

and

W@ — W)

(This follows from the easily verified equalities

Ui(0) (Uo(w) n (1"0‘1 2) Un(w) (1"0‘1 OfL)) = Uy(w)

and

U, (w) N (1'81 2) Up(w) (1781 Oﬁl)

=Uj(w) N (1"01 2) U, (w) (1%1 0101> )
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It 15 well known that there is an isomorphism
Z[GL,(Ox )\GL,(F,)/GL(Os )1 = Z[T), Ty, ..., T,, T, '],

under which T; corresponds to TY. (The latter ring is the polynomial algebra in
the given variables.) Alternatively we have the Satake isomorphism

Z[1/4.[GL,(Or)\GL,(F,)/GL,(G)] = Z[1/g,][XE, ..., X*']™,

under which Tff corresponds to qi,“*f)/ 2sj(Xl, ..y X,), where s; is the j™ elementary
symmetric function (i.e. the sum of all square free monomials of degree j). This
is not the standard normalisation of the Satake isomorphism.

The next lemma is well known. We include a proof partly to establish no-
tation and partly as a warm up for later calculations of a similar nature.

Lemma 3.1.1. —  Suppose that x,, ..., x, are unramified characters of Y. Then
(n—Indl(;nL(}gw)(Xl, e X)) G s one dimensional and TZ(L{') acts on it by q{;”_f)/ 2§/(X1(ww),
ooy X)), where s; is the j" elementary symmetric function (i.e. the sum of all square fiee
monomials of degree j). If

T € Z[GLn(ﬁFu)\GLﬂ(Fw)/GLn(ﬁFu)]
has Satake transform P(X,, ..., X,) then the eigenvalue of T on

GLy(Fy) GL,(OF,,)
(n Ind B,(F,) (le cees Xn))

is P(¢" V2 x (@), oy ¢V 25 (@3)).

Proof. — 'The fixed space (n—IndS}k%&ﬁ”(}(b ceey X)) OO0 g spanned by the
function ¢, where

ool = [ b bl

for b € B,(F,) and u € GL,(0%,). Then (Tfj)gao)(l) equals the eigenvalue of Tfj)

GL,(Fy) 2(OF,
on (n-Indg 5 (X1, - X)) G - But

(T9 o) (1) = Z Z%U’)

where I runs over j element subsets of {l,...,n} and b runs over elements of
B,(F,) with

— b, =, if rel and b, = 1 otherwise;
—ifs>r, rel and s ¢ 1 then b, € X;
— if s> and either r ¢ 1 or s €1 then b, =0.
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Thus
(TV9) () =Y g =i T x(@g"
1 i€l
=g ) [ x@o),
I el

where I = {i; < ... < 4} runs over j element subsets of {Il,...,n}. The lemma
follows. O

Corollary 3.1.2. —  Suppose that m 15 an unramified rreducible admissible repre-

sentation of GL,(F,) over K. Let 1\ denote the eigenvalue of TV on (@) Then
r(m)Y (1 — n)(Frob,,) has characteristic polynomial

Xt — Ot (_l)jqj(j*l)/Qt(ﬁxﬂ*j + .o+ (_l)ﬂqﬂ(ﬂfl)/Qt(n)'
Proof. — Suppose that m = x, B ... H x,. Then

n(@ (1 —n = @Poal 117" 0 Art™,

so that 7(m)Y(1 — n)(Frob,) has characteristic polynomial

(X = x1 (@) ") (X = xul@) g ").

O
Lemma 3.1.3. — Suppose that 7w s an unramified irreducible admissible representation
of GL,(F,) over K. Let L‘](r” denote the egenvalue of Tfj) on OO Thep gY@ =
7YV and the characteristic polynomial of Vo, on w9 divides
n (H)~xrn—1 1 JG=1D/2,(j)~Nen—] _ 1\ n(n—1)/2 (n)
X' =X o+ (=D T X T - + (=1) " LY.
Progf — The first assertion is immediate because the central character of

is unramified. Choose unramified characters x; : F; — K for i = 1,....,n such
that the qz(jfl)/ 2xi(w,) are the roots of

X" — t(l)xn—l 4o+ (—1)j.qj,(j_l)/Ql((j)X”_j + ot (_l)nqnv(n—l)/Qt(n)

with multiplicities. From the last lemma we see that m is a subquotient of
n—IndEk%(wF)“")(Xl, coes Xu). Thus it suffices to show that the eigenvalues of V, on

n—Indg}iL("Fg‘”)(Xl, s X)) are {qz(flwxi(ww)}, with multiplicities (as roots of the
characteristic polynomial).
The space n—Indgk"F(wF)“")()(l, e XV has a basis of functions ¢; for ¢ =

l,...,n where the support of ¢; is contained in B,(F,)w, Uy(w) and ¢;(w,;) = 1.
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We have

Vi, @ Z(vwwqo»(wn prs

But

l,.y O
(wawi)(wn,j) = Z Qi (w”sf (w- ’)lc w. ’>)

xeXn—1
L.y 0 0
= Z Z o, | mx @y w,
xeXi=! yexri 0 w,_; O
L.y 0 0
= ‘I;quw (n+1)/2Xj(w_w) Z ; X 0 1
xeXi-1 0 w— O

A matrix g € GL,(0%,) lies in B,(0p, )w,;Uy(w) if and only if 7 is the largest
integer such that (0, ...,0, 1) lies in the k(w) span of the reduction modulo g, of
the last 4+ 1 — ¢ rows of g. Thus

(Vo 0 (w, j)
1s
-0 1f 2>,
~ ¢V x(w,) if i=j, and
_ (qw — 1) Jj—i—1 (n 1)/2 (w_w) if l<j

Thus the matrix of V,, with respect to the basis {¢} of the space
n—Indgk%(wF)’“)(Xl, ey X))@ g5 triangular with diagonal entries ¢!/ 2)(j(zv'w). The
lemma follows. O

Lemma 3.1.4. — Suppose that we have a partition n = ny+ny and that 7, (resp. 7o)
s a smooth representation of GL, (F,) (resp. GL,,(Fy,)). Let P D B, denote the parabolic

corresponding to the partition n = ny + nyg. Set w = n—Indg(I;;g)F w) (m; @ ). Then

y ~ / GLy (6r, ; GL,, O,
nUl(w) o~ (7.[1 1 (OF )®7T;h(w)) @( U (w) Q7 o (OF ))

Moreover Ufj) acts as

(*3)
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where
A = Z ql(;ljéJrﬂle)/?*jljz (Tl(j'l) ® Uff))
fwalt
and
B= Z qgljfrﬂ?jl)/?*jljz (U,(yjl) ® Tgﬁ))
J=Nn+R

and f o € ¥ has positwe valuation then V, acts as

(IO!I_’”/Q(I ® Vo) * )

0 || /2(Ve ® 1)
Proof. — Let
1;2171 0 0
w= 0 0 1
0 1, O

Then, by the Bruhat decomposition,

GL,(F,) = P(F,)U,(w) ]_[ P, )oU, (w)

so that
(0 )
= (1) @ 1) "IV @ (37, @ gy PN !
_ anLnl(mw) @7V @ 7V @ 1 (xL,lZ(ﬁru)
Specifically x € JT?L'” ) @ my'“ corresponds to a function ¢, supported on

P(F,)U,(w) with ¢,(1) = x, and y € ;'™ ® Gl (1)

tion (,0), supported on P(F,)wU,(w) with (p),(w)
If ¢ € (n-Indpy (™ 7 ® 719)"'@  then

(U9) (@) = ZZw(ab)

where I runs over j element subsets of {1, ...,n—1} and where 4 runs over elements
of B,(F,) with

corresponds to a func-

— b, =, if rel and =1 otherwise,
—by,eX if s>r, and =0 unless r €1 and s ¢ L
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Thus
(U e, <1>—ZZ%<Z}>—0
and
(U(j)w)(l)zzz a b N
w T 0 ¢
I1,Io a,b,c
where I; runs over subsets of {I,...,n}, I runs over subsets of {1,...,m — 1},

a€B,F,), beM,,E,) and ¢ € B,,(F,) such that

1 +#, =,

—a,=w, if rel; and =1 otherwise,

— ¢, =w, if r€l, and =1 otherwise,

if s>7 then a, € X and =0 unless r € I; and s ¢ I,
—if s> 7 then ¢, € X and =0 unless » € I, and s ¢ I,
— byeX and =0 unless r € I; and s ¢ L.

Equivalently

(U(j)(px (1) _ Z q(72112+ﬂ2jl)/2 —J1J2 (T(jl) ®Uz(yj2))x_

Jiti=)
Similarly
a ¢ b
(@)

(U@ =>" > ¢[00 1 0]e].

LI a,b,e,d,e 0 ¢ d

where I} C{1,...,m—1}, I, C{l,...,n9}, a € B, -1 (F), b € M, —1yxn,(Fo), ¢ € F”wlfl,
d € B,,(F,) and ¢ € I’? with

= #1, +#L, =,

—a,=w, if rel; and =1 otherwise,

—d, =, if rel, and =1 otherwise,

—if s> 7 then 4, € X and =0 unless r € I} and s ¢ I,
—if s> 7 then d, € X and =0 unless r € I, and s ¢ I,
—byeX and =0 unless r € I; and s ¢ I,

— ¢ € X and =0 unless r € I},

— ¢ € X and =0 unless r € L.
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The matrix

a ¢ b
01 0]wePEF,)oU;(w)
0 ¢ d
if and only if
a ¢ b
0 1 0] ePF)oU (wo!
0 d'e L,

if and only if ¢ =0. Thus

(U(f>g0 () = Z q(ﬂ1]2+712j1)/2 i (U(]l) ® T(]?))))
g)

J=n+p

Now suppose a € F) has non-negative valuation. If ¢ is an element of
(n—Indg(LF’::)F « T @ mo)V'® then

Vo= Y go(a(i;;; 2))

be(Or, /(@)

Thus
L, 0 O
V(D = Y Yo oel o0 L0
bE(Or /(@)™ ce(Oy, /(@))27 o we «
However
1, 0 O
0 1712—1 0 € P(Fw)Ul(w)
w,b W, o
if and only if
1721 0 0
0 171271 0 EP(FM)Ul(w)
alwmb 0 1
if and only if 4 =0. Hence
L, 0 O
Vapd(D = Y ¢ [0 1,1 0
c€(Ory /(@)2"! 0 e «o

= o ™1 ® Vo).
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On the other hand

l,-1 0 0
V= Y Y e[ob @ me|o]=0
be (O, /(@)1 c€(OFyy /(@) 0 0 1,
Similarly
Ly 0 0
Vep(@) = Y Yo || mb ¢ mu|o
be(Or,, /(@)1= c€(Ory /(@)™ 0 0 1,
= o] (Ve @ L)y,
The lemma follows. O

Lemma 3.1.5. — Suppose that 7w s an wrreducible admissible representation of GL,(F,)
over K with a U\ (w) fixed vector but no GL,(Or,)-fixed vector. Then dimmxV'™ =1 and
there s a character with open kernel, V. : F — K™ such that V(o) s the egenvalue of
Vo on 79 for all o« € ¥* with non-negative valuation. For j = 1,..,n— 1, let uY
denote the eigenvalue of U on w9 and define Q™" (X) € K[X] to be

Xn—l _ u(l)xn—? b+ (—1)j.qjv(j_1)/2u(/-)X"_1—J'
+ ...+ (_l)ﬂq(ﬂfl)(n72)/2u(n71)'
Then there s an exact sequence
(0) = s = n(m) (1 =n) — Vy o Arty| — (0)

where s is unramified and s(Frob,) has characteristic polynomial P} (X). If a0 £ (0)
then q;IVﬂ(ww) z_s a root of PY(X). If, on the other hand, %@ = (0) then
r (@)Y (1 — n)(Gal(F,/F,)) is abelian.

Proof. — If m is an irreducible, cuspidal, smooth representation of GL,,(F,)
then the conductor of rec(w) is greater than or equal to m unless m =1 and &
is unramified. If 7 is an irreducible, square integrable, smooth representation of
GL,(F,) then the conductor of rec(mw) is greater than or equal to m unless 7 =
Sp,,(x) for some unramified character x, in which case the conductor is m—1. As
any irreducible, square integrable, smooth representation 7 of GL,(F,) is generic
we see from [JPSS] that 7Y@ =£ (0) if and only if either m = 1 and 7 has
conductor < 1, or m =2 and 7 = Sp,(x) for some unramified character x of F}.

Now suppose that n=n, + ... +n, is a partition of n and let P D B, denote
the corresponding parabolic. Let 7; be an irreducible, square integrable, smooth
representation of GL, (F,). If

(n-IndSe " m @ ... @) " £ (0)

then by the last lemma there must exist an index 7 such that:
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— For 1 #14 we have n;, =1 and m; unramified.
— Either n, =1 and m;, has conductor <1 or n; =2 and m;, = Sp,()) for
some unramified character x of F).

Thus if w is an irreducible smooth representation of GL,(F,) with a U, (w)
fixed vector but no GL,(0F,) fixed vector then

l. either 1 = x; B .. H x, with x;, an unramified character of F) for

t=1,...,n—1 and with x, a character of I} with conductor 1,
2. or m =y B ...H x,—o B Sp,(x,—1) with x; an unramified character of I
for i1=1,...,n—1.

Consider first the first of these two cases. Let 7' = x; H...H x,_;, an un-
ramified representation of GL,_(F,). Also let P D B, denote the parabolic cor-
responding to the partition n = (n — 1) + 1. As (n—Indgi"F(j)‘”(Xl, e X))V and

(n—Indg(erj:)F Y71 @ x,)U'® are one dimensional we must have

Untw GL,(F i)
T 10 = ( n_IndBﬂ(F(w) ) (Xl > Xﬂ))
GL,(F,) i)
= (n-IndS2 " 7' @ x,)

— (n/)GLn—l(m‘w) ® Y-

From the last lemma we see that V, = x,| |'™/% and that UV acts as ¢/*TY®1.
In particular 7 has no Uj(w) fixed vector. Because

B B x) (1 —n) = n()' @ —n] Arg' | @ (V, 0 Arg!)

the lemma follows.
Consider now the second of our two cases. Let n' = x; B ... B x,—o, an
unramified representation of GL,_o(F,). Also let P D B, (resp. P D B,) de-

note the parabolic corresponding to the partition n = (n — 2) + 2 (resp. n =

1+ ...+ 14 2). Because dim(n—Indg%gg‘”) X ® e ® Xuma @ Spy(x,N)V'™@ =1 and

dim(n—Indg(Iﬁ’j)F D' ® Sp, (X)) =1 we must have

, , Ui (w
79 = (nIndZ5 5 ) @ @ e ® Spy()

= (n-Ind$ % 7' @ Sp, (x,)) "'
— (n/)GLH,Q(ﬁFw) ® SpQ(Xﬂ)Ul(w)

Moreover V,, acts as |o|®/?(1 ® V,) and Ufj) acts as

(T @ 1)+ ¢ (TV " @ UY).



AUTOMORPHY OF L-ADIC REPRESENTATIONS 91
The induced i Ind 2% h irreducibl
e induced representation n-Indg g " (Xus X« |) has two irreducible con-

stituents (x,| |'/?) o det and Spy(x,). On n—IndEQL(QFg’“)(Xn, % DU we have

v o (@
‘ 0 @

U(l) — (]}L/QXn(ZD'w) 0 )
. * G Xo(@2)

and

On (x,| |'?) odet we have

Vo = lal'* x.(a)
and

U = ¢\ xu(@).
Thus on SpQ(Xﬂ)Ul(w) we have

Vo = la|7x,(@)

and
U = ¢, xu(@).
Hence on 7Y™ we have
Vo = la| 7 5, ()
and

U0 = g (T9 @ 1) + ¢ (TU © (o).

On the other hand
0) = (n(r)’ G =] Ar! [T @ (] 19777) 0 Arg.)) —
= n(w B Sp,(6)” (=1 = (xl 1°7"7%) 0 At — (0).

This 1s a short exact sequence of the desired form and s(Frob,) has characteristic

polynomial (X — qg,’_g)/ 2x.(,)) times

-2 (hygn=3 |G ()2
X' =gt VX 4 L (=) g YT X
+ ...+ (—l)’lq”2_4”+4t(”_2)
where V) is the eigenvalue of TV on (7/)¢~2(%%) From the above formula for
the UYs, we see that this product equals P2"(X) and the lemma follows. ]
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Lemma 3.1.6. — Let 7w be an wrreducible smooth representation of GL,(F,) over K.

1. 0f 1@ £ (0) then (7)Y (1 —n)* is a direct sum of one dimensional representa-
tons.

2. Suppose

X = (X1 woes Xo) ¢ (R())" — K.
If wox oL (0) then
(@)Y (1 =)l = (x o Arty! )@ ... ® (xu0Arty ).

(Here we think of x; as a character of Op — k(w)*.) Moreover if x; # x;
whenever 1 # ) then (7)Y (1 — n)|y, 15 semisimple.

Proof — The key point is that 7™ £ (0) if and only if 7 is a sub-
quotient of a principal series representation n—IndgnL("Fg‘ﬂ')(X{ s . X)) with each x/
tamely ramified. More precisely 7™@x =£ (0) if and only if 7 is a subquotient of
a principal series representation n-IndgnL("F(;“')(X{, .oy X,) with each x| ox = Xi- (See
Theorem 7.7 of [Ro]. In Section 4 of that article some restrictions were placed on
the characteristic of Oy, /g,. However it is explained in Remark 4.14 how these
restrictions can be avoided in the case of GL,. More precisely it is explained how
to avoid these restrictions in the proof of Theorem 6.3. The proof of Theorem 7.7
relies only on Lemma 3.6 and, via Lemma 7.6, on Lemma 6.2 and Theorem 6.3.

Lemmas 3.6 and 6.2 have no restrictions on the characteristic.) O

3.2. GL, over a local field: finite characteristic theory. — We will keep the notation
and assumptions of the last section. Let /{q, be a rational prime, K a finite ex-

tension of the field of fractions of the Witt vectors of an algebraic extension of F,
O the ring of integers of K, A the maximal ideal of & and k= O/A.

Lemma 3.2.1. — Suppose that | > n and 1|(q, — 1). Suppose also that 7w 15 an
unramified vrreducible smooth representation of GL,(F,) over ¥,. Then dim aCbOv) = 1. Lo
£ denote the eigenvalue of T on @t Sot

Pyr (X) = X" — L;(Tl)sz—l +F (—l)quiyw_l)/Qt;J)X”—j
b (= 1)

(Of cowse in ¥, we have q, =1 so we could have dropped it from this definition.) Suppose
that P,(X) = (X —a)"Q(X) with m>0 and Q(a) #0. Then

Q (Vg )5 5 (0).

(Considered in w9 .)
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Proof. — According to Assertion VI.3 of [V2] we can find a partition n =

n +...+n, corresponding to a parabolic P D B, and distinct, unramified characters

Xiseeos Xr D E = F,X such that 7 = n—Indg(LFff)F‘ﬂ')(Xl odet, ..., x, odet). Then

P, (X) = [ [(X = xi(@)".

=1

Suppose without loss of generality that a = x,(,,).

For : =1,...,7 set w. = w, .+ 4, (in the notation established in the fourth
paragraph of Section 3.1). Then n—Indg(If’if)F ?(x1 o det, ..., x, o det) "™ has a basis
consisting of functions ¢; for i =1, ..., 7, where the support of ¢; is P(F,)wUj(w)
and @;(w)) = 1. Note that

n—Indg(Igzg ‘”>( X1 odet, ..., x, 0 det) (k)

is spanned by ¢; + ... + ¢,.
We have

Vo = Y (Vi ) ().
-

But, as in the proof of Lemma 3.1.3, we also have

1ﬂ1+...+7y—1 0 0
Vo) @) = xj(@) Y o x 0 1

et —1
xeX Tt 0 wﬂ;‘+1+-..+ﬂr 0

A matrix g € GL,(Oy,) lies in P(0F,)wUy(w) if and only if ¢ is the largest integer
such that (0, ...,0, 1) lies in the k(w) span of the reduction modulo g, of the last
n; + ... +n, rows of g. Thus

(Vo 92) (w//)

1S

-0 1f 2>,

- qZZyilX/(ww) = Xj(ww) if Z:ja and

— (@ = D@ T (@) = 00 i<
Thus, for ¢t =1, ..., 7, we have

Vo, i = xi(@,) @

and

Q Vo) (@1 + ... + ¢) = Q(x1 ()1

and the lemma follows. O
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Lemma 3.2.2. — Suppose that [ > n and [|(q, — 1). Let R be a complete local
O-algebra. Let M be an R-module with a smooth action of GL,(F,) such that for all open
compact subgroups U C GL,(F,) the module of invariants MY is finite and fiee over O.
Suppose also that for j =1, ...,n there are elements t; € R with T =1 on MO%) - S

P(X) = X"+ ) (~1)/g)""*X"7 e RIX].
J=1

Suppose that mn R[X] we @ve a factorisation P(X) = (X — a)QQ() with Q (a) € R*.
Suppose finally that M Q@4 K is semi-simple over the rng (R Qp K)[GL,(¥,)] and that,
of s an R-mnvanant wrreducible GL,(F,,)-constituent of M @ o K with a Uy(w)-fixed vector,
then either 7 15 unramified or

P(X) = (X = V) (X" = UPX"? + 4 (= 1)/ gV PPUPX

+ + (_1)nq(n—1)(71—2)/2U(n—1))

on T e for j=1,...,n the coefficient of X" on the right hand side acts on the one
dimensional space 7w by (—=1)7¢/9V24). Then Q (V) gives an isomorphism

Q (V) : MO s \[Uot@).Vor, =,

Proof. — Lemma 3.1.3 tells us that
Q(Vw) . MGLn(ﬁFw) N MUU(w),V,Z,w:,l'

Let m be an R-invariant irreducible GL,(F,)-constituent of M ®, K with
g Uo@Vew=e L (0). If 7 is ramified then Lemma 3.1.5 tells us that

(0™ = UO( )™ 4 o DI ()

+ ...+ (_l)nq;r?fl)(rzfQ)/QU;?fl) =0
on 7@ Thus Q (a) € mg, which contradicts our hypothesis. Thus 7 is unram-
ified. By Lemma 3.1.3 and the assumption that « is a simple root of P(X), we
see that dim 7@ Veu=t < | = dim 7%(“) Thus

dlm(M ®ﬁ K)Uo(w)’vﬁ'w:a < dlm(M ®ﬁ K)GL'l(ﬁsz)'

Hence it suffices to show that Q(V,,) ®k is injective. Suppose not. Choose
a non-zero vector x € ker(Q(V%}z® k) such that mgx = (0). Let N’ denote the

k[GL,(F,)]-submodule of M ®, & generated by x. Let N denote an irreducible
quotient of N'. Then by Lemma 3.2.1

Q (Vy INCHD £ (0,

a contradiction and the lemma is proved. O
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3.3. Automorphic forms on wumitary groups. — Fix a positive integer n > 2 and
a prime [> n.

Fix an imaginary quadratic field E in which / splits and a totally real
field F*. Set F = F'E. Fix a finite non-empty set of places S(B) of places of
F* with the following properties:

— Every element of S(B) splits in F.
— S(B) contains no place above /.
— If n is even then

a[F*: Q1/2 + #S(B) = 0 mod 2.

Choose a division algebra B with centre I with the following properties:
— dimp B = %
- B?* =B ®y, E.
— B splits outside S(B).
— If w 1s a prime of F above an element of S(B), then B, is a division
algebra.

If { is an involution on B with I|p = ¢ then we can define a reductive algebraic
group Gi/F" by setting

Gi(R) = {ge B®p R: ¥y =1}
for any Ff-algebra R. Fix an involution I on B such that
o ilF =6

— for a place vloo of F* we have G(F") = U(n), and
— for a finite place v ¢ S(B) of F* the group Gy(F}) is quasi-split.

Because either n 1s odd or
n[F* : Q]/2 +#S(B) = 0 mod 2,

this is always possible. (The argument is exactly analogous to the proof of
Lemma 1.7.1 of [HT].) From now on we will write G for Gy.

We can choose an order Oy in B such that ﬁ’é = Oy and 0Oy, is maximal
for all primes w of F which are split over F*. (Start with any order. Replacing it
by its intersection with its image under i gives an order O} with (0})% = &}. For
all but finitely many primes » of F" the completion &, will be a maximal order
in B,. Let R denote the finite set of primes which split in F and for which &y,
is not maximal. For » € R choose a maximal order 0%, of B, with (ﬁg’v)¢ = 0y,

(e.g Op.® ﬁé’w where w is a prime of F above v and 0y, is a maximal order
in B,). Let Oy be the unique order with Oy, = 0%, if v € R and Oy, = Oy,
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otherwise.) This choice gives a model of G over Op+. (This model may be very
bad at primes » which do not split in F, but this will not concern us.)

Let v be a place of F* which splits in F. If » ¢ S(B) choose an isomorphism
i, : Op, = M,(0Or) such that 7,(x*) = ',(x)‘. The choice of a prime w of F above
v then gives us an identification

Lt G(F)) —> GL,(F,)

i ) > x
with 7,G(Oy+,) = GL,(Oy,) and i, = (coi,)”". If v € S(B) and w is a prime of
F above v we get an isomorphism

i, : G — B

with 4,G(O%+,) = O, and i,(x) = (G ()57

Let S; denote the primes of F* above [. Suppose that R is a finite set
of primes of F* which split in F such that R is disjoint from S; U S(B). Let
T D S;URUS(B) denote a finite set of primes of F* which split in F. Fix a set T
of primes of F such that T]_[‘T is_the set of all primes of F above T. If S C'T
write S for the preimage of S in T. If v € T we will write 7 for the element of
T above v. Write S for the set of infinite places of F*.

Let £ be an algebraic extension of F, and K a finite, totally ramified exten-
sion of the fraction field of the Witt vectors of £ such that K contains the image
of every embedding F — K. Let & denote the ring of integers of K and let A
denote its maximal ideal. Let I; denote the set of embeddings F* — K, so that
there is a natural surjection I, = S;. Let I/ denote the set of embeddlngs F— K
which give rise to a prime of Sl Thus there is a natural bijection I/ = 1,

For an n-tuple of integers a = (ay,...,a,) with ¢ > ... > g, there is an
irreducible representation defined over Q:

& :GL, — GLW,)
with highest weight

n
diag(t;, ..., 4,) —> H 0.

(N.B. This is not the same convention used in [HT].) We can choose a model
Sa : GLn — GL(Ma)

of & over Z. (So M, is a Z-lattice in W,.)

Let Wt, denote the subset of (Z")Hom*Q) consisting of elements a which
satisfy

= Ay = —Arp41—i and

- a‘L’,I 2 Z ar,n-
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If a € Wt, then we get a K-vector space W, and irreducible representation
& : G(F)) — GLW,)
g— )&, (tig).

TEI[

The representation &, contains a G(Op+ )-invariant O-lattice M,.

For v € S(B), let p, : G(F') - GL(M,,) denote a representation of G(F') on
a finite free @-module such that p, has open kernel and M, ®, K is irreducible.
If JL(p, 02> h = Sp,, (777) then set

T = 15 |(n/mn—2)(1—mp)/2)_

We will suppose that
7:: Gal(F3/F) — GL,,, (0).

(This is a condition on K. A priori this representation is into GLn/W(K), but if
K is sufficiently large it can be replaced by a conjugate valued in GL,,, (O).
Because 75 is absolutely irreducible it suffices to check that det7; takes unit values,
and this follows because v does not lie above [ and because the central character
of p, takes unit values.)

For » € R let Uj, be an open compact subgroup of G(FF) and let

Xo - UO,U — ﬁx

be a homomorphism with open kernel.

We will call an open compact subgroup U C G(AR) sufficiently small if for
some place v its projection to G(F) contains only one element of finite order,
namely 1.

Let A denote an O-algebra.

Suppose that U is an open compact subgroup of G(A}) for which the
projection to G(Ff) is contained in Uy, for all » € R. Suppose also that a € Wt,
and that for v € S(B), p, is as in the last paragraph but two. Set

Mda{ﬁzr}ﬁ{er} = M“ ® ( ® Mpv) ® (® ﬁ(Xv))

v€S(B) veR

Suppose that either A is a K-algebra or that the projection of U to G(F/) is
contained in G(O%p+ ;). Then we define a space of automorphic forms

Satonx) (Us A)
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to be the space of functions
S GING(AR) — A ®p Mo,

such that

S (g = ug;bS(B)URf(g)

for all v € U and g € G(A}Y). Here ususmur denotes the projection of u to
[Lesus@ur GAED. If V is any compact subgroup of G(AR) for which the pro-
jection to G(F) is contained in Uy, for all » € R, then we define S, 5} (1 (V. A)
to be the union of the S,(, (U, A) as U runs over open compact subgroups
containing V which have projection to G(F}) is contained in U, for all » € R.

If ¢ € G(Agjroo) X [[,er U, (and either A is a K-algebra or g € G(0p+)))
and if V C gUg™! then there is a natural map

£+ Saip 6 (Us A) = Sa g 00 (Vs A)
defined by
(/) (h) = gs,usmyur S (hg).
We see that if V is a normal subgroup of U then
Setod ) (Us A) = S, 00 (V. AT

If U is open then the A-module S, ,; (U, A) is finitely generated. If U is open
and sufficiently small then it is free of rank #G(F")\G(AY)/U. If A is flat over
O or if U is sufficiently small then

Setot (U, A) = Se 1,061 (U, 0) @4 A

Suppose that U; and U, are compact subgroups whose projections to G(FF) are
contained in Uy, for all » € R and that g € G(AIF{;OO) X [Ler Uo.- If A s not
a K-algebra suppose that g € G(Op+,) and that u, € G(Op+,) for all u € U; U U,.
Suppose also that #U;gU,/U, < oo. (This will be automatic if U; and U, are
open.) Then we define a linear map

[UgUs] : Sa,{p[},{x[}(UQv A) — Sa,{pl.},{xl,}(Ul, A)
by

([U1gUz]f) (h) = Z(gi)SZUS(B)URf(}Zgi)

if UlgUQ = ]_L-gl'UQ.
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Lemma 3.3.1. — Let U C G(AlF{;OO)XHUER Uy, be a sufficiently small open compact
subgroup and let N C U be a normal open subgroup. Let A be an O-algebra. Suppose that
either A is a K-algebra or the projection of U to G(¥)) is contained in G(Op+ ). Then
Setoh ) (Vs A) is a finite free A[U/V]-module and try, gies an isomorphism from the
comnvariants Sa,{pv},{xv}(V, A)U/V to Sa,{pv},{){v}(U’ A)

Progf. — Suppose that

G(AR) =] Je@EhHgU.

JeJ

For all j € J we have gle(FﬂgjﬂU = {1}. (Because this intersection is finite and
U 1s sufficiently small.) Thus

GAR) = ]_[ ]_[ G(FH)guV.

jeJ ueU/v
Moreover
Sutptr (U, A) == DM, ) ) @0 A
il
J > (f(g));
and

Sutp it Vs A) = D P Mugo.ix) ®0 A

JeJ wel/v

Alternatively we get an isomorphism of A[U/V]-modules

Sutod ) (Vs A) == @D M,y () @0 A[U/V]

JeJ

fr— ( Z us,urus (). (giw) @ u_l)f

ueU/V

Then

Sutp bt Vs Aoy == @D My gp).10) @ A
JeJ

S ( Z uS[URUS(B)f(gju))j..

ueU/V
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In fact we have a commutative diagram

try/v

Satph it (Vs Auyy — > Seon (U, A)

l l

P Moty ®6 A —=——= P Mapix) ®0 A
JeJ JeJ
where the vertical maps are the above isomorphisms. The lemma follows. ]

Proposition 3.3.2. — Fix 1: K — C.

1.8, .01}, C) s a semi-simple admissible G(APL)-module.

2.If SB) #0 and w = Q),7, is an irreducible constituent of the space S, p,).4({1}, C)
then there 1s an automorphic representation BC, () of (B @ A)* with the following
propertaes.

—BC, () o (—1) = BC, (7).

—1If a prime v of ¥t splits as ww’ in ¥ then BC,(7), = 7, oi;l.

—1If v is an wmfimite place of ¥ and T : ¥ — C les above v then BC, (), is
cohomological for (§, , o7 ® (§, , o7To).

—1If v is a prime of ¥ which is unramified, mert in ¥ and if w, has a fixed
vector for a hyperspecial maximal compact subgroup of G(F¥,) then BC, (), has
a GL,(Oy ,)fixed vector.

~If ve SB) and m, has a G(Oy,) fixed vector and w s a prime of F above v
then BC,(10),, is an unramified twist of (tp)) o7,

3.1 SB) £ WD and w = Q), 7, is an irreducible constituent of the space S, i, 9({1}, C)
such that for v € S(B) the representation 1w, has a G(O%y+ ,)-fixed vector, then there
s a positwe integer mln and there s a cuspidal automorphic representation I1 of
GL,/.(Ay) with the following properties.
~MVoc=10] |
—1If a prime v ¢ SB) of ¥ splits as ww’ in F then T, HII,| | B ... B

I, "' =m0

—1If v is an infinite place of ¥ and T : ¥ — C les above v then TI,| |""=D/Gm
is cohomological for (&, 0 T) & (&, 0 Tc) and by; = aryi-1)+j + (m— 1)@ — 1)
Jor every j =1, ...,m.

—1If v is a prime of ¥ which is unramified, inert in ¥ and of 7w, has a fixed vector
Jor a hyperspecial maximal compact subgroup of G(F,) then 1, has a GL,;,(O%,,)-
fixed vector.

~If m>1 and w is a prime of ¥ above a prime v € S(B) then I1, s cuspidal.

~If ve SB) and w is a prime of F above v then JL(tp,01,") is an unramified
twist of Sp,(IL,). (In the case m = 1 and 1, s not cuspidal we nterpret
Sp,(IL,) as I1,.)
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If for one place vy ¢ S(B) of ¥, which splits in ¥, the representation 1, is generic,
then for all places v ¢ S(B) of ¥, which split in ¥, the representation 7, is generic.
4. Suppose I1 is a cuspidal automorphic representation of GL,(Ap) with the following

properties.

—IMVoc=1TI.

—1If v s an ifimite place of ¥* and v : ¥ — C les above v then T1, is
cohomological for (§, , o7) @ (§, , o7To).

—1If ve S(B) and w s a prime of ¥ above v then 11, is an unramified twist of
L) 0171,

Then there s an trreducible constituent 7 of S, p).6({1}, C) with the following

propertes.

—For ve SB) the representation 1, has a G(Oy+,)-fixed vector.

—1If a prime v & S(B) of ¥ splits as ww’ i F then w, =TI, 0 1,.

—1If v is a prime of ¥* which is inert and unramified in ¥ and if T1,, is unramified
then 1, has a fixed vector for a hyperspecial maximal compact subgroup of G(F,).

Proof — If 1 ETZ then (7 : F — G and hence I,y = CG. Then W, ®k, C is
naturally a continuous G(F} )-module:

g ® £, (tTg).

TEI[

Denote this action by &,,. Similarly M, ,,s®¢,C becomes a continuous G(FY) x
HUGS(B) G(F,)-module and hence (via projection) also a continuous G(Ayp+)-module,
which we will denote (M, (5,10 ®¢,.C)o to make clear which action is being con-
sidered. Let 7 denote the space of automorphic forms on G(F")\G(Ap+). We

have an isomorphism
i Supyp(U, ©) = Homy, gt (M0 ®6., C)L, &)
given by

{(N@)(9) = (& (go0) ™ Gal@) S (g)))-

(We remark that the elements of S,(,,4(U, G) are not continuous functions, be-
cause our definition of S, (U, A) was designed to give continuous functions
when A is a topological 0-algebra. The map ¢ makes C an O-algebra, but is not
continuous.)

The first part now becomes a standard fact. The second part follows from
Theorem A.5.2 of [CL], except that Theorem A.5.2 of [CL] only identifies BC, (),
for all but finitely many ». We can easily adapt the argument to identify BC, (), at
all split places, as is described in the proof of Theorem VI.2.1 of [HT] (p. 202). It
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is equally easy to control BC, (), at places where 7, has a fixed vector for a hy-
perspecial maximal compact subgroup. One just chooses the set S in the proof of
Theorem A.5.2 of [CL] not containing ». The third part follows from the second,
Theorem VI.1.1 of [HT] and the main result of [MW]. As for the fourth part, the
existence of some descent (controlled at all but finitely many places) follows from
Theorem VI.I.1 of [HT] and the argument for Proposition 2.3 of [CI] as com-
pleted by Theorem A.3.1 of [CL]. That this descent has all the stated properties
follows from the earlier parts of this proposition. ]

Corollary  3.3.3. —  The space S,y ({1}, K) s a semi-simple admissible
G(AIF{;OO) X [ 1,er Uo.,-module.

Proof. — 'This reduces to the case R=§ which follows from Proposition 3.3.2.
O

Combining the above proposition with Theorem VII.1.9 of [HT] we obtain
the following result.

Proposition 3.3.4. — Let K’ denote the algebraic closure of Q,; in K. Suppose
that m = ®U¢R w, s an wrreducible constituent of S, (p). 1) ([ 1er Uo.0o K)  then there is
a continuous semi-simple representation

7+ Gal(F/F) — GL,(K)
with the following properties.

1.If v¢ RUSBYUS, is a prime of ¥ which splits v = ww' in F, then
el = (n(ﬂw o i;l)v(l — n))Ss.
>~ 7\/61_”.
ve SB) splts v=1ww’ mn ¥ then

rlSy, = (n(JL (w0 ') (1 = )™
4. If v is a prime of ¥t which is inert and unramified in ¥ and if 7, has a fixed vector
Jor a hyperspecial maximal compact subgroup of G(FF) then 1x|w, is unramified.
S.1f w s a prime of ¥ above | then 1, s potentially semi-stable at w. If moreover
Tolpy U5 unramified then 1y s crystalline at w.
6.If ©:F — K gwes nse to a prime w of F then
dimgo gri(m Rr¥, BDR)GM(R/F”) =0
unless 1 = a;+n—j for some j =1, ...,n m which case

dimgo gri(m Rr¥, BDR)GM(R/F”) = 1.

7. 1f for some place v ¢ S(BY UR of F+ which splits in ¥ the representation 7, is
not generic then r, s reducible.
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Proogf — Let m and IT be as in part 3 of Proposition 3.3.2. Let S' D S, be

any finite set of finite places of F* which are unramified in F. Choose a character
Y Af — G~ such that

- YT =5
— W is unramified above S’; and
—1f 7:F < G gives rise to an infinite place » of F then

¥,z (tz/T2)™
where |z|*> = zz° and 8, = 0 if either m or n/m is odd and §, = =1
otherwise.
The existence of such a character is proved as in the proof of Lemma VII.2.8
of [HT]. Then
= RAT@ Y "2 (1 =) @ Ry(y!| [0/ DDy
QU D..0e™
is independent of the choice of S’ and v and satisfies the requirements of the

proposition. (See Theorem VIL.1.9 of [HT]. We use the freedom to vary S to
verify property 4. Note that if m =1 then we simply have r, = R, (IT)"(1 —n).) O

3.4. Unitary group Hecke algebras. — Keep the notation and assumptions of the
last section. Further suppose that T D Q URUS(B)US; is a finite set of places
of F* and that

U=[]u. cGay)

is a sufficiently small open compact subgroup such that

1. if v ¢ T splits in F then U, = G(Oy+ ),
2. 1f v € R then U, = igl Iw(?),
3. and if v € Q then U, = iglUl(?f).

If v € S(B) also suppose that the representation
;%: GFT — GLn/my(ﬁ)

has the following properties:

1. 73 ® k is absolutely irreducible,
2. every irreducible subquotient of (75 ® k)lIF; 1s absolutely irreducible,
3. and ;@ k E T Q k(2) for i=1,...,m,.
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By the first of these properties we see that the realisation over & we chose for
7> ® K is in fact unique up to equivalence. If v € R also suppose that x, is
a character of Iw(?)/Iw;(?) and hence of the form

g H Xo.i(gi)

=1

where x,;: k(7)) — 0.
We will denote by

T
T[lv{pv}’{XL'}(U)
the O-subalgebra of End(S, .1, (U, ©)) generated by the Hecke operators T!
(or strictly speaking i;l(Tfj')) x UY) and (Tg))_l for j=1,...,n and for w a place
of F which is split over a place » ¢ T of F*. (Note that TV = (T®W)~'T¢,

so we need only consider one place w above a given place v of F'.) If X is
a TaT’{ oy (U)-stable subspace of S, .41 (U, K) then we will write

T'(X)
for the image of TZ{ pp},{xp}(U) in Endg (X).
Note that T'(X) is finite and free as a ¢-module. Also by Corollary 3.3.3

we see that it is reduced.
If veQ and «a € FY write

V=i (Ulm (1"0‘1 2) Um) x U,

Lemma 3.4.1. — Suppose that for all v e R the O -valued characters x, and X of
Iw(?)/ Iw\(?) are congruent modulo A. Set V =UR x [] (' Iwi(?)). Then

Sa.t00.06) (Us B) = Sa 10,10 (U, £)

as Tz{pp}’w(V)—modules. In particular if m s a maximal ideal of TZ{ pb_},w(V), then
Se,toun et (Us K 7 (0)

if and only of

Satonx) (U, K)m # (0).
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Proof. — The first part is immediate from the definitions. The second part
follows because S, ;). (4,1 (U, K)m # (0) if and only if S, 5} .1 (U, H)m # (0). (The
second step uses the assumption that U is sufficiently small so that S, (.} (U, O)m
is O-torsion free and

Sato. 0 (Us K)m = S 50,11 (U, O @0 K

and

Setpoh ot (Us B = S o151 (U, O 0 k) .

Proposition 3.4.2. —  Suppose that m s a maximal ideal of TaT’{pv}’{Xv}(U). Then
there is a unique continuous semusimple representation

Fm : Gal(F/F) — GL,(T},,, ,.,(U)/m)

with the following properties. The fust two of these properties already characterise 7oy uniquely.

1. T 15 unramified at all but finitely many places.
2.1If a place v ¢ T of T+ splits as ww’ in ¥ then Ty is unramified at w and
Tm(Frob,) has characteristic polynomial

X" — TOX™ 4 4 (= 1)/ (Nw) - DRTOX
+ ...+ (_1)”(Nw)"("_1)/2Tgl).

3. 1f a place v of ¥t is inert and unramified in ¥ and if U, is a hyperspecial maximal
compact subgroup of G(F), then Ty is unramified above v.

= ~ =V 1—n

Ty =T, ®e T

5.1f v e SB) and U, = G(Opy) then Tlgagypy &5 ra-discrete series. (See Defin-
won 2.4.24.)

6. Suppose that w € S; is unramified over I, that Uy, = G(Op+ ) and that for each
T el, above w we have

N

[=1—n>a,>..>a,>0.
Then
TulGa@, r,) = Gu(Min,w)

Jor some object My, of //gZTT( oy U/ Moreover for all T € 1, over w we
a{py}ixo ’
have

dimT:(pp)’(Xﬁ)(U)/m(grl M) g1 O =1

fi1=ay;+n—7 for some j=1,..,n and =0 otherwise.
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Progf. — Choose a minimal prime ideal p C m and an irreducible con-
stituent 7 of S, ). ({1}, K) such that 7Y # (0) and TaT’{pv}’{Xv}(U) acts on Y

via the quotient TZ{ o).y (U) /. Choosing an invariant lattice in 7, reducing and
semisimplifying gives us the desired representation 7y, except that it is defined
over the algebraic closure of TZ{ oy (U)/m. However, as the characteristic poly-
nomial of every element of the image of 7, is rational over TaT,{pD.},{XU}(U)/m and
as Tz{ (U)/m is a finite field we see that (after conjugation) we may assume
that

o} X0}
Fm 1 Gal(F/F) — GL,Z(TZ{M, () (O) /m).

Definition 3.4.3. — We will call m Eisenstein if 7o, @5 absolutely reducible.

Proposition 3.4.4. — Suppose that w15 a non-Eisenstein maximal ideal of the Hecke

Z{ o, {XU}(U) with residue field k. Then 7w has an extension lo a continuous homo-

algebra T
morphism

o : Gal(F/FT) — 9,(k).
Pick such an extension. There s a unique continuous lifling
i 2 Gal(F/F) — (T, ) () (D)
of Tm with the following properties. The first two of these properties already characterise the
Lfting 1y uniquely.
1. 1 15 unramified at all but fimitely many places.
2.1If a place v ¢ T of ¥* splits as ww' in ¥ then ry is unramified at w and
rm(Frob,) has characteristic polynomial
Xt — ThOX=l 4 (_1)J'(Nw)j(j—l)/QT(j)Xﬂ—j
+ oo 4 (=1)"(Naw)" " D2T,
3.1f a place v of ¥t such that v is inert and unramified in ¥ and if U, is a hy-

perspecial maximal compact subgroup of G(¥F) then ry ts unramified at v.

4. vor, = 61_’15g/'“F+, where gy denotes the nontrivial character of Gal(F/F*) and

where fim € Z/2Z.
5. Suppose that w € S; is unramified over [, that U, , = G(Oy+ ) and that for each

t el;, above w we have
[=1—n>a,>..>a,>0.

Then for each open ideal 1 C T' 1 (UWm

a{p},{x
T T —
(711'1 ®Ti(ﬁﬁ)v()(zf)(U)m Ta’{p”}’{xp}(U)m/I) ‘Ga](Fw/Fw) - GW(Mm’Lw)
Jor some object My 1.0 of MFp 0
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6.1f ve SB) and U, = G(Ok+,) then rolcamyry 15 To-discrete series. (See Defin-
won 2.4.24.)
7.lf ve R and o € Iy, then r(0) has characteristic polynomial

n

H (X - Xy?/‘l (Artl:r,.1 U))

j=1

8. Suppose that v € Q. Let ¢y be a lift of Froby to Gal(F3/Fs) and let ws be
an element of ¥ such that Arty, wy = ¢y on the maximal abelien extension of Fs.
Suppose that o € k is a simple root of the characteristic polynomial of T (¢). Then
there is a unique rool o € TZ{ o, {xﬁ}(U)m of the characteristic polynomial of re(¢7)
which Ufts «.

Suppose  further that Y is a TZ{ ooty (O Vol -tnvariant - subspace of  the  space
Su it (Us K)m such that Vo — ot is topologically nilpotent on Y. Then for each
B € FX with non-negative valuation the element Vg (in Endi(Y)) les in T(Y).
Moreover B+ Vg extends to a continuous character V : FX — TY(Y)*. Further
(X —V,.) divides the characteristic polynomial of ry(¢3) over T'(Y).

If No=1mod [ then

—1
T lGa@yr = 5 @ (V o Arty ),
where s 15 unramified.

Proof. — By Lemma 2.1.4 we can extend 7, to a homomorphism

Fu : Gal(F/FT) — 9,(k)

with vo7, = 6”_15;L/‘“F+ and 7n(c,) ¢ GL,(k) for any infinite place v of F*. More-
over, up to GL,(k)-conjugation, the choices of such extensions are parametrised by

kX/(kX)Q.

Similarly, for any minimal primes © C m we have a continuous homomorph-

ism 7, from Gal(F/F*) to the points of ¢, over the algebraic closure of Q, in
the algebraic closure of the field of fractions of TZ{ pp},{xﬁ}(U) /¢ such that

— 1, 18 unramified almost everywhere;

- r;lGL,, = Gal(F/F); and

— for all places v ¢ T of F* which split v = ww’ in F the characteristic
polynomial of 7y, (Frob,) is

X' = TOX "+ L+ (=1 Nw) V- PTOX
+ oo 4 (= 1) Na)" DT,
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According to Lemma 2.1.5 we may assume that 7, is actually valued in ¥,(&,)
where 0, is the ring of integers of some finite extension of the field of fractions of
T:zr,{pp},{xﬁ}(U)/ 9. Then by Lemma 2.1.4 again we may assume that the reduction
of 7, modulo the maximal ideal of O, equals 7. (Not simply conjugate to 7n.) Let
A denote the subring of £® @pcm
all p the reduction of ¢, modulo the maximal ideal of &, is an. Then

0, consisting of elements (am, a,) such that for

P ® @) 7 : Gal(F/F") — %,(A).
§

Moreover the natural map

T
T {

a{po} {x0}

(Um — A

1s an injection. (Because TZ{ Pz;}a{Xp}(U)m is reduced.) Thus by Lemma 2.1.12 we see
that 7, @ @p 7o 1s GL,(A) conjugate to a representation

Fm : Gal(F/F") — gﬂ(TaT,{pﬁ},{xp}(U)m)

such that:

— If a place v ¢ T of F* splits as ww’ in F then r, is unramified at w and
rm(Frob,) has characteristic polynomial

X" — TOX™ 4 (=1) (Nw)/ U D2TOX"
+ oo 4 (= 1) (Na)" DT,

— If a place v of F' is inert and unramified in F and if U, is a hyperspecial
maximal compact subgroup of G(F) then 7, is unramified at 2.

It 1s easy to verify that n, also satisfies properties 4 and 5 of the proposition.
We next turn to part 6. After base changing to an algebraically closed field
each 7,|Gam,/ry) has a unique filtration such that grorpllF; = 71y, and

i ~ (.0 i
STl Gadyr = (gr ’@|Ga1(F;/F;,>)(E)

for ¢ = 0,...,my, — 1 (and = (0) otherwise). Enlarging &, if need be we may
assume that this filtration is defined over the field of fractions of &,. As 7% Q¢ k
is irreducible, such a filtration also exists over &,. Because of the uniqueness of
the filration Fil on the base change of 7y to the residue field of O, we see
that these filtrations piece together to give a filtration of 7, @ @p 7o over A. As
the isomorphisms ﬁi?m = (ﬁoim)(ei) are unique up to scalar multiples we get
isomorphisms

gri(;m (&) @ 7@) = (gro(;m (&) @ 7@)) (ei)
3] 3]
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over A[Gal(F;/F5)] which are compatible with the chosen isomorphism between
gr'7m and (gr'7m)(€). As

0 0=
261,00 (810 () = Zaw,, 00 /ma) (87 T (I1))

(see Lemma 2.4.23), we see that we get an isomorphism

gro(;m (&) @ 7@) = % XV A
©

over A[ly,] compatible with the chosen isomorphism go?m =% Qg k. Thus 7y ®
@D, 7o is r-discrete series. It follows that fnlgagyr is also -discrete series.

Part 7 follows from Proposition 3.3.4 and Lemma 3.1.6. (Note that the space
Seto 1 (U, K) equals the subspace of Sd,{pv},@(UR X [1er igllwl(?f),K) on which
Iw(7)/Iw;(?) acts by x; ')

Finally we turn to part 8 of the proposition. The existence of & follows at
once from Hensel’s lemma. Let P(X) € TZ{ pz,.},{xp}(U)m[X] denote the characteristic
polynomial of r,(¢p7). Thus P(X) = (X — @)Q (X) where Q (@) € Tz{pv}’{xr}(U)Q.

Write Y ®x K = PUY ® K)Nn) as 7 runs over irreducible smooth rep-
resentations of G(Ap7). From Lemmas 3.1.3 and 3.1.5 and the fact that V,.—«
is topologically nilpotent we see that dim((Y ® K) N7) < 1 for all 7. Let ¢ be
any lift of Froby to Gal(F;/F;) and let Artg. wi = ¢~ Let P’ denote the charac-
teristic polynomial of 7,(¢%) and let @ be its unique root in T'(Y) over a. As
Vo, and V. commute, each (Y®K)Nx is invariant under Vg By Lemma 3.1.5
V.V, ! is topologically unipotent on Y ®K)Nnx. Lemmas 3.1.3 and 3.1.5 im-
ply that P'(Vy) = 0 on (Y ® K) N . Thus Voo = & on (Y® K)Nx. Hence
Voo = @ € T'(Y) C Endg(Y). It follows that V5 € T'(Y) for all B € F
with non-negative valuation and that B — Vg extends to a continuous charac-
ter V:F2 — TH(Y)*.

Now suppose that v satisfies Nv = 1 mod /. From Lemma 3.1.5 we see that
if (Y®K)Nm #(0) then either 7 is unramified or 7Y% = (0) (otherwise V.
would be a multiple root of the characteristic polynomial of 7 (¢7). Thus the
image (7 ®TT(Y))(Gal(F;/F;)) is abelian. We have a decomposition

T'(Y) = Q@) T (V)" @ (¢5 — )T (Y)".

As (7 @ TT(Y))(Gal(F;/F>)) is abelian we see that this decomposition is preserved
by Gal(F;/F>). By Lemma 3.1.5 we see that after projection to any 7 N (Y ® K),
Gal(F;/F) acts on Q (¢ TH(Y)" by V, oArtFTwI; and its action on (¢y — &) T (Y)”
is unramified. We conclude that Gal(F;/F;) acts on Q (¢ TH(Y)" by V and that
its action on (¢y —@)T'(Y)" is unramified. This completes the proof of part 8 of
the proposition. |
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Corollary 3.4.5. — Suppose that v s a non-Eisenstein maximal ideal of the Hecke
algebra TaT’{pv}’{Xv}(U). Suppose also that v € T — (SB)US)) and that U, = G(O+ ).

If w s a prime of ¥ above v then for j =1, ...,n we have

T € T, .00 @ C End(S, 5,11 (U, K)).-

Proof. — One need only remark that

TV = (Nw)" 72 tr Ny (Frob,). g

3.5. R =T theorems: the minimal case. — In this section we will prove the
equality of certain global Galois deformation rings and certain Hecke algebras in
the so called ‘minimal case’. The results of this section are not required for the
proofs of the main theorems in [Tay] and [HSBT]. It could be skipped by those
only interested in these applications, but it might serve as a good warm up for
understanding the arguments of [Tay].

We must first establish some notation and assumptions. In the interests of
clarity we recapitulate all running assumptions made in previous sections.

Fix a positive integer n > 2 and a prime [> n.

Fix an imaginary quadratic field E in which [ splits and a totally real field
F* such that

— F=F'E/F* is unramified at all finite primes, and
— F*/Q is unramified at .

Fix a finite non-empty set of places S(B) of places of F* with the following
properties:

— Every element of S(B) splits in F.
— S(B) contains no place above /.
— If n is even then

n[F™:Q1/2 + #S(B) = 0 mod 2.
Choose a division algebra B with centre I with the following properties:

— dimy B = »°.

- B®* =B ®y, E.

— B splits outside S(B).

— If w 1s a prime of F above an element of S(B), then B, is a division
algebra.

Fix an involution I on B and define an algebraic group G/F* by
GA) ={geB®m A: g®g=1),

such that
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B :l:lF =
— for a place vloo of F we have G(F}) = U(n), and
— for a finite place v ¢ S(B) of F* the group G(Ff) is quasi-split.

The purpose of the assumption that S(B) # ¢ is to simplify the use of the trace
formula in relating automorphic forms on G to automorphic forms on GL,/F and
in attaching Galois representations to automorphic forms on G.

Choose an order O in B such that ﬁ’é = Op and Oy, is maximal for all
primes w of F which are split over F*. This gives a model of G over Op+. If
v ¢ S(B) is a prime of F© which splits in F choose an isomorphism i, : Oy, —
M, (Oy,) such that L, =400 If wis a prime of I above v this gives rise to
an isomorphism i, : G(F) = GL,(F,) as in Section 3.3. If v € S(B) and w is
a prime of F above » choose isomorphisms i, : G(FS) = BX such that i, = i,
and 1,G(Op+,) = 0%,

Let S; denote the set of primes of Ft above /. Let S, denote a non-empty
set, disjoint from S, U S(B), of primes of F* such that

—1if v e S, then v splits in F, and
—if v € S, lies above a rational prime p then [F({,) : F] > n.

Let T=S@B)US,US,. Let T denote a set of primes of I above T such that
T]_[T‘ is the set of all primes of ' above T. If » € T we will let 7 denote the
prime of T above 0. If SC T we will let S denote the set of 7 for v € S.

Let U=]][,U, denote an open compact subgroup of G(Af}) such that

— 1f v 1s not split in I then U, is a hyperspecial maximal compact subgroup
of G(F),

—if v ¢ S, splits in F then U, = G(Gy+ ),

—if v €S, then U, ="' ker(GL,(Or7) — GL,(Op3/(w7))).
Then U 1is sufficiently small. (The purpose of the non-empty set S, is to ensure
this.)

Let K/Q, be a finite extension which contains the image of every embedding
Ft — K. Let & denote its ring of integers, A the maximal ideal of & and £ the
residue field O/A.

For each 7 :F — K choose integers a,, ..., a;, such that

= Qg = T Aratl—is and ~
— 1f T gives rise to a place in S, then

[—1—n>a,>..>a,>0.

For each v € S(B) let p, : G(F) — GL(M,) denote a representatiog of
G(F") on a finite free O-module such that p, has open kernel and M, ®, K is
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irreducible. For » € S(B), define m,, 77 and 77 by

JL(p,04z") =Sp, (1)
and

T = 1 (5 |(n/mz7—1)(1—m;)/2)_

We will suppose that
7 : Gal(F5/F;) — GL,,-(0)

(as opposed to GL,l/m;(K)), that the reduction of 73 mod A is absolutely irreducible,
that every irreducible subquotient of 7y, mod A is absolutely irreducible, and that
for 1 =1, ..., my, we have

T ®0 k E T ®p k(€).

Let m be a non-Eisenstein maximal ideal of TZ{ pp},(,)(U) with residue field &
and let

m : Gal(F/F") — 9,(k)
be a continuous homomorphism associated to m as in Propositions 3.4.2 and 3.4.4.

Note that

= _ _l—nghm
Vorgy =€ (SF/F+

where 8p/p+ is the non-trivial character of Gal(F/F*) and where py € Z/2Z. We
will assume that 7, has the following properties.

— Tm(Gal(F/F*(2)) is big in the sense of Section 2.5.

— If v €S, then 7y is unramified at » and

H"(Gal(F5/F3), (ad 7) (1)) = (0).

We will write Ty, for the localisation TI{ p1.0(Um and Xy, for the localisation
Seipnp#(U, O)y. Thus Ty is a local, commutative subalgebra of Endg(Xy). It is
reduced and finite, free as an O-module. Let

tm ¢ Gal(F/FT) — 94,(Ty)

denote the continuous lifting of 7, provided by Proposition 3.4.4. Then T, 1is
generated as an O-algebra by the coeflicients of the characteristic polynomials of
rm(0) for o € Gal(F/F).

Consider the deformation problem .7 given by

(F/F+a Ta ’Ta ﬁa ;ma 617”8?;%%7 {@v}veT)

where:
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— For ve€S,, 9, will consist of all lifts of 7lgamyr) and so
L, = H'(Gal(Fs/Fy), ad 7)) = H'(Gal(F+/F2) /Iy, ad 7).

— For v € 8S,, &, and L, are as described in Section 2.4.1 (i.e. consists of
crystalline deformations).

— For v € S(B), Z, consists of lifts which are 7i-discrete series as described
in Section 2.4.5.

Also let
r;?i‘v : Gal(F/ F — %(R;ﬁ‘v)

denote the universal deformation of 7, of type .. By Proposition 3.4.4 there is
a natural surjection

univ

univ

such that 73" pushes forward to 7.
We can now state and prove our main result.

Theorem 3.5.1. — Keep the notation and assumptions of the start of this section. Then
R;/liv AN Tm
s an somorphism of complete intersections and Xy, s free over Ty, Moreover pty, = n mod 2.

Proof. — 'To prove this we will appeal to Diamond’s and Fujiwara’s im-
provement to Faltings’ understanding of the method of [TW]. More precisely we
will appeal to Theorem 2.1 of [Dia]. We remark that one may easily weaken the
hypotheses of this theorem in the following minor ways. The theorem with the
weaker hypotheses 1s easily deduced from the theorem as it is stated in [Dia]. In
the notation of [Dia] one can take B = £[[X,, ..., X, ]] with < 7. Also in place
of his assumption (c) one need only assume that H, is free over A/n,, where {n,}
is a family of open ideals contained in n with the property that (1) n, = (0). We
also remark with these weakened hypotheses one may also deduce from the proof
of Theorem 2.1 of [Dia] that in fact r=7".

Choose an integer ¢ as in Proposition 2.5.9. Set

¢ =q—nlF": QI+ (=1)""*m) /2.

For each N € Z., choose (Qx, QN, {%(,M}UEQN) as in Proposition 2.5.9 and Defin-
ition 2.5.7. We will use the notations #(Qx), A,, Ag, and dy g, as in Defin-
ition 2.5.7. Recall that

(Runiv

__ Ppuniv
«y(Q,N))AQN - Ry/ '
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By Proposition 2.5.9 there is a surjection
OV, ... Y11 = RUI .
Let Y¥x denote the composite

WN ﬁ[[Yl, ceey Yq/]] —» R;I(IEQN) R;;liv'

There is a surjection
OlZ, ....2,]] = O[Aq,]
such that, if ny denotes the kernel, then [)yny = (0). We can lift the map
OlZ,....2,]] - O[Ag ] — R;l(“QN)
to a map
O OlZ,y, ... 2,]] — OI[Y, ... Y 11

Then the composite

IIH\I¢N

OllZ,, ..., Zq]] Rum\/)\‘

has kernel (A, 7, ...,7Z,).

Note that X is a RJ"-module via RY"™ — Ty,

Define open compact subgroups U;(Qx) = [[,U1(Qx), and Uy(Qn) =
[T, Uo(Qx), of G(AR) by

- U(QN), = Up(Qn), = U, if v ¢ Qnx,
~ U(Qn), =4'Ui(7) if € Qy, and
— Ug(Qn), = i 'Up(?) if v € Qx.

By Corollary 3.4.5 we see that we have

T, 25 (U QN))m = T, x5 (Up(Qa)m
T, (U =T! 4 (U

For v € Qx choose ¢y € Gal(F;/F;) lifting Froby and wy € FZ with ¢y =
Artp. wy on the maximal abelian extension of I Let

Pre T, 3% (U1(Qx)m[X]
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denote the characteristic polynomial of 7y(¢7). By Hensel’s lemma we have
a unique factorisation

P(X) = (X = A9 Qx(X)

over TaT,?;%l,\I@(UI(QN))m, where A lifts IZL(,N)(FrOb;) and where Q#(A;) is a unit
in Tj,?mg}lf@(Ul(QN))m. By Lemmas 3.1.3 and 3.1.5 we see that P#(V,.) = 0 on
Sa,{pﬁ},(fi(Ul(QN), ﬁ)m Set

Hioy = ([T Qe(Var))Sutons (Ui(Qx). O
veQN
and

Hooy = ([ | Qi(Verd)) St 0(Uo(Qx), O
veQN

We see that H; g, is a T;?/%lfw(Ul(QN))—direct summand of the larger module

Seipn0(U(QN), O), and hence by Lemma 3.3.1

truyo/ui @y - Hiou@ouiwo — Hoox-

Morecover for all » € Qn, Vg = Ay on H; g,. By part 7 of Proposition 3.4.4 we
see that for each v € Qy there is a character

Vi B — TYWH, )

such that

— if « € F¥ N Oy then Vi(a) =V, on H o, and
- 7m|WF; =s® (Vzo ArtF_;) where s 1s unramified.

Thus n, gives rise to a surjection

Ry, — TV (Ho,).

The composite

univ x TU
[ 00— Aoy — RYE,)" — TP (HG)
L’GQN

is just [[, V& As H, g, is a direct summand of S,;,,4(U;(Qx), 0) over

TZE%%(Ul(QN)), Lemma 3.3.1 now tells us that H, o is a free @[Ag,]-module
an that

(Hl,QN)AQN — HO*QN'
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Also Lemma 3.2.2, combined with Lemma 3.1.5, tells us that

(T Qo(Va) : Xiw = Hyq..
v€QN
Now we apply Theorem 2.1 of [Dia] (as reformulated in the first paragraph
of this proof) to A = k[[Z,,....Z,]], B =Y\, ... Y,1l, R =R¥"/A, H = Xqn/A
and Hy = H; g,/A. We deduce that r = 7/, that X, /A is free over R}I)i"/k via
RYY/)\ — Tp/A and that R%Y/A is a complete intersection. As Xy, is free over
O we see that X, is also free over R‘m“ via R“““ — Ty, Thus R“““ = Ty is
free over € and hence a complete intersection. The equahty g = ¢ tells us that
Um = nmod 2. O

4. Automorphic forms on GL,

In this chapter we will recall some general facts about the relationship be-
tween automorphic forms on GL, and Galois representations. We will then com-
bine Theorem 3.5.1 with some instances of base change to obtain modularity
lifting theorems for GL,.

4.1. Characters. — The first three lemmas are well known.

Lemma 4.1.1. — Suppose that ¥ s a number field and that S 1s a finite set of
places of Y. Suppose also that
Xs - HFZ( — Qx
vesS

s a continuous character of finite order. Then there is a continuous character
x :F\Af — Q
such that Xll_[vestx = Xs.

Proof — One may suppose that S contains all infinite places. Then we
choose an open subgroup U C (A})* such that xs is trivial on UNF*. (This is
possible as any finite index subgroup of O} is a congruence subgroup.) Then we
can extend xs to U[] F*/(UNF*) by setting it to one on U. Finally we can
extend this character to Aj/F* (which contains U[] (F*/(UNF*) as an open
subgroup). ]

Lemma 4.1.2. — Suppose that ¥ s a number field, D/Y is a finite Galows extension
and S s a fimte set of places of ¥. For v e S let ElJF, be a finite Galois extension. Then
we can find a finte, soluble Galois extension E/Y lnearly disjont from D such that for each
v €S and each prime w of E above v, the extension E,/F¥, s isomorphic to E|/F,.
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Proof. — TYor each D D D; D F with D;/F Galois with a simple Galois group,
choose a prime u; ¢ S of I which does not split completely in D;. Add the v to
S along with E; =F,. Then we can drop the condition that E/F is disjoint from
D/F — it will be automatically satisfied.

Using induction on the maximum of the degrees [E : F,] we may reduce to
the case that each E//F, is cyclic. Then we can choose a continuous finite order
character

Xs - HFZ( — QX
v€S

such that ker xs|px corresponds (under local class field theory) to E!/F, for all
v € S. According to the previous lemma we can extend x to a continuous character

X FO\AY — Q.
Let E/F correspond, under global class field theory, to ker . ]
Let F be a number field. A character
X AL /FC— CF
is called algebraic if for v € Hom(F, G) there exist m, € Z such that

M@ =[] ™™

teHom(F,C)

A set of integers {m.} arises from some algebraic character if and only if there
is an integer d and a CM subfield E C F such that if 71|p = (79|g) o ¢ then
d = my, + my,. For this and the proof of the next lemma see [Sel].

We will call a continuous character

x : Gal(F/F) — Q
algebraic 1f it 1s de Rham at all places above /.
Lemma 4.1.3. — Let 1:Q, = C. Let F be a number field. Let
X Af /T — CF
be an algebraic character and for T € Hom(F, C) let m, € Z satisfy

Xl @y (x) = l_[ T(x)™ ™.

teHom(F,C)

Then there is a continuous character
n.(x) : Gal(F/F) — Q
with the following properties.
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1. For every prime v{l of F we have

~1
rl,z(X)lGal(E,./Fp) = X»© ArtFD .

2.1f v|l is a prime of ¥ then 1,,(Y)|Gucw, v, @ potentially semistable (in fact potentially
crystalline), and of X, s unramified then u us crystalline.
3. Af o|l s a prime of ¥ and of T:F — Q, les above v then

dlmQI gri(rl’l(x) ®r,Fv BDR)Gal(F”/F“) =0

unless 1 = m,; n which case

dimg, gri(fz,,(X) Q-+ F, BDR)GM(F“/FL') =1.

Any continuous algebraic character = Gal(F/F) — Q) arises in this way.

The character 7,,(x) is explicitly x, oArtF_1 where ) 1 Ap /FX(FX)? — le
i1s given by

xoW=( ] o) '(( J] tt)™)xw®).

teHom(F,C) teHom(F,C)

Lemma 4.1.4. — Let ¥ be an wmaginary CM field with maximal totally real sub-
field ¥t. Let S be a finite set of primes of ¥ which split in F. Let 1 be a set of embeddings
F < C such that 1|[1c is the set of all embeddings ¥ — C. For t € 1 let m, be an
integer. Suppose that

X AL /(FH — C

is algebraic, unramified at S and such that x,(—1) s independent of v|oo. Then there is an
algebraic character

¥ AL/ — CF
which 1s unramified above S and satisfies

¥ o Np/p+ = x o Npjp+

and
Uleg = [ oo™
Tel
Jor some w.
Proof. — From the discussion before Lemma 4.1.3 we have that

Xl = wa

tel
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for some integer w. Choose an algebraic character
. X X X
¢: A/ — C
which is unramified above S and such that

Pliy = [ (.

tel

Replacing x by x¢|, we may suppose that x has finite order and that m, = 0
¥
for all T €l
Let Us = [[,s Or, and U{ = [],.s Oy . Tt suffices to prove that

X |(NF/F+A;)nUSFXF§O =L

If y, € F* and v € FJ and yx; tends to an element of Aj Ug, then for large
¢ the ratio y//y; € FNert =1 i a unit at all primes above S and tends to 1 in
(AY™)*. As ﬁFNF/F+:1 is the group of roots of unity in F and hence is finite, we
conclude that for ¢ sufficiently large y//y; =1, ie. y; € F*. Thus

(Nr/r+Ay) NUsFXFX = (Np/peAp) N UL (FH)*(FL)*.

We know that x is trivial on (Np/p+Ap) ﬂUg(FJr )< ((FL)>)0.

Note that Ay, /(Npp+Ap)(FH)*(FL)* corresponds under the Artin map to
the maximal quotient of Gal(F/F") in which all complex conjugations are trivial.
Hence Aj; = (Ny/p+AP)(FH)*(FL)* and we have an exact sequence

(0) = ((Niyr+AF) N UL EFH*(FL)*)/((Niyr-Af) N UL EFH*((FL)*)°)
— (F)* (Npjp+AF) /UL (FH) X (FL) )" — Af /UL (FH* (L) — (0).
If M/F* denotes the maximal abelian extension unramified in S and if L/F*

denotes the maximal totally real abelian extension unramified in S, then by class
field theory this exact sequence corresponds to the exact sequence

(0) - Gal(M/LF) — Gal(M/F) — Gal(L/F") — (0).

If vJoo write ¢, for a complex conjugation at ». As Gal(M/LF) is generated by
elements ¢, ¢, where v, and » are infinite places we see that the mmage of

(N AF) N UL ED)X(FL) )/ ((Np/erAF) NUSEN) > ((FL)*)°)

in (F*)X(NF/F+AFX)/U§(F+)X((Fjo)x)O is generated by elements (—1), (—1),,, where
v, and w» are two infinite places. Thus x will be trivial on the intersection
(NF/F+AFX)0U§(F+ )*(FL)* if and only if x, (=1)x,(—1) =1 for all infinite places
v; and 2. The lemma follows. O
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Lemma 4.1.5. — Let ¥ be an wmaginary CM field with maximal totally real sub-
field ¥+, Let T be a set of embeddings F — Q such that 1[[I° is the set of all such
embeddings. Choose an integer m, for all T € 1. Choose a finite set S of primes of ¥t which
split in ¥ and do not lie above [. Suppose that

x : GalF/F") — Q

s a continuous algebraic character which s unramified above S, crystalline at all primes above
[ and for which x(c,) is independent of the infinite place v of ¥*. (Here ¢, denotes complex
conugation at v.) Then there s a continuous algebraic character

¥ : Gal(F/F) — Q'

which 1s unramified above S and crystalline above [, such that
YUY = xlGawm

and

" Q) @y Bow) 0/ 3£ (0)

Jor all T € 1. (Here v(t) 1s the place above | induced by t.)

Progf. — This 1s the Galois theoretic analogue of the previous lemma. It
follows from Lemmas 4.1.3 and 4.1.4. O

A slight variant on these lemmas is the following.

Lemma 4.1.6. — Suppose that | > 2 15 a ratwnal prime. Let ¥ be an imaginary
CM field with maximal totally real subfield ¥*. Let S be a finite set of fimite places of F
contarming all primes above | and satisfying S° =S. Let

x : Gal(F/Ft) — ﬁ%l
and
0 : Gal(F/F) — F,
be continuous characters with 66" equal to the reduction of X|Guwr. For v €S, let

¥, : Gal(F,/F,) — ﬁ’él

be a continuous character lifting 0 |G, /v,y Such that

(Wv w;‘)

Ir, = X |IF1, .
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Suppose also that if T:F — Q lies above v € S then

dimg, g1 (¥, @y, Bpr) " = 1,

and that m; 4+ mqo, s independent of T.
Then there is a continuous character

6 : Gal(F/F) — ﬁ%j
lifting 0 and such that

00° = x |Ga1(F/F)

and, for all v € S,

Oy, = ¥l -

In particular 0 s algebraic.

_ Proof — Choose an algebraic character ¢ of Gal(F/F) such that if 7 : F —
Q, lies above v € S then

dim@ grmr (¢ ®I,F;,. BDR)Gal(FD/FD) = 1.

Replace ¥, by wv¢|(_}zld(E T 6 by 0¢~'; and x by XDy ' where ¢, denotes ¢
composed with the transfer Gal(F/F)* — Gal(F/F)*. Then we see that we may
suppose that x has finite image and each [, has finite image.

Using the Artin map, think of x as a character of Ay, /(FT)*((F£)*); 0 as
a character of AyF/F*FX; and 1, as a character of Of, Let Us = [] Oy,
U =[], Of , and ¥ =[] ¥, : Us — Q. Note that Vlur = Xlug, that the
reduction of x equals 0 on Ny p+A; and that the reduction of ¥ equals 6 on Us.

We get a character

X' = xy: USNF/F+AFX/((U§NF/F+A§) N (FJF)X((FOC)X)O) —> ﬁ%'

The reduction of x' equals the restriction of # to the domain of x’. As in the
proof of Lemma 4.1.4 we see that

Us(Ny/p+AP) NFXFX = Ug (Np/prAR) N (FH)*(FL)>.
However

(US (N AF) N FDXFL)*) /(U NgyeeAF) N (FH*((FL)¥)0)
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is a 2-group on which & vanishes. As /> 2 we see that x’ also vanishes on this

group.
Extend x’ to a continuous character

X ASPFL — Qf

and let ¥’ denote its reduction. Then O()x')~! is a continuous character
A/ (Us(Ngps AOFFL — F, .

Lift it to a continuous character

X" AY/(Us(Ng/re A FFL — Q.

Then 6 = x'x” will suffice. O

4.2. CM felds. — Let F be a CM field. By a RACSDC' (regular, algebraic,
conjugate self dual, cuspidal) automorphic representation 7 of GL,(Ar) we mean
a cuspidal automorphic representation such that

- ¥ = x° and

— T has the same infinitesimal character as some irreducible algebraic rep-

resentation of the restriction of scalars from I’ to Q of GL,.

Let a € (Z)HmECO) qatisfy

— a;] > ... > a;,, and
- a‘L’f,i = _ar,71+1—i-

Let E, denote the irreducible algebraic representation of GLHm*© which is the
tensor product over T of the irreducible representations of GL, with highest
weights a,. We will say that a RACSDC automorphic representation 7 of GL,(Ay)
has weight a if m,, has the same infinitesimal character as E.

Let S be a finite set of finite places of I. For v € S let p, be an irreducible
square integrable representation of GL,(F,). We will say that a RACSDC auto-
morphic representation 7w of GL,(Ar) has #pe {p,},es if for each v € S, 7, is an
unramified twist of p.

The following is a restatement of Theorem VIIL.1.9 of [HT].

Proposition 4.2.1. — Let 1 : Q, = C. Let ¥ be an imaginary CM field, S a finite
non-empty set of fimite places of ¥ and, for v € S, p, a square integrable representation of
GL,(F,). Let a € (ZH)1"YC pe a5 above. Suppose that 7w is a RACSDC automorphic
representation of GL,(Ap) of weight a and type {p,}.es. Then there is a continuous semisimple
representation

7, (1) : Gal(F/F) — GL,(Q))
with the following properties.
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1. For every prime v{l of F we have
1 (D) gy = 11(07') (1= )™,

2.1, () = 1, (m)Ve .

3. Af oll s a prime of ¥ then 1, (7)|Gaw, v, @5 polentally semustable, and if 7, is
unramified then 1t s crystalline.

4.If ol is a prime of F and if T:F — Q, lies above v then

dimg;, gr' (1, (77) ®r, Bpr) T/ =0
unless 1 = a,.;+n—j for some j=1,...,n m whch case
dimg, gr'(r, (7) ® 4.1, Bp) /™) = 1.
Moreover if ¥ : A) JF* — C* is an algebraic character satisfying ¥ o ¢ = Y~ then
1,(T & (Y odet)) = 7,(7) @ r,(¥).

Proof — We can take 7,,(mr) = R/(r”)(1 —n) in the notation of [HT]. Note
that the definition of highest weight we use here differs from that in [HT]. O

The representation 7,,() can be taken to be valued in GL,(0) where O is
the ring of integers of some finite extension of Q,. Thus we can reduce it mod-
ulo the maximal ideal of & and semisimplify to obtain a continuous semisimple
representation

7..() : Gal(F/F) — GL,(F)

which is independent of the choices made. Note that if 7,,(w) (resp. 7,,(7)) is
irreducible it extends to a continuous homomorphism

7, ()" Gal(F/F") — 4,(Q))
(resp.
71’1(7'[)/ . Gal(F/F+) —_— gﬂ(Fl))

Let 1:Q, = C. Suppose that a € (Z) T satisfies

— az > ... > a;,, and
= Qe = —Arpgl—i-

Then we define 1,a by

(l*a)tr,i = Q-



124 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

Suppose that a € (Z")H™"Q) gatisfies the conditions of the previous para-
graph, that S is a finite set of finite places of I not containing any prime above
[ and that p, is a discrete series representation of GL,(F,) over Ql for all » € S.
We will call a continuous semisimple representation

r: Gal(F/F) — GL,(Q))

(resp.
7 : Gal(F/F) — GL,(F)))

automorphic of weight a and type {p,},es if there is an isomorphism 1 : Q, = C
and a RACSDC automorphic representation w of GL,(Ay) of weight 1,4 and type
{ip,}es (resp. and with 7, unramified) such that r = r,,(w) (resp. 7 = 7,,(m)). We
will say that r is automorphic of weight a« and type {p,}.cs and level prime to | if
there is an isomorphism 7 : Q; = C and a RACSDC automorphic representation
7 of GL,(Ap) of weight 1,4 and type {1p,},es and with 7, unramified such that
r =1, ().
The following lemma is standard.

Lemma 4.2.2. —  Suppose that EJY is a soluble Galois extension of CM fields.
Suppose that

r: Gal(F/F) — GL,(Q))

is a continuous senusimple representation and that r|c.mm) 15 wreducible and automorphic of
weight a and type {p,}.es. Let Sy denote the set of places of ¥ which lie under an element
of S. Then we have the following

l.ay =ay if Tlp =T|p 50 we can define ap by ap, = ag for any extension & of o
o E.

2.1 1s automorphic over ¥ of weight ap and type {p}.es, for some square integrable
representations p..

Proof. — Inductively we may reduce to the case that E/F is cyclic of prime
order. Suppose that Gal(E/F) = (o) and that » = r,,(7), for 7 a RACSDC auto-
morphic representation of GL,(Ag) of weight ¢ and level {p,},es. Then r|((T}al(F/E) =
Tlga@r) so that 77 = . By Theorem 4.2 of [AC] 7 descends to a RACSDC au-
tomorphic representation 7y of GL,(Ap). As » and 7,,(;ryp) are irreducible and have
the same restriction to Gal(F/E) we see that r = 7,(7p) @ x = 1, (7Tp @ (X o Arty))
for some character x of Gal(E/F). The lemma follows. O

4.3. Totally real fields. — Now let F™ denote a totally real field. By a RAESDC
(regular, algebraic, essentially self dual, cuspidal) automorphic representation 7 of
GL,(Ap+) we mean a cuspidal automorphic representation such that
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— ¥ = xm for some character x : (F*)*\Aj, — C* with x,(—1) indepen-
dent of »|oo, and

— T has the same infinitesimal character as some irreducible algebraic rep-
resentation of the restriction of scalars from F* to Q of GL,.

One can ask whether if these conditions are met for some y : (F*)*\Aj, — C*,
they will automatically be met for some such x" with x/(—1) independent of v|oo.
This 1s certainly true if 7 is odd. (As then x" is a square, so that x,(—1) =1
for all vjoo.) It 13 also true if n = 2 (As in this case we can take x to be the
inverse of the central character of m and the parity condition is equivalent to the
fact that if a holomorphic Hilbert modular form has weight (£;);cpom@+r) then
k; mod 2 is independent of 7.)
Let a € (ZH1"00 gatisfy

1 > .. > g

Let E, denote the irreducible algebraic representation of GLE"m(F+’C) which is
the tensor product over T of the irreducible representations of GL, with highest
weights a,. We will say that a RAESDC automorphic representation 7w of GL,(Ay)
has weight a if m., has the same infinitesimal character as E'. In that case there
is an integer w, such that

Qe ; + Arnt1—i = Wy

for all T € Hom(F*,C) and all i=1, ..., %

Let S be a finite set of finite places of F*. For v € S let p, be an irre-
ducible square integrable representation of GL,(FF). We will say that a RAESDC
automorphic representation w of GL,(Ap+) has #pe {p,}.es if for each v €S, m, is
an unramified twist of p,’.

Proposition 4.3.1. — Let 1:Q; = C. Let F* be a totally real field, S a finite
non-emply set of finite places of ¥t and, for v € S, p, a square integrable representation of
GL,(F"). Let a € (Z"HomE.O) po a5 above. Suppose that 7 s a RAESDC automorphic
representation of GL,(Ap+) of weght a and type {p,}.es. Specifically suppose that w" = mwy
where x : Af. /(FY) — C*. Then there is a continuous semisimple representation

1.() : Gal(F'/F) — GL,(Q)
with the following properties.

1. For every prime v{l of ¥ we have

7, (1) = (') (1 = n)"

2. 71,1(7'[)\/ = 71,1(77)6717171,1()()-
3.1f 0|l s a prime of ¥T then the restriction 10 ()| GuEt ity @8 polentially senustable,
and if w, 15 unramified then it is crystalline.

SS
-

Gal(E] /F))
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4.1If o|l is a prime of F* and if T :F* — Q lies above v then
: i Gal(F) /FF
dimg, gr' (72, (7) @+ Bpr) G =0
unless @ = a,.; +n—j for some j=1,..,n m which case
. i Gal(F) /Ff
dimg, gr' (72, (7) @+ Bpr) G =1,
Moreover if  : Ay /(FT)* — C* is an algebraic character then
1, (7T @ (Y odet)) =1, (1) Q 11, (¥).

Proof. — Let F be an imaginary CM field with maximal totally real sub-
field F*, such that all primes above [ and all primes in S split in F/F*. Choose
an algebraic character ¢ : Af /F* — C* such that x o Nyp+ = ¢ o Nppr. (See
Lemma 4.1.4.) Let 7y denote the base change of @ to F. Applying Prop-
osition 4.2.1 to mp¢, we obtain a continuous semi-simple representation

n : Gal(F' /F) — GL,(Q)

such that for every prime v{/ of F we have

ss _ -1 v _ ss
R n(” ) DG vy

Letting the field F vary we can piece together the representations 7z to obtain 7.
(See the argument of the second half of the proof of Theorem VII.1.9 of [HT].)
O

The representation 7,,(w) can be taken to be valued in GL,(0) where O is
the ring of integers of some finite extension of Q, Thus we can reduce it mod-
ulo the maximal ideal of ¢ and semisimplify to obtain a continuous semisimple
representation

7.(7) : Gal(F' /FT) — GL,(F)

which 1s independent of the choices made. B
Let 1 : Q, = C. Suppose that a € (Z")T"F" Q) gaisfies

Arl Z v Z lrpe
Then we define 1,a by
(l*a)n,i = ;-

Suppose that a € (ZH)TomT Q) gatisfies the conditions of the previous para-
graph, that S is a finite set of finite places of F* not containing any prime above [
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and that p, is a discrete series representation of GL,(F) over QZ for all » € S.
We will call a continuous semisimple representation

r: Gal(F' /F") — GL,(Q))
(resp.
7: Gal( /FY) — GL,(F)

automorphic of weight a and type {p,},es if there is an isomorphism 1:Q; = C and
a RAESDC automorphic representation mw of GL,(Ap+) of weight 1,4 and type
{1p,}ses (resp. and with 7; unramified) such that » = () (resp. 7 = 7,,(7)). We
will say that » is automorphic of weight a and type {p,}.cs and level prime to [ if
there is an isomorphism 7 : Q, = C and a RAESDC automorphic representation
7 of GL,(Ap+) of weight 1,4 and type {1p,},es and with 7; unramified such that
r =1, ().
The following two lemmas are proved just as Lemma 4.2.2.

Lemma 4.3.2. — Let ET/F" be a soluble Galois extension of CM fields. Suppose
that

r: Gal /FY) — GL,(Q)

15 a continuous semisimple representation and that vl g+ gy U8 ureducible and automorphic of
weight a and type {p,},es. Let Sy+ denote the set of places of ¥T under an element of S.
Then we have the following.

l.a; = ay if Tlp+ = T'lp+ so we can define ap+ by ap+, = a5 for any extension ©
of o to ET.

2.1 is aulomorphic over ¥+ of weight ap+ and type {p},es,. Jor some square integrable
representations ).

Lemma 4.3.3. — Let ¥ be a CM field with maximal totally real subfield ¥*. Suppose
that ¥ : Gal(F/F) — Qs a continuous algebraic character and that

r: Gal(F/F") — GL,(Q))

is a continuous semusimple representation and that r|Gagp @ V¥ s wrreducible and automorphic
of weight a and type {p,}.cs. Let Sp+ denote the set of places of ¥ under an element of S.
Then v is automorphic over ¥ of weight b and tpe {p)}ies,, Jor some square integrable
representations ! and for some b. Moreover, for all T : F — Q, and all i =1, ...,n, the
co-ordinate ar; equals by, ; plus the unique number j such that gr'( ®.r, Bpr) # (0)
(where v 15 the place of ¥ induced by 7).
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4.4. Modularity bfting theorems: the minimal case. — In this section we use base
change to translate Theorem 3.5.1 into a modularity lifting theorem on GL(n).
The results here are entirely superseded by the results of [Tay] and for the reader
interested only in the main results of [Tay] and [HSBT] this section could be
skipped.

We start with a lemma about congruences which is analogous to a trick
invented by Skinner and Wiles in the case of GLy, see [SW].

Lemma 4.4.1. — Let ¥ be a totally real field of even degree and Y. an imaginary
quadratic field such that ¥ = FTE/FT is unramified at all finite primes. Let n € L~y and let
[>n be a prime which splits in E. Let 1:Q; => G and let S; denote the set of primes of
F above . Let w be a RACSDC automorphic representation of GL,(Ar) of weght a and type
{0.}ves where S is a finite non-emply set of primes split over ¥*. Assume that 4|#(S U S°).
Suppose that 7, is unramified if v is not split over ¥ or if v|l. Let R be a fimte set of
primes of ¥ such that if v € R then

¢ SUSTUS,
—0v s split over FT,
—Nv=1mod |/,

- # (0).

Let S, be a non-empty finite set of primes of ¥ such that S, =S and S,N(RUSUS,) = @.
Then there 1s a RACSDC automorphic representation 7' of GL,(Ar) of weght a and
bpe {p,}es with the following properties:

77_’/,1(7’:) = 7_’/,1(77:/);
~if v &S, and 7, is unramified then 7 is unramified;
—if v an R then n(m))" (1 —n)(Iy,) s finite.

Proof — Let S(B) denote the set of primes of F* below an element of S.
Choose B and i as at the start of Section 3.3. These define an algebraic group G.
Consider open compact subgroups U =[] U, of G(A}) where

— 1f v 1s inert in F, then U, is a hyperspecial maximal compact subgroup of
G(F?);

—if v is split in F and v lies below S then U, = G(Oy+ ,);

— 1f v does not lie below RUS,, if v is split in F and if mw, is unramified
then U, = G(0%+ ,);

— 1f v lies below R and if w is a prime of F above v then U, = i;l Iw(w);

—1f v lies below S, then U, contains only one element of finite order,
namely 1.

We now apply Lemma 3.4.1 with x, =1 and x/ =[], X, for all v € R, where
we choose x;; each of /-power order and with x;; # x;, ; for ¢ # . (This is possible
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as [>n.) The lemma then follows from Lemma 3.1.6 and Proposition 3.3.2. (The
fact that the x;; are distinct gives the finiteness of the image of intertia at ».) O

Next we prove a ‘minimal’ modularity lifting theorem over a CM field.

Theorem 4.4.2. — Let ¥ be an imaginary CM field and let ¥t denote its maximal
lotally real subfield. Let n € Z>, and let |>n be a prime which s unramified in ¥. Let

r: Gal(F/F) — GL,(Q))

be a continuous wrreducible representation with the following properties. Let T denote the semisim-

plification of the reduction of 7.
1.0 = Vel
2.1 s unramified at all but finitely many primes.
3. For all places o|l of ¥, r|gaw,v, @ crystalline.
4. There 1s an element a € (Z”)Hom(F’@) such that
—for all T € Hom(F, Q) we have

[—1—n>a,>..>a,>0
or
[—1—n>ay,>..>a.,>0;
—for all T € Hom(F, Qz) and all 1=1,...,n
Qrei = —Aratl—is
—for all T € Hom(F, Qz) above a prime v|l of F,
dimg, g1'(r ®cx, Bow) ™"/ = 0
unless @ = a;+n—j for some j=1,...,n m which case

dimg, gri(f Qrr, Bpg) M/ = 1,

5. There 1s a non-emply finite set S of places of ¥ not dividing | and for each v € S
a square ntegrable representation p, of GL,(F,) over Q, such that

rlséal(i,-/Fp) = 7l(pv)v(1 - n)SS.
If p, = 3Sp,, (p,) then set

;:; — 7’1((/02,)V| |(n/mv71)(lfmv)/2).
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Note that 1|, v, has a umque fillration Fili such that
grirlGal(E/FD) =7,

Jor j =0,...,m, — 1 and equals (0) otherwise. We assume that 7, has irreducible

reduction 7,. Then 7|, v, mheris a filtration ﬁj with

112

e _ 7l
8 7| GaiF, /v, = To€

Jor =0, ...,m,— 1. Finally we suppose that for j =1, ..., m, we have
T, & e

6. For all finite places vtl with v ¢ SUS‘ the image r(Iy)) is finite.
—kerad7

7.F does not coiztain F(g).
8. The image 7(Gal(F/F(g)))) is big m the sense of Definition 2.5.1.
9. The representation T s vrreducible and automorphic of weight a and type {p,}.es with

S # 0.
Then r s automorphic of weight a and type {p,}.cs and level prime to [.

Proof — Suppose that 7 = 7,,(;r), where 1 : Q; = C and where 7 is
a RACSDC automorphic representation of GL,(Ar) of weight 1, and type {10,}.es
and with 7; unramified. Let S; denote the primes of I above /. Let R denote the

. . . . . —kerad7
primes of F outside S“USUS, at which » or 7 is ramified. Because F T does

not contain F(¢;), we can choose a prime v, of I with the following properties

-0 ¢ RUS,USUS,

— o is unramified over a rational prime p for which [F(¢,) : F] > n,
— v, does not split completely in F(¢)),

— ad7(Frob,) = 1.

(We will use primes above v, as auxiliary primes to augment the level so that the
open compact subgroups of the finite adelic points of certain unitary groups we
consider will be sufficiently small. The properties of »; will ensure that the Galois
deformation problems we consider will not change when we allow ramification at

primes above v;.)
Choose a CM field L/F with the following properties

— L=L"'E with E an imaginary quadratic field and L* totally real.
4Lt

— L/F 1s Galois and soluble.

— L is linearly disjoint from erw({[) over F.

— L/LT is everywhere unramified.
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— [ splits in E and is unramified in L.

— o, and o} split completely in L/F and in L/L*.

— All primes in S split completely in L/F and in L/L"*.

— Let 7, denote the base change of w to L. If v is a prime of L not lying
above SUS‘ then JTLI,W(U) = (0).

— If v is a place of L. above R then 7|g,g/, 1 unramified at o.

Let S(L) (resp. S;(L.)) denote the set of places of L above S (resp. /). Let a, €
(Z"Hom@-Q) he defined by a; = a;,. By Theorem 4.2 of [AC] we know that
FlGa@, 18 automorphic of weight ar, and type {0y }esa). (The base change must
be cuspidal as it is square integrable at finite places in S.) By Lemma 4.4.1 there
1s a RACSDC automorphic representation 7’ of GL,(A;) of weight ¢, and type

{0u; }sesay and level prime to [ such that

= Tlgammy = 7.(7"), and
— 1,(r") 1s finitely ramified at all primes outside S(L) U S(L)‘ U S,(L).

(If v|v; or vf then 7,,(;") 1s unramified at v and all the eigenvalues of the matrix
7., (") (Frob,) are equal. As Nv #£ 1 mod [ we see that 7,,(’) is finitely ramified
at v.)

Choose a decomposition S;(L) = S;(L)[[S/(L)°. Also choose an algebraic
character v : Af/LL* — G* such that

— Y oNyp+ =1
— ¥ 1s unramified at S,(L) U S(L); and
— ' ® ¥ has weight 1,4 where

/ /
l—1l—n>d,>..2d,>0

for all 7:L < Q, lying over an element of S/(L).

(This 13 possible by Lemma 4.1.4. The point of this step is to arrange that for

each place |l of F the weights «;, for T above v are all in the same range

of length / — 1 —n This was assumed in Theorem 3.5.1, so as we could apply

Fontaine—Laffaille theory to calculate the local deformation ring, see Section 2.4.1.)
Choose a CM field M/L with the following properties.

— M/L is Galois and soluble.

— M 1s linearly disjoint from er”(g) over L.

— [ 1s unramified in M.

— vy splits completely in M/F.

— All primes in S split completely in M/L.

— Let (n" ® ¥)u denote the base change of 7’ @ (Y odet) to M. If v is
a prime of M not lying above SU S then (7' ® ¥)\, 1s unramified.
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— It » 13 a place of M not lying above S(L) U S(L)" U S;(L) then (r ®
7, (V) |Ga@yry is unramified at v.

Let S(M) denote the set of places of M above S. Let 4, € (Z")H"m(M*Q’) be defined
by @y, = ;. Let S(M™) denote the set of places of M™ below an element
of S(M). Then #S(M™) is even and every element of S(M™) splits in M. Choose
a division algebra B/M and an involution I of B as at the start of Section 3.3,
with S(B) = S(M™). Let S;(M*) denote the primes of M* above / and let S,(M*)
denote the primes of M* above o|p+. Let TM*) = S(M™) U S;,(M*) U S,(M™).
It follows from Proposition 3.3.2 and Theorem 3.5.1 that 7|g.mmwy @ 7. (V)| Gad/wm
is automorphic of weight @, and type {0, }.esomy. The theorem now follows from

Lemma 4.2.2. O

Let us say a few words about the conditions in this theorem. The first
condition ensures that r is conjugate self-dual. Only for such representations will
the numerology behind the Taylor-Wiles argument work. Also it is only for such
representations that one can work on a unitary group. Indeed whenever one has
a cuspidal automorphic representation of GL,(Ayp) for which one knows how to
construct a Galois representation, that Galois representation will have this property.
The second condition should be necessary, i.e. it should hold for any Galois repre-
sentation associated to an automorphic form. A weakened form of the third condi-
tion which required only that these restrictions are de Rham is also expected to be
necessary. The stronger form here (requiring the restrictions to be crystalline), the
assumption that / is unramified in F and the bounds on the Hodge-Tate numbers
in condition four are all needed so that we can apply the theory of Fontaine and
Laffaille to calculate the local deformation rings at primes above /. Condition four
also requires the Hodge-Tate numbers to be distinct. Otherwise the numerology
behind the Taylor-Wiles method would fail. The fifth condition is there to ensure
that the corresponding automorphic form will be discrete series at some places
(e. those in S). With the current state of the trace formula this is necessary to
move automorphic forms between unitary groups and GL, and also to construct
Galois representations for automorphic forms on GL,. The exact form of condition
five 1s also designed to also make the deformation problem at the places v € S
well behaved. The sixth condition is designed so that we can use base change to
put us in a situation where we can apply a mimmal R =T theorem. In Chapter 4
we will show that a conjecture about mod / automorphic forms on unitary groups
which we call “Thara’s lemma” implies that we could remove this condition. The
seventh condition is to allow us to choose auxiliary primes which can be used
to augment the level and ensure that certain level structures we work with are
sufficiently small. The eighth condition is to make the Cebotarev argument used
in the Taylor-Wiles argument work. It seems to be often satisfied in practice.
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Now we turn to the case of a totally real field.
Theorem 4.4.3. — Let ¥t be a totally real field. Let n € Z=, and let | > n be
a prime which is unramified in F. Let
r: Galf /F") — GL,(Q)

be a continuous vrreducible representation with the following properties. Let T denote the semisim-

plification of the reduction of r.

1.7 = re" Yy for some character ¥ : Gal(F+/F+) — Q) with x(c,) independent
of v|oo. (Here ¢, denotes a complex conjugation at v.)

2.1 ramifies at only finitely many primes.

3. For all places v|l of F*, 7|Ga1(Fj 5 i crystalline.

4. There is an element a € (_Z”)H"m(F+’@) such that
—for all T € Hom(F", Q) we have

[—1—n+a.,>a,>..2>a.,
—for all T € Hom(F*, Q) above a prime v|l of FF,
dimg, gri(7 O rt BDR)GM(F:/FT) =0

unless @ = a;+n—j for some j=1,...,n m which case

i Sal(FF/F
dim@/ grl(r ®r,FZr BDR)Gal(F“ T — l.

5. There is a finite non-empty set S of places of ¥ not dinding | and for each v € S
a square integrable representation p, of GL,(F) over Q, such that

S e ey = 1000 (1= )™,

If p,=Sp,, (p)) then set
~ n/my—1)(1—my) /2
o= (o)) (0D,
Note that 1q, 5+ g+ has a wuque fillration Fil/ such that

J _ ~
gl Gat iy = 7€

Jor j =0,...,m, — 1 and equals (0) otherwise. We assume that 7, has irreducible
reduction T, such that

P, E 7€

Jor j=1,...,m,. Then 7|G31(Fj Jiy nhenls a unique filtration ﬁi with
ST et ey = To€
ST Gaw! /vy v

Jor j=0,...,m,— 1.
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6.1f v¢& S and v{l then r(Ig+) is finite.

7. (F+)kerad7 does not contain F(Z)).

8. The image ?(Gal(F+/F+(§,))) s big wn the sense of Definition 2.5.1.
9.7 s vrreducible and automorphic of weight a and type {p,}es with S # (.

Then 1 1s automorphic of weight a and tpe {p,},es and level prime to I.
Proof. — Choose an imaginary CM field I with maximal totally real subfield
F* such that

— all primes above [ split in F/F*,
— all primes in S split in F/F*, and
— F is linearly disjoint from (F+)ke”(§/) over Ft,

Choose an algebraic character
¥ : Gal(F' /F) — QF
such that

—_ c
- XlG'aKFJr/F) —l/fl/f 5
— ¥ 1s unramified above S,
— ¥ 1s crystalline above /, and
— for each t:F" — Q, there exists an extension T : F — Q; such that

g QW) @z, Bow) O £ (0),

where »(7) is the place of F above [ determined by 7.
(This is possible by Lemma 4.1.5.) Now apply Theorem 4.4.2 to rlg @ p ¥ and

this theorem follows from Lemma 4.3.3.

As the conditions of this theorem are a bit complicated we give a special
case as a corollary.

Corollary 4.4.4. — Let n € Z~, be even and let | > max{3,n} be a prime. Let S
be a finite non-empty set of primes such that if ¢ € S then q # | and ¢ # 1 mod [ for
t=1,..,n Let

r: Gal(Q/Q) — GSp,(Z))

be a continuous rreducible representation with the following properties.

1. v ramifies at only finitely many primes. B
2.7lGaiy g, B cystalline and dimg, ar'(r ®q, Bpr) ¥/ = 0 unless i €
{0, 1, ...,n— 1}, in which case it has dimension 1.
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3.If ¢ €S then |, 2, i unramified and | Q(](Frobq) has eigenvalues {og' : i =
0,1,...,n—1} for some «.

4.0f ¢ ¢ SU{l} then 1r(Ig,) 5 finile.

5. The image of r mod [ contains Sp,(F).

6.rmod [ is automorphic of weight O and type {Sp,(1)}es.

Then r is automorphic of weight O and type {Sp,(1)}, and level prime to L.

Proof. — Let 7 =rmod (. As PSp, (F,) is simple, the maximal abelian quo-
tient of ad7(Ggq) is

HGg)/(7(Gg) NF}) Sp,(F)) C PGSp,(F)/ PSp,(F) —> (F)/(F})"
Thus leradf does not contain Q(Z)).
The corollary now follows from Lemma 2.5.5 and Theorem 4.4.3. ]

5. Thara’s lemmma and the non-minimal case

The results of this chapter are not required for the proofs of the main
theorems in [Tay] and [HSBT]. It could be skipped by those only interested in
these applications.

3.1. GL, over a local field: finite characteristic theory II. — We will keep the
notation and assumptions of Section 3.2. Following Vignéras we also make the
following definition.

Defimition 5.1.1. —  We will call | quasi-banal for GL,(F,) if ether we have
I1#GL,(k(w)) (the banal case), or we have |>n and ¢, =1 mod [ (the limit case).

Suppose that U is an open subgroup of GL,(0f,) and that
¢ : k[GL,(Or )\GL,(F,)/GL,(Ox )] —> k
is a k-algebra homomorphism. Set

= k[GL,(F.)/GL.(O%)] 6L, (61,\GL. (k) /GL.G 1.0 £

and

= k[U\GL,(F,)/GL.(Or,)] @1 (G161, \GL(F0)/GL(01 )10 K-
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If Vis any smooth £[GL,(F,)]-module and if » € V6“5 satisfies To = ¢(T)ov for
all T € k[GL,(0y )\GL,(F,)/GL,(0%,)], then there is a unique map of £[GL,(F,)]-
modules

sending [GL,(0%,)] to v, and a unique map of k[U\GL,(F,)/U]-modules
k[U\GL,(¥,)/GL,(y )]y —> V"

sending [GL,(Oy,)] to v. (These observations were previously used in a similar
context by Lazarus [La].)

Fix an additive character ¢ : F, — k with kernel Oy,. Let B, denote the
Borel subgroup of GL, consisting of upper triangular matrices and let N, denote
its unipotent radical. Let P, denote the subgroup of GL, consisting of matrices of

the form
a b
0 1

with @ € GL,_;. We will think of ¢ as a character of N,(F,) by

/1 a2 413 ..o Aip—1 Qg \
agy ... Ay Aoy
0 O 1 e A3p—1 asy,
v . : : > Ylag + a3 + ... + a,-10).
00 0 .. I a-,
\0 0 0 .. 0 1 }
We will denote by gen, the compact induction C-Ind;’;((l%:f)w an_d by #, the induc-

tion Ind;’f(’ﬂrf)l/f We will use the theory of derivatives over £ as it is developed

in Section III.1 of [VI1]. Note that if 7 is a smooth k[GL,(F,)]-module then
Homgy,w,) (7, #,) = 75, = Homp, ) (gen,, )",

where Vv denote linear dual and 7y, y denotes the maximal quotient of 7 on
which N,(F,) acts by ¢. If 7 is irreducible we will call it generic if these spaces
are non-trivial.

The next lemma is proved exactly as in characteristic zero (see [Sh]).

Lemma 5.1.2. — Suppose that ¢ : k[GL,(Op )\GL,(F,)/GL,(Op )] — k is
a homomorphism. Then the ¢ eigenspace in W, 9% s one dimensional and spanned by
a function Wg with Wg(l) = 1.
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The next lemma is due to Vignéras, see parts 1 and 3 of Theorem 1 of
her appendix to this article.

Lemma 5.1.3 (Vignéras). — Suppose that | s quasi-banal for GL,(¥,). Then the
Sunctor N+ V™ s an equivalence of categories from the category of smooth k[GL,(F,)]-
modules generated by their Iw(w)-fixed vectors to the category of %[Iw(w)\GLn(Fw) / Tw(w)]-
modules. Moreover the category of smooth k[GL,(F.,)]-modules generated by therr Iw(w)-fixed
vectors s closed under passage to subquotients (in the category of smooth k[GL,(F o) ]-modules).

Lemma 5.1.4. — Suppose that [ is quasi-banal for GL,(F,) and that
¢ . %[GLﬂ(ﬁFu)\GLﬂ(Fw)/GLn(ﬁFM)] — %

s a %—algebm homomorphism. T hen k[GL,(F,)/ GL,(Or, )]y has fimite length (as a smooth
%[GL,I(Fw)]—module) and ts fordan—Holder constituents are the same as those of any unram-
tfied principal series representation 7 for which %[GL,,(@FZU)\GL”(FUJ) /GL,(O%,)] acts on
7 GOk, by @. In particular the smooth representation k[GL,(F,) /GL,(O%,)]y has exactly
one generic wrreductble subquotient.

Proof. — In the banal case this is due to Lazarus [La]. By Lemma 5.1.3
the Iw(w)-invariants functor is exact on the category of subquotients of smooth
k[GL,(F,)]-modules generated by their Iw(w)-fixed vectors. The k[GL,(F,)]-module
k[GL,(F,) /GL,(O%,)] is generated by its Iw(w)-fixed vectors.

Let the elements Ty,...,T,;; generate %[GLﬂ(ﬁFw)\GLﬂ(Fw)/GLn(ﬁFw)] as
a k-algebra. Then we have a right exact sequence

n+1

EB k[GL,(F,)/GL,(0¢)]

=1

20 FIGL,(F,) /GL,(6r,)] —>

— %[GLW(Fw)/GLn(ﬁFM)]qb — (O)
Taking Iw(w)-invariants, we get an exact sequence

n+1

D Flw(@)\GL,(F,)/GL.(0,)]

=1

k[Tw(w)\GL,(F,)/GL,(0y, )] —> k[GL,(F,)/GL,(0y )1, —> (0).

2 i(Ti—¢(T))
-

We deduce that
(% [GLﬂ (Fw)/GLn(ﬁFw)]¢)IW(w) = % [IW(ZU)\GLn (Fw)/GLn(ﬁan)]qb

(We thank a referee for pointing out that the original argument we gave for this
was needlessly complex.)
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Following Kato and Lazarus [La] we see that the Satake isomorphism ex-
tends to an isomorphism

k[Iw(w)\GL,(F,)/GL.(Ox )] Z k[XT, ... X

as %[GLn(ﬁ’Fw)\GLn(Fw)/GLﬂ(ﬁFw)] = %[XF, ooy XEP-modules. We deduce imme-
diately that

dimy £ [Iw(w)\GL,(F,)/GL,(y,)]y = n!

and hence (from Lemma 5.1.3) that %[GLn(Fw)/GLn(ﬁ’Fw)](,, has finite length.
Moreover the argument of Section 3.3 of [La] then shows that the Jordan—Holder
constituents of %[GLn(Fw)/GLn(ﬁ’Fw)]d, are the same as the Jordan-Holder con-
stituents of any unramified principal series representation 7 for which the Hecke
algebra %[GLﬂ(ﬁFw)\GLﬂ(Fw) /GL,(O,)] acts on 7%%) by ¢. The final assertion
of the lemma then follows from the results of Section III.1 of [V1]. ]

We will now recall some results of Russ Mann [Manl] and [Man2]. See
also Appendix A of this article.
The first result follows at once from Proposition 4.4 of [Manl].

Lemma 5.1.5 (Mann). — Suppose that xi, ..., x, are unramified characters ¥, — K"

and set ™ = n—Indgi"F(j)‘”(Xl, cees Xn)- The simultaneous egenspaces of the operators Ul(yj) (for

j=1,.,n—1) on 7V are parametrised by subsets A C {1, ...,n} of cardinality less

than n. Let u&/ " denote the aigenvalue of UY) on the eigenspace corresponding to A. Then

X — q;vlfﬂ)/ng)Xﬂfl 4+ (_l)jqi}(jfn)/Qul(xj)Xn,j_i_
+...+ (—1)”‘1qg,"”/2uff‘”X = X (X = xi(@).
Moreover the generalised eigenspace corresponding to a subset A has dimension (n#—Al )

The next two results are proved in [Man2]. As this is not currently available,
the proofs are repeated in Appendix A.

Lemma 5.1.6 (Mann). — Suppose that
¢ : k[GL,(Or,)\GL,(F,)/GL,(Oy,)] —> k
s a homomorphism. Then the map

T — TW}

s an wnjection.
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Let n, denote the diagonal matrix diag(l,..., 1, ). Then there is a bijec-
tion” :
Z[1/¢,)[Ui1(w")\GL,(F,)/GL,(0y,)] —
Z[1/¢,[GL.(Ox )\GL,(F,) /U, (w")]
[U1("gGL.(Or,) ] = [GL.(Tx,)gn, Ui ("]

(This is because Uj(w") = n,/U;(w")n;".)
Proposition 5.1.7 (Mann). — There exists an element
0,0 € Z)[U, (w")\GL,(F,)/GL,(0r,.)]

with the following properties.

1.For i=1,....,n—1 we have Ug)G,W = 0.

2. For any homomorphism ¢ : %[GLﬂ(ﬁFw)\GLﬂ(Fw) /GL,(O,)] — k we have that
6, Wy # 0 in #,.

3. X5 ooy Xu are unramified characters ¥ — K> such that the induced representa-

. GL,(F, .. . . .

tion T = n—IndBn(F(w>>(X1, cees Xn) U5 wrreductble and if v is a nonzero element of
) . . n M— _—_yh-1)_

O OR0) - then 0,0 is nonzero and so a basis of w' @) Vu'==Uim =0,

4. The composite
,9\71,10911,10 € Z/[GLﬂ(ﬁFu)\GLﬂ(Fw)/GLn(ﬁFM)]

has Satake transform

2 (n— —(n
¢, "X LX) T T T J@eX = X0

=1 j=1

Corollary 5.1.8. —  Suppose that 7 s an rreducible unramified representation of
GL,(F,) over K such that r(m)"(1 —n) is defined over K. If 6, .0, acls on 77 GG )
by a then o € O and

lg, O/a > 1g, H*(Gal(F,/F,), (ad ()" (1 = n)) ®, (K/O)(=1)).

Defimition 5.1.9. —  Let M be an admissible k[GL,(F,)]-module. We will say
that M has the Thara property i for every v € MO E)  yohich s an egenveclor of
kIGL,(Op )\GL,(F,,)/GL,(Oy )], every irreducible submodule of the k[GL,(F,)]-module

generated by v 1s generic.

Lemma 5.1.10. — Suppose that [ s quasi-banal for GL,(F,). Suppose also that M
i an admissible k[GL,(F,)]-module with the IThara property and that

ker (6, : MO7r) s M)
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is a R[GL,(Op)\GL,(F,)/GL,(Cy,)]-module. Then

0 - MGL,,(ﬁFw) N MUI(wﬂ),U;P:...:Ufg*U:o
s imective.
_ Proof. — Suppose 6,, were not injective on MOCL@rd) - We could choose
a k[GL,(0y )\GL,(¥,)/GL,(0O%,)]-eigenvector 0 # v € ker@,,, say
To=¢(T)v

where
¢ . %[GLﬂ(ﬁFu)\GLﬂ(Fw)/GLn(ﬁFM)] — %

is a k-algebra homomorphism.
Let A denote the kernel of the map

TrH— TWS).
Thus A has no generic subquotient and %[GLn(Fw)/GLn(ﬁFw)]qs/A has a unique
irreducible submodule B/A. The module B/A is generic, but no subquotient of
k[GL,(F,)/GL,(Oy,)]s/B is generic.
Now consider the map
T+ To.

As M has the Thara property, any irreducible submodule of the image is generic.
Thus A is contained in the kernel and moreover the induced map

k[GL,(F,)/GL,(0)]s/A — M
must be injective. Thus we have an injection
(GL,(F)W;) — M
Wg 2.
Proposition 5.1.7 then tells us that 6, ,0 7# 0, a contradiction. O

We would conjecture that the previous lemma remains true without the
quasi-banal hypothesis. In fact, it is tempting to conjecture that the natural map

[GL.(Or,)] — W),

is in general injective.
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5.2. Dualty. — Keep the notation of Section 3.3. In this section we will
develop a duality theory for automorphic forms on G. It will actually pair auto-
morphic forms on G with automorphic forms on another related group G'. So
first we define an algebraic group G'/F* by setting

G'R)={geB?®R: ¢®g=1}
for any Ff-algebra R. Note that there is an isomorphism

[:G— G

gl—)g_l.

Our choice of an order Oy in B gives a model of G’ over Op+. If v = wu*
splits in F then ¢ : 03" = M,(0y,) and we get an identification

Z; . G/(Fj_) — GLﬂ(Fw)
(ij)_l(x, Y — x

with ¢ G/ (Op+,) = GL(Op,) and i, 01 =(G,)"' =coi,.. If v € SB) and w is
a prime of I above v we get an isomorphism

I, G@F) = (BF)

with # G'(O+ ) = Oy .-
Given an n-tuple of integers ¢ = (ay,...,a,) with ¢ > ... > q, there is
a (unique up to scalar multiples) perfect pairing

(,)a: W, xW, — Q
such that
(E(Quw, ), = (w, E,(Du'),

for all w,w’ € W, and g € GL,(Q). Let M, C W, denote the (, ), dual of M,
and

£ : GL, — GL(M)

the corresponding model over Z of &,.
If a € Wt, then there is an irreducible representation

g :GF) — GLW,)

g— [ 4. (zi).

T GT]
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The representation &/ contains a G'(Op+ )-invariant O-lattice M such that there
is a perfect pairing

(,)o: M, xM — O
with
(D% &, L(D))e = (%, )0

For » € S(B), let M,/op = Hom(M,,, 0) and define p/: G(F}) — GL(M:OU) by

P () = x(p,(I7 ()™ y).

If we identify G(F") = B and G/(F") = (B?)* and if g € BX and ¢ € (B?)* have
the same characteristic polynomials then tr p,(g) = tr p,(g). We have JL(p) oz, =

Sp,,, (7).
For » € R let U, be an open compact subgroup of G'(F}) and let

/., / X
x, Uy, — %

be a homomorphism with open kernel.
Let A denote an CO-algebra. Suppose that ¢ € Wt, and that for v € S(B),
0, 1s as in Section 3.3. Set

M, .00 =M, @ (Q M,) ® () 0(x)).

»€S(B) veR

If U' is an open compact subgroup of G'(Aj:™) x [],.x Uy, and either A is a K-
algebra or the projection of U’ to G/(F)) is contained in G'(Oy+,;) we define

/ !/
Sa,{pp},{x;}(U . A)
to be the space of functions

fiGENG(AR) — A®, M

a{ph {xz}

such that

S () = ug;bS(B)URf(g)

for all ¥ € U and g € G'(A}). As in Section 3.3 we extend this to define
S/ (V',A) for V' any compact subgroup of G’ (AIF{;OO) X [[,er Up, and define

a,{Pﬁ},{X{;}

actions of ¢ € G’(A;{fo) X [ er Uj,, and of Hecke operators [U}g'Uj].
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Lemma 3.3.1, Proposition 3.3.2, Corollary 3.3.3 and Proposition 3.3.4 all
remain true for G

Suppose that U is an open compact subgroup of G(AIF{;oo X [,er Uo.) and
that n € G'(A}?). Suppose also that for » an element of R we have U, =
n;lI(UU,O)nv and

ryo 7 — ; —1\—1
Xy(uy) = (Xv ol 1)(%%% 1) .
If A is not a K-algebra further assume that 1, € G'(0p+,;) and that for all u e U
we also have u; € G(Op+ ). Set U = n~'I(U)n. Define a pairing
(, )U,n . Sa,{pv},{xv}(Uv A) x S;,{pn},{x{;} (U/a A) — A
by

S S loaw= D> @D nsusw S TDM) aip-
G NG(a% ) U
If U is sufficiently small, or if A is a K-algebra, this is a perfect pairing. If
we have two such pairs (Uj, ;) and (Uy, 19) with each U, sufficiently small, if
Ul = n;ll(Ui)m and if ¢ € G(A}}) (with g € G(Op+,) if A is not a K-algebra)
then

(U021 f Yo, = (- [ T mULLf ), -
Now suppose that

U=]]u cc@Ay)

is a sufficiently small open compact subgroup, that T D S(B)UR and that, if v ¢ T
splits in F, then U = G(OF+,). We will denote by

T N/
Ta,{pv},{xly} W)

the O-subalgebra of End(S;’{pv}’{X,‘}(U’, 0)) generated by the Hecke operators T!
(or strictly speaking (i;,)_l(Tg)) x (U)") and (Tz(ﬁ))_1 for j = l_, ...,n and for w
a place of F which is split over a place v ¢ T of F'. (Again TZ(L‘,/[) = (TU)='T"),
so we need only consider one place w above a given place » of F'.) If X' is
a TZ{ pp}(U’)’—stable subspace of S;ﬁ{ pp},{x;}(U/’ K) then we will write
TT(X/)/

for the image of Tz{ pv},{x’,}(U/)/ in Endg(X'). Note that T'(X’)’ are finite and free
as O-modules and is reduced.

Proposition 3.4.2 remains true for G'. We call a maximal ideal m’ of
TI{ pv},{x’,}(U/)/ Eusenstemn if 7y 1s absolutely reducible. Then Proposition 3.4.4, Corol-
lary 3.4.5 and Lemma 3.4.1 also remain true for G'.
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3.3. lhara’s lemma and raising the level. — Keep the notation and assumptions
of Sections 3.4 and 5.2.

In this section we will discuss congruences between modular forms of differ-
ent levels. Unfortunately we can not prove anything Rather we will explain how
the congruence results we expect would follow from an analogue of Ihara’s lemma
for elliptic modular forms (see [I], [Ri]). Let us first describe this conjecture more
precisely.

Comjecture 1. — Let G, [, 'T and U be as wn Section 3.4 with U sufficiently small.
Suppose that v € T — (SB)US)) with U, = G_(ﬁ’pw) and that m s a non-Eisensten
maximal ideal of T;)F,{l},{l}(U)' If f € So.y.y(U, k)[m] and of w is an irreducible G(FF)-
submodule of

(GEDS) C S,y (U k)

then 1 15 gener.

In fact we suspect something stronger is true. Although we will not need
this stronger form we state it here. We will call an irreducible G(F])-submodule
7t of Su o0y ({1}, k) Eisenstein if for some (and hence all) open compact subgroups
U =[],U, with 7Y # (0) there is a finite set T D RUS; US(B) U {#} of split

primes and an Eisenstein maximal ideal m of TaT’,{ oot b (Us k) with mm # (0).

Comjecture ILe — Let G and [ be as in Section 3.3. Suppose that v ¢ S(B)US,UR
is a prime of ¥ which splits in ¥. Let 7w be a non-Eisenstein irreducible G(F)-submodule
of So.qy.y({1}, k). Then 1 s generic.

We should point out that these conjectures are certainly false if we re-
place ‘submodule’ by ‘subquotient’. If we replace £ by K and Tg,/{1},{1}(U) by
Tg,/{u,{u(U) ®¢ K, then the conjectures would be true by part 7 of Propos-
ition 3.3.4. In the case n =2 the conjecture is an easy consequence of the strong
approximation theorem for G. We also believe that we can prove many cases of
Conjecture I in the case n = 3. We hope to return to the case n =3 in another

paper.
Lemma 5.3.1. —  Comjecture II (and hence Comjecture 1) s true if n = 2.

Proof. — Let G, denote the derived subgroup of G. Then we have exact

SCqU.CIlCCS
det

0) — G|(F") — G(F") — FNin+=!

and
det NF/F+ =1

0) — Gi(AY) — G(AY) — A,
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Suppose 7 is as in the statement of Conjecture II, but 7 is not generic.
Then 7 is one dimensional and trivial on G,(F). Let 0 # f €  be invariant by
an open compact U. Then for all g € G(A}}), the function f is constant on

GEFNUG, (F)) = GF")G, (A% )gU
(by the strong approximation theorem). Thus f factors through
det : GFH\G(AZ)/U — c1etG(F+)\(A§0)N=1 /det U.
Thus we can find a character
X det GED\ (AX)Y '/ detU — ¥~
such that

> X/ (9) #0.

ge(det G(FT))\ (det G(Ali‘jr ))/(detU)

It follows that, for all but finitely many places w of F which are split over F*,
rm(Frob,) has characteristic polynomial

(X x (/X - gor(m. /7).
We deduce that
(d7ip) =€ '@1@1@e.

Thus 7, is reducible and m is Eisenstein. O

Lemma 5.3.2. — Let G be as win the Section 3.4. Suppose Comjecture I holds for all
T and U with U sufficiently small. Let 'T, U, a, {p,} and {x,} be as in Section 3.4. Let
veT—(SB)YUS,UR) with U, = G(Oy+,) and let m be a non-FEisenstein maximal ideal
of TV y(U). IF € Saipixa (U, k)m] and if 7w is an irreducible G(FF)-submodule of

a, {Px}s {Xx
(GENS) C Suppu e (U B)

then 1 s gener.

Proof. — We need only prove the lemma for U small, because its truth for
some U implies its truth for all U D U. But for U small enough we have

Se.tp e (Us B) = So 1,0y (U, &)’

for some 7. O
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We now turn to the construction of ‘raising the level’ congruences. Let m

be a non-Eisenstein maximal ideal of TaT’{ px},{xx}(U) and let

¢ T, 00 O — 0.

We will consider subsets S C T — (S(B)US,UR) such that U, = G(Oy+,) for
all » € S. For such S set

U(s) = US ]_[ U ()

veS

and

| | —1
QS = (3 071,27

veR
and
Xs = Sutptxd (UES), Omn
where n denotes the maximal ideal
(L UD, U s s)
of O[UY, ..., UY™" . peS]. Further set
Ts = T' (Xs),
so that Ty = Tz{px}’{m(U)m. If S, C Sy are such sets then we get an injection
Os,—s, : Xs, = Xs,.

(To see that this map is an injection we may suppose that Sy = S; U {o}. Let
be an irreducible constituent of S, (.1, ({1}, K) with 7 NXs, # (0). Because m
is not Eisenstein we see that m, is generic (see part 7 of Proposition 3.3.4). Thus
by Proposition 5.1.7

10,7 T NXg, — 7NXs,.)
Thus we also have a surjection
T52 s TS[

which takes TV to TY) for all w (a prime of F which is split over a prime of
F* not in T) and j (=1, ...,n). Let ¢s denote the composite

¢S:TS—»TQL>6.
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We will be mterested in congruences between ¢ and other homomorphisms
Ts — K. In particular we will be interested in how these congruences vary with S.
A useful measure of these congruences is provided by the ideal cs(¢), defined by

¢s = Ts/(ker ¢ps + Anng ker ¢pg) —> O/cs(@).

Let Xg[¢] denote the subspace of Xg where Ts acts via ¢s. Let i :
Xs[@] — X denote the canonical inclusion and let mg : Xg — Xg[¢] denote the
Ts-equivariant projection. (This exists because Ts is reduced.) The next lemma is
now clear.

Lemma 5.3.3. — Reep the above notation. The module Xs[@]/msisXsl@p] s an
O/ cs(¢)-module. If Xg s free over Ts then Xs[@]/msisXs[p] s free over O[cs(p).

Lemma 5.3.4. — Keep the above notation. Then
05 : Xyld] ® K — Xs[¢] ®0 K.

Proof. — It suffices to prove that if m is an irreducible constituent of the
space S, (). ({1}, K) then

bs 1 (Xylp] ® K) N — (Xs[p] ® K) N .

As ¢ry 1s unramified at v € S, Proposition 3.3.4 tells us that if (Xg[¢] ®¢ K)n
7 # (0) then 7w, is unramified. In particular (Xy[¢] ®¢ Kynaz # (0). If
Xylo] ®5 K) N7 # (0) then for v € S the representation 7, is unramified and,
by part 7 of Proposition 3.3.4, generic. Write

1 GL,(F?)
T, o l?; = n'IndB”(F;) (Xv,lv (X3} Xv,n)

with each yx,;, unramified. Again by Proposition 3.3.4 we see that for v € S, each
Xo.i(5) € ﬁ’%. From Lemma 5.1.5 we deduce that

7.t-:lJ(S)
is the subspace of m"® on which 1Uéj) = 0 for each » € S and each ; =

l,...,n—1. Proposition 5.1.7 then tells us that

0 0 = 7TE<S)

as desired. |
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Proposition 3.3.5. — Reep the above notation and assumptions. In particular assume
that U s sufficiently small. Let S C'T — (S(B)US,UR) be such that U, = G(O%+ ) and

G'(Op+ ) jor all x € S. Suppose that Comjecture 1 is true for the groups G and G', for L,
Jor 'L, for v€S, and for the varous open compact subgroups Usg, with S, C S — {v}. Also
suppose that Xy s free over Ty. Finally suppose that for each v € S, [ is quasi-banal for
GF?F). Then

lgy O/cs(9)

> 18, 0/cs(@) + Y _1g, H(Gal(F/F), (ad 1) @1, K/O(e™))

veS

Proof. — Let ny € G'(A73) equal 1 at all places in (SUS(B)US,;) and all
places outside T. If S; C S set

an-1{1l,.; O
ns = [ [ (%) 1( 0 wﬂ)
vES] v
and
US) = 15U s, = U™ x [T UG,
vES]

Let m’ denote the ideal of TT{ p}(U(Sl) )" generated by A and T(J) — a whenever

a€ 0, wis a prime of F split above a prime of F* not in T and TV —a € m.
Then m’ is either maximal or the whole Hecke algebra. Set

}(U(Sl) ﬁ)m n

/
S1 a {Px} {xx

where n denotes the maximal ideal
()\ U(1> gfl))

of O[UY, ..., UY"], and
T, =T (Xg)'.

Also set

0, =1 6.
UES[
and

7 =]1® " @

ZIGS]
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If S C Sy, CS then we get an injection
’ LN ’
bs, s, + Xs, = X,
and exactly as in the proof of Lemma 5.3.4 we see that
9é2—81 . X;l ®ﬁ K ;> X;Z ®@> K.
Also by Corollary 3.4.5
0,605, =[] 6,76,
vES]

acts on Xy by an element of Ty.
Under the perfect pairing

(, )U(slmsl :Su (o 1x) (U(S1), O) x S;,{px},{Xx}(U(Sl)/, 0)— 0

we have that:

— for v €S, the adjoint of 5'UY is ()~'UY, and

— for w a prime of F split over a prime of F* not in T, the adjoint of T!
is TV
Thus Ts, =Ty, (with TY matching TY for w a prime of F split over a prime
of F* not in T), and (, )us)).ps, induces a perfect pairing

(,)s 1 Xg, xXg, —> O
under which the actions of Tg, = Ty, are self-adjoint. If S; C S, C S, then
9é2_sl . XS

2 ? XSI

is the adjoint of Gérsl.
It follows from Conjecture I and Lemma 5.1.10 that

O+ Xs; — Xs,up)
has torsion free cokernel, and that
o Xy —> X,

is surjective. Thus

QS:XQ—>XS
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has torsion free cokernel, and

6, : Xy — Xy
is surjective. In particular

Os : Xglp] — Xsl4l,
and we may take

. . _1
is =0s0150 95|X(4[¢]

and

Ty = eslxﬁw)] O Tly Oé\é.
Thus

Xs[o]/msisXs[p] = X[/ $(0405) 750Xy $]

= Xolgl/ ([ [ b= 0,76,9) mainXal o).
vES
The proposition follows from Corollary 5.1.8. ]
5.4. R =T theorems: the non-mimimal case. — In this section we will show how

Conjecture I would imply a generalisation of Theorem 3.5.1 to a less restrictive
set of deformation problems .. Such a generalisation would be very much more
useful in practice than Theorem 3.5.1. After this paper was written, one of us
(R. L. T) found an unconditional proof of a slight weakening of Theorem 5.4.1
below (see [Tay]). This seems to be sufficient for most current applications. How-
ever we present this conditional argument here because it would provide a stronger
result. For instance it shows that the Galois deformation ring is a reduced complete
intersection, which might be pertinent for special value conjectures. This informa-
tion does not appear to be available by the methods of [Tay].

For the sake of clarity we recap the notation.

Fix a positive integer n > 2 and a prime [> n.

Fix an imaginary quadratic field E in which [ splits and a totally real field
F* such that

— F=F"E/F* is unramified at all finite primes, and
— F*/Q is unramified at .

Fix a finite non-empty set of places S(B) of places of F* with the following
properties:
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— Every element of S(B) splits in F.
— S(B) contains no place above /.
— If n is even then

a[F: Q1/2 + #S(B) = 0 mod 2.

Choose a division algebra B with centre I with the following properties:

— dimy B = 2.

- B?* =B ®;g, E.

— B splits outside S(B).

— If w 1s a prime of F above an element of S(B), then B, is a division
algebra.

Fix an involution I on B and define an algebraic group G/F* by
G'A) ={seBamA: ¢®¢=1]}
such that

B :l:lF =
— for a place vloo of F* we have G(FF) = U(n), and
— for a finite place v ¢ S(B) of F* the group G(F) is quasi-split.

Also define an algebraic group G'/Ft by setting
G'A) ={geB? @ A: ¢®g=1}

for any Ff-algebra A.

Choose an order Oy in B such that ﬁ’é = Op and Oy, is maximal for all
primes w of F which are split over F*. This gives a model of G over Op+. If
v ¢ S(B) is a prime of F* which splits in F choose an isomorphism i, : Oy, —
M, (Oy,,) such that L, =400 If wis a prime of I above v this gives rise to
an isomorphism i, : G(F) = GL,(F,) as in Section 3.3. If v € S(B) and w is
a prime of F above » choose isomorphisms i, : G(FS) = BX such that i, = i,
and 1,G(Oyp+,) = 0%,

Let S, denote the set of primes of F* above /. Let S, denote a non-empty
set, disjoint from S, U S(B), of primes of F* such that

—1if v e S, then v splits in F, and
—1if v € S, lies above a rational prime p then [F({,) : F] > n.

Let S denote a set, disjoint from S;US(B)US,, of primes of F' such that

— 1if v€S then » splits in F, and
— if v € S then either No = 1mod [ or [{#GL,(k(v)).
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Let T=SUSB)US,US,. Let T denote a set of primes of F above T such that
T]]T is the set of all primes of F above T. If o € T we will let 7 denote the
prime of T above v. If T, CT we will let Tl denote the set of 7 for v € T).

If S € S let UGS)) = [[,U(S)), denote an open compact subgroup of
G(AYY) such that

— 1f v 1s not split in F then U(S,), is a hyperspecial maximal compact sub-
group of G(FF),

—if 0¢ S,US; splits in F then U(S), = G(Op+,),

—if v € S; then U(S)), = iglUl(?f"), and

—if » € S, then U(S)), = i{lker(GLn(ﬁF,;) — GL,(Opz/(wZ"))) for some

m, > 1.

Then U(S)) is sufficiently small. If S; =@ we will drop it from the notation, i.e.
we will write U =[], U, for U(®).

Let K/Q, be a finite extension which contains the image of every embedding
F+ — K. Let & denote its ring of integers, A the maximal ideal of & and k the
residue field O/A.

For each 7 :F — K choose integers a;, ..., a;, such that

= Qgei = T Aratl—is and ~
— 1f T gives rise to a place in S, then

[—1—n>a,>..>a,>0.

For each v € S(B) let p, : G(F) — GL(M,) denote a representatiog of
G(F") on a finite free O-module such that p, has open kernel and M, ®, K is
irreducible. For » € S(B), define m,, 77 and 75 by

JL(p.oiz') = Sp,, ()
and

’;; = 1,(75| |(ﬂ/m;*1)(17m;)/2)'
We will suppose that

7 Gal(F,/F,) — GL,;,;(0)

(as opposed to GL,l/m;(K)), that the reduction of 73 mod A is absolutely irreducible
and that for 1 =1, ..., m, we have

T ®p k E T Qg k().
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Let m be a non-Eisenstein maximal ideal of TI{ o1.0(U) with residue field &
and let

P Gal(F/FH) — Z.(h)

be a continuous homomorphism associated to m as in Propositions 3.4.2 and 3.4.4.
Note that

1*ﬂ8/4vm

UO?’mZE F/F+

where 8p/p+ is the non-trivial character of Gal(F/F*) and where puy € Z/2Z. We
will assume that 7y has the following properties.

— Tm(Gal(F/F*(2)) is big in the sense of Section 2.5.
— If ve S, then 7, 1s unramified at » and

H’(Gal(F;/F5), (ad ) (1)) = (0).
We will also assume that TZ{ pz/_}’w(U) admits a section
¢:T,,,4U) = O
For S; C S write Xy, 5, for the space

Sa,{pp},(/J(U(Sl)a ﬁ)m,n

where n 1s the maximal ideal
(UL, U8 e s))

of O[UY, ..., U™V : v e8] Also write Ty, for the algebra T'(Xys,). Thus
Tmns, 18 a quotient of TaT’{pv}’@(U(Sl))m, and these two algebras are equal if S; = 0.
The algebra Ty, i1s a local, commutative sub-algebra of Ends(Xys,). It is re-

duced and finite free as an &-module. Let
Tms, : Gal(F/F") — 4,(Tys,)

denote the continuous lifting of 7, provided by Proposition 3.4.4. Then Ty, is
generated as an O-algebra by the coefficients of the characteristic polynomials of
"m.s, (0) for o € Gal(F/F).

For S; C S, consider the deformation problem .75, given by

(F/F+a Ta Ta ﬁa ;ma 617”8?7%‘4—7 {@v}veT)

where:
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— For v€S,, 2, will consist of all lifts of 7n|gamy/r,) and
L, = H'(Gal(Fs/Fy), ad 7)) = H'(Gal(F+/F2) /Iy, ad 7).

— For v € 8S,, ¥, and L, are as described in Section 2.4.1 (i.e. consists of
crystalline deformations).

— For v € S(B), Z, consists of lifts which are 7i-discrete series as described
in Section 2.4.5. In this case L, is also described in Section 2.4.5.

— For v €S =S8, Z, will consist of all unramified lifts of 7 lGum,/r,) and

L, = H'(Gal(F3/Fy) /I, ad 7).
— For v€S,, Z, will consist of all lifts of 7 |GuF./r) and
L, = H (Gal(F;/F,), ad 7).
Also let
'y Gal(F/FY) — ¢,(RUY)

denote the universal deformation of 7, of type .75,. By Proposition 3.4.4 there is
a natural surjection

univ
RS] - Tm;sl
such that n's, pushes forward to nys,.

Theorem 5.4.1. — Reep the notation and assumptions of the start of this section.
Assume also that Conjecture I s true for G and G'. Then

univ. "~
Rm’s Tm,S
s an somorphism of complete intersections.
Proof. — As in Section 5.3 we see that we have a commutative diagram
Rumm; > Tm,S
Riniv ~ -I'l 4 Vi
m, m,¢ .

The lower left map is an isomorphism by Theorem 3.5.1. Let ¢s denote the com-
posite Tyys = Ty BN 0. Let cy(@p) (resp. cs(¢)) be the ideals ¢(Anng, , ker )

(resp. ¢s(Annt, ker¢s)). Also let oy (resp. gps) denote the kernel of the composite

; ¢ - o
RyYG = Ty —> O (resp. RLS — Tis AN 0).
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By Theorem 3.5.1 the map Ry = Ty, is an isomorphism of complete
intersections and the main theorem of [Le| implies that

lg0 00/ =185 O/ cy(9).
Hence by Lemma 2.3.2 and Proposition 5.3.5 we see that

12, s/ 05
<lg, oo/ + Y lg, H(GalF/Fy), (ad ) ®r,,,6 K/ (™))

veS

<lg, O/cs().
Another application of the main theorem of [Le] tells us that Rﬁ“g — Ty 1s an
isomorphism of complete intersections. m]

5.5. Conditional modularity Ufting theorems. — In this section we apply The-
orem 5.4.1 to deduce conditional modularity lifting theorems in the non-minimal
case. The following theorem is proved in exactly the same way as Theorem 4.4.2,
except that we appeal to Theorem 5.4.1 instead of Theorem 3.5.1.

Theorem 5.5.1. — Let ¥ be an imaginary CM field and let ¥t denote its maximal
lotally real subfield. Let n € Z-, and let |>n be a prime which s unramified in ¥. Let
r: Gal(F/F) — GL,(Q))
be a continuous vrreducible representation with the following properties. Let T denote the semisim-

plification of the reduction of 1.

\%

1.7 = Vel ™,

2.1 s unramified at all but finitely many primes.

3. For all places v|l of ¥, r|caw, ) 5 crystalline.

4. There is an element a € (Z”)H"m(F’@) such that
—for all T € Hom(F, Qz) we have

[—1—n>a,>..>a,>0
or
[—1—=—n>a.>..>a,.,>0;
—for all T € Hom(F, Qz) and all 1=1,...,n
Arei = —Arpt1—is
—for all T € Hom(F, qg) above a prime v|l of F,
dimg, gr'(r ®.r, Bor) " = 0
unless @ = a;+n—j for some j=1,...,n m which case

dimg, gri(f Qrr, Bpg) M/ = 1,
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5. There 15 a non-emply finite set S of places of ¥ not diniding | and for each v € S
a square ntegrable representation p, of GL,(F,) over Q, such that

r S(fral(Fz,-/Fp) = 7l(pv)v(1 - n)ss-
If p,=Sp,, (p)) then set
’7‘,‘2‘} — 7'1((/0;)\/| |(n/mv71)(lfmv)/2).
Note that r|Gaw, v, has a umique filtration Filf such that

gr) rlGal(Fﬁ/Fv) =T7,€
Jor 7 =0,...,m,— 1 and equals (0) otherwise. We assume that 7, has irreducible
reduction 7,. Then T|guw, v, tmherits a filtration ﬁi with

S| G ry) = 7€
ST GalF,/r) = To

Jor =0, ...,m,— 1. Finally we suppose that for j =1, ..., m, we have

7, Z TE.

—kerad7

6. F does not coiztain F(g).
7. The tmage 7(Gal(F/F(¢)))) s big i the sense of Definition 2.5.1.
8. The representation T s vrreducible and automorphic of weight a and type {p,}.es with
S # 0.
Assume further that Comjecture I s valid (for all unitary groups of the type considered there

over any totally real field.)
Then r s automorphic of weight a and type {p,}.cs and level prime to [.

Exactly as we deduced Theorem 4.4.3 from Theorem 4.4.2 we can deduce
the following variant of Theorem 5.5.1 for totally real fields.

Theorem 5.5.2. — Let ¥t be a totally real field. Let n € Z=, and let | > n be
a prime which is unramified in F. Let

r: Gal[ /FY) — GL,(Q)

be a continuous vrreducible representation with the following properties. Let T denote the semisim-
plification of the reduction of 1.

1.7 = re" Yy for some character ¥ : Gal(F+/F+) — Q/X with x(c,) independent
of v|oo. (Here ¢, denotes a complex conjugation at v.)

2.1 ramifies at only finitely many primes.

3. For all places v|l of F*, 7|Ga1(Fj Jiry 5 crystalline.
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4. There 1s an element a € (_Z”)H"m(F+’@) such that
—for all T € Hom(F*, Q) we have

[=1—=n+a, > a1 > ... > ay;
—for all T € Hom(F*, Q) above a prime v|l of F*,

i w+
dim@ gr'(r @,y Bpg) ¢4/ =0

unless 1 = a;+n—j for some j=1,...,n m which case

i Sal(FF/F
dlm@/ grl(r ®1’,Fjr BDR)Gal(F“ /F) = 1.

5. There is a finite non-empty set S of places of F* not dinding | and for each v € S
a square integrable representation p, of GL,(F) over Q, such that

ss _ v _ «
rlGal(F:'/Fj') =n(p,) (1 = m)™.

If p, = Sp,, (p)) then set
AN
v v .
Note that 1|5+ g+ has a wuque fillration Fil/ such that

=7

J
gr, ’|Ga1(FjT JED)
Jor 7 =0,...,m,— 1 and equals (0) otherwise. We assume that 7, has irreducible

reduction T, such that
7, £ 7€

Jor y=1,...,m,. Then ;|Ga1(Fj Jpy Wnherits a unmique filtration ﬁi with
STl G jry = To€

Jor j=0,...,m,— 1.
6. (F+)ke”‘d7 does not contain ¥ (&)).
7. The image 7(Gal(F+/F+(§/))) s big in the sense of Definition 2.5.1.
8.7 s vrreducible and automorphic of weight a and type {p,}es with S # (.

Assume further that Comjecture I s valid (for all unitary groups of the type considered there

over any lotally real field.)
Then r s automorphic of weight a and type {p,}.cs and level prime to [.

3.6. A conditional modulanty theorem. — We would like to apply Theorems 5.5.1
and 5.5.2 in situations where one knows that 7 is automorphic. One such case is
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where 7 : Gal(F/F) — GL,(k) is induced from a (suitable) character over some
cyclic extension. However it will be useful to have such a theorem when p, is
Steinberg for » € S. Because the lift of 7 which we know to be automorphic is an
automorphic induction it can not be Steinberg at any finite place (although it can
be cuspidal at a finite place). Thus we have a problem in applying Theorems 5.5.1
or 5.5.2 directly. We shall get round this by applying Proposition 2.7.4 to construct
a second lift 7; of 7 which is Steinberg at » € S, but which is also cuspidal at some
other finite places S'. We first show that 7 is automorphic using the places in S
The result is that we succeed in ‘raising the level’ for the automorphicity of 7.
We can then apply Theorem 5.5.1 or 5.5.2 a second time. A further complication
arises because we want to treat 7 which do not look as if they could have a lift
which is cuspidal at any finite place. We will do so under an assumption that 7
extends to a representation of Gal(Q/Q) which looks as if it could have a lift
which is cuspidal at some finite place.
More precisely we will consider the following situation.

— M/Q is a Galois imaginary CM field of degree n with Gal(M/Q) cyclic
generated by an element 7.

~I>14+@—D((n+2)"* = m—2"%/2"" (eg > 8((n+ 2)/4)'"?) is
a prime which splits completely in M and is = 1 mod ».

— p 1s a rational prime which is inert and unramified in M.

— ¢ # [ is a rational prime, which splits completely in M and which satisfies
qi;é lmod/ for :1=1,...,n—1.

-6 :_G_al(Q/M) — le 1s a continuous character such that
~ 06 =€y
— there exists a prime w|/ of M such that for : =0, ...,7/2 — 1 we have
O, =€

Tlw

—if vy, ..., v, are the primes of M above ¢ then {0_(Frobv,.)} = {oeqq*f S
0,...,n—1} for some a, € F/X;
_ o .
- QlGal(_l\_/I/,/M,,) # 0 |Ga1(M,,/M,,) fory=1,..,n—1 )
Let S(0) denote the set of rational primes above which M or 6 is ramified.
— E/Q is an imaginary quadratic field linearly disjoint from the Galois clo-

sure of Mkere(g)/Q_ in which every element of S(8) U {/, ¢, p} splits; and
such that the class number of E is not divisible by /.

Theorem 5.6.1. — RKeep the notation and assumptions listed above. Let F/Fy be
a Galots extension of wmaginary CM fields with ¥ lnearly disjoint from the normal closure of

Mkerg(g) over Q. Assume that | is unramified n ¥ and that there is a prime v,o of Fy
split above p. Let

r: Gal(F/F) — GL,(Q))
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be a continuous wrreducible representation with the following properties. Let 7 denote the semisim-
plification of the reduction of 1.

R €14 N
1.7 = Ind ) g OlGadmn-

2.1 = Vel

3.1 ramifies at only fimtely many primes.

4. For all places v\l of ¥, rlgaw,r, t5 crystalline.

5. For all T € Hom(F, Q,) above a prime v|l of F,

dimg, gri(f QrF, BDR)Ga](F”/ F) =1
Jor 1=0,...,n—1 and =0 otherwse.
6. There is a place v, of ¥ above q such that (#k(vq))f Zlmod/ for j=1,...,n,

SS N N SS N
and such that 7| Gal(F, /) i unramified, and such that 7|G31(qu /Fﬁq)(Frobvq) has eigen-

values {a(#k(vq))f :y=0,...,n—=1} for some a € le
Assume further that Comjecture I s valid (for all unitary groups of the type considered there

over any lotally real field.)
Then r is automorphic over ¥ of weght O and type {Sp, (1)}, and level prime to .

Proof. — Replacing F by EF if necessary we may suppose that F D E (see
Lemma 4.2.2).
Choose a continuous character

6 : Gal(M/M) — ﬁ’%f

such that
— 0 lifts 6;
_ 9—1 — En—lec;
—for :=0,...,n/2—1 we have 0f;, = €'; and

— [4#6(1,) for all places v|p of M.

(See Lemma 4.1.6.) We can extend 6|g,@/ryy to a continuous homomorphism
6 : Gal(E/(EM)*) — “%(0g)

with Vo8 = €' We will let § also denote the reduction
0 : Gal(E/(EM)") — ¥4, (F)

of 6. Consider the pairs Gal(E/(EM)™) D Gal(E/(EM)) and Gal(E/ Q)D Gal(E/E).
Set

B = Ind2 Vg - Gal(F/Q) — %(Og).

Gal(E/(EM)™)
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Note also that

olGae) = ((Indgzgﬁze)‘Gal(E/EV ™).

By Proposition 2.7.4 there is a continuous homomorphism
n: Gal(E/Q) — 9.(0g)

with the following properties.

B . Gal(E/Q),e!™" 5
n lifts Ind g EMD) 0.

—vorn =€

— For all places wl|l of E, nl|gag,/r, 1s crystalline.
— For all T € Hom(E, Q) corresponding to prime w|/,

1 d Gal Ezu Ew) __
dimg, gr'(n @k, Bor) Eult) =

for 1=0,...,n—1 and =0 otherwise.

is unramified and 7[¥

S
Gal(Ev,] /Ez/‘,] )
J=0,...,n—1} for some o € Q/.

- nl¥ (Frob,,) has eigenvalues {ag7 :

SS
Gal(Ey /Eq,) ol

Gal(Q,/Q,)

- 71|Gal(E,, /E,) is an unramified twist of IndGal(@ /Mp>9|Gal(Q,,/1vI,,>-

Let v, be a prime of F above 7, and let I, C I denote the fixed field of
the decomposition group of 7, in Gal(F/Fy). Thus v|r, is split over p and F/F,
is soluble.

The restriction 7g|Ga@r,) 18 automorphic of weight 0, level prime to / and
type {pp}iy1r)> for a suitable cuspidal representation p, (by Theorem 4.2 of [AC]).
Applying Lemma 2.7.5 and Theorem 5.5.1 we deduce that r|gymr, is auto-
morphic of weight 0 and type {p,},,) and level prime to [ It follows from
Corollary VIL1.11 of [HT] that r|gumr, is also automorphic of weight 0 and
type {Sp,(D},1,) and level prime to /. (The only tempered representations 7 of
GL,I(FLMFI) for which r,(n)v(l — n)® unramified and 7,(7)Y (1 — n)SS(Frobvq‘Fl) has
eigenvalues of the form {ag™ : j =0,...,n— 1} are unramified twists of Sp (1).)
From Theorem 4.2 of [AC] we deduce that 7 [g,F/r 1s automorphic of weight 0
and type {Sp,(1)};,) and level prime to /. (The base change must be cuspidal as
it is square integrable at one place.)

Finally we again apply Theorem 5.5.1 to deduce that r is automorphic of
weight 0 and type {p,}(,) and level prime to /. The verification that 7(Gg+ () is
big is exactly as above. m]

We also have a version for totally real fields.
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Theorem 5.6.2. — Keep the notation and assumptions listed at the start of this section.
Let FT /¥, be a Galois extension of totally real fields with ¥+ linearly disjoint from the Galois

closure of E(Q)Mkert9 over Q. Suppose that that | is unramified in ¥t and that there is
a prime v, of ¥§ split over p. Let

r: Gal(FF/F") — GL,(Q)

be a continuous representation such that

-~ GalQ/Q gy .
n—1.

—r 15 unramified at all but finitely many primes;
— For all places |l of FT, ’|Ga1(FT 5 i crystalline.
—For all T € Hom(F+,Q/) above a prime v|l of FT,

—rY = e

; =+
dimg, gr'(r ®, y+ Bpg) /1) = 1

Jor 1=0,..,n—1 and =0 otherwise.
— There is a place v)lq of ¥ such that
f#k(vq)/' Zlmod!/ for j=1,....,0n—1,

—r® s unramified, and
Gal(FUq/Ff,.;) ﬁ °

frzal(F:;/FJ;)(Frobvq) has  eigenvalues {a(#k(vq))f ) = 0,.,n— 1} for some

aeQf.

Assume further that Comjecture I s valid (for all unitary groups of the type considered there
over any lotally real field.)

Then 1 15 automorphic over ¥+ of weight O and type {Sp,(1)}q,y and level prime to .
Proof — Apply Theorem 5.6.1 to F=F*E and use Lemma 4.3.3. ]
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Appendix A: The level raising operator after Russ Mann

In this appendix we will explain Russ Mann’s proof of Lemma 5.1.6 and
Proposition 5.1.7. A preliminary write-up of most of the arguments can be found
in [Man2], but as Russ has left academia it seems increasingly unlikely that he
will finish [Man2]. Hence this appendix. Russ actually found more general results
concerning level raising for forms of level greater than 1, which we do not report
on here. We stress that the arguments of this appendix are entirely due to Russ
Mann, though we of course take responsibility for any errors in their presentation.

Write B, for the Borel subgroup of GL, consisting of upper triangular ma-
trices and write N, for its unipotent radical. Also write T, for the maximal torus
in GL, consisting of diagonal matrices and write P, for the subgroup of GL,
consisting of matrices with last row (0, ..., 0, 1).

Let F,, be a finite extension of Q, with ring of integers Oy,. Let w: F) — Z
denote the valuation, let @, denote a uniformiser of Of, and let ¢, = #0y, /().
Also let & denote the subring of C generated by ¢,'/* and all p-power roots of 1.
Let S, denote the symmetric group on n letters and set

Rf = 01X1, .. X, C R, = O[XF, . X,

where S, permutes the variables X;. Sometimes we will want to consider R,

and R,_; at the same time. To make the notation clearer we will write R,_; =
O, .., Y 1 and RF | = O[Y), ..., Y,_115'. We will also set

Rf?—l = ﬁ[[Yb ceey Ynil]]sﬂfl

and R>" to equal to the @-submodule of R | consisting of polynomials of degree
<m in each variable separately.
Let o = w,1;® 1,; and let T denote the double coset

TY = GL,(0F,)a,GL,(O%,).

Let GL,(F,)* denote the sub-semigroup of GL,(F,) consisting of matrices with
entries in Of,. Then

O[GL, (O )\GL,(F,)*/GL,(0 )] = O[TV, T®, ..., T"]
and
O|GL, (0 )\GL,(F,)/GL,(0p )] = O[TV, T®, .., T® (T™)™'].
Define ~ from O[GL,(0p,)\GL,(F,)/GL,(0p )] to itself by
[GL,(0y,)gGL,(Or)]™ = [GL,(Oy,)g ' GL,(Oy,)].
Then (TW)~ = (T®@)~'T¢,
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There is an isomorphism (a certain normalisation of the the Satake iso-
morphism)

which sends TV to ¢/'7/2 times the ;" elementary symmetric function in the X;’s
(e. to the sum of all products of ; distinct X;’s). We have

S(OIGL,(Oy )\GL,(F,)" /GL,(Oy)]) = R
and

S(THX, ..., X,) = S(D) (7' X7 o ' X,

If we write
ﬁ[GLﬂfl (ﬁFw) \GLﬂfl (Fw)+/GLﬂfl (ﬁFw)]Sm

for the submodule of ¢[GL, (0y )\GL, (F,)"/GL, (0%, )] spanned by the

double cosets
GLﬂ*l(ﬁFw) diag(tlv cees tﬂ*l)GLnfl(ﬁFw)v
where m > w(t) > ... > w(t,_;) = 0, then

S(ﬁ[GLn—l (ﬁFw)\GLn—l (Fw)Jr/GLn—l (ﬁFw)]fm)
= (ﬁ[Yl PIERES) Yﬂ*l]sni1 )Sm.

Let Uj(w™) denote the subgroup of GL,(0y,) consisting of elements which
reduce modulo @ to an element of P,(0%, /(). For j=1,...,n—1 let

UY = P,(Or,)a,P,(O,).

Note that UY/P,(0F,) has finite cardinality. If 7 is a smooth representation of
GL,(F,) and if m € Z-, then

Pu(@) commute, and

U (@™

— the operators UY) on 7

— the action of UY) preserves and in fact acts the same way as

U (@) Uy (w™)

on this space.
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(This 1s proved by writing down explicit coset decompositions, see for instance
Proposition 4.1 of [Manl].)
Let A be an O-module and suppose that

T =Y aGL, (0, )gGL,(6r,)

is in A[GL,_ (0 )\GL,_(F,)"/GL,_1(0%,)]. Define

-1
V(D) = Y gl detg"™ P (Or,) (gio ?) GL,(Gr,).

1

Note that if # € GL,_;(F,)T and
GL,1(6y)h™'GL,(6r,) = | [ GL,-1(6%,)
-
then
Yo h 0
P,(O%,) ( 0 1) GL(@r) =] | (5 1) GL,(,).
J

Similarly if m € Z-, and if

T =Y aGL,\(0y,)gGL,_1(r,)

is in A[GL,_ (¢ )\GL,_ (F,)*/GL,_(6r,)]<, define

—1
V(1) = Y af detg Uy (") (gfo ?) GL.(G%,).

1

Note that if 2 € GL,(F,)" is such that GL,_,(0p )iGL,(OF,) lies in
A[GLn—l (ﬁFl‘;)\GLn—l (Fw)+/GLn—l (ﬁFw)]fﬂ’U and if

GL,_1(Oy )h'GL,_(0r,) = | [ hGL.-1(6%,)
-
then

—1 .
U, (w™) (ho ?) GL.(0y) =] ] (f(l)/ ?) GL,(Ck,).

J
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We deduce that if w is any smooth representation of GL,(F,) and if T €
A[GL,_(Ox )\GL,_(F,)"/GL,_ (O )]<, then V(T) preserves the space 77"
and acts on it via V,(T). In the case A =R, the map V,, induces a map, which
we will also denote V,,, from the module

Rn[GLn—I (ﬁFw)\GLn—I (Fw)+/GLn—I (ﬁFlU)]fm

to O[U,(w")\GL,(¥,)/GL,(0%,)] given by the formula

V(Y alGL,_1(6r,)gGL, -1 (6r)])

1

—1
= > I detgl" [Umwm) (gfo (1’) GLn(ﬁFw)} 0$7 (@),

Proposition 5.2 of [Manl] says that the set of
Vm(GLn—l (ﬁFw) dlag(tl PREER) tn—l)GLn—l (ﬁFw)) )

where ¢ € T, |(F,)/T,-1(OF,) with m > w(t;) > ... > w(t,—1) > 0 is a basis of
01U, (w"\GL,(F,)/GL,(0y,)] as a right R,-module. Hence the map V,, from

Rn[GLﬂfl (ﬁFw) \GLﬂfl (Fw)+/GLﬂ,1 (ﬁFw)]Sm

to O[U,(w")\GL,(¥,)/GL,(0%,)] is an isomorphism of free R,-modules.
Let

v:F,— O~

be a continuous character with kernel 0y, . We will also think of ¢ as a character
of N,(F,) by setting

V() = Ylurg +ugs + oo+ -1,0)-
If A is an CO-algebra we will write #,(A, ¥) for the set of functions
W:GL,(F,) — A

such that

- W(ug) = Yy (w)yW(g) for all g € GL,(F,) and u € N,(F,),
—and W 1s invariant under right translation by some open subgroup of

GL,(F,).
Thus #,(A, ¥) is a smooth representation of GL,(F,) (acting by right translation).
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There i3 a unique element Wf;(l//) e #,(R,, y)¢7) such that

- W)@)(1,) =1 and

— TW)(¥) = S(DW, (%) for all T € O[GL,(Ok,)\GL,(F,)/GL,(OF,)].
Moreover if the last row of g is integral then Wg(w)(g) € R*. (These facts are
proved exactly as in [Sh].)

Suppose again that A is an @-algebra. If W € #,(A, ¥)P(?) we heuristically
define ®(W) € A ®4 R | = A[[Yy, ..., Y1 11> by

0 — s—n :
(W) = / W(ﬁ 1)W2 (D ()l detg ™2 dg
n—1 (rw)\(’Ln 1(Fy)

s=0

where the implied Haar measures give GL,_;(0y,) and N,_;(0p,) volume 1. Rig-
orously one can for instance set

t 0 — —n —n —n n—
q><w>=Zw(0 1>w2_1<w DO detd] 21 P ]
t

where ¢ = diag(4, ..., t,_;) runs over elements of T, (F,)/T,_(OF,) with
w(ty) = w(t) > ... > w(t,—) = 0.

For such ¢ the value ngl(w_l)(l‘) is a homogeneous polynomial in the Y;’s
of degree w(det?) and these polynomials are linearly independent over A for
teT,-1(F,)/T,—1(Op,) with w(t) > w(t) > ... > w(t,—1) > 0. (As in [Sh].) In par-
ticular if W e #,(A, ¥)P%) then ®(W) determines Wilp, k). As in Section (1.4)
of [JS2] we see that

(W) () ]'[(1 XY

Fix an embedding ¢ : R, < G. There 1s a unique irreducible smooth
representation n of GL,(F,) such that O[GL,(0%, )\GL,(F,)/GL,(0y,)] acts on
780 ia 1 o S. Moreover there is an embedding 7 — #,(C,¥) which is

unique up to C*-multiples. It follows from [Sh] that tWY(¥) is in the image
of . It follows from Sections (3.5) and (4.2) of [JPSS] that

n ﬁ‘w _ ~ 1
@ 1 (R,[GL,F)IW (1)) " — T = X¥) TRV 1, o, Yoo 15
by

From Corollary 3.5 of [Manl] we see also see that

dimg (R,I[GLn(Fw)]Wg(I/f))Ul(wm x., C < dimg 7V )

. m+n—1
o n—1 :
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If We (R,[GL,(F )W’ () and ®(W) =1 then we see that W|p ) is
supported on N,(F,)P,(0F,) and that W(1,) = 1. Thus we have (UYW)|p ., = 0.
(Recall that we only have to check this at elements diag(¢, ..., 41, 1) and that
any element of #,(R,,¥) will vanish at diag(4, ..., %1, 1) unless w(4) > 0 for
all ¢ To check at the remaining diagonal matrices one uses the explicit single
coset decomposition in Proposition 4.1 of [Manl].) Hence ®(UY’W) = 0 and so
UDW = 0.

Recall that if 4 € GL,_,(F,)" and

GL, 1 (Op )k 'GL,1(Oy,) = ]_[ﬁ,—GLn_l(ﬁFw)
-

then
Yo h 0
Pn(ﬁf‘w) ( 0 1) GLn(ﬁFw) = L[ (6 1) GLn(ﬁFu;)'
J

From this and a simple change of variable in the integral defining ®, we see that

it T is in A[GL,_; (0 )\GL,_(F,)"/GL,_(0,)] and f is in #,(A, Y)CL@r) then

O(V(D) ) =S(DHP(f).
Thus we have

Rn[GLn—I (ﬁFw)\GLn—I (Fw)+/GLn—I (ﬁFu;)]fm T

! l

(RGL,(F)IW ()" Vu(DW(y) W
[10 =XY) " RYi oo, Y15 O(W).

i,
The composite sends
T — S(T) 1_[(1 — X))~
i,
The composite 1s an isomorphism to its image:

1_[(1 - XiY/)_l (Rn[YI’ [ARS) Yﬂ—l]Sﬂil)Sm’

i,
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which is a direct summand of Hi’ ].(1 —XZ-YJ-)_an[Yl, s Y115 and which is free
over R, of rank

m+n—1
n—1 )

dimg (R,[GL,(F)IW' (1) """ @, C < (m o 1) :

we deduce that
Rn[GLﬂfl (ﬁFw) \GLﬂfl (Fw)+/GLﬂ,1 (ﬁFw)]Sm
—> O[U,(w")\GL,(F,.)/GL,(0%,)]

=5 (R,GL,(F )W ()
= [0 = X¥) ™" RV, oo, Y 1) "
iJ
Lemma 5.1.6 follows immediately from this.
Let 6 denote the element of

O[U, (w")\GL,(F,)/GL,(C%,)]
which 1is Vn(l_[i,j'(l — X;Y;)). Then
D(OW! () = 1.

Moreover U(JI)GW,?(W) =0 and so UY9 =0 for j=1,....,n— 1. Thus 0 satisfies
the first three parts of Proposition 5.1.7.
We now turn to the proof of the final part of Proposition 5.1.7. Write

6 = Z [Ui(w") diag (", ..., @, ", 1)GL,(0r,)] T,

a

where T, € O[GL,(0y,)\GL,(F,)/GL,(0%,)] and where a = (ay, ..., @,_;) runs over
elements of Z"! with

n>a > ..>a, > 0.

Z S(T)S(GL,_(Oy,) diag (v, ..., w " )GL,_(Oy,))

=[Ja-xvy)
bJ
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we see that

.....

,,,,, ) = ¢V /2(T<">)"—1. Let n = 1,_; ® @" and define 6 as we did just
before Proposition 5.1.7. Thus we have

0= (T")"T,[GL(0},) diag (™" ..., &, ", 1)U (")].

Again let w denote the GL,(F,)-subrepresentation of #,(C, ¥) generated by
ZWS(W). Define 7: R, < C to be the O-linear map sending X; to qZ,_ll(Xl-)_l. Let
7 denote the GL,(F,)-subrepresentation of #,(C,¥~") generated by T(W,?(lﬂ_l)).
Then 7 is the contragredient of m. Write gen, for the compact induction
c- Indi”((FF‘”)C(W) It follows from Proposition 3.2 and Lemma 4.5 of [BZ] that gen
embeds in 7|p,x, and in 7|py,). Moreover it follows from Proposition 3.8 and
Lemma 4.5 of [BZ] that any P,(F,) bilinear form

(,V:mx7T— G

restricts non-trivially to gen, x gen,. Hence there is a unique such bilinear form
up to scalar multiples and so any P,(F,)-bilinear pairing 7 x 7 — C is also
GL,(F,)-bilinear. Such a pairing is given by

W) = [ Wil detgrd
Na(Fu)\Pu(Fu) s=0
Here we use a Haar measure on N,(F,) giving N,(0f,) volume 1 and a right
Haar measure on P,(F,) giving P,(0%,) volume 1. The integral may not converge
for s =0, but in its domain of convergence it is a rational function of ¢, and so
has meromorphic continuation to the whole complex plane.
We will complete the proof of Proposition 5.1.7 by evaluating

(1BEW, (). TWI(p )
in two ways. Firstly moving the 6 to the other side of the pairing we obtain

[GL,.(O%,) : Uy ("] ZT o S(T.(T™)")

(oW (), [Ul(w”)dlag( L T D) GL(Op ) [WI ).

The restriction (OW,Z(Lb))lpn(Fw) 1S supported on N,(F,)P,(0F,) and equals 1 on
P,(0y,). Thus (10W°(y), W) simply equals W(1,). We deduce that

(18OW (), TWO(y ™)) = (g — 1)g " Z’ros (T.(T™)")

([U) (") diag (w7, ..., w7, l)GLn(ﬁ’Fw)]WS(x/f’ ))(L,).
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The terms of this sum are zero except for the term ¢, = ... = a,-, = n which
gives

(g, — 1) "TS(g0~ ),

Le.
(g — D)™V X X7
On the other hand
(1BEW, (). TW) (¥ )
equals

{(S@O) W (), TW2(y ™).

We consider the integral

/ W(QW(g)| detglde
Na(Fu)\Pu(Fu)
with the Haar measures described above. It equals

D (W@ O Wi D) 0P sl

t

where the sum runs over ¢ = diag(t, ..., t,) € T,(¥,)/T,(0F,) with
w(t) = w(k) = ... = w(t,) = 0.

Because t(W2(¥) () T(WY(¥~1)(#)) is invariant under the multiplication of ¢ by an
element of F this in turn equals

(1= g"™) St (WO D)WW 0) 16l = s,

t

where now the sum runs over ¢ = diag(¢, ..., t,) € T,(F,)/T,(0k,) with
w(t) = w(t) > ... > w(,) > 0.

This in turn equals (1 — q;"(““)) times

/ LW, () (@)T(W, (™) (9)@((O, ..., 0, 1)g)| detg|'*d,
Nu(F)\GLy(F,)
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where ¢ is the characteristic function of &p and where we use the Haar measures
on N,(F,) (resp. GL,(F,)) which give N,(0%,) (resp. GL,(0y,)) volume 1. As in
Proposition 2 of [JS1] this becomes

n n

(1= ) TTTT 0 = XX ) ™.

=1 j=1

Thus

(BeW (1), TWOp D) = 1s@8) (1 - ) [T (1 = exXirxXpaz’) ™

=1 j=1

Thus we conclude that

5@0) = ¢, "X, X)) T T X = X,

=1 j=1

and we have completed the proof of Proposition 5.1.7.

Appendix B: Unipotent representations of GL(7, I) in the quasi-banal
case

by Mari-Fraxce VIGNERAS

Let I be a local non archimedean field of residual characteristic p and let
R be an algebraically closed field of characteristic 0 or £ > 0 different from p.
Let G = GL(n, F). The category Modr G of (smooth) R-representations of G is
equivalent to the category of right modules 7% (G) for the global Hecke algebra
(the convolution algebra of locally constant functions / : G — R with compact
support, isomorphic to the opposite algebra by f(g) — f(g7").)

Modg G ~ Mod /% (G).

Definitions. — We are in the quasi-banal case when the order of the maximal
compact subgroup of G is invertible in R (the banal case)) or when ¢ =1 in R
and the characteristic of R is £ > n (the lmit case).

A block of Modg G 1s an abelian subcategory of Modr G which is a direct
factor of Modr G and is minimal for this property. One proves that Modg G is
a product of blocks [V2, IIL.6]. The wunipotent block PBr1(G) is the block containing
the trivial representation. An R-representation of G is umpotent if it belongs to the
unipotent block.



174 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

Notations. — Let I, B = TU be a standard Iwahori, Borel, diagonal, stritly
upper triangular subgroup of G, T, the maximal compact subgroup of T, I, the
pro-p-radical of I. The functor Indg’ : Modg B — Modr G is the normalised induc-
tion. The group I has a normal subgroup I* of pro-order prime to ¢ and a finite ¢
subgroup I, such that I =1l,. To get a uniform notation, we set I =1, 1, = {1}
when the characteristic of R is 0. We have I = I, I, = {1} in the banal case
and I # 11, # {1} in the limit case. Let Mod Hx(G, 1) be the category of right
modules for the Iwahori Hecke algebra (isomorphic to its opposite)

Hg (G, T) := Endre R[I\G] ~x RII\G/I].

Let Modgr (G, I) be the category of R-representations of G generated by their I-in-
variant vectors.

1. Theorem. — In the quasi-banal case,

1) The category Modgr (G, 1) s stable by subguotients.

2) For any V € Modr (G, 1), one has V¥ = V', in particular R[I\NG] is projective
i Modg (G, I).

3) The l-invariant functor

V — VI Modg (G, I) > Mod Hg (G, 1)

15 an equivalence of categories.
4) The 1“-invariant functor on the unipotent block Py 1(G)

V= V' % 1(G) > Mod Hg (G, IY)

15 an equivalence of categories.

5) In the banal case, Modgr (G, 1) s the unipotent block.

6) In the limit case, Modgr (G, I) s not the unipotent block.

7) The parabolically induced representation Indg 1 is semi-simple (hence also Ind§ 1 for
all parabolic subgroups P of G). In the limit case, IndgX is semi-simple for any
unramified R-character X : T/T, = R* of T.

8) In the limit case, the R-algebra Hg(G, 1) w5 wsomorphic to the natural twisted tensor
product of Hr(G, 1) and R[1‘].

The proof of the theorem uses some general results (A), ..., (H), valid in
the non quasi-banal case (except (E) and (G)) and for most of them when G is
a general reductive connected p-adic group. We recall them first.

(A) The algebra R[T/T,] is identified to its image in Hr(G,I) by the Bern-
stein embedding

(1) tg : R[T/T,] = Hg(G, D)
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such that the U-coinvariants induces a R[T/T,]-isomorphism
(2) Vi~ (vt
for any V € Modr G [V2, I1.10.2].
(B) By [Dat], we have a (G, R[T/T,])-isomorphism
(3) R[I\G] =~ Ind§ R[T/T,]

when R[T/T,] is embedded i Hgr(G,I) by the Bernstein embedding
& R[T/T,] = Hg(G,I), defined by the opposite (lower triangular) B of B as
in (A), where R[T/T,] is the universal representation of T inflated to B.

Hence for any character X : T/T, — R* 1e. an algebra homomorphism

R[T/T,] - R
4) R ®x rr1/1,1.5 RING] ~ Indi X
(5) R ®X,R[T/T,,],tg Hr(G,I) ~ (Inng)I

(C) The compact induction from an open compact subgroup K of G to G
has a nght adjoint the restriction from G to K [VI1, 1.5.7]. In particular, a rep-
resentation generated by its I-invariant vectors is a quotient of a direct sum of

R[I\G] (denoted €5 R[I\G]).

(D) The double cosets of G modulo (I, I) are in bijection with the double
cosets of G modulo (I, I). This is clear by the Bruhat decomposition. In particular,
the I,-invariants of R[I\G] is equal to the I-invariants.

(E) In the quasi-banal case, every cuspidal irreducible representation of every
Levi subgroup of G is supercuspidal [V1, IIL.5.14].

(F) The irreducible unipotent representations are the irreducible subquotients

of RII\G] by [V2, IV6.2].

(G) When ¢ =1 in R, the Iwahori-Hecke algebra is the group algebra of
the affine symmetric group

N/T, ~ W.(T/T,) ~ S,Z"

(semi-direct product) where N is the normalizer of T in G and W := N/T with
its natural action on T/T,. Naturally T/T, >~ Z" by choice of a uniformising
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parameter pp of I' and W 2~ S, the symmetric group on 7 letters with its natural
action on Z". The natural embedding

6) R[T/T,] = Hg(G,I) = R[W.(T/T,)]

is equal to /3 = . These properties are deduced without difficulty from [V,
[.3.14], [V2, IL8].

(H When ¢ = 1 m R, let 7; be an irreducible R-representation of the
group GL(nd;, F) with cuspidal support " o;, for an irreducible cuspidal R-
representation o; of GL(d;, F) for all 1 < < k. Suppose that o; is not equivalent
to o; if i #j. Then the representation of GL(}_, nd;, F) parabolically induced from
T Q... ®m; is irreducible by [V2, V.3].

Proof of Theorem 1. — We suppose that we are in the quasi-banal case.

a) We prove that any irreducible subquotient V of R[I\G] has a non zero
I-invariant vector. The U-coinvariants Vy of any irreducible subquotient V of the
representation (3) have a non zero vector invariant by T, by (E). By (2), V has
a non zero I-invariant vector.

b) We prove that if W C V are subrepresentations of @) R[I\G], then
W!'= V! implies W =V, and V' = V¥, The geometric property (D) implies that
the I,-invariants of any subrepresentation of @@ R[I\G] is equal to its I-invariants.
Hence W' = WY, V! = V¥, The functor of I,-invariants is exact and any irre-
ducible subquotient of R[I\G] has a non zero I,-invariant vector by a). Hence
W' = V¥ implies W = V.

c) We prove the property 1) of the theorem. The property is trivial with
quotient instead of subquotient. Let Y C X and p : @ R[I\G] — X a surjective
G-homomorphism. Let us denote by V the inverse image of Y by p, and by W
the subrepresentation of V generated by V. We have W' = V! by construction,
hence W =V by b). Hence V is generated by its I-invariant vectors. The same
is true for its quotient Y.

d) We prove the property 2) of the theorem. In c¢) V is a subrepresentation
of @ RII\G] hence we have V' = V¥ by b). The functor of I,-invariants is exact
hence p(V¥) =Y". As Y' € Y¥ and p(V") C Y' we have Y' = Y" = p(V'). This
is valid for any Y hence for any representation of Modg (G, I).

e) We prove the property 3) of the theorem. All the conditions of the the-
orem of Arabia [A, th. 4 2) (b-2)] are satisfied.

f) We prove the property 4) of the theorem. Let V be a unipotent rep-
resentation. Then V is generated by Vv by (F). The irreducible subquotients of
the action of I on V' are trivial, because I/T* is an {¢-group. Conversely let V
be a representation generated by V. Then the irreducible subquotients of V are



AUTOMORPHY OF L-ADIC REPRESENTATIONS 177

unipotent, and a representation such that all its irreducible subquotients are unipo-
tent is unipotent. As the pro-order of I is invertible in R, and the unipotent block
is generated by IndI(;’ Ig = R[I*\G], the I’-invariant functor is an equivalence of
category with the Hecke algebra Hg (G, IY).

g) We prove the property 5) of the theorem. In the banal case I =1° and
compare the properties 3) and 4) of the theorem.

h) We prove the property 6) of the theorem. In the limit case, I # I¢. The
I-invariants of Indj1 can be computed using the decomposition of the parahoric
restriction-induction functor [V3, C.1.4] and the simple property

dim (Ind}, 1)' = 1.

One finds that the I-invariants of Indﬁl are the I-invariants of its proper sub-
representation Ind{’1 = R[I\G]. Hence the unipotent representation Ind$ 1 is not
generated by its I-invariant vectors.

i) We prove the property 7) of the theorem. In the banal case Ind§ 1 is
irreducible. We suppose that we are in the limit case. By (4), Ind§ | is generated
by its I-invariant vectors. Hence by the property 3) of the theorem, Ind§ 1 is semi-
simple if (Indy 1)' is a semi-simple right Hg (G, I)-module. By (5) for the trivial
character of T, we have

3 1
(Ind](g 1) ~ R ® rr1y/1,1.4 Hr(G, D).

By (6), the action of Hr(G,I) >~ R[W.(T/T,)] on (Indgl)I restricted to R[T/T,]
is trivial. As R[W] is semi-simple, (Indg’ D' is a semi-simple right Hg (G, I)-module.

Every parabolic subgroup of G is conjugate to a parabolic group P which
contains B, and the isomorphism class of Indy1 does not change when P is re-
placed by a conjugate in G. We have an inclusion Ind; 1 C Ind§1 in Modg G. As
Ind§ 1 is semi-simple, the same is true for Indy 1.

Let X be an unramified R-character of T. Modulo conjugaison X = ), X,
is the external product of characters X; := x;1 of the diagonal subgroups T; of
G; := GL(n;, F), which are different multiples of the identity character, x; # x; € R*
if i #j and ) ;n; = n. The parabolic induction Modg [[. G; = Modg G sends any
irreducible subquotient of ), Indg x;1 to an irreducible representation of G by (H).
This implies the semi-simplicity of IndgX.

j) We prove the property 8). Let V be an R-vector space with an action
o :1— GLr(V) of I trivial on I,. We have I = T,I,. The Weyl group W =~ §,
embedded in G as usual, acts on T, by conjugation. By inflation, the affine Weyl
group W.(T/T,) acts on T, For w € w, (T/T,) with w, € W, one denotes by
Intw.V the space V with the action of I such that & € 41, acts by O(wotowo_l) for
,, € T,. The endomorphism algebra EndRGInd?V is 1somorphic as an R-module
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to ([V2, IL2 p. 562] and [V3, C.1.5]):

8) EndreIndfV> € Homy(V, Intw.V).
weW.(T/T,)

A function in Ind{V with support Ig and value » € V at g € G is denoted
by [lg,»]. We have g '[I,2] = [Ig, »]. The endomorphism T, corresponding to
we W.(T/T,), A € Homg;(V, Intw.V) in (8) is defined by [V2, IL.2, p. 562]:

9) Talldd= > [lenA@®l= > @) '[LAO]

xe(I/,ﬂw_II/,w)\I/, xe(I/,ﬂw_II/,w)\I/,

because lwl = Uxea,,nw

on V. The product in EndggInd{V is given by

SRR Ix is a disjoint decomposition and I, acts trivially

ToaTeallol= > @y @) '[L A 0 A@)],
xe(Nw™ )\l
2e@N@) " Tw N\,

or equivalently,

(10) Ty aTuall, o] = > [whwx, (A o A)@)].
xe(@yNw™ Tyw)\I,
pe(pN@)~ 1 L)\,

The Iwahori-Hecke algebra Hg(G,I) is the R-algebra of RG-endomorphisms of
Ind? lg. We denote T, for T, in Hg(G,I). The Hecke algebra Hi(G,1%) is
the R-algebra of RG-endomorphisms of IndV where V = R[I/I‘] with the regu-
lar action o of I. Let 7, be the R-linear automorphism of V =~ i[I,] given by
conjugation by w € W.(T/T,). The R-linear map A +— 7, o A from Endg;(V) to
Homg;(V, Intw. V) is an isomorphism. We have T,; . = Tu; Tix in Hg(G, I
and the R-linear map defined by

T,®A > T, Tia:Hr(G, ) ® Endgi(V) — Hg(G, I

is an isomorphism. The injective R-linear map A+ T 5 : Endg;(V) — Hg(G, IY)
respects the product. In the limit case, the injective R-linear map such that T, —
T,: : Hr(G,I) — Hg(G, 1% respects also the product because T,T, = T,
in Hr(G,D) and TyaTua = T, itonei,a 1 Hr(G, I). We have Endg;V =
El’ldRIKV = R[Ig] O

Let Zr be the anmihilator of R[G/I]. The Schur R-algebra of G is Morita
equivalent to J%4(G)/ Zr [V3, 2]. It is clear that _#r annihilates the abelian
category Modg (G, I).
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2. Theorem. — In the quasi-banal case, the category Modgr (G, 1) is the category of
representations of G which are annihilated by Fw. In other terms, the Schur R-algebra of G
s Monita equivalent to the Iwahori—Hecke R-algebra of G.

This is already known in the banal case. The proof of the theorem results
from properties of the Gelfand-Graev representation I'y and of the Steinberg rep-
resentation Stg of GL(n, F)).

We need more notation.

a) The subcategory Modg | GL(n, F)) of Modg GL(n, F,) generated by (the
irreducible subquotients of) R[GL(n, F,)/B(F,)] is a sum of blocks by a theorem
of Broué-Malle. Representations in Modg ; GL(n, F,) are called wunipotent. The an-
nihilator _#r(¢) of R[GL(n, F))/B(F,)] in R[GL(n, F,)] is the Jacobson radical of
the unipotent part of the group algebra R[GL(n, F,)], because the representation
R[GL(n, F,)/B(F,)] is semi-simple.

b) Let ¥ : F, — R* be a non trivial character. We extend ¥ to a character
(; ;) —> V(> w;;41) of the strictly upper triangular subgroup U(F,) of GL(, F)),
still denoted by . The representation of GL(n, F,) induced by the character ¥ of
U(F,) is the Gelfand—Graev representation T'g. Its isomorphism class does not depend
on Y. We denote by I'y; the unipotent part of I'g.

c) The Steinberg representation Stg of GL(n, F,) is the unique irreducible
R-representation such that, as a right module for the Hecke algebra
Hg (GL(n, F,), B(F,)), its module of B(F,)-invariants is isomorphic to the sign rep-
resentation.

d) The inflation followed by the compact induction is an exact functor

i : Modg GL(n, F,) = Modg GL(1, Or) — Modg G.
e) The global Hecke algebra .7 (G) contains the Hecke algebra
6 = Hr(GL(n, Op), 1 4 prM(n, Op))

isomorphic via inflation to the group algebra R[GL(xn, F,))]. The Jacobson radical
Fr(q) of the unipotent part of the group algebra R[GL(n,F,)] identifies with
a two-sided ideal of J77.

We recall [V3, Theorem 4.1.4]:

(I) The representation of GL(n, F)) on the 14+prM(n, Op)-invariants of R[G/I]
is isomorphic to a direct sum @ R[GL(n, F,)/B(F,)].

(J) °V is generated by its I-invariant vectors if V € Modg GL(n, F,) is gen-
erated by its B(F,)-invariant vectors.
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3. Lemma. — Suppose that we are in the quasi-banal case. Then
1) _Zr s the Jacobson radical of the unipotent bloc of Modr G (same for Zr(q) and
GL(n, F))).

2) The umipotent part T'r , of the Gelfand—Graev R-representation of the group GL(n, F))
is the projective cover of the Stenberg R-representation Sty of GL(n, F,)).

3) Tr1 Zr(q) s the kernel of the map T'r; — Stg.

9 @ C Fr.

5) °Tr1/(CTR)) IR 15 a quotient of i1° Sty and is generated by its l-invariant
vectors.

Proof of the lemma. —  'This is known in the banal case, hence we suppose
that we are in the limit case.

We prove the property 1). The semi-simplicity of IndiX for all unramified
characters (Theorem 1 (7)) implies with (3) that g s the Jacobson radical of the
unipotent bloc. This means that g is the intersection of the annihilators in the
global Hecke algebra % (G) of the irreducible unipotent R-representations of G.

We prove the property 2). The induced representation Indg(LF(;’Fq>lR Is semi-
simple, and Stg 1s the wunigue subquotient which is isomorphic to a quotient of the

Gelfand-Graev representation I'y. By the wunigueness theorem,
dimRHomRG(FR, StR) = 1.

The unipotent part I'y | of the Gelfand-Graev representation I'r is projective (be-
cause the characteristic of R is different from p) and is a direct sum of indecom-
posable projective representations of GL(n, F,). In the quasi-banal case, the two
properties of uniqueness imply that I'g; is projective cover of Stg.

The property 3) results from 1) and 2) by general results [CRI, 18.1].

The property 4) results from e) and (I).

We prove the property 5). By definition (:°T'x) Zr = Tr @ k.

By 4) Tk @ Ir(QHR(G) CT'r Qg k-

We have [V1, L5.2.c)] Tr ®uy Fr(QIR(G) = I'r Fr(9) Quy Hr(G) =
W where W = I'r_#r(q). Clearly iGFR/(iGFR)/R is a quotient of “T'y/i“W.

The functor % is exact hence “T'r/i*W =~ ¢(T'g/W). By 3) I'x/W =~ Stg.
Hence “T'y/(i°TR) Hr is a quotient of i“ Stg. By ¢), Stg is irreducible and has
a non zero vector invariant by B(F,). By (J), ¢“ St is generated by its I-invariant
vectors. a

Lemma 4 extends to the standard Levi subgroups M, (F,) of GL(n, F,), quo-
tients of the parahoric subgroup P,(Op). These groups are parametrised by the
partitions A of n. The group GL(n, F,) corresponds to the partition (7). One de-
notes by an index A the objects relative to A.
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We recall:

(K) Qg := I'r/I'r _#r is a projective generator of Mod s (G)/_#r where
I'r =@, i’Tr, [V3, Theorem 5.13].

Proof of Theorem 2. — By Lemma 3 for the group M, (F,), the quotient
TR /TR Ir of i’ Stg ;. is generated by its I-invariant vectors. Hence the pro-
generator Qgr of Mod /& (G)/_#r is generated by its I-invariant vectors. m|
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