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ABSTRACT 

This work is part of a project aimed to develop automotive real-time observers based on detailed 
multibody models and the extended Kalman filter (EKF). In previous works, a four-bar mechanism was 
studied to get insight into the problem. Regarding the formulation of the equations of motion, it was 
concluded that the state-space reduction method known as matrix-R is the most suitable one for this 
application. Regarding the sensors, it was shown that better stability, accuracy and efficiency are obtained 
as the sensored magnitude is a lower derivative and when it is a generalized coordinate of the problem. In 
the present work, the automotive problem has been already addressed, through the selection of a 
Volkswagen Passat as a case-study. A model of the car containing fourteen degrees of freedom has been 
developed. The observer algorithm that combines the equations of motion and the integrator has been 
reformulated so that duplication of the problem size is avoided, in order to improve efficiency. A 
maneuver of acceleration from rest and double lane change has been defined, and tests have been run for 
the “prototype”, the “model” and the “observer”, all the three computational, with the model having 100 
kg more than the prototype. Results have shown that good convergence is obtained, but the computational 
cost is high, still far from real-time performance.  

Keywords: observers, estimators, detailed multibody models, extended Kalman filter, automotive. 

1 INTRODUCTION 

Observers serve to estimate the states of a dynamic system based on a model and on some measurements 
of the system [1]. In this way, they provide estimates of magnitudes which have not been sensored 
because it would be either expensive or practically difficult. In many cases, observers must run in real-
time, since the information they provide is used to control the actual system. 

Usually, the system models are simple, even linear, since their fast evaluation is needed in order to meet 
the above mentioned real-time requirement [5]. However, detailed models would provide more and more 
accurate information, thus enabling the implementation of more sophisticated control strategies. 

This work is part of a project aimed to develop real-time observers for automobiles based on detailed 
multibody models and the extended Kalman filter (EKF). However, to get the fundamental insight in the 
problem, preliminary studies were carried out on a four-bar mechanism with a spring-damper element, as 
described in the following two paragraphs. 

In a first previous work [2], the authors selected the two dynamic formulations which were found to better 
fit the structure required by the EKF, and compared them: a state-space reduction method known as 
matrix-R method, and a penalty method. It was concluded that the matrix-R method was faster and more 
accurate than its counterpart. The penalty method was not able to keep constraint satisfaction, since an 
increment of the penalty factor increased both the penalty forces which oppose constraint violation and 
the correction terms coming from the EKF. Therefore, the kinematic position and velocity problems had 
to be solved at every function evaluation, thus limiting the efficiency of the method and its typical 



advantages: validity of the set of variables during the whole simulation, even in case of changing 
configurations, and robustness when facing singular positions. 

In a second previous work [3], the authors studied the influence of the sensored magnitude in the 
performance of the observers. In the above-mentioned first work, a position sensor had been considered 
which measured the value of the generalized coordinate. In the second work, the behavior of the matrix-R 
method was analyzed for different sensored magnitudes -position, velocity, acceleration-, and for the 
cases when the sensored magnitude is or is not a generalized coordinate of the problem. Sensor noise was 
considered in all the cases. It was found that the observer becomes less stable, accurate and efficient as 
higher derivatives are measured, thus demanding either to reduce the integration time-step or to increase 
the value of the measurement noise covariance in order to keep an acceptable behaviour. Moreover, less 
accurate results were obtained when the sensored variable is not a generalized coordinate of the problem, 
since the output Jacobian matrix is less exact in that case. Finally, it was shown that integration of the 
sensor data to simulate the measurement of a lower derivative yields excellent results, likely due to the 
filtering effect of the integration process. 

 

Figure 1. Case-study: Volkswagen Passat. 

In the present work, the automotive problem is already addressed. A Volkswagen Passat has been chosen 
as the case-study. The car has been modeled in natural coordinates from which a subset of fourteen 
coordinates has been selected to represent the degrees of freedom of the system: chassis translation and 
rotation, motion of the four suspensions, and wheels rotation. The matrix-R method has been used to 
write the model equations of motion and, hence, the state-space Jacobian matrix has been recovered from 
the mentioned previous works. However, looking for better efficiency, the observer algorithm that 
combines the equations of motion and the integrator has been reformulated, in such a way that duplication 
of the problem size is avoided, and a nonlinear algebraic system of equations is obtained with the 
positions as primary variables (velocities are eliminated), thus reducing the problem size to the 
coordinates number (fourteen in this case, as indicated above); both the residual and the tangent matrix 
required to apply the Newton-Raphson iterative process have been developed too. The sensored 
magnitudes considered have been the position level data corresponding to the fourteen dynamic degrees 
of freedom of the system. A maneuver of acceleration from rest and double lane change has been defined, 
and tests have been run for the “prototype”, the “model” and the “observer”, all the three computational, 
with the model having 100 kg more than the prototype. Results have shown that good convergence is 
obtained, but the computational cost is high, still far from real-time performance. 

The paper is organized as follows. The second section presents the car chosen as case-study and describes 
how it has been modeled. The third section shows the observer equations provided by the EKF and 
pinpoints the two essential elements required to obtain the Kalman gain: the state-space and the output 
Jacobian matrices. The form of these matrices is provided in the fourth and fifth Sections, respectively. 
The sixth Section develops the dynamic formulation of the observer, so that duplication of variables is 
avoided, and the problem is formulated at position level only. The seventh Section explains the simulation 
which served to test the observer, and shows the results regarding accuracy and efficiency. Finally, the 
eighth Section gathers the conclusions of the work and indicates the challenges for future research. 



2 THE CASE-STUDY 

The Volkswagen Passat shown in Figure 1 has been chosen as the case-study. It has been modeled in 
natural coordinates (44 points and 24 unit vectors), along with some relative coordinates (4 angles and 7 
distances), thus leading to a total number of 215 variables. The number of constraints that relate the 
variables is 208, with some of them redundant, being 15 the number of degrees of freedom: chassis 
translation and rotation, steering, motion of the four suspensions, and wheels rotation. The front 
suspension is of McPherson type and requires no special comments. However, the rear multi-link 
suspension can only work when bushings are placed at the hinges. Since bushings add difficulty to the 
problem, this first model of the car does not include them and, therefore, the structure of the rear 
suspension has been slightly modified so that motion is possible without bushings and kinematics remains 
almost unaltered. The resulting kinematic model is shown in Figure 2. 

 

Figure 2. Modeling of the car kinematics. 

In what respect to the dynamics, the tires have been considered through a basic linearized formulation 
with saturation ellipse, the suspensions have been modeled by linear springs and dampers, the anti-roll 
bars by linear springs too, the steering system has been simulated by kinematic guidance, and the car 
traction and braking by torques acting on the wheels. 

3 THE EKF EQUATIONS 

A nonlinear system (plant) can be given by the following equations: 
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where  is the (unknown) state vector, and  is the known measurements vector. The functions f and h 
are also known, and the equations are affected by state and measurement noises δ, ε, with zero mean and 
given covariances Θ, Ξ, respectively. Then, the EKF is given by [1]: 
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being the matrices A, C, computed as the Jacobians of f and h with respect to the states, and evaluated at 
the estimated trajectory, x. The EKF locally minimizes the covariance P of the state-estimation error. 

Therefore, to build the observer through the EKF technique, two elements are needed: on the one hand, 
the state-space Jacobian matrix ∂ ∂f xA=  should be obtained, which depends on the form taken by the 
equations of motion of the model ( )=x f x ; on the other hand, the output Jacobian matrix ∂ ∂h xC=  
must be determined, which depends on the sensored magnitudes that will be used to feed the filter. 

4 THE STATE-SPACE JACOBIAN MATRIX 

As said in the Introduction, the matrix-R method [4] has been used to write the model equations of motion 
which, in turn, serve to obtain the state-space Jacobian matrix A. The mentioned method is very easily 
described starting from the classical Lagrange’s equations of the first kind, 

 T+ =

=
qMq Φ λ Q

Φ 0
 (3) 

where M is the positive semidefinite mass matrix, q  the accelerations vector, Φ the constraints vector, 
 the Jacobian matrix of the constraints, λ the Lagrange multipliers vector, and Q the applied forces 

vector. Equation (3) represents a system of differential-algebraic equations (DAE). 
qΦ

The matrix-R method obtains a system of ordinary differential equations (ODE) with dimension  equal 
to the actual number of degrees of freedom, using a set z of independent coordinates. To this end, the 
following relation between velocities is established: 

in

 =q Rz  (4) 

where q are all the  dependent variables and z is a set of  independent variables. Such a relation can 
always be found, for instance, taking the derivative of the constraints, 

dn in
=qΦ q 0 , and splitting all the 

velocities into two subsets, so that one subset of velocities may be written as a function of the other 
subset. Once Equation (4) has been obtained, it follows that 

 = +q Rz Rz  (5) 

Now, going back to Equation (3), premultiplying by the transpose of R, and having in mind 
that , =qΦ R 0

 ( ) ( )1T T 1− −⎡ ⎤= − =⎣ ⎦z R MR R Q MRz M Q  (6) 

which defines the projected mass matrix M  and the projected vector of generalized forces Q . The result 
is that the DAE of Equation (3) in the dependent variables has been converted into the ODE of Equation 
(6) expressed in the independent variables. 

If now the states are defined as { }T T T=x z w , with =w z , the following equations can be written, 
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or, more compactly, 
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These equations perfectly match the first set of Equation (1) and, therefore, the state-space Jacobian 
matrix A can be obtained as, 
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which can be approximated as, 
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where K is the stiffness matrix and C is the damping matrix. 

It should be emphasized that the size of matrix A is , i.e. double of the number of degrees of freedom, 
since the states have been defined as positions and velocities. 

2 in

5 THE OUTPUT JACOBIAN MATRIX 

In this first work addressing an automotive example, the sensored magnitudes considered have been the 
position level data corresponding to the fourteen dynamic degrees of freedom of the system: chassis 
translation and rotation, motion of the four suspensions, and wheels rotation. Note that the steering has 
been removed from this list, since it is kinematically guided. More specifically, the sensored variables 
have been made coincident with the vector of independent coordinates of the system, z, which contains 
the three coordinates of a point of the chassis to represent its translation (point p1 in Figure 2), three 
components of unit vectors of the chassis (unit vectors v1, v2 and v3 in Figure 2) that serve to capture its 
three rotations, the four distances defined at the suspensions, and the four relative angles between hubs 
and wheels. 

Therefore, the output Jacobian matrix C takes the following trivial form, 
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with each square submatrix having size . in

6 THE OBSERVER DYNAMIC EQUATIONS 

In the previous works, the observer equations had been obtained through straightforward combination of 
the first set of Equation (2) and the integrator equations (trapezoidal rule), since, once the Jacobians A 
and C are determined, the Kalman gain can be calculated as expressed in the second and third sets of 
Equation (2). In this way, the resulting observer equations are of size 2 . This fact was not worrying 
when studying the four-bar mechanism, with one single degree of freedom, but became relevant when 
addressing the detailed model of the car proposed, with fourteen degrees of freedom. 

in



Therefore, it was decided to manipulate the equations, so that the final set of observer equations had a 
size of only . The starting poin are, on the one hand, the observer equations taken from Equation (2): in
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where  and  are the upper and lower parts of the Kalman gain matrix K, and  are the outputs 
provided by the sensors. These equations can be rewritten as, 
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And, on the other hand, the integrator equations. As mentioned before, the selected integrator has been 
the implicit, single step, trapezoidal rule. 
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where  is the time-step size. For the sake of simplicity, these equations are rewritten as, tΔ
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Specifying the first set of Equation (13) for the time step n+1, and using the first set of Equation (15) 
yields, 
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which provides the velocities  as functions of the positions 1n+w 1n+z . This result can be substituted into 
the second set of Equation (15), leading to, 
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which provides the accelerations  as functions of the positions 1n+w 1n+z . 

Therefore, all the states and derivatives at time step n+1 are now expressed as functions of the positions 
 through the first set of Equation (15), Equation (16) and Equation (17). If the equations of motion 

given by the second set of Equation (13) are written for time step n+1 in the form of a residual, scaled by 
a factor of 

1n+z

2 4tΔ , it yields, 
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Substituting now the value of  provided by Equation (17), the residual g  can be expressed as 
function of the positions , leading to the following nonlinear system of equations with the positions 

 as unknowns, 
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This nonlinear system of equations can be solved through the Newton-Raphson iteration, the approximate 
tangent matrix being, 
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where  and  are the upper and lower parts of the output Jacobian matrix C. Therefore, the dynamic 
equations of the observer have been reduced to the size of the number of degrees of freedom , as it was 
sought. 

1C 2C
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7 SIMULATIONS AND RESULTS 

The Volkswagen Passat model described in the second Section has been used here to create three 
different “cars”: a) the “prototype”, representing the real system; b) the “model”, representing a non fully 
accurate computational model of the prototype; c) the “observer”, which is nothing but the model 
corrected with the sensor information coming from the prototype through the EKF. 

In the simulated maneuver, the car starts from rest, accelerates until reaching a cruise speed of around 90 
km/h, carries out a double lane change and continues at cruise speed until the end of the simulation time, 
which is 22.90 s. The time-step size adopted for all the three simulations (prototype, model and observer) 
was 1 ms. The inaccuracy of the model with respect to the prototype has been introduced by assigning 
100 kg of additional mass to the model. The inputs (steering distance at the rack and traction/braking 
torque at the rear wheels), identical for both the prototype and the model, are shown in Figure 3. 

 

Figure 3. Inputs histories: steering guidance and traction/braking torque. 

As said in the fifth Section, the sensored magnitudes considered have been the position level data (free of 
noise) corresponding to the fourteen dynamic degrees of freedom of the system: chassis translation and 
rotation, motion of the four suspensions, and wheels rotation. To illustrate the discrepancies between the 
motion of prototype and model, and the convergence of the observer to the prototype behavior, Figure 4 
shows the three coordinates of the chassis center of mass and the three Cardan angles of the chassis for 
the prototype, the model and the observer. 



 

 

Figure 4. Motion of prototype, model and observer. 



In the figure, it can be seen that the observer achieves good convergence with the prototype. Of course, 
some magnitudes are not totally preserved, like the vertical coordinate of the chassis center of mass and 
the chassis pitch angle. These two values are affected by the additional mass of the model with respect to 
the prototype, which is manisfested through a constant gap in the histories, attenuated in the case of the 
observer. To reduce this gap, the value of the measurement noise covariance should be increased, at the 
cost of loosing stability in the observer when sensor noise is considered. Therefore, a trade-off between 
these two effects should be sought. 

 Prototype Model Observer 
CPU-time (s) 48.09 48.06 228.37 
# of iterations 22938 22935 113817 

Table 1. Efficiency and NR iterations for prototype, model and observer. 

Table 1 shows the total CPU-time spent to run the simulations on a computer Intel Core 2 Duo CPU 
E6550@2.33 GHz 2.0 Gb RAM, along with the total number of iterations required for the Newton-
Raphson procedure. It can be seen that including in the model the EKF corrections to yield the observer 
makes the code five times less efficient. On the other hand, the average number of iterations required to 
reach convergence in the Newton-Raphson procedure raises from one in the model to almost five in the 
observer, which implies a ratio of five times too, meaning that the decrease in efficiency is due to the 
need of more iterations to attain convergence at each time step, rather than to the dynamic formulation of 
the observer itself, thus justifying the effort to reduce the size of formulation to the number of degrees of 
freedom, . in

8 CONCLUSIONS 

Based on the obtained results, the following conclusions can be drawn: 

A Volkswagen Passat observer based on a detailed multibody model of the car and the extended Kalman 
filter (EKF) has been developed. 

To build the observer, the equations of motion have been formulated by means of a state-space reduction 
method known as matrix-R, so as to yield a set of ordinary differential equations in independent states 
(positions and velocities), as required by the structure of the EKF, that enables to obtain the state-space 
Jacobian matrix. To integrate the equations of motion, the implicit, single step, trapezoidal rule has been 
used. The equations of motion have been combined with the integrator equations in such a way that the 
size of the problem is kept equal to the number of degrees of freedom of the system, thus avoiding the 
size duplication imposed by the EKF. This observer dynamic formulation has shown to produce an almost 
negligible overhead in computational cost with respect to a conventional model, where the Kalman 
correction is not considered. 

The sensored magnitudes considered have been the position level data (free of noise) corresponding to the 
fourteen dynamic degrees of freedom of the system: chassis translation and rotation, motion of the four 
suspensions, and wheels rotation. 

A maneuver of acceleration from rest and double lane change has been defined, and tests have been run 
for the “prototype”, the “model” and the “observer”, all the three computational, with the model having 
100 kg more than the prototype. Results have shown that the observer provides good convergence with 
the prototype, although a constant discrepancy has been found for some magnitudes, which could be 
corrected through an increase of the measurement noise covariance. Regarding efficiency, the current 
code is still far from achieving real-time performance for a constant time-step size of 1 ms, usual in 
automotive applications related to control, due mainly to the high number of Newton-Raphson iterations 
required to converge within every time step of integration. 

As a consequence of the mentioned conclusions, some challenges are raised for the forthcoming research: 

Noise should be introduced in the sensor data, so as to check whether the observer stability is preserved. 
Furthermore, sensors providing information at velocity and/or acceleration level should be also 
considered, since they are common in automotive equipment. 



The car modeling and dynamic formulation should be improved to get a more efficient code for the 
observer, so that real-time performance may be achieved for a time-step size of 1 ms. 
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