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Abstract: This paper presents a security analysis of the Local Interconnect Network (LIN) that is used in assembly
units such as seats, steering wheels, and doors in vehicles. Recently, the number of security threats to in-vehicle net-
works such as the Controller Area Network has increased. In contrast, there have been no reports that evaluate the
security of LIN in detail. The security analysis of LIN is important because it is used in units related to seats, steering
wheels, etc. and it is at risk for an attack. In this paper, we present the first evaluation on the security of LIN. We present
case studies of attacks that use the characteristics of a commonly-used error handling mechanism. In the attacks, the
attacker intentionally stops communication using the error handling mechanism and sends a false response in place of
a valid one. We experimentally show the feasibility of the attacks using a vehicle microcontroller. Furthermore, we
present countermeasures against the attacks. The results of this study show that there is vulnerability to attack when the
error handling mechanism is simply designed. We believe that this study will contribute to improvements in security
of in-vehicle communications.
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1. Introduction

Modern vehicles already contain a number of microcontrollers
that are responsible for crucial components such as the control
of the engine, brakes, and steering wheel. Recent vehicle tech-
nologies such as automated driving assistance have been achieved
through advances in microcontrollers. Each microcontroller in
a vehicle communicates through an in-vehicle network such as
the Controller Area Network (CAN), Local Interconnect Network
(LIN), or FlexRay. These networks are applied to vehicle func-
tions related to, for example, the engine, body, or multimedia con-
trol based on their essential technical properties and application
areas.

Recently, some investigations have highlighted security risks
to in-vehicle communications such as CAN because they are not
designed considering security [1], [2], [3], [4], [5]. These stud-
ies showed that any arbitrary action could be induced by sending
a false message to the CAN bus. Some detection and preven-
tion mechanisms such as message authentication code (MAC) on
CAN were also proposed in Refs. [6], [7], [8], [9] and specifica-
tions for the MAC on the bus were developed by the automo-
tive open system architecture (AUTOSAR), which is a world-
wide development partnership of vehicles (specification version
is 4.2.2) [10].

On the other hand, if an attacker can intentionally control the
communications on LIN, which is used in steering wheels and
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doors [11], there is the possibility for a significant threat. For
example, while the vehicle is moving on the highway, the user
could be exposed to risk if an attacker maliciously tampered with
the controls related to the steering wheel or doors. Although the
possibility of an attack on LIN is briefly described in a previ-
ous study [3], detailed attack methods and the countermeasures
were not shown. Furthermore, LIN uses the master-slave method
which is different from that of CAN. Therefore, it is difficult to
simply apply the CAN attack method to LIN.

In this paper, we evaluate the resistance of LIN to an attack that
leads to malicious control of a vehicle*1. We present case studies
of attacks, in which the attacker can send a false message with the
receiver identifying it a valid one using a general error handling
mechanism [13], [14].

Although LIN is commonly used in a CAN subnetwork, recent
hacking techniques [1], [15] could make it easier to gain accesses
to the LIN bus through the CAN-bus node. We also perform ex-
perimental analysis of the proposed attacks using a vehicle mi-
crocontroller in which the LIN protocol is implemented. Further-
more, we propose countermeasures for the attack.

The remainder of this paper is organized as follows. An
overview of LIN is given and previous work is described in Sec-
tions 2 and 3, respectively. We describe the concept behind the

*1 A preliminary version of this paper was published in the conference pro-
ceedings of SCIS 2016 [12]. In this paper, we change the constructions
of sections and delete the redundant representations for reader-friendly
compared to Ref. [12]. Furthermore, we reveal that the attack regarding
the header collisions described in Section 4.2.3 of Ref. [12] is not effec-
tive. Thus, we correct this attack method and the successful attack is
described in Section 5.3 in this paper. Corresponding to the above, we
delete the countermeasure regarding the header resending in Section 6
(3) of Ref. [12] and we describe a countermeasure in Section 7.3 which
is devised after the SCIS conference.
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Fig. 1 LIN message frame.

study in Section 4 and the case studies of the attacks on LIN in
Section 5. We present experimental results of the proposed at-
tacks in Section 6 and propose countermeasures in Section 7. Fi-
nally, we conclude the paper in Section 8.

2. LIN Specifications

This section gives an overview of LIN [16].

2.1 Introduction to LIN
LIN is developed by the LIN consortium to create a standard

for low cost and low-end multiplexed communications in auto-
motive networks. Typical applications for LIN include assembly
units such as seats, doors, engines, and steering wheels [11] with
typical data rates of up to 20 kbps. LIN is based on a master/slave
architecture that comprises a single master node and numerous
slave nodes connected using a single wire. LIN uses a time trig-
ger method that employs a priori fixed time schedule, which is
the key property of LIN. The master node has the time schedule
that decides when and which message frame shall be transmitted
in the bus.

2.2 Message Frame
Message frames consist of a header provided by the master

node and a response provided by the master/slave node as shown
in Fig. 1. The header consists of a break field that is used to sig-
nal the beginning of a new frame. The sync byte field is a field
with the data value of 0x55 that is used by the slave node for
clock synchronization. The protected identifier (PID) field of the
header consists of two sub-fields: the frame identifier (bits 0 to
5) and the parity (bits 6 and 7). The PID denotes the contents of
a specific message but not the destination. The data field of the
response stores up to 8 bytes of data. The checksum is used for
verification so that the node receives data correctly.

2.3 Transmission Method
Several frame types for transmission are used in LIN. Here,

we describe the unconditional frame that is used in this inves-
tigation. The unconditional frame is the most commonly used
and it carries data. An example transmission method is shown
in Fig. 2. In the example, slave node 2 performs a task based on
the response sent from slave node 1. At this time, LIN uses the
master-slave method. Using this method, slave node 1 can only
send a response based on the header send from the master node.
The timing of the header is controlled by the time schedule of the
master node. At the beginning, the master node sends a header
including the PID (0x00 in this case) which indicates the sender
or the receiver as indicated by (A) in Fig. 2. The header is broad-
cast in the bus and all nodes receive it. The node corresponding
to the PID sends a response or receives it (in this case, slave node

Fig. 2 LIN transmission method.

1 sends the response and slave node 2 receives the response) as
indicated by (B) in Fig. 2. A response without the header will be
simply dropped in the transmission of LIN.

3. Related Work

In this section, we describe related work. Because the in-
vehicle protocols are not designed considering security, it is pos-
sible to implement some attacks such as spoofing and denial-of-
service (DoS) attacks that are famous in the IT field. In previous
studies, most papers focus on the CAN-bus security, and attack
methods were proposed in Refs. [1], [2], [4], [5]. In Refs. [1], [4],
hacking techniques to inject a false message into the CAN bus
using the diagnostic interface of the vehicle were introduced and
they showed that an arbitrary action could be performed. Hoppe,
Kiltz, and Dittmann [2] showed several automotive system vul-
nerabilities such as in the window lift and airbag control using
real automotive hardware and presented short-term countermea-
sures. They also showed basic attack principles from the aspect
of automotive IT security [5].

Regarding the investigation of the security of other in-vehicle
networks, the security of FlexRay was studied in Ref. [17]. The
security on the LIN bus was briefly introduced in Ref. [3]. In the
attack on LIN, the authors described the attack possibility where
each slave node would be completely deactivated by introducing
well-directed false sleep frames. The slave nodes still remains
the sleep mode until a wake-up mode is requested from the mas-
ter node. They also described that modifying the sync byte field
to any value is another attack point.

4. Concept Behind Study

In this section, we describe the difficulty of the attacks against
LIN and the concept of the proposed attacks.

4.1 Difficulty of Attacks Against LIN
In the LIN-bus, in order to implement some malicious behav-

ior, we must be able to (1) inject a false response in which a part
of data is changed to any value into the bus depending on the
kinds of data and (2) do so at any timing.

Regarding (1), to validate such a false response, we need to
inject it after a header is sent from the master node. However, it
is difficult to change a part of data of the false response by sim-
ply injecting it in the bus because it may collide with the correct
response that is sent after the header.

Regarding (2), to control the timing of the sequence of the mes-
sage which causes not to do normal operations, it is difficult to
manipulate the time schedule because we need to physically ac-
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cess the master node and tamper with it based on the details of
the implementation method of the master node which we cannot
obtain in general.

4.2 Concept Behind Proposed Attacks
In order to inject any value of a false response at any time, we

employ the characteristics of the error handling mechanism. In
this mechanism, the slave node (sender) stops sending a response
when the data in the bus are different from the sent data in the re-
sponse while monitoring the bus level and waits the next header.
Such kind of errors is known as bit errors. This type of error han-
dling mechanism is commonly used and implemented in the LIN
protocol [13], [14]. In fact, we intentionally generate a collision
between the responses to induce the bit error and inject a false re-
sponse after an error occurs. Thus, we can send any value of the
false response after the collisions occur because the sender stops
sending the correct response and the receiver accepts the false re-
sponse as a valid one. Although sending a false response as a
valid one is sufficient to warrant risk, we also consider attacks in
which the sequence of the transmission of the response is manip-
ulated by generating the header collisions without tampering with
the time schedule of the master node.

5. Evaluations of Attacks on LIN

In this section, we describe the assumptions in the study and
the proposed attacks that lead to the malicious behavior.

5.1 Study Assumptions
Here, we describe the assumptions in the study.
• The sender slave node monitors the LIN bus in terms of bytes

to determine whether the sent response is equal to the value
in the bus. If they do not match, the slave node detects the
bit error and stops sending the response [13], [14].

• An unconditional frame is used in the LIN transmission.
• The attacker can inject false headers/responses into the LIN

bus through physical or logical access to the LIN bus while
each node normally functions based on the time schedule.
As an example, since the master node is usually connected
to CAN [18], it is possible for the attacker to gain accesses
to LIN through the master node using recent hacking tech-
niques [1], [15].

• The attacker can guess the sequence of the message in the
time schedule including the message frame that the attacker
targets.

• The attacker can read and interpret the PID of the headers
and the responses transmitted in the targeted LIN. It is pos-
sible to intercept them because the transmission of LIN is not
encrypted. The attacker can guess the contents of the head-
ers and the responses through analysis based on the vehicle
behavior [4].

5.2 (1) Proposed Attacks That Induce Collision Between Re-
sponses

In this section, we propose attacks that can inject any value of
the false responses by generating collisions between the correct
and false responses. The attack procedures is shown in Fig. 3.

Fig. 3 Attacker induces collision between response sent from slave node 1
and false response.

Here, we consider that slave node 1 sends a response correspond-
ing to the header including the PID (0x00) and slave node 2 (at-
tack target) receives it to perform some behavior. The details of
the attack method are given below.

(a) The attacker creates a false response that has different val-
ues than the correct response from the n-th byte when the attacker
wants to forge a response from the (n + 1)-th byte.

In order to validate the false response, the header, including the
PID that indicates slave node 1 sends a response, must be sent in
the bus. Then, the attacker waits until the master node sends the
header that corresponds to the response of the attack target or the
attacker creates the header and sends it.

(b) Corresponding to the header (0x00 as example), slave node
1 sends a response as shown in Fig. 3.

(c) At this time, the attacker sends a false response at the same
time that slave node 1 sends a response. Then, a collision oc-
curs at the n-th byte. Slave node 1 detects the bit error that the
bus level is different from the response, and subsequently stops
transmitting the response based on the error handling mechanism.
Then, the attacker continuously sends the false response from the
(n + 1)-th byte.

We note that when collisions between two responses occur, the
value in the bus is electrically 0 in the physical layer, i.e., the
dominant level takes priority. Then, the data in the bus where the
collision occurs at the i-th byte will be Ri&˜Ri where Ri is the i-th
byte of the response sent from the slave node, ˜Ri is the i-th byte of
the false response sent from the attacker, and & is a bitwise AND.

(d) Then, slave node 2 receives and stores the false response
from the (n+1)-th byte as the valid one. We note that the attacker
needs to calculate the correct checksum in order that slave node 2
accepts the false response as the valid one. The attacker can cal-
culate the correct checksum by guessing the response transmitted
in the bus.

The time chart of the header, the response sent from slave node
1, the false response sent from the attacker and the data in the bus
is shown in Fig. 4. In the figure, we simply describe the data field
in the response. We consider that the response is sent with the
least significant byte first. Based on the figure, the attacker can
send any value of the false response after the second byte.

As is shown in the above, if the control data is set in the first
byte, the attack can not necessarily affect the automotive control
because the first byte cannot be changed to the value which the
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Fig. 4 Time chart of data from master node, slave node 1, attacker, and data
in bus when a collision occurs between the first byte of responses.
The value of the first byte in bus will be 0xA0 (= 0xAA & 0xA0).

attacker likes. However, to the best of our knowledge, it is often
the case that the significant control data is set to the byte after the
second byte in the data field of the response. Therefore, we think
that the proposed attack is practical and it can affect the control
system even when the first byte is corrupted by the collision.

In the above attack, the attacker intentionally injects a false re-
sponse to cause the error handling mechanism to initiate and stops
the transmission from the slave node 1. We note that the bit error
can be caused by other techniques such as inverting a bit or some
bits at the first byte of the response using an electric signal to set
the bus level to dominant or recessive*2. Then, slave node 1 de-
tects the error and stops the transmission. The subsequent attack
procedures are the same as that described above.

5.3 (2) Proposed Attacks That Induce Collision Between
Headers

We present a more complex attack method such as an attack
that changes the sequence of the response without tampering the
time schedule of the master node.

In addition to injecting any value of the message in the bus,
we need to cause a collision between headers to change the se-
quence of the message. The attack procedures are shown in Fig. 5
and Fig. 6 and we show the attack to induce any value of the re-
sponse at any time as follows. In this case, under normal condi-
tions, slave node 2 sends a response that corresponds to the PID
(0x01); however, we change the sequence of the message where
slave node 1 (the PID is 0x00) sends a response to make slave
node 2 receive a false response and perform abnormal behavior.

(a) The attacker sets a false header (including the PID 0x00
as an example) to let slave node 2 (attack target) receive the re-
sponse*3. The master node sends the header (including the PID
0x01) based on the time schedule.

(b) At this time, the attacker injects a false header (including
the PID 0x00) at the same time that the master node sends the
header.

*2 In Ref. [12], we describe this content in the independent section (Sec-
tion 4.2.2 in Ref. [12]). However, the essence of the attack is almost the
same with the attack using the collisions of the response. Thus, we merge
the description in Section 4.2.2 of Ref. [12] in this section.

*3 In Ref. [12], we describe that the attacker sets a false header which is not
assigned to any node after the collisions. However, this is not correct and
the attack is not effective because any node does not receive the response
if the attacker sets so. Thus, we change the setting of the false header
and the attack procedures in the following steps.

Fig. 5 Attacker injects a false header to send a false message at any timing.

Fig. 6 After collision between headers, attacker injects a false response.

(c) Then, the header in the bus becomes the value 0x00 after
the collision and each slave node receives this changed header
value.

(d) When the value of the header changes, slave node 1 sends
a response corresponding to the received header.

Slave node 2 sends a response under normal conditions; how-
ever, the header is changed due to the collision caused by the at-
tacker. Thus, slave node 1, which is not the normal sender, sends
a response.

(e) At the same time that slave node 1 sends a response, the at-
tacker injects a false response that is different from the n-th byte
of the response sent from slave node 1.

(f) In the same way as described in Section 5.2, slave node 2
receives a false response as the valid one.

The time chart of the header, the correct response, the false
response and the data in the bus is shown in Fig. 7. The figure
shows that the attacker can send a false response after changing
the sender of the response, i.e., the sequence of the message.

In the above attack, we note that the attacker cannot change any
value of the header because the dominant value, 0, takes priority
in the physical layer when a collision occurs. However, once the
attacker can change the value of the header, he can change the
sequence of the transmission of the message without tampering
with the time schedule of the master node.

In Sections 5.2 and 5.3, we describe the attacks in which any
value of the response can be transmitted at any timing. We note
that the attacker can also perform a DoS attack using this attack
technique. In fact, the attacker can skip any response in the time
schedule by intentionally causing an error because the slave node
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stops transmitting a response when it detects an error. Then, the
attacker can also perform attacks that simply stop any response in
the time schedule.

5.4 Discussions Regarding Safety Mechanisms
In this section, we discuss assumptions regarding safety mech-

anisms on performing the proposed attack and effectiveness of
the attack on them. The safety mechanisms are generally imple-
mented in the automotive system to detect the system failure and
recover to the safe status.

We assume that the following general mechanisms are imple-
mented in the system regarding the occurrence of errors such as
bit errors.
( 1 ) The node (sender) which detects errors shift to the safe sta-

tus.
( 2 ) The node (sender) which detects errors sends an abnormal

signal which means the occurrence of the errors to all nodes
including the receiver. Then, they shift to the safe status.

Regarding (1), although the sender can shift the safe status,
other nodes including the receiver cannot detect the error. Thus,
it is difficult to mitigate the attacks by this mechanism. Regard-
ing (2), depending on the kinds of the abnormal signal and how
to shift the safe status after each node receives its signal, it is pos-
sible to mitigate the attacks. The details of how to mitigate the
attacks are described in Section 7.3.

In addition to the above safety mechanism, we assume that the
safety mechanisms which are commonly used are implemented
in the system.
(a) When the slave node (receiver) receives the response includ-

ing the invalid values which are not defined by the specifica-
tions, it discards the response and waits the next header.

(b) When the slave node (receiver) receives the response which
means the rapid change when the system does not assume
such a change, it discards the response and waits the next
header.

(c) The master node continuously sends the same header twice.
Thus, the slave node (receiver) verifies whether two re-
sponses, corresponding to the header, are the same. If two
responses do not match, the receiver discards them and it
waits the next header.

The proposed attack does not induce the system failure and the
malicious behavior can be caused with the acceptable range of
the system. In fact, regarding (a) to (c) in the above, we use the

Fig. 7 Time chart of data from master node, attacker, and data in bus when
a collision between headers occurs.

normal values of the response, we do not cause the rapid change
of the response and we can send the same response correspond-
ing to the same header twice in the attack. Thus, it is difficult to
mitigate the attacks by the mechanisms from (a) to (c).

5.5 Practical Threats Posed by Proposed Attacks
In this section, we mention the practical threats posed by the

proposed attacks. When the significant control data is set after
the second byte of the response, the attacker continuously injects
the false response using the proposed method through any access
to the LIN bus to induce the malicious behavior in the real sit-
uations. As concrete examples, we consider the controls of the
sliding door and the steering wheel lock in which LIN is gen-
erally used. In these cases, we think that the attacker can hold
the sliding door open and can affect the control of driving safely
by the lock of steering wheel while the vehicle is moving using
the proposed attacks. Thus, the malicious behavior caused by the
attack results in the significant practical threats.

6. Experimental Results

This section describes the experimental results of the attacks.
To verify the feasibility of the proposed attacks, we experimen-
tally analyze the attack when the attacker injects a value of the
response as in Section 5.2 as an example using a vehicle micro-
controller.

An overview of the experimental configuration is shown in
Fig. 8. Details of the equipment used in the experiments are given
in Table 1. The experimental conditions are as follows.
• For both slave nodes and the attacker node, we use the same

evaluation boards with the microcontroller and transceiver
IC to send a false response at the same time as the slave
node.

• We implement the error handling mechanism in the slave
node in which it monitors the bus level and stops the trans-
mission when an error is detected.

Fig. 8 Overview of experimental configuration.
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Fig. 9 Experimental results of waveform of header and response transmitted in the bus. (a) Waveform
of message frame in normal communications. (b) Waveform of message frame in communication
when attack is performed. Collision occurs at the first byte and a false response is transmitted to
the bus after the collision.

Table 1 Equipment used in experiment.

Equipment Product Name and Model Number

Oscilloscope Agilent DSO6012A

DC Power Supply Kikusui Electronics Corp., PMP16-1QU

PC (Slave Node) CPU: Intel Core i7 2.60 GHz, OS: Windows 7 (64 bits),

Software: CANoe V8.2

• We use the simulation software CANoe V8.2 from Vector
Informatik [19] as the slave node (sender) and use VN8950
which is the hardware interface of the LIN bus including the
LIN transceiver [20].

• We use an oscilloscope to measure the waveform of the
header, the response, and the false response transmitted in
the bus.

• We set the time base to 50 ms and baud rate to 19,200 bps as
the LIN conditions, and use LIN protocol version 2.X.

• We set the PID of the header corresponding to the slave node
to 0x1A, the response from the slave node as the 4-byte data
0xAAAAAAAA, and the false response from the attacker as the
4-byte data 0xA0020304, as an example. Each response is
transmitted with the least significant byte first.

• We use a time schedule that includes the header (the PID
0x1A) from the master node. The response corresponding to

the header is constantly transmitted to the bus. We consider
that the attack node sends a false response when it receives
the header including 0x1A.

In the experiment, when the header is sent from the master
node, both the slave node and the attack node send responses at
the same time, and then, a collision occurs. The experimental re-
sults measured using the oscilloscope are shown in Fig. 9 in the
case of normal communications and the commnuications when
the attack is performed. In Fig. 9 (a), we show that the response
sent from the slave node, 0xAAAAAAAA, is transmitted normally.
On the other hand, in Fig. 9 (b), we observe that false response
0xA0020304 sent from the attacker is transmitted when the first
byte collision occurs. We note that we observe a collision, in
which two small peaks appear, at the second bit and at the fourth
bit of the first byte as shown in Fig. 9 (b). The detailed value is
shown in Fig. 10 when the collisions occur. In the figure, the
value in the bus is 0xA0 (= 0xAA & 0xA0) after the collision.

To verify that the value of the false response is received by the
slave node (subscriber), we observe data measured in the PC. The
response in the bus measured using CANoe is shown in Fig. 11
and we observe that the false response is received at the PC as the
valid one.

Therefore, based on the experimental results, we show that the
proposed attack is effective using the error handling mechanism.
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Fig. 10 Collision between the first byte of response 0xAA (= 1010 1010)
and false response 0xA0 (= 1010 0000). Value 0xA0 (= 0xAA &
0xA0) is transmitted in the bus. The byte of the response is trans-
mitted with the least significant bit first.

Fig. 11 Response data measured in CANoe.

7. Countermeasures

In this section, we describe countermeasures against the pro-
posed attacks in Section 5*4.

7.1 Byte Assignment in Response
We set the significant data to the first byte of the response so

that values are not changed to those the attacker likes. In the at-
tack, it is difficult to change the first byte of a response that is
involved in a collision occurs and it is only possible to change
the bytes after a collision. As an example, it is better that we as-
sign the significant byte, which indicates the control system, to
the first byte of the response.

7.2 Implementation of Message Authentication Code
(MAC)

In the same way as in CAN, a message authentication code
(MAC) can protect LIN from an attack and make it difficult for
the slave node to receive a false response as the valid one.

However, it is not easy to implement the MAC in LIN from the
aspect of the MAC calculation time in the slave node.

7.3 Sending Abnormal Signal When Error is Detected
We propose countermeasures that can be implemented easily

based on the normal processing of the LIN protocol.
When the slave node detects that the bus level does not match

the sent response while monitoring the bus, it sends an abnormal
signal that indicates that an abnormal situation occurred and all
nodes shift to a safe status. Moreover, when an error is not con-
tinuously detected in the slave node, each node returns from safe
status to normal status.

*4 In Section 6 (3) of Ref. [12], we describe the countermeasures regard-
ing resending the header against the attack using the header collisions
(Section 4.2.3 of Ref. [12]). However, the attack using the header col-
lisions in Ref. [12] is not effective as mentioned before. Thus, in this
paper, we do not describe the countermeasures of resending the header
because it is not appropriate. Furthermore, compared to Ref. [12], we
devise a countermeasure which is effective on both attacks in Section 5.2
and Section 5.3 and describe it in Section 7.3 in this paper.

7.3.1 Effectiveness of Countermeasures When Collisions
Occur Between Responses

We describe attacks that induce a collision between responses
as described in Section 5.2 when the above countermeasure is
implemented in LIN to show the effectiveness of the countermea-
sures.

1. As described in Section 5.2, the attacker injects a false re-
sponse at the same time that slave node 1 sends a response that
corresponds to the header (PID is 0x04 as example) from the mas-
ter node. At this time, slave node 1 detects the error at the first
byte and immediately sends an abnormal signal in which the re-
maining 8 bytes (7-byte data and 1-byte checksum) are all 0x00.
Even if the attacker sends a false response after the second byte,
it is overwritten with the abnormal signal because the dominant 0
takes priority in the bus. Then, the attacker cannot send any value
of the false response after the second byte.

2. Next, we describe how to notify all nodes that an abnor-
mal situation occurred and each node returns to normal status
when errors do not continuously occur. Based on the time sched-
ule, the master node sends the next header. At this time, slave
node 1 sends a response (all 8-byte data are 0x00 and the 1-byte
checksum) that indicates that an abnormal situation occurred to
the master node regardless of the value of the header.

3. When the master node receives the response described in 2,
it sends the specific PID of the header such as 0x00. When each
slave node receives the header including PID 0x00, they shift to
the safe status. Here, the safe status indicates that a part of the
functions of the vehicle cannot be active, i.e., the car seat posi-
tion cannot be adjusted while the car is moving, for example.

4. The master node resends the header (including PID 0x04)
and monitors performances of slave node 1. If slave node 1 sends
an abnormal signal to the bus very frequently, the bus for slave
node 1 is logically turned off and the vehicle alarm display in-
forms the driver that an abnormal situation occurred.

If slave node 1 normally sends a response that corresponds to
the header (including the PID 0x04) from the master node, the
master node decides that slave node 1 is normal and it sends the
header including the PID 0xFB (calculated by 6-bit ID 0x3B and
2-bit parity 0x11) as an example, which indicates deactivation of
the safe status. When each node receives a header including PID
0xFB, it shifts the status from safe to normal.

We note that, in step 3, the master node can notify the slave
node to shift from safe status using the header which includes a
bit indicating the shift to the safe status. As examples, we assign
the least significant bit to indicate the shift to the safe status, i.e.,
bit 1 means normal status and bit 0 means the shift to safe sta-
tus. After the master node receives an abnormal signal from slave
node 1, the master node sends the next header including PID 0x10
as an example based on the time schedule. Each slave node de-
tects that the least significant bit of the PID is 0. It then shifts the
status from safe to normal. When slave node 1 normally sends
a response and the master node decides that slave node 1 should
return to normal status, the master node sends the next header in-
cluding the PID in which the least significant bit is 0 based on the
time schedule. In this case, each slave node can return to normal
status.
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7.3.2 Effectiveness of Countermeasures When Header Col-
lision Occurs

Here, we describe attacks that induce a collision between head-
ers as described in Section 5.3 when the above countermeasure is
implemented in LIN to show the effectiveness of the countermea-
sures.

As described in Section 5.3, the attacker injects a false header
at the same time the master node sends a header (including the
PID 0x05 as an example). At this time, the master node detects
an error in which the value of the header in the bus is different
from that it sent while monitoring the bus. Then, the master node
sends a response in which the 8-byte data are all 0x00. Therefore,
if the attacker sends a false response after injecting a false header,
the former is overwritten with the responses in which all 8-byte
data are 0x00 and the attacker cannot send any value of the false
response. The subsequent processing is the same as that 3 and 4
in Section 7.3.1.

Thus, the above countermeasures protect from the attack de-
scribed in Sections 5.2 and 5.3 so that an abnormal signal over-
writes the false response from the attacker. Furthermore, this
countermeasure includes a function in which each node can return
to normal status from the safe status when an abnormal situation
does not continuously persist.

8. Conclusions

This paper presented a security analysis of LIN. We presented
case studies of attacks that can induce malicious behavior by in-
jecting any value of the false response in time using the error
handling mechanism. We performed experimental analysis of the
proposed attacks and verified the feasibility of the attacks using a
vehicle microcontroller. The results showed that the attacks were
successful, i.e., we sent a false response in the LIN bus and the
receiver node accepted the false response as the valid one. Fur-
thermore, we presented countermeasures that can be easily imple-
mented based on the processing of the LIN protocol. We pointed
out a vulnerability if the error handling mechanism, which is not
generally determined in the protocol specification, was simply
designed. Depending on the situation, we consider that the LIN
protocol specification requires updating in regard to security. We
consider that the attack concept and the countermeasures pre-
sented in this study can be applied to other in-vehicle protocols.
We believe that this study will contribute to improvements in se-
curity of vehicle communications.
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