

 COPYRIGHT NOTICE

© 2005 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints
invoked by each author's copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.

Autonomic Microprocessor Execution
via Self-Repairing Arrays

Fred A. Bower, Student Member, IEEE, Sule Ozev, Member, IEEE, and Daniel J. Sorin, Member, IEEE

Abstract—To achieve high reliability despite hard faults that occur during operation and to achieve high yield despite defects

introduced at fabrication, a microprocessor must be able to tolerate hard faults. In this paper, we present a framework for autonomic

self-repair of the array structures in microprocessors (e.g., reorder buffer, instruction window, etc.). The framework consists of

three aspects: 1) detecting/diagnosing the fault, 2) recovering from the resultant error, and 3) mapping out the faulty portion of the

array. For each aspect, we present design options. Based on this framework, we develop two particular schemes for self-repairing

array structures (SRAS). Simulation results show that one of our SRAS schemes adds some performance overhead in the fault-free

case, but that both of them mask hard faults 1) with less hardware overhead cost than higher-level redundancy (e.g., IBM mainframes)

and 2) without the per-error performance penalty of existing low-cost techniques that combine error detection with pipeline flushes for

backward error recovery (BER). When hard faults are present in arrays, due to operational faults or fabrication defects, SRAS

schemes outperform BER due to not having to frequently flush the pipeline.

Index Terms—Logic design reliability and testing, microprocessors, and microcomputers.

�

1 INTRODUCTION

AS computers comprise ever more of society’s infra-
structure, microprocessor reliability becomes increas-

ingly crucial. Unfortunately, the same technological trends
that are enhancing microprocessor performance are also
undermining reliability and yield. As transistors and wires
continue to shrink in accordance with Moore’s Law, the
probabilities of several types of faults increase. In this
paper, we consider hard (i.e., permanent) faults due to both
fabrication defects as well as operational phenomena such
as electromigration and gate oxide breakdown [36], [7], [25],
[17]. Although burn-in testing can quickly uncover some
defects which cause reliability risks [28], [4], it is typically
only used on small sample sizes due to its high cost.
Moreover, for deep submicron devices, the rates of early life
failures, even after burn-in, are increasing due to the
progressive nature of such defects [4]. In this paper, we
focus on hard faults in microprocessor array structures,
since these structures are the single-largest consumer of
microprocessor core die area, comprising up to 33 percent
of the area of microprocessor core (i.e., not including
caches) in recent microprocessor designs [34].

To improve fabrication yield and to achieve high relia-
bility in the presence of hard faults, a microprocessor must be
able to detect and diagnose them and then mask their effects.
Previous work has explored how to tolerate hard faults in
microprocessors, but it has suffered in terms of performance

and implementation costs. The classic approach is to
completely replicate the microprocessor (or components
within it), as in IBM mainframes [35]. This approach is
effective, but quite costly in terms of hardware and power.
As a lighter weight alternative, DIVA dynamic verification
[3] can tolerate hard faults in the microprocessor (but not in
its checker logic). However, DIVA, which was designed
primarily for handling soft faults and corner-case design
defects, incurs a large performance penalty for every error
from which it must recover, which is a significant problem
for a hard fault in a frequently accessed structure.

In this paper, we discuss the design space for self-
repairing microprocessor array structures (SRAS) and we

present two specific designs. Array structures include the
reorder buffer, load-store queue, instruction queue, branch

history table, etc. Protecting the combinational logic, such as
ALUs, is a complementary but orthogonal problem that we

discuss briefly but leave for future work. Our goal is to
develop self-repairing arrays that enable autonomic execu-

tion. In both of our SRAS designs, spare rows are built into
each array structure and are mapped in to replace faulty rows

using a level of indirection. This approach is similar to how
disks map out faulty sectors and how hard faults in DRAMs

can be tolerated with schemes that map out faulty locations
[10], [21], [31]. Our first design, SRAS-CheckRow (SRAS-CR)

[8], uses dedicated check rows to detect and diagnose hard
faults. SRAS-CR relies upon DIVA to recover from transient

errors and errors due to hard faults that have not yet been
classified as hard. Our second design, SRAS-EDC, uses error
detecting codes (EDC) for error detection/diagnosis, and it

uses the preexisting branch misprediction recovery mechan-
ism to recover from transient errors and errors due to hard

faults that have not yet been classified as hard. After a hard
fault has been diagnosed and mapped out, neither SRAS-CR

nor SRAS-EDC incurs a performance penalty due to that

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005 297

. F.A. Bower is with IBM and the Department of Computer Science, Duke
University, PO Box 90129, Durham, NC 27708.
E-mail: fredb@cs.duke.edu.

. S. Ozev and D.J. Sorin are with the Electrical and Computer Engineering
Department, Duke University, PO Box 90291, Durham, NC 27708.
E-mail: {sule, sorin}@ee.duke.edu.

Manuscript received 30 Aug. 2004; revised 14 Oct. 15; accepted 19 Oct. 2005;
published online 3 Nov. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0126-0804.

1545-5971/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

fault, unlike lightweight schemes that incur a costly recovery
for every manifestation of a hard fault.

Our experimental results show that SRAS-EDC adds
some performance overhead in the fault-free case, but that
both SRAS-CR and SRAS-EDC mask hard faults 1) without
the hardware costs of high-level redundancy (e.g., IBM
mainframes) and 2) without the per-error performance
penalty of existing low-cost techniques (e.g., DIVA). When
hard faults are present in arrays, due to operational faults or
fabrication defects, then our SRAS schemes outperform
low-cost techniques that require a pipeline recovery per
error. Given the increasing frequencies of fabrication defects
and operational hard faults, the likelihood of wanting to be
able to operate correctly with one or more hard faults makes
array self-repair appealing.

The rest of this paper is as follows: Section 2 presents a
survey of related work, focusing on techniques that might
be applied to the problem of hard faults in the micro-
processor core. Section 3 provides background on our hard
fault model. The underlying physical phenomena that lead
to hard faults are discussed in some detail to familiarize the
reader with these mechanisms as well as to further motivate
the case for providing hard-fault tolerance in coming
microprocessor core designs. Section 4 presents SRAS-CR
and SRAS-EDC in detail, explaining the mechanisms, how
they operate, and their limitations and advantages in the
application of providing hard-fault tolerance to micropro-
cessor core array structures. Section 5 presents a detailed
performance evaluation of SRAS-CR and SRAS-EDC, and
the paper concludes with Section 6.

2 RELATED WORK

There is a historical progression of designs that has led up
to this point and motivated the work in this paper. A
canonical design for autonomic operation is the IBM
mainframe [35]. Mainframes not only have redundant
processors, but they also incorporate redundancy within
the processor in order to seamlessly tolerate hard faults. The
IBM G5 microprocessor, for example, has redundant units
for fetch/decode and for instruction execution. Some other
traditional fault-tolerant computers, such as the Stratus [46]
and the Tandem S2 [18], simply replicate entire processors.
While these systems all provide excellent reliability, such
heavyweight redundancy incurs significant costs in terms
of hardware and power consumption.

As a low cost and low power alternative to heavyweight
redundancy, DIVA [3] dynamically verifies an aggressive
microprocessor core with a simple, provably correct checker
core. DIVA sacrifices some amount of reliability in order to
greatly reduce these costs. DIVA’s small amount of
redundancy is far less costly than mainframe redundancy,
but it incurs significant performance and energy penalties
for each error that it must correct. Each error detected and
corrected by the checker core triggers a pipeline flush of the
aggressive core. Since DIVA was designed primarily for soft
faults (not the hard faults we address in this paper), these
flushes are not a performance problem. However, perma-
nent faults in frequently accessed structures, such as the
reorder buffer, will frequently manifest themselves as errors
and will thus greatly degrade performance. Researchers

have also proposed using redundant threads to achieve
lightweight redundancy, primarily for soft faults. Of these
schemes, the ones that perform recovery as well as error
detection include AR-SMT [30], Slipstream [38], and SRTR
[42]. These schemes share the same drawback as DIVA,
with respect to hard faults, since they incur a pipeline
squash every time a hard fault manifests itself. Redundant
thread schemes, unlike DIVA, may not be able to guarantee
forward progress in the presence of hard faults.

One option for array structures is to protect them with
error correcting codes (ECC), as in IBM mainframes [35].
Combining ECC for arrays with DIVA avoids costly
recoveries. However, ECC protection of arrays is on the
critical path for array access (both read and write). Current
ECC implementations can calculate ECC on a representa-
tive datum in four cycles on a 2 GHz Itanium2 [45]. At the
4 GHz speeds at which current commodity microprocessor
designs run, this becomes a 7-cycle overhead. Since ECC
must be calculated on the microprocessor’s critical path, a
7-cycle penalty per ECC calculation results in highly-
degraded performance, even in the fault-free case. This lost
performance makes ECC inappropriate for application in
the timing-critical pipeline.

With the advent of chip multiprocessing (CMP) in
commodity microprocessor designs, another hard-fault
tolerance option is to disable any core that is detected to
have a hard fault. While this works, we seek to provide a
more cost-effective option than to lose 1/Nth (for an N-core
design) of the chip’s capacity for each hard fault that is
detected. Shivakumar et al. [34] propose a more cost-
effective solution that utilizes inherent redundancy in CMP
and SMT designs. This work is limited to manufacturing-
time detection (i.e., testing) and deconfiguration, whereas
SRAS provides a means for both manufacturing-time and
in-situ operational detection and deconfiguration of sub-
units within the microprocessor core.

Table 1 summarizes all of these techniques, including
our SRAS-CR and SRAS-EDC designs. Included are the
original fault-tolerance targets of the techniques (soft, hard,
or design) and notes on the limitations of using these in a
commodity microprocessor design. Each technique has
certain advantages and certain disadvantages which make
it more or less appropriate for a given design space. As our
results show in Section 5, SRAS-CR and SRAS-EDC provide
a performant solution in the performance-conscious com-
modity microprocessor design space.

3 HARD FAULTS IN SUBMICRON CMOS
TECHNOLOGY

In this section, we present existing high-level models for
hard faults (Section 3.1) and then we delve into the under-
lying physical phenomena that cause hard faults (Section 3.2).
In this process, we show that existing fault models are
applicable to the physical faults we consider in this paper.

3.1 Fault Models

To facilitate fault tolerant design and testing for physical
faults that lead to errors at the circuit level, several
structural fault models have been developed for logic
circuits and storage components over the past few decades

298 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

[1]. The stuck-at fault model is the most commonly used
model in VLSI testing and fault tolerance schemes. In this
model, a physical defect manifests itself as a signal
consistently having a certain value (either zero or one)
independent of the input. For example, an unintended short
circuit between the two inputs of an XOR gate results in a
stuck-at-zero fault at the output signal. The coupling fault
model—in which a write to a certain memory location always
prompts a write to a neighboring location or locations—has
been defined for storage components [9]. The recently
defined transition fault model represents a slow charging or
discharging of a circuit node [26], [32], [41]. This delay can
cause incorrect logic values to be latched. Next, in
Section 3.2, we see that the stuck-at and coupling fault
models will be sufficient for the hard faults that we consider.

3.2 Underlying Physical Phenomena

The reliability of electronic devices under discrete environ-
mental stress, such as radiation [37], and continuous
functional stress due to the applied electric field [29], [39],
[6] has been a topic of vast research since the early days of
semiconductor manufacturing. Extensive research has been
conducted on the failure-causing physical phenomena, such
as electromigration [19], [39], [6] and transistor gate oxide
breakdown (OBD) [12]. Electromigration results in highly
resistive interconnects or contacts and eventually leads to
open circuits. Such defects are typically modeled as
transition faults during manufacturing testing, but they
become stuck-at faults during operation due to their
progressive nature.

OBD results in the malfunction of a single transistor due
to the creation of a highly conductive path between its gate
and its bulk. The onset of this phenomenon is called a soft
breakdown (SBD); however, after several SBD incidents, the
oxide layer diffuses and highly conductive melted metal fills
the void and solidifies into a consistent path. This phenom-
enon is called hard breakdown (HBD). Similar to the
electromigration case, the initial circuit level manifestation

of SBD is a transition fault, whereas the effect of the
subsequent HBD is a stuck-at fault. OBD defects are
potentially more dangerous than electromigration defects
due to the consistent path between a charged node and
ground or supply. Thus, detection and isolation of memory
locations with OBD defects is essential for the operational
health of computing devices.

Both the electromigration and OBD defects are progres-
sive in nature. The mean time to failure (MTTF) for both
defects depends on the thickness and the initial health of
the structure. Reported laboratory data on OBD indicates
that MTTF is on the order of four million seconds (around
46 days) for 15�A gate oxides under constant stress of 2.1V
[20] (scaling the supply voltage down to 1.0V, we can
estimate the MTTF for this oxide thickness to be 375 days).
In the early stages of the progression of both electromigra-
tion defects and OBD defects, bit errors only occur if the
defects are sequentially excited. However, in later stages,
both defects resemble stuck-at faults. Moreover, in addition
to affecting the output node to which the defective
transistor is connected, the OBD defects may result in
coupling faults due to their current driving nature. Thus, in
the experiments in Section 5, we inject stuck-at faults and
coupling faults since they correspond to the manifestations
of electromigration and OBD defects.

4 SELF-REPAIRING ARRAYS

Technology and microprocessor architecture trends are
leading toward larger array structures within microproces-
sors. These structures include the instruction queue, reorder
buffer (ROB), register file, reservation stations, register map
table, branch history table (BHT), etc. We would like to
protect these structures from hard faults as the probability
of hard faults continues to increase, but we cannot afford to
fully replicate these structures. Thus, our SRAS schemes
protect array structures in a fashion similar to the way in
which existing techniques protect large memory storage

BOWER ET AL.: AUTONOMIC MICROPROCESSOR EXECUTION VIA SELF-REPAIRING ARRAYS 299

TABLE 1
Fault Tolerance Techniques: Design Points and Limitations

structures. The basic idea is to use a level of indirection to
map out faulty portions of the structure. Especially as
structures grow larger, the probability of a hard fault within
them increases. For DRAM main memory, whole chip
failures are tolerated by chipkill memory and RAID-M [11],
[15], and partial failures are tolerated with schemes that
map out faulty locations [10], [21], [31]. For SRAM caches,
techniques have been developed to map out defective
locations during fabrication [48] and, more recently, during
execution [24]. While providing insight for the use of spare
memory locations for repair, direct application of the
aforementioned methods to array structures within the
processor bears little hope due to the performance criticality
within microprocessors.

In the rest of this section, we discuss the types of arrays
that we will protect (Section 4.1), and we present the design
space for self-repairing arrays (Section 4.2). We then present
two specific implementations (Section 4.3 and Section 4.4).
We finally discuss the details of applying SRAS to certain
specific microprocessor structures (Section 4.5).

4.1 Microprocessor Array Structures

We can classify array structures within the microprocessor
core into two categories: nonaddressable buffers for which
the data location is determined at the time of access, and
randomly addressable tables for which the data location is
determined before access. In order to allow timing efficient
implementation of the repair logic, we exploit these distinct
features of each type of array structures. Without loss of
generality, we focus the discussion of SRAS on one specific
array structure from each of the two categories: the reorder
buffer (ROB) and the branch history table (BHT). The ROB
and BHT are representative of the kinds of array structures
found in modern microprocessors, and, thus, the arguments
and results here apply broadly. We discuss the details of
other structures, as well as the impact of content-addressa-
bility in the ROB, in Section 4.5.

4.1.1 Reorder Buffer

The ROB is a circular buffer that is used in dynamically
scheduled (also known as “out-of-order”) processors to
implement precise exceptions by ensuring that instructions
are committed in program order. We focus on processors
that perform implicit register renaming with reservation
stations—such as the Intel PentiumPro, IBM PowerPC, and
AMD K6—in which an ROB entry contains the physical
register tags for the destination register and the data result
of the instruction. Alternative ROB designs exist, in which
ROB entries do not hold the data results of completed
instructions (data is instead held in the physical registers).
Designing SRAS for these alternative designs is straightfor-
ward and actually simpler (but not discussed in this paper).
ROB sizes are on the order of 32-128 entries, which is large
enough to have a nonnegligible probability of a hard fault.
The ROB has a high architectural vulnerability factor [23], in
that a fault in an entry is likely to cause an incorrect
execution. A fault in an ROB entry is not guaranteed to
cause an incorrect execution for its instruction, though,
since the fault might not change the data (i.e., logical
masking) or the ROB entry might correspond to a squashed
instruction (i.e., functional masking).

4.1.2 Branch History Table

The BHT is a table that is accessed during branch
prediction. Common two-level branch predictor designs

[47] use some combination of the branch program counter
(PC) and the branch history register (BHR) to index into a
BHT. The BHR is a k-bit shift register that contains the
results of the past k branches. The indexed BHT entry
contains the prediction (i.e., taken or not taken, but not the
destination). In this paper, we focus on the gshare two-level
predictor [22], in which the BHT is indexed by the
exclusive-OR of the branch PC and a global BHR. Since
the BHT is a table, our remapper implementation for it is
fairly similar to the logical abstraction presented earlier. The
BHT has an architectural vulnerability factor of zero, in that
no fault in it can ever lead to incorrect execution. However,
a BHT fault can lead to incorrect branch predictions, which
can degrade performance.

4.2 Design Space

Self-repairing arrays require three features, and the designs
of each collectively comprise the design space:

1. Detection of errors and diagnosis of faults. How
does the hardware detect an error in an array, and
then how does it isolate which part of the array is
faulty? While there are several schemes for dynami-
cally verifying microprocessor execution as a whole
[30], [27], [3], they sacrifice diagnosis capability in
order to not degrade performance.

2. Recovery from errors. How does the hardware
recover from an error such that it can ensure that
the error does not propagate corrupted data into
committed architectural state? The most basic option
for recovery is to halt the system when an error is
detected (fail-stop), thereby protecting system state
from being corrupted, at the cost of more downtime
and, thus, less availability. Other alternatives exist,
such as using the microprocessor’s branch mispre-
diction recovery mechanism.

3. Mapping out faulty subarrays. Once the faulty
subarray (e.g., row or column) has been diagnosed,
how does the hardware map it out and thus avoid
future manifestations of this fault? The design
choices for this aspect mainly involve the granularity
of mapping, e.g., row, column, or even the whole
array. Another design decision is the number of
spares to provide. These design decisions may be
influenced by the array’s position in the micropro-
cessor pipeline, particularly if accessing the array is
on the critical path and performance is thus crucial.

There are numerous design decisions for each of these
three aspects, but the decisions for each aspect are not
completely independent. For example, ECC protection of

arrays would serve as the detection and recovery mechan-
ism, and it does not require remapping, provided that the
errors do not exceed the correction abilities of the chosen
correction code.

The design decisions, particularly for the recovery
mechanism, also determine which array structures can
be protected. For example, since SRAS-EDC uses the

300 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

misprediction recovery mechanism, it cannot tolerate
errors in the recovery state (i.e., committed architectural
state, such as the register file or condition codes).

4.3 SRAS-CheckRow (SRAS-CR)

The first SRAS design that we present, SRAS-CheckRow
(SRAS-CR), uses dedicated check rows to detect and
diagnose errors in array rows. SRAS-CR protects each array
structure in isolation, i.e., the decision to protect an array
with SRAS does not affect the decision to protect any other
array. We will see in Section 4.4 that SRAS-EDC differs in that
it is an integrated approach for protecting multiple arrays.

4.3.1 Detection and Diagnosis

SRAS-CR uses DIVA for end-to-end error detection and
correction. However, DIVA cannot isolate the row or even
the structure that is faulty. Thus, SRAS-CR combines DIVA
with a simple scheme for detecting row errors and
diagnosing which row is faulty. SRAS-CR adds a handful
of check rows (some are spares, which are used to avoid a
single point of failure) to each structure we wish to protect.
For buffer structures such as the ROB, each time an entry is
allocated, initialization data is written to both the entry and
the check row. This initialization data consists of the
available target data for the entry (for example, the source
and destination register tags for an ROB entry) and
pseudorandom data for the parts of the entry that will be
written later (for example, the actual result value for an
ROB entry). Where pseudorandom data is needed, the
hardware tick counter (which records the machine’s current
uptime) is used, with appropriate scaling to provide the
proper number of bits to fully populate the entry. For tables,
every write to a location will have a mirrored write to the
structure’s affiliated check row. Any partial write to a row
must be implemented as a read-modify-write (RMW) action
in order to support SRAS-CR checking. The issue here is
that the check row and array entry to be checked must have
identical data written into their contents in order for a
meaningful comparison to be made. Immediately after the
two writes, both locations are read and their data are
compared (all off the critical path of execution). If the data
differ, then one of the rows is faulty. The converse is not
true, however. Transient errors that occur between writing
the row and using it will not be detected in this way;
however, this does not affect SRAS-CR, since DIVA will
detect and correct these transient errors, and we do not
want to diagnose this row as having a hard fault.

Several options exist for determining which one is faulty,
and we will explain a simple one after we first describe the
mechanism we exploit for distinguishing hard faults from
soft faults. SRAS-CR maintains small saturating counters for
each row, which are periodically reset, and a counter value
above a threshold identifies a hard fault. Now, to determine
if the operational row or the check row is faulty, we can
simply increment both of their counters in the case of a
mismatch in their values, as long as we initially set the
threshold for check row counters to be much higher than
that for operational rows.

Detection and diagnosis is the same for both tables and
buffers. While we logically need only k check rows in a
k-way superscalar processor to detect and diagnose faults,

the SRAS-CR implementation may necessitate having even
more check rows. Having only k check rows could lead to
an unreasonably long delay to transfer the data along wires
from one end of the array to the other. Wire delays are
already a problem in multi-GHz microprocessors—for
example, the Intel Pentium4 has multiple pipeline stages
allocated strictly to wire delay—and we cannot ignore them
in our design. A simple option is to divide the array into
subarrays, each of which has k check rows.

4.3.2 Recovery

If an error is detected, but the hard fault threshold has not
yet been reached, then the fault is considered transient and
is tolerated with a DIVA recovery and its associated
performance penalty. If the detected error raises the counter
to the threshold, then DIVA also tolerates this fault, but the
system then repairs itself so as to prevent this hard fault
from being exercised again.

4.3.3 Mapping Out Faulty Subarrays

We logically add a level of indirection that can map out faulty
rows in microprocessor array structures. The remapper
serves as the interface between the array and the rest of the
microprocessor. The repair actions taken depend on whether
the faulty row is a noncheck row or a check row. If it is a
noncheck row, then it can be immediately mapped out and a
spare row can be mapped in to take its place. The spare row
can get the correct data from the check row. If the faulty row
is a check row, then SRAS-CR maps in a spare check row.
While remapping with a level of indirection is straightfor-
ward in the abstract, implementing it in a high-performance
pipeline requires careful consideration. We now present
remapper implementations for the ROB and BHT.

ROB Remapper. In buffer structures, the address of the
data to be accessed is determined at the time of the access.
Typically, two pointers are used to mark the head and the
tail of the active rows. When a new ROB entry is allocated,
the tail pointer is advanced and the corresponding address
becomes the physical address of the data. Similarly, when
an entry is removed, the head pointer is advanced. Thus,
the physical as well as logical address of the data is
abstracted and all rows have the same functionality. The
faulty row can easily be mapped out by modifying the
pointer advancement logic when a hard fault is detected.
Fig. 1 illustrates the implementation of the remapping
mechanism for buffers, with SRAS-CR hardware shaded in
gray. SRAS-CR uses a shifted fault map bit-array to track
faulty rows. If a row is determined to contain a hard fault,
the faulty bit in the previous row is set to 1. The fault map is
used by the pointer advancement circuit to determine how
far the pointer needs to be advanced. Upon the reception of
a dispatch signal, the pointer is advanced by one or two
depending on whether the next row is fault or not. The
shifted faulty row information enables the preprocessing of
the pointer advance logic. Upon the reception of the commit
signal, the head pointer is advanced in the same manner.
Once the pointer is updated accordingly, reads and writes
of the buffer entries proceed unmodified. Since the
preprocessing for pointer advancement can be done off
the critical path, the proposed modification does not impact
the read or write access time.

BOWER ET AL.: AUTONOMIC MICROPROCESSOR EXECUTION VIA SELF-REPAIRING ARRAYS 301

In order to avoid a reduction in the effective buffer
capacity due to hard faults, spare rows can be used. Since
there is no need to replace the faulty row with any
particular spare row, the detection of the faulty row
prompts incrementing the total buffer capacity by
one entry (by adding the spare) while maintaining the
same effective capacity. SRAS-CR can tolerate as many hard
faults as there are spares without any degradation of buffer
performance. If the number of faulty rows exceeds the
number of spare rows, then the effective buffer capacity is
allowed to shrink, resulting in graceful degradation of the
buffer performance. Assuming that adding one or two to
the pointers does not dramatically change timing or power
consumption, the only overhead of this repair mechanism is
the small additional area taken by the fault map and the
additional power consumed for pointer preprocessing,
updating fault map entries, and updating the buffer size.
Section 4.3.4 discusses the overall overhead of the complete
SRAS-CR architecture in more detail.

BHT Remapper. In tables, the logical address of the data
is determined by the program execution prior to accessing
the data. Since rows do not have equal functionality, a
faulty row needs to be replaced by a specific spare row. In
this case, we need a logical indirection to map out the faulty
rows. This problem is quite similar to the memory repair
problem, and many online repair mechanisms have been
proposed [11], [21]. However, in microprocessor array
structures, logic inserted into the critical path directly
impacts performance, so we must implement a timing-
efficient repair mechanism. In SRAS-CR, we distribute
spare rows over subarrays of the table, and a spare can only
replace a row within its own subarray. This choice may
make the use of spares inefficient for highly localized faults,
but it enables timing efficient implementation of the repair
logic, as shown in Fig. 2. Once again, hardware for SRAS-
CR is shown in gray.

Similar to the buffer case, we keep the fault map
information in a table. However, we also use a fault/spare
match map which contains information on which functional
row each spare row is replacing. If a row is identified faulty
and an unused spare is found to replace it, the correspond-
ing bit in the fault map is set to 1. In addition, the physical

address of the faulty row is written into the corresponding
entry of the fault/spare match map. In order to prevent an
illegal write or read of the spare rows, the fault/spare match
map also needs to contain one bit to indicate whether the
address in the map is valid. In the example shown in Fig. 2,
we can see that the first spare is allocated to row 5 and the
second spare is allocated to row 0, hence the 1 in the fault
map at the zero and the sixth positions. To indicate that the
third spare is not allocated, the first bit of the fault/spare
match map is set to zero. The address decode logic, which is
present in all tables, enables a row of the table to be read or
written by generating the individual read/write enable
signals for the table rows. During a read or write access,
these signals are modified by the remap logic to generate the
updated read/write enable signals for the table entries as
well as the read/write enable signals for the spare entries.
The remap logic consists of n inverters and n 2-input NOR
gates, where n is the size of the subarray. To generate the
read/write enable signals for the spare rows, klogðnÞ 2-input
XOR gates and the equivalent of kðlogðnÞ þ 1Þ-input NOR
gates (denoted by the compare block in Fig. 2) are needed,
where k is the number of spares assigned to the subarray.

Assuming the compare logic can execute faster than the
address decode logic, SRAS-CR will add two gate delays
(one inverter and one NOR gate delay) to the table access
time. Since the additional level of indirection for accessing
the physical table entries is on the critical path, this
additional time cannot be ignored. In order to avoid set-up
or hold time violations, we very conservatively use a second
pipeline stage to access the table entries. This additional
pipeline stage will impose a penalty in the normal mode of
operation. While we expect that the actual performance
penalty would be far less than a pipeline stage (e.g., if BHT
access latency is not the determining factor in pipeline stage
latency), we choose this pessimistic design point as a lower
bound on SRAS’s benefit. In Section 5, we run experiments to

302 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

Fig. 1. Self-repair for buffers.

Fig. 2. Self-repair for tables.

assess the impact of this additional pipeline stage on the
execution time in the absence of hard faults.

4.3.4 SRAS-CR Costs

The cost of a fault tolerance scheme has three aspects:
hardware (area) overhead, performance (timing) overhead,
and power consumption overhead. For aggressive micro-
processor architectures, the performance overhead during
fault-free execution is often the most critical parameter.

In order to keep the performance overhead at a minimum,
buffers and tables are handled differently in SRAS. The
distinct nature of buffers that makes all of their rows have
equal functionality enables a no-timing-overhead implemen-
tation. Tables, however, require a definitive logical address
for the data, which results in a need for an additional level of
indirection. This indirection results in two gate delays in
access times (e.g., for the Pentium4, an inverter delay is about
1-2 percent of the clock period [40]). Since gate delay will be
larger than inverter delay, and since we cannot know how
much margin exists in an existing design, we very conserva-
tively add a pipeline stage for access to tables. The additional
pipeline stage results in increased latency and an increased
number of stalls, and we quantitatively evaluate its perfor-
mance overhead in Section 5.

The increase in power consumption in SRAS-CR stems
mostly from increased data read/write activity due to the
check rows. Since the write/read activity is doubled, the
dynamic power consumption in the array structures will
roughly be doubled as well. If power consumption is still a
concern, accesses to check rows can be reduced at the
expense of increasing the fault detection latency.

Finally, the hardware overhead of SRAS-CR includes the
need for:

1. DIVA,
2. spare rows (including spare check rows),
3. one logic circuit for repair and check per array

structure,
4. the per-row counters for diagnosing hard faults, and
5. two additional read ports and one additional write

port on the protected array structures to support
simultaneous writing of the check row and reading
of the result and check rows.

Among these hardware costs, the two most significant are
DIVA and the extra ports on the array structures. According
to Weaver and Austin [44], a DIVA checker’s size is less
than 5 percent of an Alpha 21264 core. The extra ports on
each array structure are more problematic since they can
significantly increase the structure’s size and degrade its
access latency. Particularly, for large array structures, the
cost of the extra ports may prohibit the use of SRAS-CR;
fortunately, SRAS-EDC does not have this cost.

4.3.5 Limitations of SRAS-CR

The implementation of SRAS-CR in this paper does not
tolerate all microprocessor faults. We divide these un-
tolerated faults into three categories. First, SRAS-CR does
not tolerate faults in its own logic, e.g., the pointer
remapping logic or the fault map. These structures are
far smaller than the structures they are protecting, which
makes them less prone to hard faults, but they could still

fail. Second, SRAS-CR does not tolerate a fault in a table
subarray if no more spare rows are available in that
subarray. This limitation does not apply to buffers except
in the extreme case in which every row of the buffer,
including spares, is faulty. Third, SRAS-CR does not
tolerate a fault in a subarray (for a buffer or table) if all
of the check rows for that subarray are faulty.

All of these untolerated faults present the designer with
a classic engineering trade-off: fault tolerance versus
hardware cost. Future SRAS-CR implementations could
develop hardened logic if the first fault model is considered
important. The probabilities of the latter two categories can
be decreased by designing the SRAS-CR protection to use
more spare rows and more check rows.

4.4 SRAS-EDC: Self-Repair Design Without
DIVA Backstop

In this section, we present a design for array self-repair
that is independent of DIVA and that is fully integrated
into the microprocessor datapath. The design attempts to
minimize the amount of logic, particularly on critical
paths. An illustration of our design (simplified for
purposes of illustration) is shown in Fig. 3. As we
mentioned previously in Section 4.1, the microarchitecture
is similar to that of the Intel PentiumPro in that the
reorder buffer holds the results of completed but not yet
committed instructions (rather than keeping them in the
physical register file). The array structures we protect are
the instruction buffer, instruction scheduling window,
reorder buffer, load-store queue, and BHT. In the figure,
unprotected instructions are fetched into the datapath,
and protected data is eventually written back to the
register file or data cache. The register file and data cache
are highlighted to emphasize that they hold architectural
state and that they cannot be recovered using the core’s
misprediction recovery mechanism. Note that, with minor
modifications, our scheme could be adapted for use in
microarchitectures with register update units (RUUs) or
microarchitectures that keep the results of completed but
uncommitted instructions in the physical register file and
use explicit register renaming with a map table. Our
design treats the combinational logic that manipulates the
data that flows through the microprocessor (e.g., instruc-
tion decoders, functional units) as black boxes. Protecting
this logic from hard faults is an orthogonal issue.

As an instruction progresses through the pipeline, every
time it is modified, an EDC write must occur. As Fig. 3
shows, this activity occurs after instruction fetch, instruc-
tion decode, ALU operation, memory reads, and before
updating the BHT, assuming it is optionally protected. With
the exception of the BHT update, these EDC write
operations must be on the critical path of the pipeline,
and, thus, add additional latency to the instruction’s
processing time. The use of EDC, as opposed to ECC, is
advantageous in that it provides for a lower-latency
operation that takes less logic to implement in the timing
and space-constrained pipeline. EDC must be checked after
any access to a datum contained in a protected structure.
However, the only time that this EDC check activity is on
the critical path of an instruction’s execution is when the
instruction’s result is to be committed to architectural state

BOWER ET AL.: AUTONOMIC MICROPROCESSOR EXECUTION VIA SELF-REPAIRING ARRAYS 303

at the end of the pipeline. At all other times, the datum can
be used by a subsequent pipeline stage without knowing
the EDC result, since the later discovery of an error in the
EDC check can be contained by flushing the pipeline.

4.4.1 Detection and Diagnosis

SRAS-EDC uses error detecting codes (EDC) to detect and
diagnose errors in array rows. There are numerous kinds of
EDCs, including parity and cyclic redundancy check (CRC)
codes. EDCs add some number of check bits, k, to the original
d data bits, and the tradeoff is between the cost due to the
number of check bits added and the added error detection
capabilities of having more check bits. For example, a single
parity bit adds a 1=d cost and can detect all single-bit errors.
For implementation purposes, we prefer a separable EDC, i.e.,
the check bits are not interleaved with the data bits. Thus,
each array row consists of ddata bits followed by k check bits.
We also want an EDC that can detect all single-bit errors and
many types of multiple-bit errors, particularly unidirectional
errors (i.e., all 0->1 or 1->0). Many EDC options exist—a
designer can choose the EDC that best suits the system, based
on the tradeoff between error detection capability and
implementation cost. Because of our fault model, we choose
Berger codes [5] to protect all arrays except the BHT, since
Berger codes can detect all single-bit errors and all unidirec-
tional multiple-bit errors. A Berger code will detect all single
stuck-at faults and coupling faults (from one bit to any

number of neighboring bits). In a Berger code, the k check bits

are the binary representation of the number of zeros in the

original data, and, thus,k ¼ dlog2ðdþ 1Þe. For the BHT, which

has only 2-bit entries, we simply use a parity bit for EDC.
As in SRAS-CR, to distinguish hard faults from soft

faults, we add a small counter to each row that is

incremented for every error detected in it, and all counters

are periodically cleared. If an error increments a counter

such that it exceeds a specified threshold, then this row is

considered to have a permanent fault; otherwise, the error is

considered transient. All data written into arrays is

protected with EDC, and all data read from arrays has its

EDC checked. We also maintain EDC bits in the register file,

in order to not have to recompute EDC for data that is read

from the register file to be written into the instruction

window. Nevertheless, we are not protecting the register

file from hard faults—a hard fault would be detectable but

unrecoverable. Future work will explore how to extend

SRAS-EDC to protect architectural state.
The only six instances in which EDC logic (writing EDC

bits to the end of a datum or checking EDC bits) can

potentially impact performance are when:

1. Fetched instructions go through logic that adds EDC
bits to them before inserting them into the instruction
buffer.

304 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

Fig. 3. Datapath design with SRAS-EDC. The register file and L1 data cache (L1 D$) are highlighted to emphasize that they hold architectural
state. This simplified figure ignores the store queue since stores are handled just like nonload instructions, except that they write their results to the
L1 D$ instead of the register file.

2. Decoded instructions go through logic that adds
EDC bits to them before inserting them into the
instruction scheduling window. EDC needs to be
recomputed here, since the process of decoding the
instructions modifies their data payload.

3. Data produced by functional units goes through logic
that adds EDC bits before being written into the
instruction window (as operands) and the ROB (as
results). EDC needs to be recomputed here, since the
functional units produce new data. This EDC logic
could be associated with the functional units or with
the data result bus. An optimization is to compute the
EDC (for the outputs of the functional units) in
parallel with the outputs. This requires more hard-
ware but hides the latency of the EDC logic, and we
will explore the potential of this approach in our
evaluation in Section 5. Future work will explore self-
checking circuits [43], in which EDC codewords (using
arithmetic codes) are produced by the combinational
logic (e.g., functional units). This would enable us to
check the functional units themselves (but not to map
out hard faults in them), and it would also remove
the need for this EDC recomputation logic.

4. Data loaded from the L1 data cache goes through logic
that adds EDC bits before being written into the ROB.
EDC needs to be recomputed here, since we do not
assume that the caches implement the same EDC. If
we were to relax this assumption, then this logic for
recomputing EDC would no longer be necessary.

5. Data from the ROB goes through logic that checks the
EDC before being committed into the register file (or
into the L1 data cache, for stores). In Fig. 3 (which
omits stores, for clarity), this data is shown as
unprotected (before it is checked) despite coming
from the protected ROB. This is because, unlike for
other structures, the EDC check on this data cannot be
done later, and, thus, undo the effects of writing this
potentially erroneous data into the register file or data
cache.

6. Updates to the branch history table go through logic
that adds a parity bit. However, checking the parity
bit of data that is read from BHT is off the critical path.

In the first five of these situations, EDC logic is on the

critical path, and we pessimistically assume that we must

add an extra pipeline stage to accommodate this latency.

The exception is adding the parity bit to the BHT—we

assume that this simple operation will not force the addition

of a pipeline stage. In all other instances, EDC logic is off the

critical path. For example, when instructions pass from the

instruction buffer to the instruction window (after being

decoded and renamed), their EDCs are checked off the

critical path. That is, erroneous data could be written into

the instruction window before the EDC check is complete;

however, the EDC check will fail soon thereafter and trigger

a system recovery which will eliminate the effects of the

error before they can be committed to architectural state.

Other EDC checks are between the instruction window and

the functional units, between the load queue and the data

cache, and between the ROB and the instruction window.

One potential challenge for fast implementation of EDC
(or ECC, for that matter) is that partial writes to a structure
(i.e., writes that do not modify the entire data) turn into
RMW operations. Recall that this limitation is also present
for SRAS-CR for any write that will have a check performed.
The read is necessary to help compute the EDC over the
entire data before writing it. Since RMWs are slower and
require extra array bandwidth, we would like to avoid them
if possible. Our solution is to compute EDCs over indepen-
dently written fields of array rows, instead of over the entire
row, in order to avoid any possible partial writes. For
example, in the ROB, we compute separate EDCs for the
result data and for the rest of the entry. Thus, when the entry
is allocated, we must compute both, but this is no more
complex than computing it over the whole entry. The key
savings is when the result is written during instruction
completion, since we no longer need to do a RMW.

4.4.2 Recovery

Recovery is implemented with the microprocessor’s normal
misprediction recovery mechanism. Thus, unlike SRAS-CR,
SRAS-EDC does not need DIVA. This recovery mechanism
effectively deletes all speculative, uncommitted micropro-
cessor state, but it cannot undo changes made to the
architectural state such as the register file. This is why the
EDC check between the ROB and register file is on the
critical path.

4.4.3 Remapping

We use the same techniques as SRAS-CR for mapping out
faulty rows of arrays.

4.4.4 SRAS-EDC Costs

The costs for SRAS-EDC are less than those of SRAS-CR in
two important ways: First, SRAS-EDC does not require
DIVA. Second, SRAS-EDC does not require all of the extra
reads and writes that were necessary for the check rows.
However, SRAS-EDC does add some hardware for per-
forming EDC computations. It also adds some performance
overhead because of those instances in which EDC logic is
on the critical path.

4.4.5 Limitations of SRAS-EDC

There are a few limitations of SRAS-EDC. First, fault
coverage is limited by the strength of the chosen EDC. This
is a tuneable parameter, in which a designer can tradeoff
error detection capability against implementation cost.
Second, we can only protect structures that do not hold
committed architectural state. Thus, we can protect the
ROB, LSQ, IQ, IW, etc., but we cannot protect the register
file, processor status word, condition codes, etc. Future
work will extend our approach to encompass architected
state (e.g., by periodically checkpointing it to memory).

4.5 Applicability of SRAS to Specific Structures

While we have thus far generalized structures as buffer-like
or table-like, each structure must be considered in detail to
understand how SRAS can be made to work on it. We now
present the detailed assumptions about the different
structures we studied to provide better intuition in

BOWER ET AL.: AUTONOMIC MICROPROCESSOR EXECUTION VIA SELF-REPAIRING ARRAYS 305

applying SRAS techniques to a specific design that we have
not specifically addressed with this study.

4.5.1 Instruction Buffer

The instruction buffer is just a simple buffer. As the
holding place for fetched instructions awaiting decoding,
this buffer is a FIFO queue, with each entry written once.
There is no requirement to modify its basic structure to
accommodate SRAS.

4.5.2 Instruction Scheduling Window

After instructions are decoded, they are stored in this
structure until their operands are ready and functional units
are available to execute them. Allocation of entries is buffer-
like, but the following aspects of the instruction scheduling
window are not. First, the structure is also a content-
addressable memory (CAM), in order to enable wake-up
and select logic to find ready instructions as well as to allow
operand readiness to be properly updated each cycle. Second,
this structure is the beginning of the out-of-order execution of
the microprocessor core. Instructions are removed as they
become ready, not in FIFO order. Typical implementations
perform a compaction of the structure at the end of each cycle
to keep the oldest instructions near the head of the queue and
to simplify allocation of entries in the next decode cycle.
Finally, each entry will typically be updated between
allocation and its eventual use and retirement.

For SRAS-CR, these factors are mitigated by performing
a full write of the entry at its point of allocation and
performing the check at that time. As mentioned in the
discussion of SRAS-CR, pseudorandom data from the tick
counter is used to populate the uninitialized fields of this
structure to allow for the check to be calculated properly
without requiring partial updates to be converted to RMWs
and to have a fixed upper bound on the number of check
circuits required to perform checks (for n-wide decode
circuitry, we need n check circuits). Subsequent overwriting
of partial data and movement during compaction is
effectively ignored by SRAS-CR. This is tolerable since
DIVA will correct any errors introduced by moving a good
datum to an array entry that has a hard fault present that
has yet to be deconfigured.

For SRAS-EDC, EDC must be recalculated for every
update to the structure. We can avoid RMWs by dividing
the EDC into separate EDC fields for each of the written
subpieces of the entry. This also provides the advantage of
only requiring 2n EDC calculation circuits, since at most
n operands will become ready in a given cycle in an n-wide
processor. The calculated EDC for a particular operand
becoming ready is independent of the rest of the instruction
window data. This allows a single EDC calculation to be
written multiple times at all applicable locations in the
instruction window. So, in a given cycle, n EDC calculations
will be required for the incoming n decoded instructions
and the newly computed n ready operands (making for a
total of 2n). Compaction is not a problem, since the EDC
travels with the entry and remains valid during the
compaction. As with SRAS-CR, the number of EDC
checking circuits required for the structure is equivalent
to the issue width of the processor.

4.5.3 Load-Store Queue

Like the instruction window, the LSQ is a buffer that also
can be accessed as a CAM. This feature does not adversely
impact either of the SRAS schemes. SRAS-CR again uses
pseudorandom data if necessary to perform the check at the
time of entry allocation. SRAS-EDC must maintain 2n EDC
calculation circuitry sets (one for the initial write of the
entry and one for address calculation arrival from an ALU)
in order to allow for a peak sustained memory bandwidth
of n instructions per cycle on an n-wide processor. Only
n copies of the EDC check circuit are required. As with the
instruction window, the subfields of an entry may have
their EDC calculated separately to simplify the EDC
calculation circuitry’s implementation.

4.5.4 Branch History Table

The BHT is a table with addressable content on a very small
granularity. The descriptions of SRAS operation for table
structures were crafted with the BHT as a motivating
example. For other tabular structures, the aforementioned
techniques of writing pseudorandom data (for SRAS-CR) or
splitting the table entry into separate EDC fields (for SRAS-
EDC) may be applicable.

4.5.5 Reorder Buffer

The ROB is a FIFO queue with the potential of multiple
partial writes during the lifetime of an instruction. Issues
here are similar to those found in the instruction scheduling
window. The same techniques would apply here for the
two SRAS methods.

5 EVALUATION

In this section, we evaluate the benefits and costs of adding
self-repair to microprocessor arrays. Our goal is to
determine whether self-repair is viable, primarily in terms
of performance, as performance is of critical importance in
the commodity processor design space. We will compare
both SRAS-CR and SRAS-EDC to systems protected with
DIVA as well as to each other. Comparing SRAS to DIVA is
somewhat unfair, since DIVA was not designed to handle
hard faults, but it is the best alternative currently available.
An important question we seek to answer is whether SRAS-
EDC can achieve comparable performance to SRAS-CR
despite not requiring DIVA support or the other drawbacks
of SRAS-CR.

5.1 Methodology and System Model

We use the SimpleScalar toolset [2] to evaluate our design.
We model a dynamically scheduled microprocessor that is
similar to currently available microprocessors, such as the
Intel Pentium4 [14] and Alpha 21364 [13]. The details of the
target system are shown in Table 2. We protect the
instruction buffer, instruction scheduling window, reorder
buffer, and load-store queue. The percentage of the
microprocessor core that this protects depends on imple-
mentation. Specific details are proprietary, but estimation
can be done with annotated die photos of a representative
chip. Such analysis of the Alpha 21264 [34] shows that these
array structures comprise roughly 33 percent of the
noncache microprocessor core die area.

306 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

We simulate the SPEC2000 CPU benchmarks, and we use
the SimPoint toolset [33] to choose statistically representa-
tive samples of these long benchmarks for detailed

simulation. We inject varying numbers of both stuck-at
errors and coupling errors into the protected structures.
Due to fault masking, injected hard faults do not always
lead to errors when the faulty structures are accessed. For
example, a stuck-at-one fault does not effect a bit that is

dynamically set to one during execution.

5.2 Results

In this section, we present the results of our evaluation.

5.2.1 Fault-Free Performance

Our first experiment explores the performance impact of
SRAS for a system with no faults injected. The goal of this
experiment is to determine the fault-free performance
overhead of our schemes relative to a system with DIVA.
In Fig. 4, we plot the fault-free runtimes (taller bars
correspond to worse performance) of several systems,
normalized to the baseline case of a system with DIVA (or
an unprotected system), for all of the SPEC integer and
floating point benchmarks. For each benchmark, we plot:

1. the baseline,
2. SRAS-CR (protecting just the ROB1),
3. unoptimized SRAS-EDC,
4. SRAS-EDC with a partial optimization in which we

compute functional unit EDC in parallel for addition
and subtraction, since these are the most common
and the easiest to perform in parallel (i.e., they
require the least extra hardware for parallel EDC
computation), and

5. SRAS-EDC with the full optimization described in
Section 4.4 to compute all functional unit EDCs in
parallel (or not compute them at all, for self-checking
circuits).

The results show that SRAS-CR has the same performance
as the baseline and that SRAS-EDC unsurprisingly incurs

some penalty with respect to DIVA, due to adding some

EDC logic on the critical path. The full optimization for

SRAS-EDC helps quite a bit on most benchmarks, and the

partial optimization does almost as well. One trend is that

SRAS-EDC tends to suffer worse degradation in perfor-

mance on the integer benchmarks, explained by the fact that

the extra pipeline stages in SRAS-EDC exacerbate the

branch misprediction penalty which is incurred more

frequently by the integer benchmarks.

5.2.2 Performance in Presence of Faults

In this experiment, we study the performance benefit of

self-repair for a system in which hard faults have been

injected. Our goal is to determine whether self-repair

provides enough benefit in the presence of hard faults to

be worth its costs (in terms of implementation and fault-free

performance) In Fig. 5, we plot the runtime of SRAS-EDC

versus that of a system protected by DIVA, in the presence

of hard faults injected into the reorder buffer. For clarity, we

do not plot SRAS-CR results since they are very similar to

SRAS-EDC. We inject one, four, and eight stuck-at-1 hard

faults in order to evaluate the relative impact of varying

numbers of hard faults. We normalize the results to the case

of DIVA with no faults injected. Here, we see that, in

general, the presence of hard faults leads to SRAS-EDC

outperforming DIVA. For the few integer benchmarks for

which SRAS-EDC incurs the greatest fault-free performance

degradation, however, DIVA may still have a slight

advantage in the case of only one hard fault, but SRAS-

EDC always outperforms DIVA for four and eight faults.

Considering that defect and fault rates are increasing, and

we cannot eliminate all of them with burn-in testing [28],

[4], these results demonstrate that SRAS is worthwhile. We

observe that the floating point benchmarks derive relatively

more benefit from self-repair. This effect is due to these

benchmarks tending to better utilize the pipeline and thus

incur more of a loss when an error causes DIVA to have to

flush the pipeline.

BOWER ET AL.: AUTONOMIC MICROPROCESSOR EXECUTION VIA SELF-REPAIRING ARRAYS 307

1. Results discussed later will show that protecting the BHT is not
worthwhile, and, thus, we do not wish to incur its fault-free performance
penalty in this experiment.

TABLE 2
Target System Parameters

5.2.3 Relative Performance Impact of Protecting

Different Arrays

In this experiment, we explore the impact of hard faults on

the other array structures that we are protecting with self-

repair. Having shown in the previous experiment that ROB
self-repair is beneficial in the presence of hard faults, we

now compare the relative benefits of self-repair for other

arrays. For each of the five structures we are protecting with

self-repair—ROB, load-store queue, instruction window

(scheduling window), instruction buffer (fetch buffer), and
branch history table (BHT)—we injected a single stuck-at

fault in that structure (i.e., we created five systems, each

with a single fault in a different array). We then simulated

each system’s performance on a system with DIVA (i.e.,

without self-repair), to gauge the performance degradation

that DIVA would incur (and that a system with self-repair
would not incur). In Fig. 6, we plot the runtimes for these

five systems, normalized to a fault-free system. Thus, a

taller bar in the graph indicates that self-repair is more

important for this structure. We observe that there is no one
particular structure that is always the most important to
protect with self-repair, although there are some patterns.
For example, the instruction window benefits more from
self-repair than the ROB, as does the instruction buffer for
most benchmarks. A significant result is that faults in the
BHT have virtually no impact on performance. This is
because the BHT is a large structure that is accessed
sparsely, and faults in the BHT are likely to be masked.
Moreover, faults in the BHT can only lead to incorrect
branch predictions, not incorrect execution, so the corre-
sponding pipeline squashes can be initiated earlier (after
the execution stage, instead of at the commit stage) and,
thus, incur less performance penalty.

6 CONCLUSIONS

In this paper, we have presented a framework for designs

for self-repair of microprocessor array structures, and we

have developed two particular designs based on that

308 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

Fig. 4. Fault-free runtime. Fig. 5. Runtime with hard faults injected into the reorder buffer.

framework: SRAS-CR and SRAS-EDC. These designs are

motivated by the belief that per-part hard fault rates will

increase as we scale CMOS to smaller and smaller device

geometries and pack ever more devices into a single

microprocessor. This motivation is grounded in cautionary

statements from the ITRS [16] and detailed studies of

lifetime reliability by Srinivasan et al. [36].
A survey of methods for achieving hard-fault tolerance

in the microprocessor core shows that we have a gap in
capability for protecting the noncache area. This gap stems
from the following two facts:

1. Traditional hard-fault tolerance design points could
afford large-scale redundancy, for example replica-
tion of the entire core, so they used techniques like
TMR to achieve fault tolerance.

2. Newly developed low-cost fault-tolerance techni-
ques are not designed to tolerate hard faults—even

though they sometimes can, this tolerance comes at a
high performance cost.

In the commodity microprocessor market, performance
and cost are the key motivating constraints. As CMOS trends
begin to impact this design space, we believe that fault
tolerance will gain in importance. Low-cost methods to
achieve hard fault tolerance will become necessary as a result.
The two SRAS methods presented are two such designs.

In the case of fault-free execution, both SRAS methods
may add some performance overhead compared to an
unprotected system, due to the few instances in which self-
repair logic is on the critical path. However, if hard faults
exist in arrays, then SRAS outperforms the existing light-
weight approaches for tolerating faults while avoiding
large-scale replication of microprocessor cores. As hard
fault rates continue to increase, we believe that SRAS will
become an increasingly attractive design point.

ACKNOWLEDGMENTS

This material is based on work supported by the US National
Science Foundation under grants CCR-0309164, CCF-
0444516, and EIA-9972879, the National Aeronautics and
Space Administration under grant NNG04GQ06G, Intel
Corporation, IBM, and a Duke Warren Faculty Scholarship.
The authors thank Alvy Lebeck, Tong Li, Pete Marinos, and
Ismet Bayraktaroglu for their insightful comments and
criticisms of this work. This paper partially includes research
that appeared in the Proceedings of the 2004 International
Conference on Dependable Systems and Networks [8].

REFERENCES

[1] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems
Testing and Testable Design. IEEE Press, 1990.

[2] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infra-
structure for Computer System Modeling,” Computer, vol. 35, no. 2,
pp. 59-67, Feb. 2002.

[3] T.M. Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” Proc. 32nd Ann. IEEE/ACM Int’l Symp.
Microarchitecture, pp. 196-207, Nov. 1999.

[4] T.S. Barnett, A.D. Singh, and V.P. Nelson, “Extending Integrated-
Circuit Yield-Models to Estimate Early-Life Reliability,” IEEE
Trans. Reliability, vol. 52, no. 3, pp. 296-300, Sept. 2003.

[5] J.M. Berger, “A Note on Error Detecting Codes for Asymmetric
Channels,” Information and Control, vol. 4, pp. 68-73, Mar. 1961.

[6] D.T. Blaauw, C. Oh, V. Zolotov, and A. Dasgupta, “Static
Electromigration Analysis for On-Chip Signal Interconnects,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, vol. 22, no. 1, pp. 39-48, Jan. 2003.

[7] R. Blish et al. “Critical Reliability Challenges for the International
Technology Roadmap for Semiconductors (ITRS),” Technical
Report 03024377A-TR, Int’l SEMATECH, Mar. 2003.

[8] F.A. Bower, P.G. Shealy, S. Ozev, and D.J. Sorin, “Tolerating Hard
Faults in Microprocessor Array Structures,” Proc. Int’l Conf.
Dependable Systems and Networks, pp. 51-60, June 2004.

[9] T. Chen and G. Sunada, “A Self-Testing and Self-Repairing
Structure for Ultra-Large Capacity Memories,” Proc. Int’l Test
Conf., pp. 623-631, Oct. 1992.

[10] T. Chen and G. Sunada, “An Ultra-Large Capacity Single-Chip
Memory Architecture with Self-Testing and Self-Repairing,” Proc.
Int’l Conf. Computer Design (ICCD), pp. 576-581, Oct. 1992.

[11] T.J. Dell, “A White Paper on the Benefits of Chipkill-Correct ECC
for PC Server Main Memory,” IBM Microelectronics Division
Whitepaper, Nov. 1997.

[12] D.J. Dumin, Oxide Reliability: A Summary of Silicon Oxide Wearout,
Breakdown, and Reliability. World Scientific Publications, 2002.

[13] L. Gwennap, “Alpha 21364 to Ease Memory Bottleneck,” Micro-
processor Report, Oct. 1998.

BOWER ET AL.: AUTONOMIC MICROPROCESSOR EXECUTION VIA SELF-REPAIRING ARRAYS 309

Fig. 6. Impact on runtime of hard faults on other array structures.

[14] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel, “The Microarchitecture of the Pentium 4
Processor,” Intel Technology J., Feb. 2001.

[15] IBM, Enhancing IBM Netfinity Server Reliability: IBM Chipkill
Memory, IBM Whitepaper, Feb. 1999.

[16] Int’l Technology Roadmap for Semiconductors, 2003.
[17] JEDEC Solid, State Technology Assoc., “Failure Mechanisms

and Models for Semiconductor Devices,””JEDEC Publication
JEP122-B, Aug. 2003.

[18] D. Jewett, “Integrity S2: A Fault-Tolerant UNIX Platform,” Proc.
21st Int’l Symp. Fault-Tolerant Computing Systems, pp. 512-519, June
1991.

[19] S. Krumbein, “Metallic Electromigration Phenomena,” IEEE Trans.
Components, Hybrids, and Manufacturing Technology, vol. 11, no. 1,
pp. 5-15, Mar. 1988.

[20] B.P. Linder, J.H. Stathis, D.J. Frank, S. Lombardo, and A.
Vayshenker, “Growth and Scaling of Oxide Conduction After
Breakdown,” Proc. 41st Ann. IEEE Int’l Reliability Physics Symp.,
pp. 402-405, Mar. 2003.

[21] P. Mazumder and J.S. Yih, “A Novel Built-In Self-Repair
Approach to VLSI Memory Yield Enhancement,” Proc. Int’l Test
Conf., pp. 833-841, 1990.

[22] S. McFarling, “Combining Branch Predictors,” Technical Report
TN-36, Digital Western Research Laboratory, June 1993.

[23] S.S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin,
“A Systematic Methodology to Compute the Architectural
Vulnerability Factors for a High-Performance Microprocessor,”
Proc. 36th Ann. IEEE/ACM Int’l Symp. Microarchitecture, Dec. 2003.

[24] M. Nicolaidis, N. Achouri, and S. Boutobza, “Dynamic Data-Bit
Memory Built-In Self-Repair,” Proc. Int’l Conf. Computer Aided
Design, pp. 588-594, Nov. 2003.

[25] K. Nikolic, A. Sadek, and M. Forshaw, “Fault-Tolerant Techniques
for Nanocomputers,” Nanotechnology, vol. 13, pp. 357-362, 2002.

[26] I. Pomeranz and S.M. Reddy, “On n-Detection Test Sets and
Variable n-Detection Test Sets for Transition Faults,” Proc. 17th
IEEE VLSI Test Symp., pp. 173-180, Apr. 1999.

[27] S.K. Reinhardt and S.S. Mukherjee, “Transient Fault Detection via
Simultaneous Multithreading,” Proc. 27th Ann. Int’l Symp. Com-
puter Architecture, pp. 25-36, June 2000.

[28] W.C. Riordan, R. Miller, J.M. Sherman, and J. Hicks, “Micro-
processor Reliability Performance as a Function of Die Location
for a 0. 25um, Five Layer Metal CMOS Logic Process,” Proc. 37th
Ann. IEEE Int’l Reliability Physics Symp., pp. 1-11, Mar. 1999.

[29] R. Rodriguez, R.V. Joshi, J.H. Stathis, and C.T. Chuang, “Oxide
Breakdown Model and Its Impact on SRAM Cell Functionality,”
Simulation of Semiconductor Processes and Devices (SISPAD), pp. 283-
286, Sept. 2003.

[30] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors,” Proc. 29th Int’l Symp. Fault-Tolerant
Computing Systems, pp. 84-91, June 1999.

[31] K. Sawada, T. Sakurai, Y. Uchino, and K. Yamada, “Built-in Self
Repair Circuit for High Density ASMIC,” Proc. IEEE Custom
Integrated Circuits Conf., 1989.

[32] J. Saxena et al., “Scan-Based Transition Fault Testing—Implemen-
tation and Low Cost Test Challenges,” Proc. Int’l Test Conf.,
pp. 1120-1129, Oct. 2002.

[33] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically Characterizing Large Scale Program Behavior,” Proc.
10th Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, Oct. 2002.

[34] P. Shivakumar, S.W. Keckler, C.R. Moore, and D. Burger,
“Exploiting Microarchitectural Redundancy For Defect Toler-
ance,” Proc. 21st Int’l Conf. Computer Design, Oct. 2003.

[35] L. Spainhower and T.A. Gregg, “IBM S/390 Parallel Enterprise
Server G5 Fault Tolerance: A Historical Perspective,” IBM J.
Research and Development, vol. 43, nos. 5/6, Sept./Nov. 1999.

[36] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers, “The Impact of
Technology Scaling on Lifetime Reliability,” Proc. Int’l Conf.
Dependable Systems and Networks, June 2004.

[37] J.R. Srour, D. Long, D. Millward, R.L. Fitzwilson, and W.L.
Chadsey, Radiation Effects on and Dose Enhancement of Electronic
Materials. Noyes Publications, 1984.

[38] K. Sundaramoorthy, Z. Purser, and E. Rotenberg, “Slipstream
Processors: Improving Both Performance and Fault Tolerance,”
Proc. Ninth Int’l Conf. Architectural Support for Programming
Languages and Operating Systems, pp. 257-268, Nov. 2000.

[39] J. Tao, J.F. Chen, N.W. Cheung, and C. Hu, “Modeling and
Characterization of Electromigration Failures Under Bidirectional
Current Stress,” IEEE Trans. Electron Devices, vol. 43, no. 5, pp. 800-
808, May 1996.

[40] S. Thompson et al., “An Enhanced 130nm Generation Logic
Technology Featuring 60nm Transistors for High Performance
and Low Power at 0.7-1.4V,” Proc. Int’l Electron Devices Meeting,
pp. 257-260, Dec. 2001.

[41] C.-W. Tseng and E.J. McCluskey, “Multiple-Output Propagation
Transition Fault Test,” Proc. Int’l Test Conf., pp. 358-366, Nov. 2001.

[42] T.N. Vijaykumar, I. Pomeranz, and K.K. Chung, “Transient Fault
Recovery Using Simultaneous Multithreading,” Proc. 29th Ann.
Int’l Symp. Computer Architecture, pp. 87-98, May 2002.

[43] J.F. Wakerly, Error Detecting Codes, Self-Checking Circuits and
Applications. North-Holland, 1978.

[44] C. Weaver and T. Austin, “A Fault Tolerant Approach to
Microprocessor Design,” Proc. Int’l Conf. Dependable Systems and
Networks, pp. 411-420, July 2001.

[45] D. Weiss, J.J. Wuu, and V. Chin, “The On-Chip 3MB Subarray
Based 3rd Level Cache on an Itanium Microprocessor,” Proc. Int’l
Solid-State Circuits Conf., pp. 112-113, Feb. 2002.

[46] D. Wilson, “The Stratus Computer System,” Resilient Computer
Systems, pp. 208-231, 1985.

[47] T.-Y. Yeh and Y. Patt, “Two-Level Adaptive Training Branch
Prediction,” Proc. 24th Ann. IEEE/ACM Int’l Symp. Microarchitec-
ture, pp. 51-61, Nov. 1991.

[48] L. Youngs and S. Paramanandam, “Mapping and Repairing
Embedded-Memory Defects,” IEEE Design & Test of Computers,
pp. 18-24, Jan.-Mar. 1997.

Fred A. Bower received the BS degree in
mechanical engineering and computer science
from Oregon State University in 1996 and the
MS degree in computer science and engineer-
ing from The Oregon Graduate Institute of
Science and Technology in 1999. He is a PhD
candidate in the Department of Computer
Science at Duke University and is also the
technical lead for high volume Intel servers in
IBM’s Systems and Technology Group. His

present research focus is on developing low-cost hard-fault tolerance
solutions for the microprocessor core. His other research interests
include fault tolerance from a holistic system-wide perspective,
including hardware, firmware, operating systems, and application
software. He is a student member of the IEEE.

Sule Ozev received the BS degree in electrical
engineering from Bogazici University, Turkey,
and the MS and PhD degrees in computer
science and engineering from the University of
California, San Diego, in 1995, 1998, and 2002,
respectively. Dr. Ozev is now an assistant
professor in the Electrical and Computer En-
gineering Department at Duke University.
Dr. Ozev is the program chair for IEEE North
Atlantic Test Workshop (2005-2006), and serves

on several program committees. Her research interests include testing
of mixed-signal and RF circuits, process variability analysis for analog
circuits, and fault-tolerant processor designs. She is a member of the
IEEE and the IEEE Computer Society

Daniel J. Sorin received the PhD degree in
electrical and computer engineering from the
University of Wisconsin-Madison. He is an
assistant professor of electrical and computer
engineering and of computer science at Duke
University. His research interests are in highly
available computer architectures and architec-
tures for emerging nanotechnologies. He is a
member of the IEEE and the IEEE Computer
Society.

310 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 2, NO. 4, OCTOBER-DECEMBER 2005

