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Effective vehicular power management requires accurate knowledge of battery state, 

including state-of-charge (SOC) and state-of-health (SOH).  An essential functionality of 

automotive batteries is delivering high power in short periods to crank the engine.  A well-known 

approach to battery SOH monitoring is to infer battery state-of-health from battery impedance or 

resistance, which is not robust to variation of battery types.  The research and development of 

more reliable battery state-of-health monitoring methods to ensure vehicle start-up ability are 

presented in this thesis.  The methods include a battery cranking voltage based method, a parity-

relation based method using battery voltage and cranking current signals, and a support vector 

machine based pattern recognition method utilizing battery voltage and engine cranking speed.  

The performances of these methods have been evaluated and compared through analysis of 

extensive real vehicle cranking data from 2 vehicles and 20 batteries.  Cost benefit analysis is 

also conducted with different sensor options.  
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CHAPTER 1 

INTRODUCTION 
 

 

 
The number of electrical devices in modern vehicles has been rapidly increasing 

in the last two decades, and this trend will accelerate [1][2][3].  The vehicle electric 

power system is required to supply sufficient power not only to safety related systems 

such as rear window defogger, anti-lock braking, and stability enhancement system, but 

also to comfort, convenience and entertainment features such as air conditioning, seat 

heating, audio, and video systems. The advent of new technologies such as X-by-wire is 

putting additional demand on the battery. The electric power management system serves 

to balance the power demanded and supplied as well as to ensure the vehicle’s start-up 

ability. To achieve these goals, accurate and reliable knowledge of the battery state is 

essential [4][5][6]. 

On-board state-of-health (SOH) information is usually derived from parameters of 

an equivalent circuit battery model [5][6][7][8].  Many model-based methods require the 

use of a costly current sensor to measure high current (e.g., up to 1000 amps) during 

engine cranking.  Additionally, those methods use constant thresholds (or limit values) on 

selected battery model parameters to determine battery end-of-life.  However, the 

calibration of such constant thresholds is a difficult task due to the variations of battery 

types, vehicle starting systems, and operating environments.  
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A well-known approach to battery fault diagnosis/prognosis is to infer battery 

SOH from battery impedance or resistance (see, for instance, [6][7][8][9]).  Battery SOH 

information from resistance measurements is valuable. However, to provide more 

accurate and robust battery diagnosis/prognosis, the battery resistance needs to be 

combined with other features via an integrated algorithm [7][8].  

The following sections in Chapter 1 provide background information concerning 

the physical and chemical structure of the automotive lead-acid battery, the chemical 

reactions occurring within the battery, the engine cranking process, battery state-of-health 

monitoring, and an outline of the remainder of this thesis. 

 

1.1 Automotive Lead-Acid Battery  

 A battery is an electrochemical device that stores electrical energy in a chemical 

form [10].  A chemical reaction occurs, between the active materials within the battery, to 

produce current whenever there is a load demand.  An automotive battery is required to 

perform several functions: 

• It supplies power to crank the engine.  The cold cranking amperage required to 

start an internal combustion engine can be in excess of 800A. 

• With the engine running, it supplies power to safety and luxury related features 

when alternator output isn’t sufficient.  

• It stabilizes the voltage for the electrical system.  The battery provides protection 

from excessively high voltages that would otherwise damage other components 

in the electrical system. 
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• It keeps the vehicle running in the event of an alternator failure.  Typical car 

batteries have a reserve capacity of 50-100 minutes [10].  

• While the engine is off, it supplies power to accessories (e.g., power door locks, 

power seats, and anti-theft system). 

Thus, the automotive battery plays an important role in ensuring successful engine 

starting and operation of high reliability safety features and comfort features employed 

within the vehicle. 

 

1.1.1 Physical and Chemical Structure 

 The basic structure of an automotive lead-acid battery consists of a polypropylene 

case partitioned into six cell compartments with one cell element located within each 

compartment.  These cell elements are submerged in an electrolyte and connected in 

series from the positive terminal post to the negative terminal post. 

Within each of the six cell compartments are cell elements consisting of plates of 

dissimilar material, separators, and connecting links.  Plates are formed by pasting soft 

material onto flat and sturdy, mesh-like grids constructed of a lead-calcium alloy [10].  

Grids pasted with lead dioxide ( 2PbO ) form the positive plates (i.e., positive electrodes), 

while grids pasted with sponge lead ( Pb ) form the negative plates (i.e., negative 

electrodes).  Groups of positive plates are alternately interlaced with groups of negative 

plates forming a cell element.  Each plate of opposite polarity is separated with a porous 

envelope separator to allow electrolyte through and prevent plates from contacting each 

other and producing a short-circuit [10].  The six cell elements are connected in series 

using inter-cell links to connect the negative plates of one cell element to the positive 
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plates of the adjacent cell element.  The positive plates and negative plates at opposite 

ends of the battery are connected to the positive and negative terminal posts, respectively.  

Each cell element can provide approximately two volts.  Hence, a six cell automotive 

battery can provide 12V.   

Each cell element contained within one of the six compartments is submerged in 

an electrolyte.  A fully charged battery has an electrolyte composition consisting of 

approximately 36% sulfuric acid ( 42SOH ) and 64% pure water ( OH2 ).  The specific 

gravity of this electrolytic solution is 1.270.  This means that the electrolytic solution 

weighs 1.270 times that of pure water.  The more dilute the electrolyte (i.e., higher water 

concentration) the lower the specific gravity (i.e., more like water).  As the battery is 

discharged, the electrolyte becomes more concentrated with water molecules, lowering 

the specific gravity of the electrolyte.  During charging, the specific gravity of the 

electrolyte increases causing the electrolyte to return to similar concentrations of sulfuric 

acid and water that were present in the original composition.  This observation and 

measure of the specific gravity of the electrolyte can be used to determine the state-of-

charge (SOC) of the battery which will be discussed in a later section. 

 

1.1.2 Chemical Reactions    

The chemical reaction between the dissimilar materials of the plates and the 

electrolyte produce a flow of electrons.  During battery discharging, a chemical reaction 

occurs between the electrolyte and each negative and positive plate causing the release 

and absorption of electrons, respectively.  In general, the total discharge reaction of the 

lead-acid battery is given in (1). 
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                 OH2  PbSO2SOH2 PbO  Pb 24422 ⋅+⋅�⋅++                                     (1) 

 

The sulfuric acid in the electrolyte dissociates into hydrogen and sulphite ions 

)(SO4 .  The lead (Pb)  from the negative plates reacts with the sulphite ions )(SO4  

forming lead sulphate )(PbSO4 .  The lead and oxygen from the lead dioxide )(PbO2  

pasted positive plates dissociates, releasing oxygen into the electrolyte which combines 

with the hydrogen ions in the electrolyte to form a rising concentration of water O)(H2 .  

The oxygen-free lead ions (Pb)  from the positive plates react with the sulphite ions 

)(SO4  in the electrolyte forming lead sulphate )(PbSO4 .  Thus, lead sulphate )(PbSO4  is 

produced on both the negative and positive plates and the electrolyte becomes more 

highly concentrated with water, lowering the specific gravity.  Dilution of the electrolyte 

with water )O(H2  and accumulation of lead sulphate )(PbSO4  on the plates stops the 

chemical reaction, therefore completing the discharge [10][11]. 

More specifically, for the conversion into electrical energy during discharging, the 

total chemical reaction has to be separated into two plate reactions, one that releases 

electrons (i.e., at the negative plate), and one that absorbs electrons (i.e., at the positive 

plate) [11].  At the negative plates, lead (Pb)  is oxidized to ( +2Pb ) ions releasing two 

electrons, and at the positive plates, ( +4Pb ) ions are reduced to ( +2Pb ) ions absorbing two 

electrons [11] given in (2).   

 

                       -2 e2  PbPb ⋅+� +     and     ++ �⋅+ 2-4 Pbe2Pb                            (2) 
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 Within the electrolyte of automotive lead-acid batteries, dilute sulfuric acid 

)SO(H 42  mainly dissociates into ( +⋅ H2 ) and ( -2

4SO ) during discharge [11].  Therefore, 

the reaction at the negative plate is given by (3).  Lead Pb)( is oxidized to divalent lead 

ions )Pb( 2+ , and lead sulphate )(PbSO4 forms, releasing two electrons. 

 

                                     -

4

-

4 e2  H2  PbSOHSO  H  Pb ⋅+⋅+�++ ++ .                                (3) 

 

The reaction at the positive plate is given in (4).  Lead ions )Pb( 4+  are reduced to 

the divalent lead ions )Pb( 2+ and lead dioxide )(PbO2 is converted into lead sulfate 

)(PbSO4  resulting in the absorption of two electrons.   

 

                                   OH2  PbSOe2  H3 HSO  PbO 24

--

42 ⋅+�⋅+⋅++ + .                       (4) 

 

Combining (3) and (4), the sum of both negative and positive plate reactions is the cell 

reaction given in (5).  This results in a flow of electrons from the negative plates to the 

positive plates during discharging. 

 

                               OH2  PbSO2HSO2  H2  PbO  Pb 24

-

42 ⋅+⋅⇔⋅+⋅++ +                       (5) 

 

 During charging of the lead-acid battery, the chemical reaction in (5) is reversed.  

Lead sulphate )(PbSO4 on both plates dissociates into lead ions and sulphite ions )(SO4 , 

and water in the electrolyte dissociates into hydrogen and oxygen.  The sulphite ions 
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)(SO4 recombine with hydrogen from the electrolyte producing sulfuric acid )SO(H 42 , 

raising the specific gravity of the electrolyte.  The negative plates return to their original 

lead (Pb) form [10], and the lead ions (Pb) at the positive plates recombine with oxygen 

from the electrolyte forming the original lead dioxide composition )(PbO2 .  This total 

reaction causes a flow of electrons from the positive plates back to the negative plates. 

 

1.1.3 Battery State 

Effective vehicular power management requires accurate and reliable knowledge 

of the battery state. The battery state is represented by state-of-charge (SOC) and state-of-

health (SOH).  Battery performance is dependent upon the state-of-charge and state-of-

health of the battery.  In order to be able to detect limited battery functionality, it is 

essential to measure or estimate these properties [4]. 

 The battery SOC represents the stored power and energy available.  State-of-

charge (SOC) is the percentage of the actual amount of charge compared with the full 

charge [12].  

 

                                                      %100
charge  totalofamount 

chargeofamountactual
SOC ∗=                                      (6) 

 

One method to estimate battery SOC externally is to measure the equilibrium 

open circuit voltage (OCV) after the battery has relaxed for an extended period of time.  

Because the specific gravity of the electrolyte, the open circuit voltage (OCV), and the 

SOC of a battery have a nearly linear relationship, the state-of-charge can be determined 

from a look-up table [8][10].   
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Another existing method to estimate battery SOC uses the coulomb counting 

method.  This method is based on current integration.  The change in battery state-of-

charge ( SOC∆ ) due to charging or discharging is given by (7), where )( Iη is the charging 

efficiency, Tβ  is the temperature coefficient with rated capacity, and ratedCap  is the rated 

capacity of the battery [13][14]. 

 

                                    
ratedT

t

t

batI

Cap

dtI

SOC
][

0

)(

β

η�
=∆                                                         (7) 

 

The battery’s net cumulative charge is determined then as the difference between the 

previous SOC and SOC∆  as, SOCSOCSOCnet ∆−= 0 .  Throughout this research, this 

method is used to estimate the SOC of batteries used during vehicle test cranking.   

 Battery SOH is an indication of power capability and battery capacity and 

depends on battery SOC and temperature.    Poor battery performance can be caused by 

low SOH and/or low SOC.  Thus, an automotive battery may be unable to meet one 

demand (e.g., cranking), but is ready to meet other vehicle electric demands (e.g., lighting 

and power locks) [12] or vice versa.  Therefore, battery SOH includes cranking power 

SOH, which is a measure of the battery’s ability to start the vehicle, and capacity SOH, 

which is a measure of the battery’s ability to meet reserve capacity requirements. 
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1.1.4 Battery Aging and Service Life 

 Material changes and transport of substances are the most basic processes within a 

battery.  In large part, stresses to the battery material age the battery and determine its 

service life.  These stresses depend largely on the operating conditions of the battery 

(e.g., temperature and number of discharge/charge cycles).  Many parameters influence 

battery aging and battery service life.  Temperature, being one of these parameters, has a 

decisive influence on battery aging and service life.  Increased temperature speeds up the 

rate of most electrochemical reactions whether they are desirable or undesirable.   

 Undesirable electrochemical reactions are called aging factors in batteries.  Many 

of these aging factors are irreversible and ultimately cause battery failure.  For lead-acid 

batteries, the predominant modes of failure are as follows: 

• Grid corrosion in the positive plates.  Due to the compact design of an 

automotive battery, grid corrosion may cause grid growth resulting in short-

circuits between the positive plate and negative pole bridge [11]. Moreover, 

grid corrosion increases the internal resistance of the battery and reduces 

discharge voltage.  Increased temperatures and overcharging at too-high a cell 

voltage contribute to grid corrosion.     

• The disintegration of lead dioxide and re-crystallization of lead called 

sulfatation.  This condition causes the negative electrode to lose capacity due 

to the formation of large lead sulfate crystals, thus reducing the active surface 

area.  Sulfatation is aggravated by increased temperatures, repeated 

charge/discharge cycles, and plates that remain in a partly discharged state for 

prolonged periods [15].   
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• Positive active mass degradation and loss of coherence to the grid [15].  This 

condition is the result of the positive active material becoming so porous that 

contact between the positive active material and the grid is eventually lost.  

Prolonged cycling causes the active material to become softer and softer to 

the point of “shedding” or “sludging”.   

• Water loss.  Increases in water loss (aging of the electrolyte) contribute to 

shortened service life or battery failure.  Electrolysis of water, as a result of 

overcharging, dissociates hydrogen from oxygen causing hydrogen gas 

evolution and ultimately water loss.  Increased acid concentration increases 

the rate of self-discharge resulting in an insufficient SOC and sulfatation [15]. 

• Oxidation by oxygen intake.  The intake of oxygen causes the negative plates 

to become partly discharged reducing the capacity of the negative plates and 

the battery state-of-charge [11]. 

• Short circuits.  Short circuits can occur across the separators as a result of 

prolonged deep-discharge [15].  The concentration of sulfuric acid decreases 

significantly during deep-discharge.  Large amounts of lead sulfate produced 

on the plates can fill the pores of the separators.  During recharge, the lead 

sulfate in the pores of the separator may be converted into metallic lead 

deposits on the separators creating a short circuit between the positive and 

negative plate material. 
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1.2 Vehicle Engine Cranking 

 Successfully starting an internal-combustion engine requires that the engine is 

cranked at a speed (i.e., 50-100 rpm for cold starting) sufficient to make combustion 

possible and to give the flywheel sufficient momentum to keep rotating for a few firing 

strokes until the engine is capable of running unassisted [10].  In order for the engine to 

be cranked, a dc starter motor is required to produce high initial torque to rotate the ring 

gear of the flywheel to overcome the inertia of a stationary engine and transmission 

components [10].   

 A starter motor is a high torque dc motor that is designed to operate at extreme 

overload and high efficiency.  Mounted on the starter motor is a solenoid consisting of a 

cylindrical plunger surrounded by a hold-in winding and a pull-in winding.  The plunger 

operates a shift lever used to engage the pinion gear on the output shaft of the motor with 

the ring gear around the flywheel.  The plunger also pushes a contact bar that closes the 

battery/motor circuit in order for high current to flow to energize the starter motor.    
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Figure 1:  Battery voltage, current, and engine rpm waveforms during the engine 

cranking process. 
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 Figure 1 shows typical voltage, current, and engine rpm waveforms for a 

successful engine start, where T0 = 0, T1 is the instant when the starter is engaged, and 

T2 is the instant when engine cranking is successfully completed (i.e., about 500 rpm).  

The time from T0 to T2 defines the total engine start time.  When the key is turned to the 

crank position at T0, the cranking procedure begins.  The ignition switch closes, and an 

electrical delay follows from T0 to T1 where several pre-crank procedures occur such as 

fuel pressure initialization, a crank request received by the electronic control module 

(ECM), calibration delays, and the starter motor relay is commanded on.  Once these pre-

crank procedures are completed, current from the battery flows through the starter motor 

relay to the starter solenoid through a pull-in winding that electromagnetically pulls the 

plunger into the core causing the connected shift lever to push the pinion gear forward to 

mesh with the ring gear.  Immediately after the mechanical connection between the 

pinion and ring gears is completed, the plunger pushes a contact bar at the rear of the 

solenoid.  The contact bar closes the circuit between the battery and the motor allowing 

high current to flow from the battery to energize the motor.  The events just described 

above are completed prior to time T1.   

 The time from T1 to T2 specifically defines the engine crank time.  At time T1, 

the starter motor has just engaged, and its angular velocity is still zero.  Since motor 

torque is directly proportional to the current supplied, maximum torque is produced when 

the armature (i.e., output shaft) is stationary (i.e., when angular velocity is zero) [10].  

Hence, at time T1, the magnitude of I(T1) is greatest at this instant of the cranking 

procedure and there is no back emf.  A small proportion of this current flows through a 

hold-in winding keeping the plunger held in its active position.   
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 Just after time T1, the starter motor begins rotating the flywheel through the 

pinion/ring gear mesh, thereby rotating the crankshaft.  As can be seen in the engine 

cranking speed waveform plot of Figure 1, the crank shaft is being rotated at 

approximately 50-100 rpm for several tenths of a second prior to time T2.  As the rotation 

speed of the starter motor increases, back emf increases proportionally opposing the 

current supply thereby reducing the current drawn from the battery to the starter motor 

[10].  This reduction in current is evident in the current waveform plot of Figure 1 where 

there is a sharp decrease in the magnitude of the current just after time T1.  When the 

back emf has reached the level of the battery voltage, the starter motor will have reached 

its maximum speed.   

 The oscillations evident in the voltage and current waveforms after time T1 in 

Figure 1 coincide with the compression and combustion strokes of the engine.  During 

compression, more power (i.e., voltage and current) is needed to overcome the resistive 

forces of compression.  Increased voltage and current magnitudes correspond to 

compression strokes whereas decreased voltage and current magnitudes correspond to the 

combustion strokes. 

 Finally, in the engine cranking speed waveform plot of Figure 1, after the engine 

cranking speed has reached approximately 500 rpm at time T2, the engine is capable of 

running without the assistance of the starter motor.  At this time, the ignition switch is 

opened cutting current to the hold-in winding of the starter solenoid.  A return spring 

forces the contact bar and plunger back to their resting positions de-energizing the starter 

motor and then disengaging the pinion/ring gear mesh to prevent overrunning the starter 
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motor.  In Figure 1, the magnitudes of the voltage and current return to a steady state, 

approximately two-tenths of a second after time T2.   

 Engine cranking demands high power from the battery in a short period.  This 

demand, as well as supplying power to other systems makes reliable battery operation 

imperative.  Knowledge of the battery state, the battery’s current condition, and future 

performance using battery state-of-health monitoring is essential to ensure that the battery 

is ready to perform high reliability functions on demand. 

 

1.3 Battery State-of-Health Monitoring 

1.3.1 Benefits of Battery State-of-Health Monitoring 

It is the goal of this research to develop more robust and effective algorithms to 

monitor the automotive battery state-of-health (SOH).  Knowledge of the battery SOH 

allows conclusions to be drawn about the battery’s future performance, best use of its 

capability to supply power for high reliability devices, and more importantly its end-of-

life and replacement.  Accurate battery SOC and SOH information offered by battery 

monitoring will allow advanced power management strategies to be implemented; hence, 

achieving the following cost and safety related benefits: 

 

• Reduction in fuel consumption and emission rates.  First, accurate electric power 

management is essential to support advanced stop-start systems (i.e., micro 

hybrids), hybrid electric systems, and other engine efficiency solutions.  

Secondly, advanced power management can optimize the use of the alternator and 
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consequently fuel consumption by avoiding unnecessary charging of a battery at 

an adequate SOC. 

• Extend battery life by maintaining an optimal battery SOC range.  Consistently 

operating a lead-acid battery at low SOC will reduce the battery’s service life. 

• Improved vehicle safety by determining best use of the battery’s capability for 

safety-related features.  Monitoring of the battery state allows for advanced power 

management to either reduce electrical power consumption by selectively limiting 

operation of luxury functions or increase power generation by controlling the 

alternator, engine speed, or automatic gearbox control to guarantee sufficient 

power to operate safety-related features. 

• Increased cranking reliability.  Advanced power management can guarantee 

adequate future cranking power capability.   

• Reduced incidences of vehicle breakdown due to low SOC and/or low SOH 

battery failures.  The power management system can automatically charge the 

battery or provide replacement strategies to avoid ensuing vehicle breakdowns. 

• Optimized battery and generator size and cost.  Since the battery SOC can now be 

controlled accurately, larger batteries and alternators are no longer needed for 

marginal operating conditions. 

• Reduced battery warranty cost.  Accurate battery SOH information prevents 

mistaken replacement of batteries with a low SOC but good SOH. 
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1.3.2 Overview of Fault Diagnosis Methods 

 A fault is an undesirable deviation from normal behavior of a characteristic 

property of a variable.  Approaches to fault diagnosis or detection are either model-based 

or qualitative (model-less).  Model-based fault detection can be achieved using parameter 

estimation, state variable estimation and observers, and parity-relation equations.  Below, 

the model-based fault diagnosis methods are briefly described. 

• Fault detection with parameter estimation.  Model parameters are constants or 

time-dependent coefficients that are part of a process model.  The process model 

is a mathematical relationship between the input and output signals.  For 

processes containing lumped parameters, dynamic process models are differential 

equations linearized about one operating point given by (8). 
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 The model parameters ]......[ 11 nn

T
bbaa �=θ  are the relationships of the 

 coefficients of the physical process (e.g., mass, resistance, capacities).  Faults 

 occurring in the physical process constants will be  expressed in the model 

 parameters [16].   

  When changes in the physical process coefficients indicating faults cannot 

 be measured directly, changes in the process model parameters, θ , can be used to 

 detect faults.  The following procedure describes the parameter estimation  method 

 [16]: 
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1) By theoretical modeling, establish the process equation, }),({)( θtUftY = , 

for measurable input and output variables. 

2) Determine relationships between model parameters iθ  and physical 

process coefficients jp : )( pf=θ . 

3) Using the measurements of the signals )(tY  and )(tU , estimate the model 

parameters iθ . 

4) Calculate the physical process coefficients, )(1 θ−= fp , and determine 

their changes, jp∆ .  

5) With a known relationship between process faults and changes in the 

physical process coefficients, possible process faults can be located. 

 

 This procedure combines theoretical modeling and parameter estimation of 

 continuous-time models and require that )(1 θ−= fp  exists [16].   

 

• Fault detection with state variable estimation and observers.  When internal, 

immeasurable process state variables indicate process faults, these state variables 

can be estimated from measurable signals with the use of a known process model.  

In general, dynamic relationships, },,{)( tYUftX = , exist within the automotive 

battery.  To linearize these dynamic relationships about one operating point, the 

state representation is given by (9) and (10), where Yy ∆= , Uu ∆= , xx ∆=  are 

the changes of Y, U, and X, respectively [16]. 
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                                         )()()( tButAxtx +=�                                                       (9) 

                                                    )()( tCxty =                                                                  (10) 

 

 Assuming that A, B, and C are known process parameters, using a state 

 variable observer (deterministic case) or state variable filter (stochastic case) with 

 a properly designed feedback matrix H, the immeasurable state variables can be 

 estimated from the input and output signals [16][17], where )(te is the output error 

 given in (11) and (12). 

 

                                               )()()(ˆ)(ˆ tHetButxAtx ++=�                                        (11) 

                                          )(ˆ)()( txCtyte −=                                                       (12) 

 

 With a stable observer, changes in the process (i.e.,  noise and faults) can be 

 modeled by )(tv and sensor faults by )(tµ in (13) and (14), respectively, where 

 )(tυ  is process faults and )(tn is noise from measurement. 

 

                                            )()()()()( tvtFtButAxtx +++= υ�                                 (13) 

                                            )()()()( ttntCxty µ++=                                               (14) 

 

 Abrupt changes of the states and the outputs can be detected using Kalman-Bucy 

 filters where residuals are generated [16].  Faults can then be detected by 

 comparing the residual with a designed threshold. 
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• Fault detection with parity-relation techniques.  This model-based method, 

requiring known process model parameters, runs a fixed model MG  parallel to the 

process PG to produce an output error given in (15). 

 

                                                          )()]()([)(' susGsGsr MP −=                                   (15) 

 

 Residuals are generated by (16) for additive input and output faults if 

 (s)G(s)G MP = .  The input and output signal faults are uf  and yf ,  respectively.  

 The generated residuals can then be compared to a designed threshold to pinpoint 

 faults [17]. 

 

                                                            )()()()(' sfsfsGsr yuP +=                                   (16) 

 

 Some qualitative (model-less) approaches to fault diagnosis have also been 

considered, such as pattern recognition methods, inference methods (e.g., expert systems, 

fuzzy systems) and a combination of these two approaches [18][19][20].  An obvious 

advantage of these approaches is that a good mathematical model of the monitored 

system is not required.  However, qualitative methods are relatively ambiguous and 

crude, which usually result in more missed faults and false alarms. 
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1.3.3 Previous Work 

 The ever increasing number of auxiliary features installed in today’s cars requires 

careful monitoring and control of the energy balance to avoid electrical system weakness 

[11].  The automotive battery is required to assist in many high reliability functions such 

as engine cranking, anti-lock braking, and lighting.  Just as knowing the amount of 

remaining fuel in the vehicle’s gas tank is important for future operation, knowledge of 

the battery’s amount of charge, capacity, and overall health are essential for successful 

future operation of the vehicle.  Many methods have been proposed to monitor the 

current state of the automotive battery and predict the overall health and future 

performance of the battery.  The most common approaches to monitor battery SOH are 

based on resistance estimation and analysis of the parameters from a highly sophisticated 

battery model [5][6][7][8]. 

 It has been well documented that battery internal resistance increases with the age 

of the battery.  Many methods available are based on continually measuring parameters 

such as the voltage, charging or discharging current, and temperature of the battery in 

order to derive the internal resistance or impedance of the battery.  The battery terminal 

voltage is measured at different discharge currents to estimate the internal resistance of 

the battery which is comprised of the ohmic resistance within the electrodes and 

electrolyte [11].  Using Ohm’s Law, the resistance is calculated as the quotient of the 

change in voltage and the change in current.  By analyzing the internal 

resistance/impedance data, thresholds are set to determine the battery’s end-of-life.  The 

problems with these methods are two fold.  First, they are not robust to variation of 

battery types.  All batteries are not manufactured equally, and there is no control over 
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which battery the driver may install in the vehicle.  Since different batteries demonstrate 

higher internal resistance than others, constant adjustment to parameter thresholds is 

required.  Secondly, costly high current sensors are required in order to derive internal 

resistance measurements of the battery. 

 State-of-health monitoring methods based on analyzing parameters of an 

equivalent circuit battery model are also common practice [5][6][7][8].  Many of these 

methods require use of a current sensor and use of constant thresholds on selected battery 

model parameters.  A model-based method used in recent years is a galvanostatic non-

destructive technique to monitor the battery state-of-health by analyzing impedance 

parameters [21].  This proposed method discharges the battery galvanostatically at a low 

rate over a short duration in order to obtain the ohmic resistance, charge-transfer 

resistance, and interfacial capacitance.  In another method, the authors of [22] analyzed 

data obtained from impedance measurements over a wide range of frequencies and 

coulomb counting techniques.  Fuzzy logic mathematics was then applied to determine 

battery SOC and SOH [22].  Linear or nonlinear observers, based on the Kalman Filter, 

Extended Kalman Filter and a generic cell model, have been employed to predict the 

state-of-charge and state-of-health of lead-acid batteries in [23].  

  

1.4 Outline 

 An essential functionality of automotive batteries is to deliver high power in short 

periods, for instance, to crank the engine.  This paper presents more reliable state-of-

health monitoring algorithms for automotive lead-acid batteries to ensure a vehicle’s 

start-up ability.  Specifically, this thesis has four main contributions.  First, a new battery 
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model during engine cranking is developed.  Based on extensive analysis of various 

vehicle cranking data, battery ohmic behavior and voltage loss have been clearly 

observed.  The proposed new battery model, which takes into account both the battery’s 

voltage loss and ohmic behavior, is more accurate and computationally efficient than 

conventional methods.  

 Second, a battery cranking voltage based SOH monitoring method was developed 

by employing characteristics of the battery voltage signal during vehicle starting.  This 

method doesn’t require a costly high cranking current sensor. Moreover, battery end-of-

life is determined based on particular features of the battery voltage signal during vehicle 

starting, so that algorithm calibration is much easier [24]. 

 Third, a parity-relation based SOH monitoring algorithm was developed by using 

battery cranking voltage and current signals.  Analysis of various cranking data has 

indicated that, in addition to battery resistance, battery voltage loss during cranking also 

provides valuable information of battery SOH.  A calibrated parity-relation, 

characterizing the dynamics of good batteries during vehicle cranking, is used to estimate 

battery cranking voltage given a current signal. A residual, generated as the discrepancy 

between the actual voltage measurement and its estimation, is used to infer battery SOH. 

Through analysis of the residual based on a battery model during cranking, it is shown 

that the residual integrates the SOH information provided by both battery resistance and 

voltage loss, hence enhancing fault sensitivity and diagnostic/prognostic robustness [25].  

 Finally, it has been observed in this research that a correlation between battery 

SOH and engine cranking speed exists.  On-line model-based fault diagnosis using 

engine cranking speed is difficult due to the complicated engine dynamics involved in 
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modeling the engine cranking process.  Therefore, a support vector machine based pattern 

recognition method was developed utilizing features of battery voltage and engine 

cranking speed during cranking.    Rather than constructing a physics-based model, a 

statistical model was trained with data sets representing the battery voltage and engine 

cranking speed of fresh and aged batteries.  Good separation between the fresh and aged 

classes of batteries enabled the support vector machine to effectively classify previously 

unseen test data and provide a percentage based estimation of battery SOH. 

 The remainder of this thesis is organized as follows.  Chapter 2 describes the new 

battery model during engine cranking.  Chapter 3 describes the motivation, analysis, and 

on-board implementation of the battery cranking voltage based SOH monitoring method. 

Examples of the battery cranking voltage based algorithm performance evaluation results 

are included.  Chapter 2 and Chapter 3 are based on the conference paper titled, 

“Automotive Battery State-of-Health Monitoring: A Battery Cranking Voltage 

Approach” [24]. 

 Chapter 4 describes the motivation, analysis, and on-board implementation of the 

parity-relation based SOH monitoring method.  Examples of the parity-relation based 

algorithm performance evaluation results through analysis of extensive vehicle cranking 

data are included.  This chapter is based on the conference paper titled “Automotive 

Battery State-of-Health Monitoring: A Parity-Relation Based Approach” [25]. 

 Chapter 5 presents comparative studies to further evaluate the performance, cost, 

and benefits of the algorithms.  Specifically, the conventional resistance based approach 

is compared to these two battery SOH monitoring methods; the battery cranking voltage 

based method and the parity-relation based method.  The weakness of the conventional 
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resistance based method is shown with respect to variation of battery types. The 

robustness of the battery cranking voltage based approach and the parity-relation based 

approach in determining battery SOH for different types of batteries is also shown.  

Furthermore, the battery cranking voltage based approach is compared with the parity-

relation based approach to analyze the benefit with the use of an additional cranking 

current sensor.  

 Chapter 6 provides a brief introduction to support vector machines and the 

motivation and analysis of the support vector machine based pattern recognition method 

for battery SOH monitoring.  Examples of the performance evaluation results through 

analysis of vehicle cranking data collected weekly from 10 Johnson Control LN3 

batteries are also included.  Finally, Chapter 7 discusses the conclusions from this 

research and future research including capacity-based SOH monitoring methods and 

methods capable of predicting the remaining useful life of a battery.   
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CHAPTER 2 

BATTERY MODEL DURING ENGINE CRANKING 

 

 

In this chapter, the battery dynamics during engine cranking are analyzed, and a 

new battery equivalent circuit model is presented.  Compared with conventional battery 

models (e.g., [1][7][9]), the new model takes into account the battery’s ohmic behavior 

and voltage loss during engine cranking.  Therefore, it is a more accurate and 

computationally efficient representation of battery dynamics during engine cranking. 

A widely used battery model for normal vehicle operations is the Thevenin 

battery model shown in Figure 2 (see, for example, [1][7][9][26][27]), where bR  is the 

ohmic resistance, ocvV  is the battery open circuit voltage, dlC is the double layer capacitor, 

and CTR  is the charge transfer resistance. More sophisticated models have also been 

introduced, by including additional components such as a Warburg impedance [28], 

constant phase elements [28][29], or another RC component representing the diffusion 

process [30]. 
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Figure 2:  Thevenin battery model. 

 

 

 

2.1 Battery Ohmic Behavior during Cranking 

 
Typical battery current and voltage signals during vehicle cranking are given in 

Figure 3. To extract the portion of battery signals corresponding to the short period of 

vehicle cranking, the following procedure is applied.  First, the voltage and current data 

samples corresponding to initial cranking voltage drop are located.  Second, starting from 

that position, we locate the next sample whose battery current is greater than -100 A, 

which indicates the end of the cranking process. The data between these two samples 

characterizes the battery current and voltage signals during cranking. The extracted 

voltage and current data is plotted in Figure 4.  
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Figure 3:  Typical signals of battery 

voltage and current during engine cranking. 
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Figure 4:  Extracted signal in a V-I plot (the 

linear least squares fit line is also shown). 
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The ohmic relationship between battery voltage and current can be clearly seen, 

which justifies the simplified model during vehicle cranking shown in Figure 5.  In other 

words, the extra double layer RC components given in Figure 2 or other more 

complicated components, [27][28][29][30], are not needed to model the battery dynamics 

during cranking.  Therefore, the new model is more computationally efficient. 
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Figure 5:  Voltage ohmic model. 

 
 

2.2 Battery Voltage Loss during Cranking 

 
 In the battery ohmic model shown in Figure 5, the battery current and terminal 

voltage satisfies the following equation (17), where I(t) < 0 for discharge during 

cranking.   

 

                                                                    .  R I(t) VV(t) bocv ∗+=                                                   (17) 

 

 

In other words, the intercept voltage 0V  (i.e., the voltage corresponding to 0=I ), shown 

in Figure 4, should be equivalent to the open circuit voltage ocvV . However, extensive 
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analysis of various vehicle cranking data has indicated that the intercept voltage obtained 

from the V-I plot is lower than ocvV , which is due to extra battery voltage loss during 

cranking.  

The value of voltage loss can be estimated as 

                                                                       oocvloss VVV −=  .                                                             (18) 

 

 

Figure 6:  Flow chart for estimation of voltage loss. 
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A detailed procedure to compute lossV is shown in Figure 6.  We start with reading 

the extracted battery terminal voltage and current data, (i.e., V and I ).  Then, a least 

squares fit in the form of (19) is applied to estimate the intercept voltage 0V  and the 

battery resistance bR . 

 

                                               b R I(t)  VV(t) ∗+= 0  , (I(t) < 0 for discharge),                  (19) 

 

 

 

More specifically, by defining Vy and  ,]  1[  ,]  [ 0 === TT

b I x RVθ , the above equation 

can be written in the form of equation (20). 

 

                                                                        θTxy = .                                                                 (20) 

 

 

 

By using linear least squares fit, an estimation of the unknown parameters are given by 
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                                                                YXXX TT 1)( −=θ ,                                                  (21) 

 

 

After 0V  is obtained, by using (17) and (19), the battery voltage loss is obtained from 

(18). 
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 For instance, in Figure 4, the measured battery open circuit voltage before 

cranking is approximately 12.60 volts, while the intercept voltage computed from linear 

regression is approximately 11.95 volts.  Therefore, the voltage loss is approximately 

0.65 volts. 

 

2.3 New Battery Model during Cranking 

 
Based on the above analysis, a new battery model is developed, which takes into 

account both ohmic behavior and voltage loss during engine cranking.  As illustrated in 

Figure 7, bR is the battery internal resistance which represents the ohmic behavior of the 

battery, and lossV  is the battery voltage loss during cranking.  By using V and I (I < 0 for 

discharge) to represent the battery terminal voltage and current, respectively, we have: 

 

                            blossocv RtIVVtV ∗+−= )()( , (I(t) < 0)                                    (22) 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 In general, Vloss can depend upon the current level.  In this research, the focus is 

on high currents during cranking.  Therefore, Vloss can be considered as a constant 
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Figure 7:  New battery model during cranking. 
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throughout the cranking process.  An example of the evaluation results of the new battery 

model is illustrated in Figure 8.  The figure contains the plots of the actual battery voltage 

cranking data (solid line) and the battery cranking voltage based on the new battery 

model generated from (20).  As can be seen in the figure, the battery cranking voltage 

generated from the new battery model closely approximates the actual battery voltage 

signal during cranking. 
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Figure 8:  Comparison of new battery model based cranking voltage with actual cranking 

voltage signal. 
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CHAPTER 3 

BATTERY CRANKING VOLTAGE BASED SOH 

MONITORING METHOD 
 

 

 

An existing approach to determine battery SOH utilizes the minimum battery 

cranking voltage (i.e., at starter engagement).  The minimum voltage based method uses a 

calibrated threshold on the minimum voltage during cranking to determine battery SOH.  

However, this approach is not very robust.   

 

Figure 9:  Battery cranking voltage signals. 

 

Figure 9 shows the battery cranking voltage signals from a battery that was aged 

with accelerated aging procedures.  This battery failed to crank the vehicle at week 14.  

The minimum voltage, V1, for week 9 (i.e., 5 weeks before cranking failure) and week 13 



 33 

(i.e., 1 week before cranking failure) are approximately equal.  The inherent problem 

with this approach is calibrating a threshold on V1 that can discriminate between a battery 

that has some remaining useful life and a battery that is at end-of-life.  In this example, 

setting a threshold at about 9 volts would surely cause a false alarm for the battery at 

week 9 that still has some remaining useful life.  However, calibrating a threshold at 

about 8.5 volts to avoid misdiagnosis of the battery at week 9 would provide no pre-

warning of pending cranking failure at week 14.   

This chapter describes a battery cranking voltage based SOH monitoring method 

by using characteristics of the battery voltage signal during vehicle starting.  This is an 

efficient method that doesn’t require a costly high cranking current sensor compared to 

other methods such as the conventional resistance based approach.  Moreover, algorithm 

calibration is much easier because battery end-of-life is determined based on particular 

features of the battery voltage signal during vehicle starting.   

The basic idea of this SOH monitoring method consists of two steps.  First, the 

cranking power capability of the battery is determined by comparing the battery voltage 

at the instant of starter engagement (i.e., V1) with the minimum voltage during the 

subsequent engine cranking phase.  Second, with additional information of the battery 

SOC and temperature, battery SOH can be inferred.  This method can be used to offer a 

pre-warning of battery end-of-life and avoid walk-home situations due to battery failures. 

Moreover, it can help to reduce battery no-trouble-found (NTF) and warranty cost. 

In Section 3.1, we describe the characteristics of battery voltage during cranking 

for batteries with different power capabilities, which motivates the proposed battery SOH 

monitoring method.  Based on the new battery model developed in Chapter 2, the battery 
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cranking voltage characteristics are analyzed in Section 3.2.  Section 3.3 gives a detailed 

description of the proposed SOH monitoring algorithm.  Section 3.4 includes examples of 

the battery cranking voltage based algorithm performance evaluation results through 

analysis of extensive vehicle cranking data collected from 10 field batteries and 10 

Johnson Control LN3 batteries that were used in testing to crank two different vehicles. 

 

3.1 Characteristics of Battery Voltage during Engine Cranking 
 

In this research work, we have conducted extensive battery cranking tests using a 

variety of batteries collected from the field and production batteries aged through 

accelerated aging.  A correlation between the battery cranking voltage characteristics and 

the cranking power capability has been consistently observed. 

 

 

Figure 10:  Battery voltage and engine rpm waveforms of a battery with high power. 
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Figure 10 shows a typical battery voltage signal (upper plot) and the 

corresponding engine RPM signal (lower plot) for a battery with sufficiently high starting 

power during vehicle starting.  T1 is the instant when the starter is engaged, T2 is the 

instant when the battery voltage signal reaches its first peak after T1, T3 is the instant 

when engine cranking is successfully completed, V1 is the battery voltage at T1, and V2 

is the minimum battery voltage in the time interval [T2, T3].  As can be seen in Figure 10, 

if the battery power is high, we have V2 > V1, that is, the minimum battery voltage 

during vehicle starting occurs at the instant of starter engagement (i.e., T1), and the 

cranking process is successfully completed at a time less than 1 second. 

 

 

 

Figure 11:  Battery voltage and engine rpm waveforms of a battery with low power. 
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In contrast, Figure 11 shows a typical battery voltage signal (upper plot) and the 

corresponding engine RPM signal (lower plot) for a battery with low starting power 

during vehicle starting.  Comparing with Figure 10, it can be seen that the minimum 

battery voltage during vehicle starting does not occur at the instant of starter engagement, 

but during the subsequent engine cranking phase, (i.e., [T2, T3]). In other words, we have 

12 VV < , which indicates that the battery’s power is low. As can be seen, the cranking 

process is barely completed after 1.2 seconds. The battery needs to be replaced and/or 

recharged to avoid cranking failure.    

The proposed battery cranking voltage based SOH monitoring method is 

motivated by the above observation of voltage characteristics during engine cranking. In 

order to develop an effective battery SOH monitoring algorithm, it is of great importance 

to understand the battery’s dynamical behaviors during the engine cranking process 

presented in Chapter 2. 

 

 

3.2 Analysis of Battery Cranking Voltage Characteristics 
 

             Figure 12 and Figure 13 show the typical cranking voltage and current 

waveforms of batteries with high power and low power, respectively.  As shown in 

Figure 12, for a battery with high power, the voltage at T1 (i.e., V(T1)) is less than the 

voltage at T2 (i.e., V(T2)).  However, for a battery with lower power, as shown in Figure 

13, the voltage at T1 is higher than the voltage at T2, (i.e., V(T1) > V(T2)).   
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Figure 12:  Typical voltage and current waveforms of a battery with high power. 

 

Figure 13:  Typical voltage and current waveforms of a battery with low power. 

 

Note that at T1, the starter motor is just engaged, and its angular velocity is still zero. 

Hence, there is no back emf at T1, and the magnitude of I(T1) is always largest 

throughout the cranking procedure regardless of the battery’s power capability, (i.e., 

I(T1) <  I(T2) for I<0), as can be seen from Figure 12 and Figure 13.  Moreover, the open 

circuit voltage ocvV  should remain the same at T1 and T2, since the battery SOC is 

unchanged.  By using the battery model given in (22), we can see that, for a battery of 

low power, the fact that V(T2)<V(T1) implies that )1()2( TVTV lossloss >  and/or 
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)1()2( TRTR bb > . The increase of battery voltage loss and/or battery resistance indicates 

the battery’s power capability is low, and battery dynamics are not stable during the 

cranking process. The battery should be replaced or recharged.    

To get further insight into the cranking voltage based battery SOH monitoring 

method, the battery voltage and current signals corresponding to the cranking process in 

Figure 12 and Figure 13 are extracted and plotted in Figure 14 and Figure 15, 

respectively. As can be seen from Figure 14 (corresponding to Figure 12), if the battery 

has sufficiently high cranking power, the voltage difference, 012 >−=∆ VVV , and the 

cranking voltage and current has a good linear relationship.  In contrast, Figure 15 

(corresponding to Figure 13) shows that with a battery of low cranking power, the 

voltage difference, 012 <−=∆ VVV , and the relationship between  cranking voltage 

and current becomes  nonlinear.  Extensive analysis of vehicle cranking data has shown 

that this type of strong nonlinear behavior is a good indication of low battery power or 

pending cranking failure.  

 

Figure 14:  Extracted signals from Figure 12  in a V-I plot. 
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Figure 15:  Extracted signal from Figure 13 in a V-I plot. 

 

Note that while checking the relationship between voltage and current requires the 

use of an expensive high cranking current sensor, the battery cranking voltage based SOH 

monitoring method presented in this research is an indirect method without the need of a 

high current sensor. Moreover, the computation involved in on-board implementation is 

very simple. 

 

3.3 Implementation of the Battery SOH Monitoring Algorithm 
 

It is worth noting that a low voltage difference V∆ can be caused by low battery 

SOH and/or low SOC. To determine battery SOH, one approach is to define the threshold 

on V∆  as a function of SOC and temperature. An alternative method is to determine 

battery-end-of-life if V∆ is low (e.g., below zero) and battery SOC is above a certain 

calibrated level. To simplify the calibration process, in this research work the latter 

approach is adopted.  Next, the proposed battery SOH monitoring algorithm using the 

battery’s cranking voltage characteristics is described.  
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This SOH monitoring method consists of two steps. First, determine the cranking 

power capability of the battery by comparing the battery voltage at the instant of starter 

engagement with the minimum voltage during the subsequent engine cranking phase. 

Second, with additional information of the battery SOC and temperature, battery SOH 

can be inferred.  More specifically, the inputs to the algorithm are the battery minimum 

voltage at the initial drop (V1), the battery minimum voltage after the first peak voltage 

during vehicle starting (V2), battery start-up SOC, and battery temperature.  The 

specifications of the sensor signals and variables are listed in Table 1. 

 

Table 1:  Specifications of sensor signals and variables. 

Battery signals accuracy resolution range # of 

samples 

sampling 

rate 

Voltage (V) +/- 0.1 0.001 0 to 16 2 2 samples 

Temperature 

(0C) 

+/- 5 1 -40 to +80 1 1 sample 

SOC (%) +/- 10 1 0 to100 1 1 sample 

 

The proposed on-board implementation of the algorithm has the following calibration 

parameters: 

• A threshold SOC_Threshold calibrated as a 1x4 2-D look-up table as a function of 

EBT (estimated battery temperature) (e.g., 50°C, 25°C, 0°C, -18°C). 

• A threshold �V_Threshold calibrated as a 1x4 2-D look-up table as a function of 

EBT (e.g., 50°C, 25°C, 0°C, -18°C). 

 It is worth noting that a positive constant for �V_Threshold is used instead of 0.  

The main objective is to offer a pre-warning before the battery’s SOH is too low.  Hence, 
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the driver can be informed in a timely manner before cranking failure to avoid walk-

home situations.  Moreover, the RVC (regulated voltage control) algorithm typically 

regulates battery SOC to 80%.  By assuming 10% SOC estimation error and another 10% 

SOC loss due to parasitic load when the vehicle is off, it is possible that the battery’s 

SOC will reach 60% even under normal operating conditions.  Therefore, 60% for the 

SOC_Threshold is used. 

 Based on the above discussions, the on-board computational procedure of the 

algorithm is as follows (see Figure 16 for a flow chart):   

1) Obtain the battery voltage V1 and V2; 

2) Compute the voltage difference �V = V2 – V1; 

3) Use EBT to obtain SOC_Threshold and �V_Threshold from the calibrated lookup 

table; 

4) If �V < �V_Threshold and  

• StartUpSOC > SOC_Threshold, issue a message of “Replace Battery”, return. 

• StartUpSOC ≤  SOC_Threshold, issue a message of “Recharge Battery”, 

return. 
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Figure 16:  Flow chart of on-board implementation of battery SOH monitoring method. 

 

To get more insight into the above procedure, let us consider two illustrative 

examples. If a battery at 25°C and 80% SOC has a �V = 0.2 (i.e., below the 

�V_Threshold), then a message of “Replace Battery” is issued.  In contrast, a battery at 

25°C and 20% SOC having �V = 0.2, would warrant a message of “Recharge Battery” 

based on the algorithm.  Intuitively, in the former case, since the battery with 80% SOC 

has difficulty cranking the vehicle at 25°C, the battery should be replaced.  For the latter, 

the battery’s low cranking power could be due to low SOC (i.e., 20%), so the battery 

should first be recharged.  In the following section, examples of the algorithm’s 

performance evaluation results are presented in detail.  

 

Start 

Obtain voltage V1 and V2 

SOC > SOCTh

Compute V1 - V2 �V = 

h �VT �V < 

End 

Replace Battery 

Charge Battery 

YES 

NO 

YES 
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3.4 Algorithm Performance Evaluation  

To evaluate the performance of the battery cranking voltage based method, the 

SOH monitoring algorithm described in Section 3.3 was applied to determine the SOH of 

10 field batteries and 10 new Johnson Control (JCI) LN3 production batteries used to 

crank 2 vehicles under various conditions.  The 10 field batteries were selected from a 

pool of approximately 100 field batteries collected from two distinct climate regions in 

the United States. The field batteries originated from dealer service garages in the 

Chicago, Illinois area and the Phoenix, Arizona area.  These field batteries were tested at 

four different temperatures of 50°C, 25°C, 0°C, and -18°C. At each temperature, the 

batteries were first fully charged, and then the SOC was gradually reduced until it 

reached 0% SOC or the battery failed to crank the vehicle.   

The 10 JCI LN3 batteries were aged through an accelerated aging process from 

fresh to end-of-life.  Weekly vehicle cranking was conducted at high SOC (nearly 100%) 

and 25°C for each battery. Additionally, four batteries (JCI005, JCI006, JCI009, and 

JCI010) were pulled every 4 weeks to conduct vehicle test cranking at four different 

temperatures of -30°C, 0°C, 25°C, and 52°C and at different SOC levels.   

Through extensive analysis of vehicle cranking data collected from field batteries 

and JCI LN3 production batteries aged through an accelerated aging process, the 

effectiveness of the cranking voltage based battery SOH monitoring algorithm has been 

extensively verified.  As illustrative examples, two representative cases of the algorithm’s 

performance evaluation results are presented at 25°C for field batteries in Section 3.4.1.  

In Section 3.4.2, an example of the algorithm’s performance evaluation results for weekly 

cranking data collected from the 10 JCI LN3 batteries is presented.   
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100% SOC 90% SOC 80% SOC 75% SOC

1 1.156 1.294 0.914 0.025

2 1.073 0.825 0.779 -0.537

3 1.357 0.628 0.306 failure

SOC

crank #

Due to space limitations, only a few examples of the algorithm’s evaluation 

results are presented in the following sections and throughout this thesis for each battery 

SOH monitoring algorithm.  For more complete details of the algorithm’s performance 

evaluation results for the battery cranking voltage based method, refer to [31]. 

 

3.4.1 Field Battery Cranking Data Evaluation Results  

 

Two illustrative examples of the algorithm’s performance evaluation results using 

the cranking data collected from 10 field batteries are presented in this section.  The 

battery cranking voltage based SOH monitoring algorithm described in Section 3.3 was 

applied to determine the SOH of each battery.  Each table shows the corresponding 

voltage differences, �V=V2-V1, generated for cranks at different SOC levels. The tables 

also indicate when the battery failed to crank the vehicle with the comment “failure”.  

The values that are shaded are values below the �V_Threshold.  As a reference, the 

results of this algorithm are compared with the output of the Midtronics Micro500XL 

battery tester.  Each table is followed by comments on the data and performance of the 

SOH monitoring algorithm.  In each table, the voltages are in volts. 

 

• Field battery #69 and #42 cranked at 25°C and different SOC levels.  The 

calibration values for SOC_Threshold and �V_Threshold at 25°C are 60% SOC 

and 0.7 volts, respectively.   

Table 2:  Field battery #69 at 25°C. 
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100% SOC 90% SOC 80% SOC 75% SOC 70% SOC

1 1.117 1.192 1.447 1.267 1.088
2 1.389 1.348 0.999 1.119 1.246

3 1.184 1.315 1.127 1.114 1.029

crank #

SOC

65% SOC 60% SOC 55% SOC 50% SOC 45% SOC

1 0.975 1.177 0.887 0.871 -0.473

2 0.996 1.182 1.267 0.517 failure

3 1.235 1.258 1.094 0.755 failure

crank #

SOC

 Table 2 shows the results for battery #69 cranked 3 times four SOC levels:  

 100%, 90%, 80%, and 75%.  Battery #69 failed to crank the vehicle at the third 

 crank attempt of 75% SOC and at the next SOC level below 75%.  Thus, this table 

 is brief and includes only data from successful cranks including the first cranking 

 failure at 75% SOC.  Focusing on the data that is shaded, the algorithm 

 determines that crank 3 at 90%, crank 3 at 80%, and all cranks at 75% SOC have 

 a �V value below the threshold of 0.7 volts at 25°C.  Moreover, the corresponding 

 SOC of each of these cranks is higher than the 60% SOC_Threshold.  This would 

 warrant a message of “Replace Battery”, which is consistent with the output from 

 the Midtronics battery tester of “Replace Battery”.   

 

Table 3:  Field battery #42 at 25°C. 

 

 

 

 

  In Table 3, for battery #42, �V falls below the threshold (0.7) during crank 

 2 at 50% SOC and at crank 1 of 45% SOC.  Then, the battery fails to crank during 

 cranks 2 and 3 at 45% SOC. Therefore, the algorithm is capable of issuing a pre-

 warning message of “Recharge Battery” to avoid cranking failure. In contrast, the 

 Midtronics battery tester issued a message of “Replace” which could result in 

 unnecessary replacement of a good battery because of low SOC.  
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3.4.2 Weekly Cranking Data Evaluation Results          

In this section, an example of the evaluation results from vehicle cranking data 

collected weekly throughout the accelerated aging process from one of the 10 JCI LN3 

production batteries at high SOC (approximately 100%) and 25°C is presented.  The 

battery cranking voltage based SOH monitoring algorithm described in Section 3.3 was 

applied to determine the SOH of each battery.   

The Midtronics battery test was not conducted in this test.  However, the testing 

vehicle was kept running for approximately thirty-five minutes to warm up the engine oil 

temperature to around 90
o
C before conducting the cranking test. Thus, the variation of 

engine conditions was reduced, and the cranking time is used as a reference of battery 

SOH to evaluate the effectiveness of the algorithm.  It is worth noting that in real-world 

applications, cranking time is also sensitive to the conditions of other components of the 

starting system, for instance, the starter and the engine, therefore it cannot be directly 

used as a battery SOH indicator. 

In the following table, each week is denoted as a test period and the last test 

period presented is one test period (one week) prior to cranking failure.  The data 

included in the table reflects the battery’s �V values and the engine cranking times for 

each crank at each test period.  At 25°C, the calibration values for �V_Threshold and 

SOC_Threshold are 0.7 volts and 60% SOC, respectively.  Those �V values that are 

shaded are below the threshold.  Thus, in the following analysis, when �V falls below 0.7 

volts, the algorithm issues a recommendation to “Replace Battery”, since 100% SOC is 

above the 60% SOC threshold.  The cranking time for each crank is also presented in the 
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�V crank time �V crank time �V crank time �V crank time

1 1.199 0.914 1.255 0.916 1.179 0.939 1.135 0.953

2 1.154 0.902 1.308 0.921 1.032 0.926 1.120 0.944
3 1.387 0.873 1.136 0.911 1.275 0.897 1.175 0.955

crank #
Test Period 1 Test Period 2 Test Period 3 Test Period 4

�V crank time �V crank time �V crank time �V crank time

1 1.140 0.931 1.223 0.934 1.091 0.971 0.990 0.979

2 1.231 0.887 1.065 0.958 1.007 0.977 1.233 0.995
3 1.102 0.926 1.278 0.947 1.301 0.979 1.093 0.998

Test Period 8
crank #

Test Period 5 Test Period 6 Test Period 7

�V crank time �V crank time �V crank time �V crank time

1 1.185 0.993 1.132 1.001 1.007 0.990 0.096 1.143

2 1.178 0.987 1.139 0.990 1.219 0.965 -1.003 1.345

3 1.068 0.926 1.064 0.980 1.025 0.989 -1.263 1.758

crank #
Test Period 9 Test Period 10 Test Period 11 Test Period 12

table as a reference of actual battery SOH to evaluate the effectiveness of the battery 

SOH monitoring algorithm.   

 

Table 4:  Battery JCI001 (high SOC at 25°C). 

 

 

 

Table 4 shows the results for LN3 battery JCI001.  The battery failed to crank the 

vehicle at test period 13.  For test periods 1-11, all �V values are above the threshold of 

0.7 and the corresponding crank times are approximately 1 second or less.  This indicates 

that the battery has sufficient power to crank the engine.  However, in test period 12, �V 

is below the 0.7 volts threshold for all three cranks, and the corresponding crank times 

are approximately 1.2 seconds or greater, which indicates that the battery’s power 

capability is low.  Based on the algorithm, a message of “Replace Battery” would be 

issued.  Therefore, the algorithm provides a timely pre-warning before cranking failure at 

test period 13.   
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CHAPTER 4 

PARITY-RELATION BASED SOH MONITORING 

METHOD 

 

 

 
With the availability of battery sensors (e.g., from Bosch, Siemens, and Hella) 

that can accurately acquire the physical variables of the battery such as current, voltage, 

and temperature, a more robust diagnostic/prognostic technique to determine battery 

SOH by combining SOH indicators can be developed.  Fusing battery SOH indicators 

enhances fault sensitivity and robustness to variations in battery type.  This chapter 

describes a parity-relation (see, for example, [32][33][34]) based integrated approach to 

battery SOH monitoring method by using the battery voltage signal and high cranking 

current signal during vehicle starting.  A parity-relation is defined to characterize the 

dynamics of good batteries during vehicle cranking. The parity-relation based SOH 

monitoring algorithm is refined and calibrated for real-time on-board implementation.  

The calibrated parity-relation can be used to estimate battery cranking voltage given a 

current signal.  A residual, generated as the discrepancy between the actual voltage 

measurement and its estimation, is used to infer battery SOH.  Through analysis of the 

residual based on the battery model during cranking discussed in Chapter 2, it is shown 

that the residual integrates the SOH information provided by both battery resistance and 

voltage loss, hence enhancing fault sensitivity and diagnostic/prognostic robustness. 
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Performance evaluation results using various vehicle cranking data collected from 20 

batteries and 2 vehicles have shown the effectiveness of the algorithm.  

This parity-relation based approach offers the same benefit as the battery cranking 

voltage based method, described in Chapter 3, by offering a pre-warning of battery end-

of-life and avoid walk-home situations due to battery failures.  Likewise, it can help to 

reduce battery no trouble found (NTF) and warranty cost. 

The following sections describe the parity-relation based battery SOH monitoring 

method.  Specifically, in Section 4.1, based on the new battery model developed in 

Chapter 2, the parity-relation based approached is analyzed to show its capability of 

integrating the SOH information provided by both battery resistance and voltage loss.  In 

Section 4.2, an overview of the battery SOH monitoring method is provided.  Section 4.4 

details the residual generation.  Section 4.4 gives a detailed description of the off-line 

calibration procedure and real-time on-board implementation of the SOH monitoring 

algorithm.  Finally, Section 4.5 includes examples of the parity-relation based algorithm 

performance evaluation results through analysis of extensive vehicle cranking data 

collected from 10 field batteries and 10 JCI LN3 batteries.   

 

4.1 Battery SOH Indicators 

To perform effective fault diagnosis, features need to be extracted that are 

sensitive to faults.  It is well known that battery resistance increases as a result of battery 

ageing [9]. However, to provide accurate and reliable battery diagnosis, the battery 

resistance needs to be combined with other features or methods via an integrated 

algorithm (e.g., [7][8]).  In this research, it is found that voltage loss during cranking also 
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provides valuable information of battery SOH and can be used to enhance battery 

diagnosis and prognosis [35].  

 

 

Figure 17:  V-I plot of cranking data collected periodically during the complete 

accelerated ageing cycling process of a battery (the linear least squares fit line for 

each data set is also shown). 

 

Figure 17 illustrates a few sets of cranking data collected periodically from a 

battery which was aged from fresh to end-of-life through accelerated ageing cycling.  To 

minimize the effect of SOC variation, the battery was always kept at a high SOC level of 

about 90%, when vehicle test cranking was conducted. For simplicity, only the data 

samples with battery current in the range of -300A to -100A are shown in Figure 17. For 

the data collected during each cranking, the linear least squares fit line is also shown. 

The battery resistance R and voltage loss Vloss for each set of cranking data are 

extracted based on (18) and (19).  As shown in Figure 18 and Figure 19, both battery 

resistance and voltage loss have a general trend of increasing during the ageing process.  

These two SOH indicators can be integrated to improve the performance of the fault 

diagnostic/prognostic scheme, which motivates the proposed battery SOH monitoring 

method. 
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Figure 18:  Battery resistance in a complete 

accelerated ageing cycling process.               

Figure 19:  Battery voltage loss in a 

complete accelerated ageing cycling 

process. 

 

4.2 Parity-Relation Based Battery SOH Monitoring Method 

 
Figure 20 illustrates a schematic diagram of the parity-relation based battery SOH 

monitoring method. It consists of the following four components:  

• Signal preprocessing. The battery voltage and current signals are preprocessed to 

extract the portion of signals corresponding to the short period of engine cranking. 

• Voltage estimation. A trained parity-relation model, characterizing the dynamics 

of good batteries during engine cranking, is used to generate an estimation of the 

battery voltage, given a battery current signal.  

• Residual generation. The residual is defined as the discrepancy between the 

actual voltage measurement and its estimated value provided by the trained 

parity-relation. Based on our design, the residual is designed such that it remains 

greater than or around zero for good batteries, and takes significant negative 

values for bad batteries.  



 52 

Voltage estimation 

using a trained 

parity relation of 

good batteries

Battery voltage

Battery current

Battery temperature

Residual

evaluation

Estimated 
voltage 

Battery SOH 
Signal 

preprocessing

Battery SOH monitoring System

Battery SOC

Residual 
generation

current

voltage Voltage estimation 

using a trained 

parity relation of 

good batteries

Battery voltage

Battery current

Battery temperature

Residual

evaluation

Estimated 
voltage 

Battery SOH 
Signal 

preprocessing

Battery SOH monitoring System

Battery SOC

Residual 
generation

current

voltage

• Residual evaluation. By comparing the diagnostic residual with a calibrated 

threshold, the battery SOH is inferred. The effects of battery SOC and 

temperature should be taken into account during the residual evaluation process. 

 

 

 

Figure 20:  Parity-relation based battery SOH monitoring method. 

 

 

Fault sensitivity and robustness to modeling errors are two very important 

performance metrics of fault diagnostics/prognostics. In general, the sensitivity and 

robustness properties can be enhanced either during residual generation or during residual 

evaluation [32][33][34]. In this research, the former approach was chosen.  More 

specifically, residual generation is designed to combine the SOH utilizing battery 

resistance and SOH utilizing voltage loss, hence achieving better sensitivity and 

robustness.  It is computationally efficient since it doesn’t require real-time identification 

of battery model parameters [25].  Next, the details of residual generation are described. 

 

4.3 Residual Generation 
 

The discrepancy between the actual voltage and the estimated voltage measurement is 

defined as the diagnostic residual, which intuitively characterizes the deviation between 
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the behavior of the battery under consideration and that of good batteries.  Specifically, 

the diagnostic residual )(tr  is defined in (23), where )(tV
�

 is the estimated voltage 

generated by (24). 

  

                                                 (t)VV(t)r(t) ˆ−= ,                                          (23) 

 

                                                         bR  I(t)V (t) V ∗+= 0

�
.                                          (24) 

 

The calibration parameters 0V  and bR are obtained based on (19) using data collected 

from good batteries (see Section 4.4.1 for more details).   

As described above, a unique feature of the residual )(tr  is that it combines the 

battery SOH information provided by both battery resistance and voltage loss. The 

following analysis gives a better insight into the design of residual, )(tr . By using (22), 

the measured battery voltage )(tV  satisfies (25), where ocvV , lossV , and bR  characterizes 

the properties of the battery under testing.   

 

                                                  , blossocv  R I(t)V VV(t) ∗+−=                                       (25) 

 

By substituting (24) and (25) into (23), we have 

 

                                 

)

0

bblosslossocvocv

bblossocv

RR(I)VV () V (V       

) RR(IVV   Vr(t)  

−∗−−+−=

−∗−−−=

                    (26) 
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Since ocvocv VV ≈  at the same battery SOC and temperature, equation (26) can be further 

simplified as (27), where I(t) < 0 for discharge. 

 

                                       )RR ( I)VV  (r(t) bblossloss −∗−−= ,                                    (27) 

 

As shown in Figure 18 and Figure 19, the battery voltage loss and internal resistance will 

both increase as a result of battery ageing. Therefore, the residual )(tr  given by (27) 

combines the changes of both battery voltage loss and internal resistance as a result of 

battery aging, hence improving diagnostic sensitivity and robustness.  More specifically, 

the residual will remain positive or near zero for good batteries since lossloss VV ≈  and 

bb RR ≈  and become increasingly negative when either lossV  and/or bR increase as a 

result of battery aging.  Therefore, the residual )(tr  has better diagnostic performance 

than conventional methods that are solely based on battery resistance.   

It is worth noting that, since the battery voltage and current have a linear 

relationship during vehicle cranking (see, e.g., Figure 4), for the simplicity of 

implementation, we can apply (25) only to battery voltage and current data samples with 

a cranking current in the range of -300A < I < -100A.  Moreover, to minimize the effect 

of noise and disturbance, the residual is filtered by taking its average for each cranking 

data set.  Specifically, assume there are n data samples satisfying -300A < I < -100A in 

one cranking data set, the filtered residual is given by (28). 
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The diagnostic residual is evaluated using calibrated residual threshold values, 

obtained based on the analysis of extensive vehicle cranking data collected from a variety 

of batteries.  Next, the details of the off-line calibration procedure and the on-board 

implementation of the battery SOH monitoring algorithm will be discussed. 

 

4.4 Off-line Calibration and On-board Implementation of the 

      SOH Monitoring Algorithm 

 
The parity-relation based method implicitly combines the SOH information 

provided by battery resistance and voltage loss during cranking, hence achieving better 

diagnostic performance. It is computationally efficient since it doesn’t require real-time 

identification of battery model parameters.  Next, details of the off-line calibration 

procedure and on-board implementation of the proposed battery SOH monitoring 

algorithm are discussed. 

 

4.4.1 Off-line Parity-Relation Calibration Procedure 

 
An off-line calibration procedure is performed to obtain a parity-relation model 

characterizing the dynamics of good batteries during cranking at different SOC levels and 

temperatures.  Specifically, to determine the calibration parameters 0V  and bR  in (24), 

the following steps are carried out. 

 



 56 

1) Perform cranking tests using selected good batteries, and collect the battery 

voltage )(tV  and current )(tI  at a sampling period of 50ms for 1 second during 

cranking. 

2) Conduct a linear regression in the form of (29), where 0V  is the intercept voltage 

(i.e., voltage at I = 0) of the linear regression line, and bR  is the slope of the linear 

regression line (see Figure 21).  Record the parameters 0V  and bR . 

 

                                                      bR  I(t) V V(t) ∗+= 0 ,                                          (29) 

 

3) Repeat steps 1 and 2 at different battery SOC levels (e.g., 100%, 75%, 50%, 25%) 

and temperatures (e.g., 50°C, 25°C, 0°C, -18°C).  

                           

 

Figure 21:  Linear regression line of extracted battery voltage and current signals. 
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Battery signals accuracy resolution range # of 

samples 

sampling 

rate 

Current (A) +/- 5 0.1 -1200 to 

+200 

20 50ms 

Voltage (V) +/- 0.1 0.001 0 to 16 20 50ms 

Temperature 

(0C) 

+/- 5 1 -40 to +80 1 1 sample 

SOC (%) +/- 10 1 0 to 100 1 1 sample 

 

The parameters obtained from the off-line calibration are then stored in a 4x4, 2-D look-

up table and can be used to generate an estimation of battery voltage, )(ˆ tV , given any 

battery current signal using  (24) for on-board vehicle applications. 

 

4.4.2 On-board Implementation  

In this section, details are provided for the on-board implementation procedure of 

this proposed battery SOH monitoring algorithm. The inputs to the algorithm are the 

battery voltage and current at a sampling period of 50ms for 1 second, battery start-up 

SOC, and battery temperature.  The specifications of the sensor signals and variables are 

listed in Table 5. 

 

Table 5:  Specifications of sensor signals and variables. 

 

 

 In addition to the calibration parameters 0V  and bR described in Section 4.4.1, the 

proposed on-board implementation of the algorithm has two other calibration parameters: 

• A threshold SOC_Threshold calibrated as a 1x4 2-D look-up table as a function of 

EBT (estimated battery temperature) (e.g., 50°C, 25°C, 0°C, -18°C). 

• A residual threshold r calibrated as a 1x4 2-D look-up table as a function of EBT 

(e.g., 50°C, 25°C, 0°C, -18°C). 
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It is worth noting that a negative constant for r is used.  Note that a good battery will have 

)(tV  values greater or close to )(ˆ tV values.  Thus, the residual, r, will be positive or near 

zero.  In contrast, an aged battery will have sample )(tV values less than the estimated 

voltages )(ˆ tV .  Thus, obtaining the residual by subtracting )(ˆ tV from )(tV  will result in 

negative residual values (see equation (23)).   

 Moreover, low battery cranking power can be caused by low battery SOH and/or 

low SOC.  To determine if a battery should be replaced or charged to ensure the vehicle’s 

start-up ability, the following method is adopted:  

• If the residual is below its threshold, and battery SOC is above a certain calibrated 

level, then the battery should be replaced.  

• If the residual is below its threshold, and battery SOC is below a certain calibrated 

level, then the battery is first recharged.  
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Figure 22:  Flow chart for the on-board computational procedure. 

 

 Based on the above discussions, a detailed on-board computational procedure of 

the SOH monitoring method is shown in Figure 22 and described in the following steps: 

1) Obtain the battery StartUpSOC and temperature (EBT); 

2) Measure battery voltage V(t) and current I(t) at a sampling period of 50 ms for 1 

second during cranking; 

3) Based on battery StartUpSOC and EBT, obtain 0V  and  bR  from the lookup 

tables; 
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4) For each I(t), compute a voltage estimation as bR  I(t) V (t) V ∗+= 0
ˆ ;  

5) Compute the 20 samples of residual )(ˆ)()( tVtVtr −= , and take the average of 

the residual signal r(t) to obtain r; 

6) Use EBT to obtain a threshold on residual r  and SOC_Threshold from the 

calibrated lookup table; 

7) If  r < r  and  

a. StartUpSOC > SOC_Threshold, issue a message of “Replace Battery”, 

return.  

b. StartUpSOC ≤  SOC_Threshold, issue a message of “Recharge Battery”, 

return.  

To get more insight into the above procedure, let us consider two illustrative 

examples.  If a battery at 25°C and 80% SOC has an r = -1.3 (i.e., below the r Threshold), 

then a message of “Replace Battery” is issued. In contrast, a battery at 25°C and 20% 

SOC having r = -1.3, would warrant a message of “Recharge Battery” based on the 

algorithm.  Intuitively, in the former case, since the battery with 80% SOC has difficulty 

cranking the vehicle at 25°C, the battery should be replaced.  For the latter, the battery’s 

low cranking power could be due to low SOC (i.e., 20%), so the battery should first be 

recharged.  In the following section, examples of the algorithm’s performance evaluation 

results are presented in detail.  
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4.5 Algorithm Performance Evaluation 

To evaluate the performance of the parity-relation based method, the SOH 

monitoring algorithm described in Section 4.4 was applied to determine the SOH of 10 

field batteries and 10 JCI LN3 production batteries used to crank 2 vehicles under various 

conditions.  Through extensive analysis of vehicle cranking data collected from field 

batteries and JCI LN3 production batteries aged through an accelerated aging process, the 

effectiveness of the parity-relation based battery SOH monitoring algorithm has been 

extensively verified.  As illustrative examples, two representative cases are presented at 

25°C for field batteries in Section 4.5.1.  In Section 4.5.2, an example of the algorithm’s 

performance evaluation results for weekly battery cranking data collected from the 10 JCI 

LN3 batteries is presented.  

Due to space limitations, only a few examples of the algorithm’s evaluation 

results are presented in the following sections.  For more complete details of the 

algorithm’s performance evaluation results for the parity-relation based method, refer to 

[36]. 

 

4.5.1 Field Battery Residual Evaluation Results  

 

Two illustrative examples of the evaluation results of residuals generated from 

vehicle cranking data collected from 10 field batteries at 25°C are presented in this 

section.  All field batteries were tested at four different temperatures of 50°C, 25°C, 0°C, 

and -18°C.  At each temperature, the batteries were first fully charged, and then the SOC 

was gradually reduced until it reached 0% SOC or the battery failed to crank the vehicle.  
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100% SOC 90% SOC 80% SOC 75% SOC

1 -1.136 -1.518 -2.055 -2.532

2 -1.231 -1.723 -2.351 -3.110

3 -1.283 -1.858 -2.414 failure

SOC

crank #

 The parity-relation based SOH monitoring algorithm described in Section 4.4 was 

applied to determine the SOH of each battery.  Each table shows the corresponding 

residual values, for vehicle cranking at different SOC levels.  The tables also indicate 

when the battery failed to crank the vehicle with the comment “failure”.  The values that 

are shaded are values below the residual threshold. As a reference, the results of this 

algorithm are compared with the output of the Midtronics Micro500XL battery tester.  

Each table is followed by comments on the data and performance of the SOH monitoring 

algorithm.  In each table, the residual values are in volts. 

 

• Batteries #69 and #42 cranked at 25°C and different SOC levels.  The calibration 

values for SOC_Threshold and r Threshold at 25°C are 60% SOC and -1.2 volts, 

respectively.   

Table 6:  Field battery #69 at 25°C. 

 

 

 Reported in Table 6 are the results for battery #69 cranked 3 times at each 

 of four SOC levels: 100%, 90%, 80%, and 75%.  The battery failed to crank the 

 vehicle at the third attempt of 75% SOC and at the next SOC level below 75% 

 SOC.  Focusing on the data that is shaded, the algorithm determines that the 

 second and third cranks at the 100% SOC level and all cranks thereafter have a 

 residual value below the threshold of -1.2 at 25°C.  Moreover, the corresponding 

 SOC of each of these cranks is higher than the 60% SOC_Threshold.  This would 

 warrant a message of “Replace Battery”.  This message is consistent with the 

 message issued from the Midtronics battery tester of “Replace Battery”.   
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100% SOC 90% SOC 80% SOC 75% SOC 70% SOC

1 -0.003 -0.097 -0.226 -0.359 -0.422
2 0.019 -0.138 -0.305 -0.413 -0.464

3 0.049 -0.143 -0.337 -0.406 -0.432

SOC

crank #

65% SOC 60% SOC 55% SOC 50% SOC 45% SOC

1 -0.459 -0.607 -0.792 -1.304 -2.745

2 -0.514 -0.668 -0.889 -1.542 failure

3 -0.508 -0.689 -0.918 -1.759 failure

SOC

crank #

 Table 7:  Field battery #42 at 25°C. 

 

 

 

 

 Table 7 reports the results for battery #42. The battery fails to crank the 

 vehicle during cranks 2 and 3 at 45% SOC and the next SOC level below 45% 

 SOC. The residual values fall below the threshold of -1.2 at 50% SOC and 

 thereafter. Thus, the algorithm is capable of issuing a pre-warning message of 

 “Recharge Battery” to avoid cranking failure at 45% SOC.  The Midtronics 

 battery tester outputs a message of “Replace Battery”, which could result in 

 unnecessary replacement of a good battery.   

 

4.5.2 Residual Evaluation Results for JCI LN3 Batteries Tested Weekly 

 
In this section, an example of the evaluation results of residuals generated from 

vehicle cranking data collected weekly throughout the accelerated aging process from 10 

JCI LN3 production batteries at high SOC (approximately 100%) and 25°C is presented.  

The 10 batteries were aged using accelerated aging procedures from fresh to end-of-life.  

Weekly vehicle cranking was conducted at high SOC and 25°C for each battery.  The 

parity-relation based SOH monitoring algorithm described in Section 4.4 was applied to 

determine the SOH of each battery.   
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The Midtronics battery test was not conducted in this test.  However, the testing 

vehicle was kept running for approximately thirty-five minutes to warm up the engine oil 

temperature to around 90
o
C before conducting the cranking test.  Thus, the variation of 

engine conditions was reduced, and the cranking time is used as a reference of battery 

SOH to evaluate the effectiveness of the algorithm.  It is worth noting again, that in real-

world applications, cranking time is also sensitive to the conditions of other components 

of the starting system, for instance, the starter and the engine, therefore it cannot be 

directly used as a battery SOH indicator. 

In the following tables, each week is denoted as a test period and the last test 

period is one test period (one week) prior to cranking failure.  The data included in the 

table reflects the residual values and cranking time for each crank at each test period. At 

25°C, the calibration values for r Threshold and SOC_Threshold are -1.2 volts and 60% 

SOC, respectively. Those residual values that are shaded are below the threshold. Thus, 

in the following analysis, when the residual value falls below -1.2 volts, the algorithm 

issues a recommendation to “Replace Battery”, since 100% SOC is above the 60% SOC 

threshold.  As described above, the cranking time can be used as a reference of actual 

battery SOH to evaluate the effectiveness of this battery SOH monitoring algorithm. 

Additionally, in the following tables, residual cells with the remark “bad data” indicate 

that the collected current data, I(t), was corrupted.  Thus, the residual values for those 

cranks cannot be calculated. 
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residual crank time residual crank time residual crank time residual crank time

1 0.478 0.922 0.335 0.925 0.086 0.925 -0.029 0.948

2 0.459 0.885 0.364 0.870 0.121 0.918 -0.026 0.944

3 0.469 0.894 0.371 0.905 0.126 0.925 -0.014 0.933

crank #
Test Period 1 Test Period 2 Test Period 3 Test Period 4

residual crank time residual crank time residual crank time residual crank time

1 -0.158 0.941 -0.247 0.947 -0.399 0.986 -0.322 0.983

2 -0.159 0.963 -0.223 0.959 -0.361 1.000 -0.308 0.983

3 -0.160 0.955 -0.247 0.971 -0.363 0.988 -0.337 1.002

Test Period 8
crank #

Test Period 5 Test Period 6 Test Period 7

residual crank time residual crank time

1 bad data 1.017 -2.382 1.198

2 bad data 1.015 -2.682 1.308

3 bad data 1.054 -2.635 1.310

Test Period 9 Test Period 10
crank #

Table 8:  Battery JCI002 (high SOC at 25°C). 

 

 
 

 

Table 8 shows the results for battery JCI002.  The battery failed to crank the 

vehicle at test period 11.  For test periods 1-8, the residual values are above the threshold 

of -1.2 volts and the corresponding crank times are approximately 1 second or less.  This 

indicates that the battery has sufficient power to crank the engine. The residuals for test 

period 9 cannot be calculated due to corrupted current signals.  During test period 10, the 

residual values are well below the threshold of -1.2. Thus, the algorithm issues a timely 

pre-warning of “Replace Battery” at test period 10 to avoid cranking failure at test period 

11.  Note that the crank times in the shaded cells are approximately 1.2 seconds or greater 

(vs. less than 1 second at normal conditions), indicating low SOH.   
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CHAPTER 5 

COMPARATIVE STUDIES 

 

In this chapter, comparative studies are conducted to further evaluate the 

performance, cost, and benefits of the battery SOH monitoring algorithms.  First, the 

conventional resistance based approach is compared to the two battery SOH monitoring 

methods covered in Chapter 3 and Chapter 4.  The weakness of the conventional 

resistance based method with respect to variation of battery types is discussed, and the 

robustness of the battery cranking voltage based approach and the parity-relation based 

approach, in determining battery SOH for different types of batteries, is demonstrated.  

Furthermore, the battery cranking voltage based approach is compared with the parity-

relation based approach to analyze the benefit with the use of an additional cranking 

current sensor.  

This chapter is organized as follows.  Section 5.1 provides an overview of the 

conventional resistance based battery SOH monitoring method.  Section 5.2 presents a 

comparison of the two SOH monitoring methods developed in chapters 3 and 4 with the 

conventional resistance based method.  Section 5.3 and Section 5.4 present a comparison 

between the battery cranking voltage based method and the parity-relation based method 

using examples from extensive vehicle cranking data collected from 10 field batteries and 

10 JCI LN3 production batteries, respectively. 
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5.1 Conventional Resistance Based Method 
 

The basic idea of the resistance based approach consists of three steps.  First, we 

pre-process the battery voltage and current signals by extracting the terminal voltages 

corresponding to two specific current loads.  Second, using the voltage and current values 

extracted during signal pre-processing, the internal resistance, comprised of the ohmic 

resistance within the electrodes and electrolyte, can be determined using Ohm’s law [11].  

Finally, with additional information of the battery SOC and temperature, a resistance 

threshold can be calibrated to infer battery SOH.    
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Figure 23:  Voltage and current plots illustrating the calculation of resistance. 

 

  

 The variables used to calculate the battery resistances from each crank data set are 

illustrated in Figure 23.  More specifically, �V is the voltage difference between 1V  (i.e., 

the minimum voltage recorded at the instant of starter engagement) and 0V  (i.e., the 

voltage just prior to starter engagement).  The current change, �I, is the difference 

between 1I  (i.e., the maximum current corresponding to 1V  at the instant of starter 
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engagement) and 0I  (i.e., the current corresponding to 0V  recorded just prior to starter 

engagement).  Then, the battery cranking resistance can be computed using (30).  
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5.2 Comparison with Conventional Resistance Based SOH 

      Monitoring Method 

This section presents comparative results between the conventional resistance 

based SOH monitoring method and the two previous methods developed in the research 

work, including the battery cranking voltage base method and the parity-relation based 

method.  The three SOH monitoring algorithms were applied to analyze the SOH of 30 

batteries to compare their performances.  Specifically, 20 JCI LN3 batteries aged by an 

accelerated aging procedure and 10 field batteries collected from dealer service garages 

are considered.  

Next, the battery data collected at 25°C is used as illustrative examples to show 

the advantage and disadvantages of these three SOH monitoring methods in terms of 

robustness to variation of battery types. The �V_Threshold for the cranking voltage based 

method and r Threshold for the parity-relation based method at 25°C is 0.7 volts and -1.2 

volts, respectively, and the SOC_Threshold is 60% for both.   

Table 9 shows the results for the calculated battery resistance (R), �V values, and 

residual values, r, for battery JCI006, respectively, at an SOC level higher than 90% SOC 
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test period R �V r 

3.240 0.998 0.200

3.338 1.095 0.206

3.356 1.076 0.217

3.518 1.217 0.075

3.231 1.065 0.115

3.529 1.331 0.145

3.687 1.078 0.052
3.644 1.043 0.095

3.671 1.068 0.126
bad data 1.170 bad data

bad data 1.077 bad data

bad data 1.126 bad data

3.649 1.035 0.007

3.950 1.318 0.009

3.949 1.283 0.026

3.906 1.100 -0.018
3.676 1.118 0.056

3.925 1.169 0.052
3.991 1.119 -0.072

4.075 1.218 0.008

4.007 1.121 0.002

7

3

4

5

6

1

2

test period R �V r 

3.995 1.103 -0.087

3.986 1.053 -0.009

3.921 1.049 -0.001

4.097 1.066 -0.156
4.393 1.220 -0.140

4.341 1.198 -0.130

3.841 0.987 0.031
3.647 0.888 0.027

3.891 1.071 0.026
4.107 1.063 0.012

3.921 0.993 0.067

4.073 1.094 0.069
4.864 1.214 -0.266

4.886 1.178 -0.152

4.653 1.180 -0.135

4.768 -0.314 -1.433

4.997 -0.327 -1.628

5.362 -0.420 -1.871

8

9

10

11

12

13

and 25°C.  The data was collected weekly throughout an accelerated aging process. The 

last test period presented is one test period (one week) prior to cranking failure.  In each 

table, �V values and residual values, r, are in volts, and resistance values, (R), are in 

milliohms.  Additionally, in the following tables, the remark “bad data” indicates that the 

collected current data I(t) was corrupted.  Thus, the resistance and residual values for 

those cranks could not be calculated.   

In the following comparative analysis, when �V falls below 0.7 volts or r falls 

below -1.2 volts, the cranking voltage based method and the parity-relation based method 

issue a recommendation of “Replace Battery”, respectively, since 90% SOC is above the 

60% SOC threshold.  The �V values and residual values that are below their 

corresponding thresholds are highlighted in gray.   

 

Table 9:  Battery JCI006 (high SOC at 25°C). 
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first week

last week

Battery JCI006 failed to crank the vehicle at test period 14 (week 14).  From 

resistance values shown in Table 9, a resistance threshold of about 4.9 milliohms might 

be chosen to provide a pre-warning of pending cranking failure at test period 14 for 

battery JCI006. 

 To get further insight into the battery resistance data in Table 9, the battery 

cranking voltage signals for battery JCI006 at the first week and the last week of the 

accelerated aging process and the corresponding V-I plots are illustrated in Figure 24.  As 

can be seen in Table 9, the battery resistance values increase only slightly from week 1 to 

week 13.  This is due in part to V1, the minimum cranking voltage at the instant of starter 

engagement, changing slightly from week 1 to week 13.  Thus, in equation (30), �V and 

consequently the resistance would have a small change. 

 

 

 

 

Figure 24:  Battery cranking voltage signals and corresponding V-I plots from battery 

JCI006. 

 

A key challenge of on-board battery SOH monitoring is robustness to variation of 

battery types.  The driver may install any kind of after-market battery on the vehicle, 

which has to be taken into account in real-world battery SOH monitoring applications.  In 
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Battery # R �V r

1 7.010 1.761 0.114

2 6.881 1.664 0.142

3 6.918 1.767 0.109

4 6.847 1.804 0.112

5 6.902 1.579 0.137

6 6.615 1.705 0.463

7 6.534 1.782 0.486

8 6.481 1.836 0.473

9 6.639 1.772 0.470

10 6.548 1.819 0.453

addition to the 10 JCI LN3 batteries aged by GM, 20 other batteries to evaluate algorithm 

robustness have been considered.   

 

Table 10:  TAWAS aging data batteries #1 to #10 at first week (high SOC at 25°C). 

 

 

 

Table 10 shows the calculated battery resistance (R), �V values, and residual 

values, r, for another set of 10 fresh JCI LN3 batteries.  These fresh batteries were 

cranked at high SOC and 25°C.  As can be seen in Table 10, these fresh batteries have a 

battery resistance of about 6.8 milliohms.  As in the example of battery JCI006 shown in 

Table 9, if only resistance was used to determine battery SOH with a threshold of 4.9 

milliohms, all these fresh batteries will be mistakenly determined as bad batteries and 

replaced.  In contrast, the �V and residual values are well above their corresponding 

thresholds, indicating good battery SOH.  Hence, the voltage based method and parity-

relation based method are more robust than the conventional resistance based method. 

Furthermore, Table 11 and Table 12 show the calculated battery resistances for all 

SOC levels presented and the �V and residual values for 100%, 90%, and 80% SOC of 

two field batteries cranked at different SOC levels at 25°C.  These batteries were first 

fully charged, and then the SOC was gradually reduced until the batteries failed to crank 

the vehicle.  
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R �V r R �V r R �V r

1 5.117 1.322 0.074 5.580 1.310 0.010 5.484 1.231 -0.065

2 5.205 1.232 0.073 5.541 1.452 -0.007 5.339 1.249 -0.074
3 5.295 1.433 0.099 5.637 1.326 0.005 5.294 1.143 -0.063

SOC

crank #

100% SOC 90% SOC 80% SOC

75% SOC 70% SOC 65% SOC 60% SOC 55% SOC 50% SOC 45% SOC 40% SOC 35% SOC
R R R R R R R R R

1 5.653 5.651 5.607 5.774 5.566 6.303 6.262 9.120 9.968

2 5.509 5.458 5.540 5.637 5.626 6.250 6.239 9.334 9.705
3 5.419 5.562 5.537 5.670 5.676 6.185 6.017 9.547 9.980

SOC

crank #

30% SOC 25% SOC
R R

1 11.027 11.709

2 10.154 12.919

3 10.305 13.240

SOC

crank #

R �V r R �V r R �V r
1 5.402 1.117 -0.003 5.937 1.192 -0.097 6.228 1.447 -0.226

2 5.601 1.389 0.019 5.963 1.348 -0.138 6.075 0.999 -0.305
3 5.704 1.184 0.049 6.018 1.315 -0.143 5.981 1.127 -0.337

SOC

crank #

100% SOC 90% SOC 80% SOC

75% SOC 70% SOC 65% SOC 60% SOC 55% SOC 50% SOC 45% SOC
R R R R R R R

1 6.325 6.447 6.976 7.375 8.238 10.121 12.728

2 6.248 6.532 6.777 7.552 8.214 10.474 failure
3 6.253 6.364 6.837 7.440 8.396 11.041 failure

SOC

crank #

Table 11:  Field battery #38 at 25°C. 

 

 

 

 

  

Table 12:  Field battery #42 at 25°C. 

 

 

 

In Table 11, battery #38 failed to crank the vehicle at the next SOC level below 

25% SOC.  In Table 12, battery #42 failed to crank the vehicle at the 2
nd

 and 3
rd

 cranks of 

45% SOC and at the next SOC level below.  If a battery resistance based SOH 

monitoring method was employed for these two batteries using a resistance threshold of 

4.9 milliohms to pre-warn of pending cranking failure, these two field batteries, at high 

SOC (i.e., 100% and 90% SOC), would be mistakenly determined as bad batteries and 

replaced.  In contrast, the �V and residual values are well above threshold at 100% to 
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80% SOC, indicating good battery SOH.  Again, the voltage based method and parity-

relation based method are more robust than the conventional resistance based method. 

Based on the above discussions, the battery cranking voltage and parity-relation 

methods are more robust to variation of battery types. This is crucial to on-board 

automotive battery SOH monitoring, since there is no control over the types of battery the 

vehicle owner may install on the vehicle. 

 

5.3 Comparison of SOH Monitoring Methods 

This section describes the comparison of the battery cranking voltage based 

method with the parity-relation based method of SOH monitoring for batteries obtained 

from the field and JCI LN3 production batteries. The SOH monitoring algorithms 

described in Section 3.3 and Section 4.4, respectively, were applied to determine the 

SOH of each battery.  

Illustrative examples of the comparison of the two SOH monitoring methods for 

field batteries and JCI LN3 batteries tested weekly are presented in the Section 5.3.1, 

Section 5.3.2, respectively, including comparative analyses of the algorithms’ 

performance evaluation results.  Again, due to space limitations, only a few examples of 

the comparative evaluation results are presented.  For more results, refer to [37]. 

 

5.3.1 Comparison of SOH Monitoring Methods Using Field Batteries 

          
This section describes the comparison of the battery cranking voltage based 

method with the parity-relation based method for SOH monitoring for 10 batteries 
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�V r �V r �V r �V r �V r

1 1.117 -0.003 1.192 -0.097 1.447 -0.226 1.267 -0.359 1.088 -0.422

2 1.389 0.019 1.348 -0.138 0.999 -0.305 1.119 -0.413 1.246 -0.464

3 1.184 0.049 1.315 -0.143 1.127 -0.337 1.114 -0.406 1.029 -0.432

crank #

SOC 100% SOC 90% SOC 80% SOC 75% SOC 70% SOC

�V r �V r �V r �V r �V r

1 0.975 -0.459 1.177 -0.607 0.887 -0.792 0.871 -1.304 -0.473 -2.745

2 0.996 -0.514 1.182 -0.668 1.267 -0.889 0.517 -1.542 failure failure

3 1.235 -0.508 1.258 -0.689 1.094 -0.918 0.755 -1.759 failure failure

crank #

60% SOC 55% SOC 50% SOC 45% SOCSOC 65% SOC

obtained from the field.  The batteries were tested at temperatures of 50°C, 25°C, 0°C, 

and -18°C.  At each temperature, the batteries were first fully charged, and then the SOC 

was gradually reduced until it reached 0% SOC or the battery failed to crank the vehicle.  

The SOH monitoring algorithms described in Section 3.3 and Section 4.4 were applied to 

determine the SOH of each battery.  

Below, illustrative examples are presented that represent a comparison of the 

SOH monitoring algorithms using �V and residual values generated from vehicle 

cranking data collected from field batteries at 25°C.  Each table shows the corresponding 

�V and residual values for cranks at different SOC levels.  The tables also indicate when 

the battery failed to crank the vehicle with the comment “failure”.  The values that are 

shaded are values below the (�V_Threshold) and (r Threshold).  As a reference, the 

results of the algorithms are compared with the output of the Midtronics Micro500XL 

battery tester. 

• Comparison of batteries #42 and #69 cranked at 25°C and different SOC levels.  

The calibration values for �V_Threshold, r Threshold, and SOC_Threshold at 

25°C are 0.7 volts, -1.2 volts, and 60% SOC, respectively.   

 

Table 13:  Field battery #42 at 25°C. 
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�V r �V r �V r �V r

1 1.156 -1.136 1.294 -1.518 0.914 -2.055 0.025 -2.532

2 1.073 -1.231 0.825 -1.723 0.779 -2.351 -0.537 -3.110

3 1.357 -1.283 0.628 -1.858 0.306 -2.414 failure failure

75% SOC

crank #

SOC 100% SOC 90% SOC 80% SOC

  Table 13 reports the comparative results for battery #42. The battery fails 

 to crank the vehicle during cranks 2 and 3 at 45% SOC and the next SOC level 

 below 45% SOC. The �V and residual values fall below their respective 

 thresholds at 50% SOC and thereafter. Thus, both of the algorithms are capable of 

 issuing a pre-warning message of “Recharge Battery” to avoid crank failure at 

 45%.  Moreover, looking at the residual values for 50% SOC, the parity-relation 

 based method is more consistent in the sense that, once the residual value falls 

 below the threshold during crank 1, the residuals for the subsequent cranks at 50% 

 SOC and below remain below threshold.  In contrast, at 50% SOC, the voltage 

 based method generates �V values above threshold for cranks 1 and 3 and a �V 

 value below threshold for crank 2.  

 

Table 14:  Field battery #69 at 25°C. 

 

 

  Table 14 reports the comparative results for battery #69.  The battery 

 failed to crank the vehicle at the 3
rd

 crank of 75% SOC and at the next SOC level 

 below 75%. At 100% SOC (above the SOC_Threshold of 60%), the residual 

 values generated by the parity-relation based algorithm are below the threshold of 

 -1.2.  Thus, the algorithm would issue a pre-warning message of “Replace 

 Battery”.  At 90% SOC (above the SOC_Threshold of 60%), the voltage based 

 algorithm issues the same pre-warning message of “Replace Battery”.  Both 
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 algorithms are capable of offering a timely pre-warning to avoid cranking failure 

 at 75% SOC.  However, the parity-relation based method offers an earlier pre-

 warning and is more consistent than the voltage based method.  For instance, at 

 90% and 80% SOC, respectively, the parity-relation method is more consistent 

 than the voltage based method because residuals below threshold are generated 

 for all 3 cranks at each SOC level.  In contrast, the voltage based method only 

 generates �V values below threshold for crank 3 at 90% and 80% SOC, 

 respectively.  The messages offered by both algorithms are consistent with the 

 message issued from the Midtronics battery tester of “Replace Battery”.   

 

 5.3.2 Comparison of SOH Monitoring Methods Using JCI LN3 Batteries 

 
This section describes the comparison of the �V and residual values generated 

from vehicle cranking data collected weekly throughout the accelerated aging process 

from 10 JCI LN3 production batteries at high SOC (approximately 100%) and 25°C.  The 

batteries were aged using accelerated aging procedures from fresh to end-of-life.  Weekly 

vehicle cranking was conducted at high SOC and 25°C for each battery.  The SOH 

monitoring algorithms described in Section 3.3 and Section 4.4 were applied to determine 

the SOH of each battery. 

Below, illustrative examples are presented that represent a comparison of the 

SOH monitoring algorithms using �V and residual values generated from vehicle 

cranking data collected weekly from 10 JCI LN3 batteries at a high SOC and 25°C.  In 

the following tables, each week is denoted as a test period.  The calibration values for 

�V_Threshold and SOC_Threshold at 25°C are 0.7 volts and 60% SOC, respectively.  
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�V r �V r �V r �V r

1 1.303 0.135 1.037 0.045 0.988 0.027 0.971 -0.023

2 1.297 0.156 1.319 0.080 1.041 0.099 0.967 -0.009

3 1.085 0.174 1.044 0.077 1.106 0.104 0.945 0.002

Test Period 4
crank #

Test Period 1 Test Period 2 Test Period 3

�V r �V r �V r �V r

1 1.213 0.005 1.123 -0.031 0.977 -0.048 1.224 -0.087

2 1.273 0.019 1.138 0.045 1.147 bad data 1.234 0.022

3 1.153 0.020 1.134 0.057 1.123 bad data 1.259 0.030

crank #
Test Period 5 Test Period 6 Test Period 7 Test Period 8

�V r �V r

1 1.234 -0.371 -1.666 -2.904

2 1.020 -0.360 0.384 -2.804

3 1.098 -0.385 0.260 -2.767

crank #
Test Period 9 Test Period 10

The calibration values for r Threshold and SOC_Threshold at 25°C are -1.2 volts and 

60% SOC, respectively.  Thus, in the following analysis, when �V falls below 0.7 volts 

or r falls below -1.2 volts, the algorithms issue a recommendation of “Replace Battery”, 

since 100% SOC is above the 60% SOC threshold.  For each table, the last test period 

presented is one test period (i.e., one week) prior to cranking failure.   

Additionally, in the following tables, residual cells with the remark “bad data” 

indicate that the collected current data, I(t), was corrupted.  Thus, the residual values for 

those cranks cannot be calculated. 

 

Table 15:  Battery JCI005 (high SOC at 25°C). 

 

 

 

 

 

 

Table 15 shows the comparative results for LN3 battery JCI005.  The battery 

failed to crank the vehicle at test period 11.  For test periods 1-9, both the �V and residual 

values are above the thresholds of 0.7 and -1.2, respectively. During test period 10, the 

�V and residual values fall below their respective thresholds. Thus, both of the algorithms 
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�V r �V r �V r �V r

1 1.398 0.506 1.241 0.481 1.152 0.437 1.161 0.399

2 1.277 0.442 1.347 0.490 1.345 0.413 1.100 0.432

3 1.264 0.483 1.053 0.497 1.256 0.429 1.240 0.460

crank #
Test Period 1 Test Period 2 Test Period 3 Test Period 4

�V r �V r �V r

1 1.091 0.393 1.328 0.281 -0.994 -3.411

2 1.173 0.378 1.267 0.249 -0.791 -3.429

3 1.255 0.395 1.343 0.263 -0.783 -3.396

crank #
Test Period 5 Test Period 6 Test Period 7

are capable of issuing the recommendation of “Replace Battery” at test period 10, hence 

avoiding cranking failure at test period 11.  

 

 

Table 16:  Battery JCI008 (high SOC at 25°C). 

 

 

 

 

   

  Table 16 shows the comparative results for LN3 battery JCI008.  The battery 

failed to crank the vehicle at test period 8.  Both algorithms issue the message of 

“Replace Battery” for all 3 cranks of test period 7 since �V and residual values are well 

below their respective thresholds.  Hence, both algorithms provide a timely pre-warning 

before cranking failure at test period 8.  
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CHAPTER 6 

SUPPORT VECTOR MACHINE BASED SOH 

MONITORING METHOD 

 

  
 

 This chapter describes a support vector machine (SVM) based pattern recognition 

method to monitor battery SOH utilizing the features of battery voltage and engine 

cranking speed.  This method provides a percentage based prognosis of the SOH of a 

battery.  In this research, a correlation between engine cranking speed and battery SOH 

has been observed.  Engines cranked with aged batteries or batteries with low cranking 

power capability tend to have longer than normal cranking times (i.e., second 1≤ ).  Due 

to the difficulty in developing a good mathematical model that incorporates the various 

engine parameters involved in the engine cranking process, a qualitative or model-less 

approach is chosen.  Rather than construct a physics-based model, a statistical model is 

trained with data characterizing fresh batteries and aged batteries.  An obvious advantage 

of the SVM approach is that a highly sophisticated mathematical model is not required.  

Another advantage is the SVM ability to handle rather large data sets.   

 In this research, the SVM toolbox, LIBSVM, developed by Chang and Lin [38] 

was used.  This SVM method was applied to the vehicle cranking data obtained from 10 

JCI LN3 production batteries tested weekly at high SOC (nearly 100% SOC) and 25°C in 

order to determine battery SOH.  Because the variation of engine condition in the test 

vehicle was reduced, the cranking time can be considered as a measure of the battery’s 
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actual cranking SOH.  Therefore, the battery voltage data during cranking and the 

corresponding engine cranking speed data from fresh and aged batteries were selected as 

training data for the SVM.  Using this training data, the SVM constructs the optimal 

hyperplane in order to classify previously unseen test data.  The SVM classifies unseen 

cranking data as either fresh or aged and generates a probability estimate of correct 

classification which is used to determine the SOH of the battery at each test crank.  This 

SVM is capable of determining the SOH of the 10 JCI LN3 batteries based on the voltage 

and rpm data extracted from the batteries during cranking.  Moreover, the effectiveness 

of the SVM method has been verified using the battery cranking voltage and parity-

relation methods as references.  

 In Section 6.1, an overview of support vector machines is presented.  Section 6.2 

details the motivation and analysis of the proposed technical approach.  Section 6.3 

presents examples of the evaluation results obtained using the SVM approach and the 10 

JCI LN3 batteries that were tested weekly at high SOC and 25°C. 

 

6.1 Support Vector Machines 

 A support vector machine is a supervised learning algorithm based on statistical 

learning theory developed by Vladimir Vapnik and his team at AT&T Bell Labs in the 

1990’s.  Support vector machines are capable of classification and regression [39].  They 

are used in real-world applications such as object detection, face or text recognition, and 

classification of gene expressions data.  Support vector machines possess key advantages 

over traditional classifiers.  SVM can potentially handle very large feature spaces.  

Unlike conventional classifiers, SVM is efficient in large classification problems because 
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the dimension of classified training vectors doesn’t significantly influence the 

performance of the SVM [40]. Also, SVM has better generalization performance 

compared to conventional classifiers.  SVM aims to minimize the structural risk by 

minimizing an upper bound of the generalization error whereas conventional methods 

seek to minimize the empirical risk by minimizing training error [41].   

 The objective of the support vector machine is to construct a decision boundary 

from classified training data in order to classify future test data.  The SVM determines an 

optimal decision boundary (hyperplane) that separates the classes to which the training 

data belong and maximizes the separation between the training data from each class.  The 

SVM minimizes its risk of misclassifying previously unseen data by selecting the 

hyperplane that maximizes the margin between the sets of training data [39].  

 Training data is input as vectors in n-dimensions and assigned a classification 

label (e.g., -1 or 1).  If the data is linearly inseparable, it can be mapped into a higher 

dimension feature space using a kernel function.  The kernel function is a mathematical 

function that projects data from a low-dimensional space to a higher-dimensional space 

[39].  If chosen correctly, the kernel function produces data that is linearly separable in 

the higher dimensional space.   

  Once the data is projected into this higher-dimensional feature space, the SVM 

determines a decision boundary or separating hyperplane in order to maximize the margin 

between the separating hyperplane and the data sets.  The maximum margin is 

determined by constructing two parallel hyperplanes, one on each side of the separating 

hyperplane, that provide maximum separation between the feature vectors from each data 

set.  In order to maximize the margin between the data sets, the two parallel hyperplanes 
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are selected such that the maximum distance between the hyperplanes is achieved with 

the minimum number of feature vectors inside the margin.  Vectors lying on the two 

determined hyperplanes are called support vectors.  The separating hyperplane is then 

projected back down onto the lower-dimensional input space.   

 The remainder of Section 6.1 discusses important features central to the 

performance of support vector machines and the SVM specific to this research.  In 

Section 6.1.1, the determination of the maximum-margin hyperplane is discussed in 

detail.  The kernel function is described in Section 6.1.2, and Section 6.1.3 covers the 

classification of test data and probability estimates generated from SVM. 

 

6.1.1 Determining the Maximum-Margin Hyperplane 

  This section describes how the optimal hyperplane is constructed for a two-class 

linearly separable data set.  Let the feature vectors of the training set, X, be the n-

dimensional input ix , (i = 1, 2, …, N, N is the number of samples) with associated labels 

1=iy  for class 1ω  or 1−=iy  for class 2ω  [42][43].  The goal is for the SVM to 

determine a hyperplane (i.e., a line in this case), to correctly classify all of the training 

vectors, of the form given in (31), where w  is the direction of the hyperplane and b  is its 

position in space. 
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 There are many such hyperplanes that satisfy (31).  For example, Figure 25 

illustrates a linear separable two class training data set with two separating hyperplanes 

selected from an infinite number of possible separating hyperplanes.  The data points in 

the upper portion of the plot, marked as dots, are of class 1ω , and the data points in the 

lower portion of the plot, marked as x, are of class 2ω .  Although each hyperplane 

correctly classifies the training data, the optimal hyperplane will minimize the risk of 

misclassification of unseen future data.  The hyperplane which maximizes the margin on 

either side of it from the nearest data points from each class is optimal for minimizing the 

risk of misclassification. 

 The SVM aims to find the location and direction of the hyperplane which not only 

correctly classifies all the training data but also gives the maximum possible margin 

between the two classes [42].  The distance of a point from a hyperplane is given by (32), 

where )(xf is the Euclidean distance of a point from the hyperplane. 

 

                                                            
w

xf
z

)(
= ,                                                           (32) 

 

 

                                                          2

2

2

1 www += .                                                    (33) 

 

The distances from the nearest points in each class to their respective hyperplanes are 

denoted 21 z and z . It can be seen that hyperplane ( 2H ) with margin 22z  has a larger 
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margin than hyperplane ( 1H ).  Thus, the increased margin of hyperplane ( 2H ) has a 

lower associated risk of misclassification compared to hyperplane ( 1H ). 
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Figure 25:  Two possible locations and directions of separating hyperplanes. 

 

 By scaling 0 and ww , the value of f(x) at the points closest to the hyperplanes in 

21  and ωω (circled in Figure 25) become equal to (+1) for class 1ω  and (-1) for class 2ω .  

Thus, the hyperplane will have a margin  given in (34) such that the linear inequality 

constraints given in (35) are satisfied. 
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 Minimizing the norm will afford the maximum margin.  The separating 

hyperplane that maximizes the distance between itself and the nearest data from each 

class is the optimal separating hyperplane.  The parameters w and b of the maximum-

margin hyperplane can be found by solving the following convex quadratic optimization 

problem subject to a set of linear inequality constraints. 
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The minimizer must satisfy the following Karush-Kuhn-Tucker (KKT) conditions [42], 

where λ  is the vector of Lagrange multipliers, iλ . 
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The Lagrangian function, ),,( λbwL , is defined in (42) as 
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Combining (42) with (38) and (39) results in 
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Since 0≥iλ , the vector w of the maximum-margin hyperplane is a linear combination of 

the feature vectors with active constraints 0≠iλ .  Hence, the support vectors lie on either 

of the two hyperplanes parallel to the separating hyperplane with equations (45). 

 

                 1±=+ bxw
T                                                       (45) 

 

The support vectors are the training vectors that are closest to the decision boundary 

(separating hyperplane).  The parameter b can be obtained from any of the conditions in 

(41) satisfying 0≠iλ . 

 To simplify the calculations, the problem with KKT conditions can be converted 

into the equivalent Wolfe dual representation form [42][44].  
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Substituting (47) and (48) into (46), the equivalent optimization task is to 
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After calculating the Lagrange multipliers via (50), the parameter w of the maximum-

margin hyperplane is obtained from (47) and b from (41) as before. 

 Figure 26 illustrates the graphical results of solving the convex quadratic 

optimization problem to determine the maximum-margin hyperplane.  The support 

vectors (circled) constitute the critical elements from the set of training vectors.  They lie 

closest to the decision boundary (separating hyperplane) on the two parallel hyperplanes, 

21 h and h , described by 1±=+ bxw
T , respectively.  These support vectors will have 

Lagrange multipliers 0≥iλ .  All other training vectors not on 21 h and h will have values 
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is the perpendicular distance from the separating hyperplane 

(i.e., the dark solid line) to the origin along the vector w [44].  

 

 

Figure 26:  The maximum-margin hyperplane for a two class linearly separable data set. 
 

 

 

6.1.2 The Kernel Function 

 

 The kernel function is a function that projects the training data from a low-

dimensional space into a higher-dimensional space with the aim of creating a linearly 

separable data set in the higher-dimensional space.  It allows SVM to separate data with 

complex boundaries.  From [45], a kernel is defined as a function K, such that for all 

Xzx ∈, ,  
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where φ  maps the images of the two arguments (x, z) from X to a dot product feature 

space.  Some common kernel functions used are 

• Linear:     zxzxK ,),( =                                         (54) 

• Polynomial:    0     ,)1(),( >+= qzxzxK qT                    (55) 

• Radial Basis Function:  
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• Hyperbolic Tangent:   )tanh(),( γβ += zxzxK T                         (57) 

 

 The kernel function may cause over-fitting where numerous boundaries are 

constructed that are specific to certain data from the training data [39].  Projecting into a 

high-dimensional space can create difficulty for the algorithm to select the correct 

solution because the number of possible solutions increases exponentially as the number 

of variables increase. 

 

6.1.3 Classifying Test Data and Probability Estimates 

 

 Once the SVM has been trained, it is used to classify previously unseen test data.  

For a two class classifier, the SVM from LIBSVM [38], assigns class labels according to 

a “Max Wins” voting strategy.  For each test data point ix , the decision boundary 

(separating hyperplane) function )(sign)( bxwxg i

T

i +=  is evaluated.  If 0)( >ixg , then 

ix  is in the class corresponding to 1=y .  The vote for this class is added by one.  
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Otherwise, the vote is increased by one for the class corresponding to 1−=y .  Then, x is 

predicted to be in the class with the most votes.  In the case of a tie in the voting method, 

x is labeled with the class having the smallest index [46].  

 Obviously, correct classification is of great importance in this SVM method to 

determine battery SOH.  Equally important are the posterior probabilities for each class, 

that this SVM is capable of offering.  The posterior probability is the probability that x  

belongs to a certain class.  More formally, given k data classes, the LIBSVM package 

aims to estimate the posterior probability, for any x given by (58). 

 

                                                 kixiypi ,...,1    ),|( === .                                            (58) 

 

 The posterior probabilities are estimated in LIBSVM by fitting a sigmoid function 

that maps the outputs g to posterior probabilities [46].  The following procedure outlines 

the estimation of posterior probabilities: 

1) Estimate the pairwise class probabilities. 
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 A and B are two parameters estimated by minimizing the negative log-likelihood 

 function with known training data and their corresponding decision values.  To 

 obtain decision values, five-fold-cross-validation is conducted because class 

 labels and decision values are required to be independent. 
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2) Obtain the s'ip  by solving the optimization problem 
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The SVM of LIBSVM returns the estimated posterior probabilities for both classes to 

which a test data point might belong.  In Section 6.2, the use of these probabilities in 

determining the SOH of a battery will be discussed in further detail. 

 

6.2 Analysis of Battery Cranking Voltage and Engine RPM  

      Characteristics 

 
 Figure 27 shows the battery cranking voltage and engine cranking speed 

waveforms for one of the 10 JCI LN3 batteries tested weekly at high SOC (nearly 100% 

SOC) and 25°C.   
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Figure 27:  Battery cranking voltage and engine cranking speed waveforms of a fresh and 

aged battery. 

 

 

The solid line voltage and rpm waveforms were collected during cranking at the 

beginning of the ageing procedure when the battery was fresh.  The dashed line voltage 

and rpm waveforms are from the same battery at the end of the ageing procedure.  The 

engine cranking time begins at the initial voltage drop when the starter motor is initially 

engaged (see Section 1.2).  A successful engine crank corresponds to an engine cranking 

speed of approximately 500 rpm.  As can be seen in the figure, for the aged battery, the 

cranking time is significantly longer than the cranking time of the fresh battery.  

Moreover, the aged battery requires greater voltage throughout the cranking process 

compared to the fresh battery due to greater voltage loss and/or increased battery 

resistance (see Section 3.2).  It is this consistent observation with the 10 JCI LN3 

batteries throughout the accelerated ageing cycling process that motivated the selection of 

the voltage and engine rpm data as training features for the SVM method to determine 

battery SOH.  
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 The 10 JCI LN3 batteries were used to crank the engine of testing vehicle.  The 

engine was kept running for approximately thirty-five minutes to warm up the engine oil 

temperature to approximately 90°C before conducting the cranking test.  Therefore, the 

variation of the engine condition was reduced and the cranking time can be considered as 

a measure of the battery’s actual cranking SOH.  In real-world applications, cranking 

time is also sensitive to the health of other components of the starting system, for 

instance, the starter, engine oil condition, and the engine; therefore it cannot be directly 

used as a battery SOH indicator. 

 

 

6.2.1 Training the Two-Class Support Vector Machine Classifier 

 
 To train the SVM, battery voltage and engine cranking speed signals representing 

fresh and aged batteries sampled every 50ms were selected and pre-processed to extract 

the voltage and engine rpm data corresponding to the short period of engine cranking 

(see, for example, Figure 27).  Each voltage and corresponding engine rpm data point 

represents a training feature vector.  Based on the maximum and minimum fresh battery 

voltages and corresponding maximum and minimum engine cranking speeds during 

cranking, the feature vectors are normalized from -1 to 1 and then assigned a class label 

(i.e., 1 for fresh and -1 for aged).   

 The SVM applies the radial basis kernel function (see Section 6.1.2), to project 

the scaled feature vectors into a higher-dimensional feature space and construct the 

maximum-margin hyperplane (see Section 6.1.1).   Figure 28 shows the scaled training 

feature vectors from aged and fresh batteries used to construct the SVM training model to 
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determine battery SOH.  As can be seen in the figure, the training feature vectors are 

linearly separable, thus, this SVM is a two-class linear classifier. 

 

Figure 28:  Scaled voltage and rpm training data from aged and fresh batteries during 

cranking. 

 

6.2.2 Testing the SVM Two-Class Classifier 

 

 Once the SVM model has been trained, it is used to classify previously unseen 

battery voltage and engine cranking speed data to verify its performance and determine 

the SOH of the 10 JCI LN3 batteries.  The SVM classifies test data and provides 

estimated posterior probabilities.  The estimated probabilities are used to predict the SOH 

of the battery at each week.   

 The inputs to the SVM are the battery voltage and engine cranking speed at a 

sampling rate of 50ms.  The specifications of the sensor signals and variables are listed in 

Table 17. 
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0.1 0 to 2000 50 ms

sampling rate

Voltage (V)

Engine Cranking 

Speed (RPM)

± 0.1

±0.1

0.001 0 to 16 50 ms

Battery signals accuracy resolution range

Table 17:  Specifications of sensor signals and variables. 

 

 

As in SVM training, the voltage and rpm data input during testing is pre-processed to 

extract the battery voltage and engine rpm data corresponding to the short period of 

cranking (see, for example, Figure 27).  The voltage and rpm feature vectors are also 

scaled from -1 to 1 based on the maximum and minimum fresh battery voltage during 

training and corresponding maximum and minimum engine cranking speeds, 

respectively.  The SVM classifies each sampled data vector using the voting method and 

returns the estimated posterior probabilities of each of the N test vectors belonging to the 

fresh battery and the aged battery classes (see Section 6.1.3).  The posterior probabilities 

for each test vector belonging to the fresh battery class (1 for fresh batteries) are averaged 

and multiplied by 100% to obtain the predicted SOH percentage of the battery for a given 

week.  The remaining SOH of the battery as a percentage for one crank at each week is 

given by (61) and (62). 
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6.3 SVM Performance Evaluation Using LN3 Battery 

      Cranking Data  

 

 In this section, a few examples of the SVM performance evaluation results are 

presented.  The vehicle cranking data was collected weekly throughout an accelerated 

aging process from JCI LN3 batteries at high SOC (approximately 100%) and 25°C.  

Through analysis of the SVM evaluation results for the 10 JCI LN3 batteries, to provide a 

timely pre-warning of cranking failure, a SOH_Threshold of 40% is calibrated.  Thus, in 

the following analysis, when the SOH percentage falls below 40%, a recommendation of 

“Replace Battery” would be issued to prevent subsequent cranking failure.   

 The results of the SVM state-of-health estimate are compared to a cranking time 

based SOH.  The cranking time based SOH is used as a reference to verify the 

effectiveness of the SVM method.  Again, because the variation of engine condition in 

the test vehicle was kept minimal, cranking time may be used as a measure of the 

battery’s actual cranking SOH.  The cranking time based SOH algorithm generates an 

SOH percentage for each crank at each week by comparing the current cranking time to a 

calibrated nominal cranking time and cranking time threshold.   The SOH percentage for 

each crank is given by (63), where crankt is the current cranking time considered, nomt is the 

nominal cranking time for fresh batteries, and thresht  is the cranking time threshold 

between fresh and aged batteries. 

 

                                              %100SOH(%) ∗
−

−
=

threshnom

threshcrank

tt

tt
,                                        (63) 
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  Each plot contains the cranking time based SOH and the SVM estimate of SOH as 

percentages ranging from 0% to 100%.  Each test period is one week and the last test 

period is one week prior to cranking failure.   

 

Figure 29:  Battery JCI001 (high SOC at 25°C). 

 

 Figure 29 illustrates the results for LN3 battery JCI001.  In the figure, the dashed 

line with markers (o) represents the SVM estimated battery SOH.  The solid line with 

markers (*) represents the battery SOH determined by cranking time.  The 

SOH_Threshold (dashed line) is illustrated at 40% SOH.  The battery failed to crank the 

vehicle at test period 13.  The SVM accurately predicts the SOH of the battery with 

respect to the cranking time based SOH.  At test period 12, the cranking time based SOH 

of battery JCI001 falls well below the SOH_Threshold of 40%.  The SVM method is 

capable of predicting the SOH of the battery at test period 12 and offers the pre-warning 

to “Replace Battery” to avoid pending cranking failure at test period 13. 
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Figure 30:  Battery JCI002 (high SOC at 25°C). 

 

 Figure 30 illustrates the results for LN3 battery JCI002.  The battery failed to 

crank the vehicle at test period 11.  For test periods 1-10, the SVM closely predicts the 

SOH of the battery with respect to the cranking time based SOH.  At test period 10, the 

SVM estimates the battery SOH to be well below the SOH_Threshold of 40%.  Hence, 

the SVM is capable of offering the pre-warning of “Replace Battery” at test period 10 to 

avoid pending cranking failure at the following week.  
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Figure 31:  Battery JCI005 (high SOC at 25°C). 

 

 Figure 31 illustrates the results for LN3 battery JCI005.  The battery failed to 

crank the vehicle at test period 11.  For all test periods, the SVM closely approximates 

the battery SOH with respect to the cranking time based battery SOH.  For test period 10, 

the SVM predicts the battery SOH at or near 0%.  Therefore, the SVM accurately 

estimates the battery SOH with respect to the cranking time based SOH throughout the 

ageing process and is capable of offering the pre-warning of “Replace Battery” to avoid 

pending cranking failure at test period 11. 
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH WORK 

 

 

 
 Four battery SOH monitoring methods, including a battery cranking voltage based 

approach, a parity-relation based approach, a conventional resistance based approach, and 

a support vector machine based pattern recognition approach, have been researched and 

presented within this thesis.  The battery cranking voltage based method and the parity-

relation based method are capable of providing pre-warnings of pending vehicle cranking 

failure due to low battery SOH.  Both of these methods are more robust than the 

conventional resistance based method with respect to battery type variations.  A key 

advantage of the cranking voltage based method is that a costly high current sensor is not 

required.  Moreover, compared with conventional SOH monitoring methods based on 

model parameters of an equivalent circuit battery model, calibration of the algorithm is 

easier.   

 With the addition of a high current sensor, the parity-relation based method is 

more consistent than the cranking voltage based method.  The parity-relation based 

method combines the SOH information provided by both battery resistance and battery 

voltage loss during cranking, hence achieving better diagnostic/prognostic performance. 

 Finally, the support vector machine based pattern recognition approach utilizes 

features of battery voltage and engine cranking speed during engine cranking.  This 
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method can also offer a pre-warning of pending cranking failure and does not require a 

costly high current sensor.  The SVM was evaluated on engine cranking data collected in 

a very controlled environment. The results are preliminary and will require further 

development and testing with batteries at various conditions to verify consistent and 

robust performance as a battery SOH monitoring method.  

 The battery cranking voltage and parity-relation based algorithms discussed 

within this thesis are capable of offering recommendations prior to battery end-of-life 

based on battery cranking power capability.  However, neither method offers any 

indication of the actual battery capacity remaining.  Future work includes developing 

more sophisticated battery monitoring methods that provide accurate SOC control and are 

capable of determining battery SOH based on battery capacity. 

 The SVM pattern recognition method is capable of predicting battery SOH and 

offering a pre-warning of pending cranking failure.  Moreover, the SVM method 

generates a percentage-based prognosis of battery cranking power capability.  

Developing methods that provide a prognosis of the remaining useful life of a battery in 

terms of mileage is a more attractive feature that will be explored in future research work.  

 

 

 

 

 

 

 



 102 

 

 

REFERENCES 

 

 

 
 [1] A. Emadi, M. Ehsani, and J. M. Miller, Vehicular Electric Power Systems, New 

York: Marcel Dekker, 2004. 

 

 [2] M. Koot, J. T. B. A. Kessels, B. de Jager, W. P. M. H. Heemels, P. P. J. van den 

Bosch, and M. Steinbuch, “Energy management strategies for vehiclular electric 

power systems,” IEEE Transactions on Vehicular Technology, vol. 54, no. 3, May 

2005.  

 

 [3] P. Popp, M. Salman, Y. Zhang, X. Zhang, and Y.-K Chin, “Vehicle Diagnosis and 

 Prognosis:  Concepts, Trends, and Applications to Batteries,” Proceedings of 

 Convergence, 2006. 

 

 [4] E. Meissner and G. Richter, “The change to the automotive battery industry: the 

battery has to become an increasingly integrated component within the vehicle 

electric power system,” Journal of Power Sources, vol. 156, pp. 438-460, 2005. 

 

 [5] M. Schollmann, M. Rosenmayr, and J. Olk, “Battery monitoring with the intelligent 

battery sensor during service, standby and production,” SAE 2005-01-0561. 

 

 [6] M. Cox and K. Bertness, “Vehicle-integrated battery and power system management 

based on conductance technology to enable intelligent generating systems 

(inGEN),” SAE 01TB-128. 

 

 [7] H. Blanke, O. Bohlen, S. Buller, et al., “Impedance measurements on lead-acid 

batteries for state-of-charge, state-of-health and cranking capability prognosis in 

electric and hybrid electric vehicles,” Journal of Power Sources, no. 144, pp. 418-

425, 2005. 

 

 [8] E. Meissner, G. Richter, “Vehicle electric power systems are under change! 

Implications for design, monitoring, and management of automotive batteries,” 

Journal of Power Sources, no. 95, pp. 12-23, 2001. 

 

 [9] F. Huet, “A review of impedance measurements for determination of state-of-charge 

or state-of-health of secondary batteries,” Journal of Power Sources, vol. 70, pp. 

59-69, 1998. 

 



 103 

[10] E. Chowanietz, Automobile Electronics. London: Reed Elsevier, 1995. 

 

[11] D. Berndt, Maintenance-Free Batteries. Baldock, Hertfordshire, England: Research 

 Studies Press LTD., 2003. 

 

[12] E. Meissner and G. Richter, “Battery monitoring and electrical energy management 

 precondition for future vehicle electric power systems, Journal of Power Sources, 

 vol. 116, pp. 79-98, 2003. 

 

[13] M. Coleman, C.B. Zhu, C.K. Lee, and W.G. Hurley, “A combined SOC estimation 

 method under varied ambient temperature for a lead-acid battery,” Applied Power 

 Electronics Conference and Exposition, vol. 2, pp. 991-997, March 2005. 

 

[14] T. Hansen and C.-J. Wang, “Support vector based battery state of charge estimator,” 

 Journal of Power Sources, vol. 141, pp. 351-358, 2005. 

 

[15] P. Ruetschi, “Aging mechanisms and service life of lead-acid batteries,” Journal of 

 Power Sources, vol. 127, pp. 33-44, 2004. 

 

[16] R. Isermann, “Process fault detection based on modeling and estimation methods: a 

 survey,” Automatica, vol. 20, pp. 387-404, 1984. 

 

[17] R. Isermann, “Supervision, fault-detection and fault-diagnosis methods – an    

 introduction,” IFAC Control Engineering Practice, vol. 5, pp. 639-652, 1997. 

 

[18] P.M. Frank, “Analytical and qualitative model-based fault diagnosis – a survey and 

 some new results,” European Journal of Control, vol. 2, pp. 6-28, 1996. 

 

[19] S. Leonhardt and M. Ayoubi, “Methods of fault diagnosis,” Control Engineering 

 Practice, vol. 5, pp. 683-692, 1997. 

 

[20] J. Lunze, “Qualitative modeling of linear dynamical systems with quantized state 

 measurements,” Automatica, vol. 30, pp. 417-431, 1994. 

 

[21] B. Hariprakash, S.K. Martha, A. Jaikumar, and A.K. Shukla, “On-line monitoring of 

 lead-acid batteries by  galvanostatic non-destructive technique,” Journal of 

 Power Sources, vol. 137, pp. 128-133, 2004. 

 

[22] A. Salkind, C. Fennie, P. Singh, T. Atwater, and D.E. Reisner, “Determination of 

 state-of-charge and state-of-health of batteries by fuzzy logic methodology,” 

 Journal of Power Sources, vol. 80, pp. 293-300, 1999. 

 

[23] B.S. Bhangu, P. Bentley, D.A. Stone, and C.M. Bingham, “Nonlinear observers for 

 predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-

 electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 54, no. 3, 

 May 2005. 



 104 

 

[24] X. Zhang, R. Grube, K. Shin, and M. Salman, “Automotive battery state-of-health 

monitoring: a battery cranking voltage based approach,” Integrated Systems 

Health Management Conference, Covington, Kentucky, August 2008. 

 

[25] X. Zhang, R. Grube, K. Shin, and M. Salman, “Automotive battery state-of-health 

monitoring: a parity-relation based approach,” submitted to The 7
th

 IFAC 

Symposium on Fault Detection, Supervision, and Safety of Technical Processes, 

Barcelona, Spain, 2009. 

 

[26] A. Jossen, “Fundamentals of battery dynamics,” Journal of Power Sources, vol. 154, 

pp. 530-538, March 2006. 

 

[27] M. Verbrugge, D. Frisch, and B. Koch, “Adaptive energy management of electric 

and hybrid electric vehicles,” Journal of the Electrochemical Society, vol. 152 (2), 

pp. A333-A342, 2005. 

 

[28] S. Buller, M. Thele, E. Karden, R. W. De Doncker, “Impedance-based non-linear 

dynamic battery modeling for automotive applications,” Journal of Power 

Sources, vol. 113, pp. 422-430, 2003.  

 

[29] S.R. Nelatury and P. Singh, “Extracting equivalent circuit parameters 

          of lead-acid cells from sparse impedance measurements,” Journal of Power 

 Sources, vol. 112, pp. 621-625, 2002. 

 

[30] S. Rodrigues, N. Munichandraiah, and A.K. Shkla, “A review of state-of-charge 

 indication of batteries by means of a.c. impedance measurements,”  

 Journal of Power Sources, vol. 87, pp. 12-20, 2000.  

 

[31] X. Zhang, R. Grube, K. Shin, and M. Salman, “Automotive battery state-of-health 

monitoring: a battery cranking voltage based approach,” GM R&D Report, CL-

08-13-ECI, 2008a. 

 

[32] J. J. Gertler, Fault Detection and Diagnosis in Engineering Systems, New York: 

 Marcel Dekker, 1998. 

 

[33] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems. 

Boston, MA: Kluwer, 1999. 

 

[34] P. M. Frank, “Fault diagnosis in dynamic systems using analytical and knowledge-

based redundancy – a survey and some new results,” Automatica, vol. 26, pp. 

459-474, 1990. 

 

[35] X. Zhang and R. Conell, “A parity-relation based approach to starting, lighting, and 

ignition battery state-of-health monitoring: algorithm development,” GM R&D 

Report, ECI-286/CES-290, 2007.  



 105 

 

[36] X. Zhang, R. Grube, K. Shin, M. Salman, and R. Conell, “Automotive battery state-

of-health monitoring: a parity-relation based approach,” GM R&D Report, 2008b. 

 

[37] X. Zhang, R. Grube, K. Shin, and M. Salman, “Automotive battery state-of-health 

monitoring: comparative studies,” GM R&D Report, 2008c. 

 

[38] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines, 2001. 

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 

 

[39] W.S. Noble, “What is a support vector machine?,” in Nature Biotechnology. Nature 

Publishing Group, vol. 24, no. 12. pp. 1565-1567, 2006. 

 

[40] P. Kostka and E. Tkacz, “Support vector machine classifier with feature extraction 

stage as an efficient tool for atrial fibrillation detection improvement,” in 

Computer Recognition Systems 2. M. Kurzynski et al., Eds., Berlin, Heidelberg: 

Springer-Verlag, 2007, ASC 45, pp. 356-363. 

 

[41] H.W. Liu, “Predicting non-protein-coding RNA genes in Escherichia coli using 

SVM with signature descriptor,” The Second International Symposium on 

Optimization and Systems Biology, Lijiang, China, 2008, pp. 287-293. 

 

[42] S. Theodoridis and K. Koutroumbas, Pattern Recognition. San Diego: Academic 

Press, 2006. 

 

[43] S. Pöyhönen, A. Arkkio, P. Jover, and H. Hyötyniemi, “Coupling pairwise support 

vector machines for fault classification,” Control Engineering Practice, vol. 13, 

pp. 759-769, 2005. 

 

[44] C.J.C. Burges, “A tutorial on support vector machines for pattern recognition,” in 

Data Mining and Knowledge Discovery. Boston: Kluwer Academic Publishers, 

1998, pp. 121-167. 

 

[45] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines. 

Cambridge University Press, 2000. 

 

[46] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector 

machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415-425, 

March 2002. 

 

[47] M. Salman, N.S. Kapsokavathis, X. Zhang, D.W. Waters, X. Tang, “Method and 

apparatus for monitoring an electrical energy storage device,” GM Patent filed, 

US Provisional Serial No: 60/871458, 2006.    

 

 

 



 106 

[48] S. Gudmundsson, T.P. Runarsson, and S. Sigurdsson, “Automatic sleep staging 

using support vector machines with posterior probability estimates,” Proceedings 

of the 2005 International Conference on Computational Intelligence for 

Modelling, Control and Automation, 2005. 

 

[49] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” 

Department of Computer Science, National Taiwan University, 2008.  URL 

http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf. 

 

[50] R. Bi, Y. Zhou, F. Lu, and W. Wang, “Predicting gene ontology functions based on 

support vector machines and statistical significance estimation,” Neurocomputing, 

vol. 70, pp. 718-725, 2007. 

 

[51] D. Berndt, “Valve-regulated lead-acid batteries,” Journal of Power Sources, vol. 

100, pp. 29-46, 2001.  

 

[52] E. Osuna, R. Freund, and F. Girosi, “Training support vector machines: an 

application to face detection,” Center for Biological and Computational Learning 

and Operations Research Center, M.I.T., Cambridge, MA, pp. 130-136, 1997. 

 

 

 

 

 
 

 

  

 


	Automotive Battery State-of-Health Monitoring Methods
	Repository Citation

	Microsoft Word - Thesis 11_20_08Final1_12_17_08.doc

