
Autonomic Data Placement Strategies for Update-intensive Web applications

Swaminathan Sivasubramanian Guillaume Pierre Maarten van Steen
Dept. of Computer Science, Vrije Universiteit

Amsterdam, The Netherlands
Email:{swami,gpierre,steen}@cs.vu.nl

Abstract

Edge computing infrastructures have become the leading

platform for hosting Web applications. One of the key chal-

lenges in these infrastructures is the replication of applica-

tion data. In our earlier research, we presented GlobeDB,

a middleware for edge computing infrastructures that per-

forms autonomic replication of application data. In this pa-

per, we study the problem of data unit placement for update-

intensive Web applications in the context of GlobeDB. Our

hypothesis is that there exists a continuous spectrum of

placement choices between complete partitioning of sets of

data units across edge servers and full replication of data

units to all servers. We propose and evaluate different fam-

ilies of heuristics for this problem of replica placement. As

we show in our experiments, a heuristic that takes into ac-

count both the individual characteristics of data units and

the overall system load performs best.

1. Introduction

Edge service architectures have become the most

widespread platform for distributing Web content

over the Internet. Commercial Content Delivery Net-

works (CDNs) like Akamai [1] and Speedera [14] de-

ploy edge servers around the Internet that locally cache

(static) Web pages and deliver them from servers lo-

cated close to the clients. However, the past few years have

seen significant growth in the amount of Web content gen-

erated dynamically using Web applications. These Web ap-

plications are usually database driven and generate Web

content based on individual user profiles, request param-

eters, etc. When a request arrives, the application code

examines the request, issues the necessary read or up-

date transactions to the database, retrieves the data and

composes the page which is then sent back to the client.

Traditional CDNs use techniques such as frag-

ment caching whereby the static fragments (and some-

times also certain dynamic parts) of a page are cached at the

edge servers [5, 10, 6]. However, the growing need for per-

sonalization of content (which leads to poor temporal

locality among requests) and the presence of data up-

dates significantly reduce the effectiveness of these solu-

tions.

To handle such applications, CDNs often employ edge

computing infrastructures where the application code is

replicated at all edge servers. Database accesses become

then the major performance bottleneck. This warrants the

use of database caching solutions, which cache certain parts

of the database at edge servers and are kept consistent with

the central database. However, these infrastructures require

the database administrator to define manually which part of

the database should be placed at which edge server.

In our earlier work, we described the design and imple-

mentation of GlobeDB, an autonomic replication middle-

ware for Edge Computing infrastructures. The distinct fea-

ture of GlobeDB is that it performs autonomic placement

of application data by monitoring the access to the under-

lying data. Instead of replicating all data units at all edge

servers, GlobeDB automatically replicates the data only to

the edge servers that access them often. GlobeDB provides

Web-based data-intensive applications the same advantages

that CDNs offer to traditional Web sites: low latency and re-

duced network usage [13].

The data placement heuristics developed in this previous

work assumed that the number of data update requests is

relatively low compared to that of the read requests. While

this assumption is often true, there exists a class of appli-

cations that receive a large number of updates. For exam-

ple, a stock exchange Web site which allows its customer to

bid or sell stocks in real time is likely to receive large quan-

tities of updates (the New York Stock Exchange receives in

the order of 700 update requests per second [8]).

Replicating an update-intensive application while main-

taining consistency among the replicas is difficult because

each update to a given data unit must be applied at every

server that holds a copy of it. In such settings, creating ex-

tra replicas of a data unit can have the paradoxical effect of

increasing the global system’s load rather than decrease it.

This may be a significant problem as the service time to up-

date a data unit is usually an order of magnitude higher than

that to read a data unit.

Placing replicas for update-intensive applications war-

rant algorithms that take the client access patterns as well

as the system load into account. Our hypothesis is that there

is a continuous spectrum of choice in placement configu-

rations between complete partitioning of sets of data units

(across edge servers) and full replication of data units to all

servers. The best performing configuration in this spectrum

depends on the system load and individual access charac-

teristics of the data. We believe manually placing data will

generally lead to poor performance. In this paper we pro-

pose algorithms that automatically take the correct place-

ment decision.

The contributions of this paper are twofold. First, we pro-

pose several heuristics for the data placement problem and

identify the best performing heuristic based on extensive

simulations. Second, we identify the open issues that need

to be addressed in realizing the autonomic CDN we envis-

age here. None of these contributions were reported in our

earlier work [13].

The rest of this paper is structured as follows: Section

2 presents our system and application model and the ar-

chitecture of GlobeDB. Section 3 discusses several issues

concerning the problem of optimal data placement and de-

fines the problem formally. Section 4 presents heuristics to

address this problem. Section 5 presents the relative perfor-

mance of heuristics using experimental evaluations. Section

6 discusses the related work and Section 7 presents several

open issues. Finally, Section 8 concludes the paper and dis-

cusses future work.

2. System Model

In this section, we present our application model and a

brief overview of GlobeDB and its architecture.

2.1. Application Model

A Web application is made of code and data. The code is

usually written using standard dynamic Web page technol-

ogy such as PHP and is hosted by each edge server. It is ex-

ecuted each time the Web server receives an HTTP request

from its clients, and issues read/write accesses to the rele-

vant data in the database to generate a response.

We can classify the database queries used by applica-

tions based on the number of rows matched by the query

selection criterion. We refer to the queries based on primary

keys of a table or that result in an exact match for only one

record as simple queries. An example of a simple query is

“Find the customer record whose userid is ‘xyz’.” Queries

based on secondary keys and queries spanning multiple ta-

bles are referred to as complex queries. An example of a

complex query is “Find all customer records whose loca-

tion is ‘Amsterdam’.”

Web applications can be classified into two types based

on the nature of the queries used by them. The first type

are applications whose query workload tend to consist of

mostly reads and a significant portion of the workload con-

sists of complex queries. In these applications, updates are

Read/

Driver

Data

Access

Data

Web Server

Write
Server

Write

Read/

Driver

Data

Access

Data

Web Server

Database Database

Server
...

Origin

Server

 Edge Server 1 Edge Server s

 Internet

Consistency Updates

Web Clients

Database

Server
Write

Read/

Driver

Data

Access

Data

Web Server

� � � � �
� � � � �

✁ ✁ ✁ ✁
✁ ✁ ✁ ✁

✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂
✂ ✂ ✂ ✂ ✂

✄ ✄ ✄ ✄
✄ ✄ ✄ ✄
✄ ✄ ✄ ✄

☎ ☎ ☎ ☎ ☎
☎ ☎ ☎ ☎ ☎
✆ ✆ ✆ ✆ ✆
✆ ✆ ✆ ✆ ✆

✝ ✝ ✝ ✝ ✝
✝ ✝ ✝ ✝ ✝
✝ ✝ ✝ ✝ ✝

✞ ✞ ✞ ✞ ✞
✞ ✞ ✞ ✞ ✞
✞ ✞ ✞ ✞ ✞

✟ ✟ ✟ ✟ ✟
✟ ✟ ✟ ✟ ✟
✠ ✠ ✠ ✠ ✠
✠ ✠ ✠ ✠ ✠

✡ ✡ ✡ ✡
✡ ✡ ✡ ✡
✡ ✡ ✡ ✡
✡ ✡ ✡ ✡
✡ ✡ ✡ ✡
✡ ✡ ✡ ✡

☛ ☛ ☛ ☛
☛ ☛ ☛ ☛
☛ ☛ ☛ ☛
☛ ☛ ☛ ☛
☛ ☛ ☛ ☛

☞ ☞ ☞ ☞
☞ ☞ ☞ ☞
☞ ☞ ☞ ☞
☞ ☞ ☞ ☞
☞ ☞ ☞ ☞
☞ ☞ ☞ ☞

✌ ✌ ✌ ✌
✌ ✌ ✌ ✌
✌ ✌ ✌ ✌
✌ ✌ ✌ ✌
✌ ✌ ✌ ✌

✍ ✍ ✍ ✍
✍ ✍ ✍ ✍
✍ ✍ ✍ ✍
✍ ✍ ✍ ✍
✍ ✍ ✍ ✍

✎ ✎ ✎ ✎
✎ ✎ ✎ ✎
✎ ✎ ✎ ✎
✎ ✎ ✎ ✎
✎ ✎ ✎ ✎

✏ ✏ ✏ ✏ ✏
✏ ✏ ✏ ✏ ✏
✏ ✏ ✏ ✏ ✏

✑ ✑ ✑ ✑
✑ ✑ ✑ ✑
✑ ✑ ✑ ✑

✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒
✒

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓
✓

✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔
✔

✕
✕
✕
✕
✕
✕
✕
✕
✕
✕
✕
✕
✕
✕
✕

Figure 1. System Architecture - Edge servers
serving clients close to them and interactions
among edge servers goes through Wide-area
network.

assumed to be rare and are usually not in the critical path

of serving user requests, i.e., they need not be reflected to

the user immediately and their answers need not be accu-

rate. Examples of these applications include E-bookstores

such as Amazon.com or Ebay.

The other class of applications are data-intensive appli-

cations. Their data workload tend to consist of a majority

of simple queries and only a few complex queries. Further-

more, these applications also have a significant number of

updates and these updates have to be reflected upon the gen-

erated Web content immediately. An example of this type

of application is an electronic stock exchange. In this pa-

per, we focus on the latter class of applications as it is the

most demanding. However, our results can also be applied

to the first class of applications.

2.2. GlobeDB: Overview and Architecture

GlobeDB is an autonomic data replication middleware

system for edge computing infrastructures. GlobeDB repli-

cates the application code and its underlying data to edge

servers so that Web documents can be generated locally, re-

sulting in reduced client latency. Instead of replicating all

application data at all edge servers, GlobeDB automatically

replicates them only to edge servers which access them of-

ten. GlobeDB uses a transparent replication model. There-

fore, the application developer need not worry about repli-

cation issues and can just stick to the functional aspects of

the application.

The architecture of GlobeDB is illustrated in Figure 1.

An application is assumed to be hosted collectively by a

fixed set of s edge servers spread across the Internet. Com-

munication between edge servers is realized through wide-

area networks incurring wide-area latency. Each client is as-

sumed to be redirected to its closest edge server using en-

hanced DNS-based redirection [7]. Furthermore, for each

session, a client is assumed to be served by only one Web

server.

We assume that the database is split into n data units,

D1, D2,· · ·, Dn, where a data unit is the granule of replica-

tion. Each unit is assumed to have a unique identifier, which

is used by the data driver to track it. An example of a data

unit is a database record identified by its primary key. We

discuss more about the choices of data granularity in Sec-

tion 7.

Each edge server runs a Web server, an application

server, a database server and a data driver. The data driver

is the central component of our system. It is responsible for

finding the relevant data for the code either locally or from a

remote edge server. Additionally, when handling write data

accesses, the driver is also responsible for ensuring consis-

tency with other replicas.

GlobeDB enforces consistency among replicated data

units using a simple master-slave protocol: each data unit

has one master server responsible for serializing concur-

rent updates emerging from different replicas. GlobeDB as-

sumes that each database transaction is composed of a sin-

gle query which modifies at most a single data unit. When

a server holding a replica of a data unit receives a read re-

quest, it is answered locally. If the server does not have a

replica, then the request is forwarded to the closest edge

server that holds a replica. When a server receives an up-

date request, it forwards the request to the master of the

data unit, which processes the update request and propa-

gates the result to the replicas. Note that this is sometimes

called eventual consistency.

To perform autonomic replication, each application is as-

signed one origin server, which is responsible for making

all application-wide decisions such as placing data units at

edge servers. The origin server selects replica placement pe-

riodically to handle changes in data access patterns and the

creation of new data units. Throughout this paper, we as-

sume that most of requests result only in simple read or

write queries. Web requests leading to complex queries are

assumed to be served by the origin server.

3. Replica placement

Placing replicas to minimize access latency is the central

problem studied in this paper. In this section, we first dis-

cuss different metrics that influence replica placement. We

then formulate the problem mathematically and show that

finding the optimal placement is NP-complete.

3.1. Placement Issues

The goal of replica placement is to select servers where

each data unit should be placed such that the total request

latency is minimized. The total latency of a request can be

defined as the sum of network latencies incurred during the

treatment of the request, and the internal server latency to

execute the necessary database operations. The internal la-

tency highly depends on the load the server experiences at

the time of the request and on the nature of the operation

(read or write). There are several factors that influence the

total latency and thus the choice of an optimal placement:

read-write ratio of data, system load, bandwidth consumed

for maintaining consistency, client distribution, etc.

For instance, if the workload contains very few updates,

then the system can improve client latency by replicating

the data around the Internet. However, if the data units re-

ceive a large number of updates and only a few reads, in-

creasing the replication degree can degrade performance be-

cause each replica has to process updates issued not only by

its clients but also by clients accessing other edge servers.

It is then usually better to move the data to the edge server

where most of the updates are originated and make it its

master.

Another metric closely related to the number of updates

is the system load. If the system is underloaded, data units

can be replicated in many places to improve client latency.

However, under heavy loads, creating more replicas can in-

crease the global system load depending on the data read-

write ratio. In such heavy loads, reducing the replication de-

gree can decrease the server’s load and therefore improve

the internal latency. In extreme scenarios, it is often best to

move each data unit to the edge server that generates most

updates, leading to a complete partitioning of data across

edge servers.

It can be seen that the system must choose a point in

the continuous spectrum between data partitioning and full

replication based on several factors such as read-write ratio,

system load etc. We believe performing this decision man-

ually will generally lead to poor performance and propose

algorithms that aid the system to perform this decision au-

tomatically.

3.2. Problem definition

Let rij and wij denote the number of read and write ac-

cesses made by clients of edge server Ej to data unit Di.

We define the following variables:

xij =

{

1, if Di is stored at Ej

0, otherwise
(1)

mij =

{

1, if Ej is the master of Di

0, otherwise
(2)

The goal of replica placement is to find the placement

configuration x and master configuration m such that the

client latency, lat(x,m), is minimized. We define lat as fol-

lows:

lat(x,m) =

n
∑

i=1

lati(x,m)

where lati is the sum of total latencies incurred by the client

requests accessing Di. lati comprises the network latency

incurred during the treatment of the request and the inter-

nal server latency to execute the relevant database opera-

tions. It is defined as:

lati(x,m) = NW latencyi(x,m) + Intlati(x,m)

Nlati is the sum of network latencies incurred by client

requests to access Di. Usually a client is redirected to its

closest edge server which executes the query on its local

database or at a remote edge server if it does not have a lo-

cal replica. Therefore, Nlati comprises the latency from a

client to its closest edge server, Ej , and latency from Ej to

the server that can serve it. In case of a read request, this is

the closest server that holds a replica of Di. For a write re-

quest, it is the master, EMi
. Note that client-to-server la-

tency is unavoidable in any case and independent of the

placement of data units. We treat it as a constant, and in

the rest of the paper aim to minimize only the latency be-

tween edge servers. We thus have:

Nlati(x,m) =

s
∑

j=1

(rij∗lat(Ej , Enli(j)))+

s
∑

j=1

(wij∗lat(Ej , EMi
))

where Enli(j) is the closest server to Ej holding a replica

of Di and lat(Ej , Enli(j)) is the network latency between

them. Similarly, lat(Ej , EMi
) is the network latency be-

tween Ej and Di’s master (EMi
).

Intlati is the sum of internal server delays incurred by

client requests at edge servers performing the necessary op-

erations. For read requests, this corresponds to delays in-

curred at the edge server, Enli(j), that will execute the query

in its local database. For write requests, this corresponds to

delays incurred at the master server for this particular data

unit, EMi
. This leads to:

Intlati(x,m) =

s
∑

j=1

(rij ∗Slatnli(j))+SlatMi
∗ (

s
∑

j=1

wij)

The delay incurred at a server Ej , Slatj , consists of two

components: (i) queueing time - the time spent by the re-

quest in the queue until it is served (Qlatj) and (ii) the time

spent in executing the query, which leads to:

Intlati(x,m) =
∑s

j=1(rij ∗ (Qlatnli(j) + RLat)) +

(
∑s

j=1 wij) ∗ (QlatMi
+ Wlat)

where RLat and WLat are the time taken by databases

to execute read and update queries respectively. Figure 1

shows that depending on the load of the edge server, the

queueing time is bound to increase. We calculate this la-

tency using the well known Little’s law, which states that

the queue latency at server Ej (Qlatj) is given as the prod-

uct of the number of requests that arrive at Ej and the time

taken to execute them [17]. We thus have:

Qlatj = RLat ∗ rpsj(x) + WLat ∗ wpsj(x,m)

where rpsj(x) and wpsj(x,m) are the number of reads and

writes per second performed by Ej respectively, under con-

figurations x and m.

It can be seen that the problem of finding the optimal

replica placement x and master selection m requires an ex-

haustive search of all combinations of placement configu-

rations and is of exponential complexity O(ns). The de-

cision problem of optimal placement is easily seen to be

in NP. Furthermore, previous works have shown that this

problem is NP-complete by reducing it from minimum set-

cover [16]. We skip the formal proof due to space limita-

tions.

4. Placement Heuristics

Since the problem of optimal placement and master se-

lection is NP-complete, this calls for well-designed heuris-

tics. In this paper, we propose three families of heuristics to

perform replica placement and master selection.

forall Di do1

forall j, 1 ≤ j ≤ s do2

if ((rij + wij) ≥ X/100 ∗ (
∑s

j=1
(rij + wij)))3

and (rij > wij) then

xij ← 1 ;4

else

xij ← 0 ;5

end

end

If no replica can be selected according to rule (a), then6

select the server that offers the best lati and place a

replica there;

Select master (Mi) as the server that receives the largest7

number of updates among the selected replicas;

end

Algorithm 1: Pseudocode of Fixed(X) algorithm

Run Fixed(X) algorithms for different values of1

X=5,10,15,25,30;

Evaluate lat of placement configurations obtained by each2

of these algorithms;

Choose the placement obtained by Fixed(X) that yields the3

lowest value of lat;

Algorithm 2: Pseudocode of Adapt-Coarse algorithm

Fixed placement (Fixed(X)): In this heuristic, the sys-

tem stores a replica of Di at an edge server Ej if Ej’s clients

generate at least X% of the total requests to Di. Once repli-

cas are selected, it selects the replica that receives the

Sort data units in decreasing order based on the number of1

requests received by them (
∑s

j=1
(rij + wij));

repeat2

Select the data unit Dk that receives the most number of3

requests and has not yet been placed;

Evaluate latk for placement configurations obtained by4

different X values of Fixed(X), (e.g.,X=5,10,15,25,30);

Choose configuration {(xij ,mij)}i=k that yields5

minimum latk;

Update the total number of reads and writes performed6

by each edge server holding a replica. (Note that this

step affects the lat calculation of subsequent data units);

until all data units are placed;

Algorithm 3: Pseudocode of Adapt-Fine algorithm

most number of writes as the master for data unit. Obvi-

ously, the value of X determines the performance and dif-

ferent X values perform well for different system load

and data access patterns. The pseudocode of this heuris-

tic algorithm is given in Algorithm 1. Note that this heuris-

tic is oblivious to the update characteristics of data units

and the overall system load parameters while determin-

ing placement positions.

Adapt-Coarse (AC): The previous heuristic has the under-

lying limitation that the correct value of X needs to be de-

termined manually. As noted earlier, this choice should be

based on several factors such as a data unit’s read-write ra-

tio and access patterns. So, determining a good value man-

ually may be difficult. This problem is alleviated by the

AC heuristic. It automatically selects X by running the

Fixed(X) algorithm and computing lat(Fixed(X)) for dif-

ferent values of X (X=5,10,15,25,30). Subsequently, it

selects the value of X that obtains the lowest lat. The pseu-

docode of this heuristic algorithm is given in Algorithm 2.

Note that this heuristic takes system load into account while

calculating lat(x, m). Once a value, Xopt, has been cho-

sen, Fixed(Xopt) is applied to all data units.

Adapt-Fine (AF): The Fixed and AC heuristics fix

the maximum replication degree of all data units at

a coarse-grained level, irrespective of the characteris-

tics of individual data units. With the AF heuristic, different

data units can be treated differently based on their individ-

ual access patterns. The underlying idea behind the heuris-

tic is to select the correct threshold value X for each data

unit based on its own access characteristics and popu-

larity. The algorithm works as follows: First, the system

sorts data units so that it can place data units that re-

ceive the highest load first. For each data unit, Di, the

system evaluates the lati obtained for different X val-

ues of Fixed(X) given the load contributed by the al-

ready placed data units and selects the one that offers

the least lati as the best placement for Di. The sys-

tem iterates this process for all data units. The pseu-

docode of this heuristic is given in Algorithm 3. The

algorithm is greedy in nature, as it allocates more re-

sources to popular data units expecting they can improve

the overall system performance. We believe that this heuris-

tic can produce good placements by taking into account the

Intlat in the calculation of lati and by deciding on place-

ment at data-unit level.

Network latency (NW): This heuristic is similar to AF ex-

cept that it optimizes only the Nlat and assumes Intlat to

be negligible. In the computation of lati, Intlati is set to

0. We use this heuristic as a baseline to compare the rela-

tive performance of other heuristics.

5. Evaluation of Heuristics

We evaluate the performance of different heuristics for

different access patterns using simulations. We simulate a

CDN with 100 edge servers handling 1000 data units. We

study the effect of the following parameters on the perfor-

mance of the proposed heuristics:

• Number of data accesses (Load): The average re-

quest rate received by each edge server. i.e., Load =

(
∑n

i=1

∑s

j=1(rij + wij))/(s ∗ t), where t is the simu-

lated duration of the experiment.

• Write ratio (WR): The ratio of the number of write

accesses to total number of accesses performed on a

data unit: WRi =
∑s

i=1 wij/
∑s

i=1(rij + wij)

• Data unit popularities (alpha): We assigned popular-

ities of data units according to Zipf distribution. This

distribution takes one parameter alpha1. Earlier stud-

ies have shown that Web objects popularity follow a

Zipf distribution [4, 11]. In our experiments, we vary

alpha from 0 (where all data units receive the same

number of requests) to 3 (where very few data units re-

ceive most of the requests).

We assume that the distribution of requests to a data unit

across edge servers follows Zip-f distribution and fix its pa-

rameter to 1. We assume the network latency between edge

servers to be 500ms. We fixed the latency to execute a read

query (RLat) and a write query (WLat) to 5 ms and 50ms

respectively. These are the average latencies obtained from

a PostgreSQL database server in Pentium-III 800 Mhz linux

machine. Note that we performed our experiments for dif-

ferent values of network latencies. In all our experiments,

the general trend observed in the relative performance of the

evaluated heuristics were similar. Hence, we believe that the

results presented in this section is not affected to a large ex-

tent by the constants used in our simulations.

In the following, we study the influence of each of the

above parameters in isolated experiment settings. In each

experiment, we vary only one parameter and fix the rest.

1 A Zipf distribution states that the frequency of occurrence of a partic-

ular value i is given by fi = C · r
−alpha
i

where ri is the rank of i’s
occurrence.

Unless explicitly stated, we fix alpha to 1, which is a typi-

cal value observed in real-world traces [11]. We fix WR to

30% and Load to 10 (which corresponds to an under-loaded

system).

For each experiment, we plot the relative performance as

the ratio of total latency obtained by a given heuristic to that

of the NW heuristic. A lower value therefore denotes a bet-

ter performance. We also plot the average replication degree

to better illustrate the behavior of each heuristic. Each ex-

periment was run 1000 times and the average results are re-

ported.

5.1. Effect of Load

In our first experiment, we study the performance of dif-

ferent heuristics for varying values of Load. The results of

our experiment are given in Figures 2(a) and (b). As seen in

Figure 2(a), the AC and AF strategies perform better than

NW and yield low latencies compared to NW for all load

scenarios. This is because unlike NW, these strategies re-

duce the replication degree by considering the Intlat in the

computation of lat (see Figure 2(b)). Recall that more repli-

cation leads to higher load on individual servers (as 30% of

accesses are updates).

Between the AF and AC heuristics, it can be seen that

AF performs better as it is greedy in nature and begins plac-

ing replicas to more popular data units first, while select-

ing the replication degree on a data-unit level. The latter de-

cides on the maximum replication degree and locations for

all data units uniformly. Recall that since alpha is fixed to

1, relatively few data units receive significant part of the

load. AF being greedy in nature and by deciding placement

at data-unit level performs better than AC. Furthermore, as

seen in Figure 2(b), the AF strategy adapts its replication

degree based on the system load.

5.2. Effect of WR

In this experiment, we study the performance of differ-

ent heuristics for different values of the write ratio. The re-

sults of our experiment are given in Figures 2(c) and (d). As

seen in the figures, the AF and AC heuristics perform signif-

icantly better than NW when there are large number of up-

dates. This is because in these cases the Intlat increases as

the number of updates increases. So, by taking Intlat into

account during placement, the AF and AC strategies reduce

the replication degree, thereby resulting in a better perfor-

mance. With a read-only workload, all three heuristics per-

form similarly as Intlat is very low in such cases. Again,

the AF strategy chooses the correct point in the spectrum

between partitioning and replication based on the WR, and

yields the best performance.

5.3. Effect of alpha

In this experiment, we studied the performance for dif-

ferent values of alpha. The results are given in Figure 3.

Again for all values of alpha, AC and AF perform bet-

ter than NW. AC performs better than AF for low values

of alpha, where all data units receive roughly equal load.

This is because the AF strategy, being greedy in nature, op-

timistically replicates for the first few data units assuming

they constitute a significant portion of the workload. How-

ever, since all data units are equally popular this leads to

poor replication for other data units thereby leading to over-

all poor performance. In this scenario, the AC heuristic per-

forms better by fixing the replication degree globally for all

data units.

In the case of higher values of alpha where the popular-

ity distribution of data units is skewed, a greedy heuristic

such as AF performs better than AC (see Figure 3). This is

because in such scenarios it is necessary to fix replica place-

ment at a per-data-unit level rather than uniformly. Earlier

research findings show that data popularities tend to exhibit

high values of alpha, i.e., up to 1.4 [11]. Hence, we be-

lieve AF will yield better performance in real-world traces.

5.4. Discussion

The above experiments show that the AF heuristic per-

forms better than its AC and NW counterparts for most of

the workloads. This demonstrates that placement of data

units must take into account the individual characteristics

of data units and the overall system load. Of course, the

problem of server load can be alleviated to some extent by

adding more servers to the system and then partitioning data

across the cluster of servers. Even though this is desirable

in the long term, it is often not feasible to immediately add

more servers this way. Moreover, when dealing with small

organizations, it may not even be realistic to extend such a

site. In such scenarios, the only alternative is to utilize the

existing set of resources to the fullest extent and our place-

ment heuristics allow one to make best use of existing re-

sources.

6. Related Work

The problem of replica placement has been widely stud-

ied in the context of static Web pages. Content placement

problem deals with finding the best set of edge servers to

host a replica such that an objective function (e.g., client la-

tency and/or update traffic) is optimized. This problem is

closely related to the problem studied in this paper and sev-

eral works have addressed this in the context of static Web

pages [16, 15]. However, as noted earlier, these algorithms

assume that updates are rare assuming that replicating data

reduces the load of each involved server.

Commercial database caching systems such as DB-

Cache [3] and MTCache [9] cache the results of selected

queries and keep them consistent with the underly-

ing database. These systems could be used to improve the

performance of our system for applications that have a sig-

nificant number of complex queries. Such approaches

offer performance gains provided the data accesses con-

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 100 200 300 400 500 600 700

R
el

at
iv

e
P

er
fo

rm
an

ce

Accesses/sec

AF
AC
NW

(a) Effect of Load on Relative

Performance

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700

R
ep

lic
at

io
n

D
eg

re
e

Accesses/sec

AF
AC
NW

(b) Effect of Load on replica-

tion degree

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
P

er
fo

rm
an

ce

WR

AF
AC
NW

(c) Effect of WR on Relative

Performance

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

R
ep

lic
at

io
n

D
eg

re
e

WR

AF
AC
NW

(d) Effect of WR on replica-

tion degree

Figure 2. Effect of Load and WR

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0 0.5 1 1.5 2 2.5 3

R
el

at
iv

e
P

er
fo

rm
an

ce

alpha

AF
AC
NW

(a) Effect of alpha on Relative

Performance

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.5 1 1.5 2 2.5 3

R
ep

lic
at

io
n

D
eg

re
e

alpha

AF
AC
NW

(b) Effect of alpha on replica-

tion degree

Figure 3. Effect of alpha

tain few write requests and have high temporal locality in

read requests. However, the success of these schemes de-

pends on the ability of the database administrator to

identify the correct set of queries to cache. This re-

quires careful manual analysis of the data access pat-

terns.

7. Open Issues

In this section, we identify some of the crucial is-

sues that need to addressed to build a truly autonomic CDN

as we envisage here.

Routing Information. In order to answer a request to Di,

the data driver of each edge server should know where

Di’s closest replica is located (or who its master is). As-

suming that this information is relatively stable, spreading

this information across servers should not cause a big com-

munication overhead. However, maintaining this informa-

tion can be a storage bottleneck for large database tables.

We plan to address this by maintaining a partial rout-

ing table, which will store routing information for data

units that are accessed often. In such settings, when a re-

quest is made to a data unit whose routing information is not

locally available, the request can be forwarded to the ori-

gin server.

Update Traffic. In a CDN, it is desirable to optimize the sys-

tem not only to reduce the request latency but also to reduce

this traffic (and therefore the replication costs). In this pa-

per, we explicitly ignored this issue because we just wanted

to study the effect of different parameters (such as Load,

RR) on client-perceived latency. However, as we demon-

strated in [12], the tradeoff between update traffic and

latency can be addressed in an automated fashion us-

ing a cost function that represents overall system perfor-

mance into a single abstract figure.

Data granularity. Throughout this paper, we assumed that

data unit replication is done at a fine-grain, such as at the

level of database records. This choice allows us in the-

ory to assign a different placement strategy to each data

unit, which can lead to optimal performance [12]. How-

ever, such fine-grained replication can also result in sig-

nificant overhead as the system must maintain replication

information and select placement for each record individ-

ually. To address this, we propose to employ clustering

techniques to group records with similar access pat-

tern into coarse-grained data units so that placement can

be performed on a lower number of data units with a lit-

tle loss in performance.

Modelling Server Load. In this paper, we assumed a simple

queueing model and used Little’s law to model the queue-

ing latency at each server. Of course, this model has limita-

tions as it assumes an uniform stream of requests and need

not model database load accurately. We plan to look at ad-

vanced models for this problem and use them in our place-

ment heuristics.

Complex Queries. A limitation of our system is that it can-

not handle complex queries as they require an exhaus-

tive search of the database and these queries need to

be sent to the origin server. To overcome this limita-

tion, we plan to use template-based query approaches, such

as [2], to cache the results of popular complex queries

at edge servers thereby reducing the load of the ori-

gin server.

Failure Handling. In this paper, we assumed that the sys-

tem is free of server and network failures. However, these

failures may create a consistency problem if the master for a

data unit is unreachable. We plan to address the issue of han-

dling server failures (such failure of origin server, replica

server and master server), in the near future.

8. Conclusions and Future Work

In this paper, we studied the problem of data unit place-

ment for update-intensive Web applications in the context

of GlobeDB. Our hypothesis is that there exists a continu-

ous spectrum of placement choices between complete par-

titioning of sets of data units across edge servers and full

replication of data units to all servers. We proposed and

evaluated different families of heuristics for this problem of

replica placement. As we have shown in our experiments,

the AF heuristic perform better than its counterparts be-

cause it takes into account both the individual characteris-

tics of data units and the overall system load. This results

in it being able to choose the correct point in this spectrum

of placement choices. We believe that this AF heuristic can

significantly improve the performance of replicated update-

intensive applications as well as less demanding applica-

tions such as e-commerce applications. As we stated in the

previous section, there are several open issues that still need

to be addressed here to realize the autonomic CDN we en-

visage and we plan to address them in our next steps.

References

[1] Akamai Inc. Edge Computing Infrastructure.

[2] K. Amiri, S. Sprenkle, R. Tewari, and S. Padmanabhan. Exploiting templates
to scale consistency maintenance in edge database caches. In Proc. Eighth In-
ternational Workshop on Web Content Caching and Distribution, Hawthorne,
New York, 2003.

[3] C. Bornhvd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald. Adaptive
database caching with DBCache. Data Engineering, 27(2):11–18, June 2004.

[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. On the implications
of Zipf’s law for web caching. In Proceedings of 3rd International WWW
Caching Workshop, 1998.

[5] J. Challenger, P. Dantzig, and K. Witting. A fragment-based approach for ef-
ficiently creating dynamic web content. ACM Transactions on Internet Tech-
nology, 4(4), Nov 2004.

[6] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, Suresha, and K. Ramam-
ritham. Proxy-based acceleration of dynamically generated content on the
world wide web: an approach and implementation. In Proceedings of the 2002
ACM SIGMOD International conference on Management of data, pages 97–
108. ACM Press, 2002.

[7] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Glob-
ally distributed content delivery. IEEE Internet Computing, 6(5):50–58, 2002.

[8] A. Labrinidis and N. Roussopoulos. Update propagation strategies for improv-
ing the quality of data on the web. In VLDB ’01: Proceedings of the 27th In-
ternational Conference on Very Large Data Bases, pages 391–400. Morgan
Kaufmann Publishers Inc., 2001.

[9] P. Larson, J. Goldstein, H. Guo, and J. Zhou. MTCache: Mid-tier database
caching for SQL server. Data Engineering, 27(2):27–33, June 2004.

[10] W.-S. Li, O. Po, W.-P. Hsiung, K. S. Candan, and D. Agrawal. Engineer-
ing and hosting adaptive freshness-sensitive web applications on data centers.
In Proceedings of the Twelfth international conference on World Wide Web,
pages 587–598. ACM Press, 2003.

[11] V. N. Padmanabhan and L. Qui. The content and access dynamics of a busy
web site: findings and implicatins. In SIGCOMM, pages 111–123, 2000.

[12] G. Pierre, M. van Steen, and A. S. Tanenbaum. Dynamically selecting optimal
distribution strategies for Web documents. IEEE Transactions on Computers,
51(6):637–651, June 2002.

[13] S. Sivasibramanian, G. Alonso, G. Pierre, and M. van Steen. GlobeDB: Auto-
nomic data replication for web applications. In Proc. of the 14th International
World-Wide Web Conference, Chiba, Japan, May 2005.

[14] Speedera Inc. http://www.speedera.com.

[15] M. Szymaniak, G. Pierre, and M. van Steen. Latency-driven replica place-
ment. In Proceedings of the International Symposium on Applications and the
Internet (SAINT), Trento, Italy, Feb. 2005.

[16] X. Tang and J. Xu. On replica placement for QoS-aware content distribution.
In Proc. IEEE INFOCOM’04, March 2004.

[17] K. S. Trivedi. Probability and statistics with reliability, queuing and computer
science applications. John Wiley and Sons Ltd., 2002.

