

Autonomic Computing—a Means of Achieving Dependability?

Roy Sterritt1 Dave Bustard2

Centre for Software Process Technologies (CSPT)
1School of Computing and Mathematics

2School of Computing and Information Engineering
Faculty of Informatics
University of Ulster

Northern Ireland
{r.sterritt, dw.bustard}@ulster.ac.uk

Abstract

Autonomic Computing is emerging as a significant

new approach to the design of computing systems. Its
goal is the development of systems that are self-
configuring, self-healing, self-protecting and self-
optimizing. Dependability is a long-standing desirable
property of all computer-based systems. The purpose of
this paper is to consider how Autonomic Computing can
provide a framework for dependability.

1. Introduction

Dependability is the system property that integrates
such attributes as reliability, availability, safety, security,
survivability and maintainability [2].

Autonomic Computing has as its goal the engineering
of computer-based systems that are self-configuring, self-
healing, self-protecting and self-optimizing.

This paper discusses the potential for Autonomic
Computing to provide a framework for achieving
dependability. It considers Randell’s work on establishing
a consensus on the meaning, concepts and definitions of
dependability [1]. It then proceeds to look at Autonomic
Computing in similar terms. A motivation for this
approach is a perception that many areas of computing are
addressing similar issues without being fully aware of
related work in other fields and thus missing potential
insights from that work. This is particularly important at
this early stage of Autonomic Computing since
contributions from a range of disciplines will be needed
for its successful realisation.

2. Dependability

For the last 30 years Randell has made a substantial
contribution to defining and indeed creating the field of
software dependability. In 2000, in his Turing Memorial
Lecture [1] “Facing up to Faults”, he described software
fault tolerance as still somewhat controversial as
historically the main software engineering research
challenge has been to find ways of developing error-free
software, rather than managing faults.

There are strong and active communities in the area—
IEEE-CS TC on Fault-Tolerant Computing, IFIP WG
10.4 Dependable Computing and Fault Tolerance as well
as communities such as IEEE-CS TC on Engineering of
Computer-Based Systems, all of whom consider
dependability as a key property of software systems. With
such systems becoming ever-more complex there is a
growing need for developers to pay greater attention to
dependability.

Dependability is defined as that property of a
computer-based system that enables reliance to be placed
on the service it delivers. That service is its behavior as
perceived by other systems or its human users [1].

Figure 1 [1][2], (an update on earlier work [3][4])
depicts the concepts of dependability in terms of threats
to, attributes of, and the means by which, dependability is
attained.

The effectiveness of these four mechanisms has a
substantial influence on the dependability of a computer-
based system.

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

Figure 1 The Dependability Tree

Randell describes dependability in terms of failures,

faults and errors, arguing that they follow a “fundamental
chain” [1], thus:

…

�
failure

�
 fault

�
 error

�
 failure

�
 fault

�
…

More abstractly, this can be described by the sequence:

…
�

event
�

 cause
�

 state
�

 event
�

 cause
�

…

For example, the failure of a system (event) occurs

when a fault is encountered during its operation (cause),
because of an error in its implementation (state). This
might be attributed to a failure in the test process (event)
because the relevant code was not exercised (cause)
meaning that the test suite was incomplete (state).

These chains may of course be broken by effective in-
built fault tolerance that prevents failure.

Overall, the breadth of issues involved suggests the
need for an holistic approach to designing fault tolerant
systems.

3. Autonomic Computing

Autonomic Computing, launched by IBM in 2001 [5]-
[8], is emerging as a significant new strategic and holistic
approach to the design of computing systems. Two of
IBM’s main objectives are to reduce the total cost of
ownership of systems and to find better ways of managing
their increasing complexity.

As well as IBM, many major software and system
vendors, such as HP, Sun, and Microsoft have established
strategic initiatives to help create computer systems that
manage themselves, concluding that this is the only viable
long-term solution.

As the name implies, the influence for the new
paradigm is the human body' s autonomic system, which
regulates vital bodily functions such as the control of heart
rate, the body’s temperature and blood flow—all without
conscious effort.

The desire for automation and effective robust systems
is not new; in fact this may be considered an aspect of best
practice software engineering. Similarly, the desires for
systems self-awareness, awareness of the external
environment, and the ability to adapt, are also not new,
being major goals of artificial intelligence (AI) research
for many years. What may be considered new in
Autonomic Computing is its overall breadth of vision and
scope.

Research in Autonomic Computing is likely to see a
greater collaboration between the AI and software
engineering fields. Such collaboration has been
encouraged by increasing system complexity and a more
demanding user community. For example, software
engineers have used AI techniques to provide more
sophisticated support for user interfaces and to help
address soft issues in the development and operation of
software. Likewise, the AI community has increasingly
been looking to software engineering for disciplined
methodologies to support the production of intelligent
systems.

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

Figure 2 Autonomic Computing Tree

Consequently, Autonomic Computing is perhaps best

considered a strategic refocus for the engineering of
effective systems rather than a revolutionary new
approach [9].

3.1. Attributes of Autonomic Computing

The overall goal of Autonomic Computing is the
creation of self-managing systems; these are proactive,
robust, adaptable and easy to use. Such objectives are
achieved though self-protecting, self-configuring, self-
healing and self-optimizing activities, as indicated in
Figure 2.

To achieve these objectives a system must be both self-
aware and environment-aware, meaning that it must have
some concept of the current state of both itself and its
operating environment. It must then self-monitor to
recognize any change in that state that may require
modification (self-adjusting) to meet its overall self-
managing goal. In more detail, this means a system having
knowledge of its available resources, its components, their
desired performance characteristics, their current status,
and the status of inter-connections with other systems.

The ability to operate in a heterogeneous environment
requires the use of open standards to understand and
communicate with other systems.

In effect, autonomic systems are proactive in their
operation, hiding away much of the associated complexity
from users.

Self-healing is concerned with ensuring effective
recovery under fault conditions, without loss of data or
noticeable delays in processing, while identifying the fault
and where possible repairing it. Fault prediction
techniques might also be used, leading to re-configuration
to avoid the faults concerned or reduce the likelihood of
their occurrence.

With self-optimization, the system seeks to optimize its
operations in both proactive and reactive ways.

With self-protection, a system will defend itself from
malicious attack and may also have to self-heal when
problems are detected, or self-optimize to improve
protection.

With self-configuring, the system may automatically
install, configure and integrate new software components
seamlessly to meet defined business strategies.

IBM discusses the characteristics or ‘elements’ of
Autonomic Computing in more detail in its manifesto [5].

3.2 Creating Autonomic Computing

The creation of Autonomic Computing, or methods of

enabling electronic systems to respond to problems,
recover from outages and repair faults, all on their own
without human intervention, is a major challenge [7].

While Autonomic Computing represents a new strategy
for the IT industry it will be building on existing advanced
levels of automation available today. Open standards that
can support autonomic behavior include Java, Linux,
XML, the Open Source Consortium, Apache, and UDDI.

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

There are two perceived strategies for introducing
Autonomic Computing:

• Making individual systems autonomic
• Achieving autonomic behavior at the global

system level.
The first approach can be taken in the near-to-medium

term, with human experts generating rules for autonomic
functions. Over time, this could be supplemented with
self-learning algorithms and processes to achieve
autonomic behavior.

The required self-adapting behavior has been classified
into three levels by the Smart Adaptive Systems
community. These are [10]:

1. Adaptation to a changing environment
2. Adaptation to a similar setting without explicitly

being ported to it
3. Adaptation to a new/unknown application
Level 1 would appear to fit best with the ‘making

systems autonomic’ approach, while level 2 would fit with
‘achieving autonomic behavior’. An autonomic system has
prior knowledge of itself (self-aware) so, for level 3 to
match the autonomic model, the constraint of starting
from zero knowledge has to be relaxed.

3.3. Autonomic Computing in relation to other
 Research Initiatives

Autonomic Computing is not only related to the Smart

Adaptive Systems field. Several other research areas are
also relevant, though often having a different emphasis.

Introspective Computing involves proactive and
reactive approaches to improving overall system behavior
by sharing and utilizing excess computing, memory,
storage and other resources [12]. These are very similar
aims to Autonomic Computing' s self-configuring and self-
optimizing objectives. Kubiatowicz, has commented that
Autonomic Computing implies a system reacting to
events, whereas introspective computing involves both
reactive and proactive behavior [8]. This may appear to be
the case from the first Autonomic Computing initiatives,
such as IBM’s eLiza project, which introduced autonomic
functionality into some of IBM’s products and services,
including DB2 [11]. However, the aim for truly autonomic
computing is to encompass proactive behavior as well, for
instance through evolutionary learning.

Ubiquitous Computing emphasizes usability. It has
compared the current state of computing with early scribes
who had to know how to prepare and make a parchment
and ink just to be able to write. Autonomic computing will
go a long way in making computing systems more usable.

The Ambient Network view of the world is in effect a
single system with billions of ' networked information

devices' . Although currently the research emphasis for
making this a reality is on usability, dependability will
increasingly become an issue [1] with a critical role for
Autonomic Computing.

4. Autonomic Computing and Dependability

Randell and colleagues [2]-[4] give two main reasons
for their interest in and focus on the concepts and
definitions of dependability, failures, errors, faults and
tolerance. First, there is a need to clarify the subtleties
involved. Secondly, and possibly more important, is a
desire to avoid dependability concepts being reinvented in
other research domains such as safety, survivability,
trustworthiness, security, critical infrastructure protection,
information survivability, and so on [1]. Often the
associated research communities do not realize that they
are dealing with different facets of the same concept, and
are failing to build on existing research advances and
insights [1].

This focus on concepts and definitions is also critical
for Autonomic Computing. Research and development
from many disciplines will be required and, as already
mentioned, the successful integration of AI and software
engineering, will be particularly important.

In the IBM manifesto for Autonomic Computing [5] its
success is linked to the use of open standards, open source
code, and open technologies in general. Yet there is also a
need for common concepts and indeed common or open
definitions for the researchers from the many disciplines
that are going to make Autonomic Computing a reality.

On first consideration, dependability and fault
tolerance would appear to be specifically aligned to the
self-healing facet of Autonomic Computing. Yet any
system that is incorrectly or ineffectively configured
and/or inefficiently optimized is likely to lead to failures
in the future. Similarly, any system that is not adequately
protected is vulnerable to malicious faults, be they from
hackers or viruses. Thus, essentially all facets of
Autonomic Computing are concerned with dependability.

Referring again to Randell’s fundamental chain:

… � failure � fault � error � …

and its abstract form:

… � event � cause � state � …

then each facet of Autonomic Computing (Figure 2) can
be considered ‘states of undependability’ or ‘states of
dependability’ according to how well they are addressed
in a system.

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

States of Undependability
Faulty (unhealthy)

Ill-configured
Sub-optimal
Unprotected

That is, if any of these states exist within a system they are
liable to lead to subsequent errors; in turn, that may lead
to subsequent faults and on to failure. Autonomic
Computing, through self-healing, self-configuring, self-
optimization and self-protection, with therefore increase
dependability.

5. Conclusion

Autonomic computing is an emerging holistic approach
to computer system development that aims to bring a new
level of automation to systems through self-healing, self-
optimizing, self-configuring and self-protection functions.

For Autonomic Computing to reach its goal open
standards and technologies are required. This paper has
further highlighted the need for open concepts and
definitions to facilitate understanding among disciplines.
To illustrate that aim the paper specifically discussed
autonomic concepts in relation to ‘dependability’.

Acknowledgements

This work was undertaken through the Centre for
Software Process Technologies, which is supported by the
EU Programme for Peace and Reconciliation in Northern
Ireland and the Border Region of Ireland (PEACE II).

References

[1] B. Randell, “Turing Memorial Lecture – Facing Up to
Faults”, Comp. J. 43(2), pp 95-106, 2000.

[2] A. Avizienis, J.-C. Laprie, B. Randell, “Fundamental
Concepts of Dependability”, UCLA CSD Report
#010028, 2000.

[3] J.C. Laprie, “Dependability: basic concepts and
terminology-in English, French, German, Italian and

Japanese”, In Dependable Computing and Fault
Tolerance, p.265, Springer-Verlag, Vienna, 1992.

[4] J.C. Laprie, “Dependable computing: concepts,
limits, challenges”. In Proceedings 25th IEEE International
Symposium on Fault-Tolerant Computing –Special Issue,
Pasadena, CA, pp42-54, 1995.

[5] P. Horn, "Autonomic computing: IBM perspective on
the state of information technology", IBM T.J. Watson
Labs, NY, 15th October 2001. Presented at AGENDA
2001, Scotsdale, AR. (available
http://www.research.ibm.com/autonomic/), 2001

[6] E. Mainsah, "Autonomic computing: the next era of
computing", IEE Electronics Communication Engineering
Journal, Vol. 14, No. 1 (Feb), pp2-3, 2002

[7] A. Wolfe, "IBM sets its sights on ' Autonomic
Computing' ", IEEE Spectrum, Jan., p18-19, 2002

[8] L.D. Paulson, "IBM Begins Autonomic Computing
Project", IEEE Computer, Feb., p25, 2002.

[9] R. Sterritt, “Towards Autonomic Computing:
Effective Event Management”, Proceedings of the 27th
Annual IEEE/NASA Software Engineering Workshop,
Greenbelt, MD, Dec. 2002.

[10] D. Anguita, “Smart Adaptive Systems: State of the
Art and Future Direction of Research”, European
Symposium on Intelligent Technologies, Hybrid Systems
and their implementation on Smart Adaptive Systems
(EUNITE 2001), Dec. 2001

[11] G.M. Lohman, S.S. Lighstone, “SMART: Making
DB2 (More) Autonomic”, Proc. 28th VLDB Conf., Hong
Kong, China, 2002.

[12] H. Weatherspoon, T. Moscovitz, J. Kubiatowicz.
“Introspective Failure Analysis: Avoiding Correlated
Failures in Peer-to-Peer Systems”, Proceedings of
International Workshop on Reliable Peer-to-Peer
Distributed Systems, Oct 2002.

Proceedings of the 10 th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems (ECBS’03)
0-7695-1917-2/03 $17.00 © 2003 IEEE

