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Autonomic Parallelism on STM

Introduction

1.Introduction

Multi-core Processor

Multi-core processors are ubiquitous, more
parallelisms/concurrency levels give higher performance?

Many threads execute concurrently. Threads share data. More
threads maybe more conflict!

Synchronization VS Computation

A high concurrency level may decline computing time, but increase
synchronization time. How to handle the trade-off between
synchronization and computation?
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Autonomic Parallelism on STM

Introduction

1.Introduction

Locks

A traditional way for synchronization. But:

Deadlocks, vulnerability to failures, faults...

Difficult to detect deadlocks

Hard to figure out the interaction among concurrent
operations

Transactional Memory

Lock-free, therefore no deadlocks! HTM, STM and HyTM.
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Autonomic Parallelism on STM

Introduction

1.Introduction

Runtime Parallelism Adaptation:

choice of parallelism significantly impacts on performance.

onerous to set a parallelism offline, especially for a program
with online behaviour fluctuation.

feedback control loops to manipulate parallelism
autonomically.

Contribution of this paper

An adaptive profiling framework for searching and applying
optimal parallelism online

a feedback control loop to enable autonomy and reduce
overhead
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Autonomic Parallelism on STM

Background on TM and Control Techniques

Transactional Memory

2.Transactional Memory

Concepts

Shared variables are wrapped by transactions (atomic blocks)

concurrent accesses are performed inside transactions

Transactions are executed speculatively and can either commit
or abort. no other intermediate status

can be implemented in STM (e.g. TinySTM, SwissTM...),
HTM and HyTM

conflict

rollback

abort

commitno conflict

a

Tx start
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Autonomic Parallelism on STM

Background on TM and Control Techniques

Transactional Memory

2.Transactional Memory

Three concepts

1 Commit: a transaction
succeeds—changes are
made

2 Abort: a transaction has
a conflict — changes are
discarded

3 Rollback: re-execute the
aborted transactions

conflict

rollback

abort

commitno conflict

a

Tx start
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Autonomic Parallelism on STM

Background on TM and Control Techniques

Transactional Memory

2.Transactional Memory

Example

consider three threads read/write data from/to the objects of
different memory locations. Access occur inside transactions

1 2 3 4 5 6 7 8 9 10 11 12

Atomic{
...

}

Atomic{
...

}

Atomic{
...

}

OK No OK

conflict

thread1 thread2 thread3

r r
w

r
rr w

1 2
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thread1 reads object3
thread2 reads object3
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thread2 reads object7
thread3 reads object7
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Background on TM and Control Techniques

Autonomic Computing Techniques

Autonomic Computing

A system is regarded as an autonomic control system if it has one
of the features:

Self-optimization: seek to improve performance & efficiency

Self-configuration: a new component learns the system
configurations

Self-healing: recover from failures

Self-protection: defend against attacks
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Autonomic Parallelism on STM

Background on TM and Control Techniques

Autonomic Computing Techniques

Autonomic Computing

Elements of a feedback

control loop:

1 Managed element: any
software or hardware
resource

2 Autonomic manager— a
software component:
monitor, plan, knowledge

3 Sensor: collect information

4 Effector: carry out changes Figure : A feedback control loop
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Autonomic Parallelism on STM

Background on TM and Control Techniques

Autonomic Computing Techniques

Autonomic Computing

Components of the

autonomic manager:

1 Monitor: sampling

2 Analyser:

3 Knowledge

4 Plan: use the knowledge of
the system to do
computation

5 Execute: make changes
Figure : A feedback control loop
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Autonomic Parallelism on STM

Background on TM and Control Techniques

Autonomic Computing Techniques

Autonomic Computing

Heptagon Programming

Language

1 straightforward for
programming control
loops.

2 composed of different
states.

3 values in the input flows
are used to compute the
outputs which decides
the next state.

Idle Wait

Active

a=falsea=false

a=true

r and c/s

c/s

delayable(r,c,e)=a,s 

r and not c
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Autonomic Parallelism on STM

Background on TM and Control Techniques

Autonomic Computing Techniques

Autonomic Computing

Heptagon Programming Language

1 node delayable(r,c,e:bool) returns (a,s:bool)
2 let
3 automaton
4 state Idle
5 do a = false ; s = r and c
6 until r and c then Active
7 | r and not c then Wait
8 state Wait
9 do a = false ; s = c

10 until c then Active
11 state Active
12 do a = true ; s=false
13 until e then Idle
14 end
15 tel

Idle Wait

Active

a=falsea=false

a=true

r and c/s

c/s

delayable(r,c,e)=a,s 

r and not c
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Autonomic Parallelism on STM

Autonomic Parallelism Adaptation

Profiling procedure

3.Profiling Algorithm

What we measure

1 parameters: commits,
aborts, time

2 commit ratio= com-
mits/(commits+aborts),
throughput=commits/time

3 CR thresholds

decision pointprogram starts

parallelism profiling interval

(1)

...

...
(2)

(3)

decision point

 (1) one parallelism profiling length
 (2)one non-action length
 (3)a new parallelism profilling
     interval starting point              

(2) (2)

(1)decision point

Figure : Periodical profiling
procedure
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Autonomic Parallelism on STM

Autonomic Parallelism Adaptation

Profiling procedure

3.Profiling Algorithm

1 profiling starts once a
program starts. Two
threads are active, others
are suspended

2 first profiling interval,
parallelism is only increased
until throughout
significantly falls

3 at non-action interval, only
check CR

4 increase or decrease
parallelism until throughput
shows significantly drop

5 set parallelism and CR
range

decision pointprogram starts

parallelism profiling interval

(1)

...

...
(2)

(3)

decision point

 (1) one parallelism profiling length
 (2)one non-action length
 (3)a new parallelism profilling
     interval starting point              

(2) (2)

(1)decision point

Figure : Periodical profiling procedure
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Autonomic Parallelism Adaptation

feedback control loop

3.The feedback control loop

      STM 

benchmarks

commits, aborts,

�me, flag

new CR range, profile 

flag,next tn, op�mum tn

Autonomic Element

Monitors Execute
compute CR range

         Heptagon

,

<max tn && th inc
                            CR=1&&<max tn
 >min tn&& th inc

Figure : The feedback control
loop on adjusting parallelism

decision pointprogram starts

parallelism profiling interval

(1)

...

...
(2)

(3)

decision point

 (1) one parallelism profiling length
 (2)one non-action length
 (3)a new parallelism profilling
     interval starting point              

(2) (2)

(1)decision point

Figure : Periodical profiling
procedure
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Autonomic Parallelism Adaptation

feedback control loop

3.The feedback control loop

increase

decrease

stop
profile

  no 
action

throughput dec
or tn_max

CR<CR_LOW and 
  tn>tn_min

(CR>CR_UP or CR=1 )
           and 
         tn<tn_max
.

throughput dec
or tn_min

Figure : The feedback control
loop on adjusting parallelism

decision pointprogram starts

parallelism profiling interval

(1)

...

...
(2)

(3)

decision point

 (1) one parallelism profiling length
 (2)one non-action length
 (3)a new parallelism profilling
     interval starting point              

(2) (2)

(1)decision point

Figure : Periodical profiling
procedure

Grenoble University/INRIA, France Zhou, Robu, Delaval, Rutten, Mehaut Naweiluo.Zhou@inria.fr 17 / 34



Autonomic Parallelism on STM

Autonomic Parallelism Adaptation

feedback control loop

3.Feedback Control Loop

1 control objective: maintain
the maximum throughput
and keep global CR staying
in a certain range within
which the conflicts are
minimized

2 inputs: commits, aborts,
time

3 outputs: optimum
parallelism, next
parallelism, CR
up threshold, CR
low threshold, profile flag

increase

decrease

stop
profile

  no 
action

throughput dec
or tn_max

CR<CR_LOW and 
  tn>tn_min

(CR>CR_UP or CR=1 )
           and 
         tn<tn_max
.

throughput dec
or tn_min

Figure : The feedback control loop on adjusting
parallelism
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Autonomic Parallelism on STM

Autonomic Parallelism Adaptation

feedback control loop

Two decision functions

1 for parallelism: increase
or decrease parallelism
based on CR and
throughput

2 for CR thresholds:

CR UP = CR optimum ∗ 1.1

CR LOW = CR optimum ∗ 0.9

increase

decrease

stop
profile

  no 
action

throughput dec
or tn_max

CR<CR_LOW and 
  tn>tn_min

(CR>CR_UP or CR=1 )
           and 
         tn<tn_max
.

throughput dec
or tn_min

Figure : The feedback control loop on
adjusting parallelism
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Autonomic Parallelism Adaptation

feedback control loop

Two decision functions

Increase State

e.g.
1. CR=1;
2. throughput increase &&
tn < max tn

increase

decrease

stop
profile

  no 
action

throughput dec
or tn_max

CR<CR_LOW and 
  tn>tn_min

(CR>CR_UP or CR=1 )
           and 
         tn<tn_max
.

throughput dec
or tn_min

Figure : The feedback control loop on
adjusting parallelism
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Autonomic Parallelism Adaptation

feedback control loop

3.Implementation

A monitor to control parallelism: three entry points

1 stm commit() { // when a tx commits
2 ...
3 }
4 stm thread init(){ when a tx thread init
5 ...
6 }
7 stm thread exit(){when a tx thread terminates
8 ...
9 }
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Autonomic Parallelism on STM

Autonomic Parallelism Adaptation

feedback control loop

Implemntation

balance threads execution time, avoid threads starvation

First In First Out queues

round-robin rotate
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Performance Evaluation

Experimental Platform

Hardware

4 processors with 2.4 GHz frequency, 32 cores and 128 GB
RAM.

Software

STM: tinySTM

Control: Heptagon

Benchmarks: EigenBench, STAMP

Grenoble University/INRIA, France Zhou, Robu, Delaval, Rutten, Mehaut Naweiluo.Zhou@inria.fr 23 / 34



Autonomic Parallelism on STM

Performance Evaluation

Benchmark setting

EigenBench

stable behaviour

online fluctuation: minor modification to Eigenbench to
enable online changes

STAMP

labyrinth

genome

intruder

vacation
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Performance Evaluation

Online throughput variation
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Performance Evaluation

Runtime thread number change
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Figure : thread number change on EigenBench with online behaviour
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Performance Evaluation

Time comparison for EigenBench on static and adaptive parallelism
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Performance Evaluation

Time comparison for STAMP
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Performance Evaluation

Time comparision

benchmarks best case median value worse case

eigenBench (stable) -5% +8% +46%
eigenBench (online variation) 0% +10% +54%
genome +19% +95% +99%
vacation -23% +62% +84%
labyrinth -71% -33% +61%
intruder -6% +41% +43%

Table : Performance comparison on difference benchmarks. The
performance of adaptive parallelism is compared with the minimum value,
median value and the maximum value of the static parallelism
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Performance Evaluation

Overhead analysis

overhead mainly originates:

incorrect parallelism.

thread migration.

the choice of profiling length
and non-profiling length.

the choice of the thread
number to manipulate at
each parallelism profiling
length.

the choice of throughput
variation rate

thread number
0

th
ro

u
g
h
p
u
t local optimum point

global optimum point

Figure : throughput fluctuation
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Discussion

Discussion

pros and cons

demonstrate an effective way to obtain the optimum
parallelism online.

short-size transaction suffers from overhead by calling the
monitor (eg.intruder);
reduce frequency of calling the monitor.

long-size transaction: too much time spent for profiling
(eg.labyrinth) .

thread migration issues (eg. vacation, genome)
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Conclusion and Future Work

Conclusion

Conclusion

investigate an autonomic parallelism adaptation approach on
a STM system

examined the performance of different static parallelism and
concludes that runtime regulation of parallelism is crucial to
performance

introduce a feedback control loop to automate the choice of
parallelism at runtime

analyse the implementation overhead and discussed the
advantages and limitation of our work
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Conclusion and Future Work

Future Work

Future Work

investigate thread migration issues.

design more loops to control thread affinity and further
enhance performance.

...
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Conclusion and Future Work

Future Work

Questions?
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