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Abstract—We present the design and implementation of an Autonomic State Manager (ASM) tailored for integration within optimistic
Parallel Discrete Event Simulation (PDES) environments based on the C programming language and the Executable and Linkable
Format (ELF), and developed for execution on x86 64 architectures. With ASM, the state of any Logical Process (LP), namely
the individual (concurrent) simulation unit being part of the simulation model, is allowed to be scattered on dynamically allocated
memory chunks managed via standard API (e.g. malloc/free). Also, the application programmer is not required to provide any
serialization/deseralization module in order to take a checkpoint of the LP state, or to restore it in case a causality error occurs during
the optimistic run, or to provide indications on which portions of the state are updated by event processing, so to allow incremental
checkpointing. All these tasks are handled by ASM in a fully transparent manner via (A) run-time identification (with chunk level
granularity) of the memory map associated with the LP state, and (B) run-time tracking of the memory updates occurring within chunks
belonging to the dynamic memory map. The co-existence of the incremental and non-incremental log/restore modes is achieved via
dual versions of the same application code, transparently generated by ASM via compile/link time facilities. Also, the dynamic selection
of the best suited log/restore mode is actuated by ASM on the basis of an innovative modeling/optimization approach which takes into
account stability of each operating mode with respect to variations of the model/environmental execution parameters.
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1 INTRODUCTION

T IMELINESS in the delivery of simulation outputs
is an increasingly relevant issue to cope with, es-

pecially in contexts where simulation is exploited as
a tool for decision making. For the case of Discrete
Event Simulation (DES) models, performance issues
have been traditionally targeted via the Parallel-DES
(PDES) paradigm [1], which is based on the partitioning
of the simulation model into distinct Logical Processes
(LPs) to be executed concurrently. Each LP models a
portion of the simulated system, and interactions be-
tween different portions are captured by the exchange
of timestamped event messages across the LPs. Thanks to
partitioning and concurrent LPs’ execution, PDES allows
exploiting the computing power offered by (high-end)
parallel/distributed platforms in order to both speedup
model execution and make (very) large and/or accurate
models tractable. An LP is usually implemented as a set
of data structures updated via a callback, whose execu-
tion, representing the processing of a simulation event,
is dispatched by an underlying simulation-platform (see,
e.g., [2, 3]).

On the other hand, PDES relies on synchronization
mechanisms, which are required to ensure that causality
patterns across simulation events are maintained. Al-
though differentiated definitions of causal consistency
have been devised in literature [4–6], the most widely
exploited correctness criterion states that each LP must
process its input events (scheduled either by itself or
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by other LPs) in non-decreasing timestamp order. To
support local timestamp ordering at the LP, two syn-
chronization approaches have been proposed: conserva-
tive and optimistic. The conservative approach (see, e.g.,
[7]) avoids at all the possibility for any event to be
executed out of timestamp order. This is achieved via
block-until-safe policies suspending processing activities
at the LP until it is determined that the execution of
its next pending event is coherent with logical-time
ordering. On the other hand, the optimistic approach
(see, e.g., [8]) allows the LP to speculatively process
its available input events under the assumption that
timestamp-ordering will not be violated. If any violation
is eventually detected, rollback recovery mechanisms
bring the involved LPs back to a correct snapshot of
their states, starting from which execution is resumed.
Literature results show that the optimistic approach is
prone to higher parallelism exploitation, and to deliver
performance which is less influenced by the simulation
model lookahead1. These advantages are reflected also
on the side of scalability, as recently shown in [9], where
very large platforms (with thousands of CPU-cores) are
employed for a comparative analysis of conservative vs
optimistic approaches.

On the other hand, recoverability of the LPs’ states,
which is the building block for optimistic synchroniza-
tion and which has been traditionally supported via
log/restore techniques, poses problems on the side of
both resource usage and application transparency. As
for the former aspect, we need to consider both CPU
usage for tasks enabling state recoverability (such as

1. The lookahead expresses the ability to predict the non-occurrence
of events within an interval of simulated time in the future.
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state logging) and recovery actions, as well as memory
usage for keeping recoverability-related data/metadata.

The issue of transparency deals with avoiding the need
for recoverability modules to be demanded from the
application programmer, hence masking to her the actual
synchronization paradigm. This is a non-trivial aspect
that relates to the flexibility according to which the
programmer is allowed to organize the data structures
representing the LP state image, whose log/restore is
then demanded from the underlying PDES platform. For
incremental logging, this also requires transparent and
efficient identification of the updates occurring within
the LP-state layout.

In this article we present a fully innovative Autonomic
State Manager (ASM) architecture, targeting C based
platforms, ELF and x86 64 architectures, which jointly
addresses transparency and performance issues in state
recoverability by exhibiting the following features:

• It allows the application programmer to use
standard constructs for dynamic memory alloca-
tion/deallocation, hence allowing the LP state to be
scattered across non-contiguous memory chunks.

• It transparently enables phase-interleaved adop-
tion of incremental and non-incremental log/restore
modes.

• It runs each log/restore mode in a highly optimized
fashion, via the adoption of dual-coding approaches
and of classical schemes for the optimization of pa-
rameters determining the actual overhead for each
mode (such as the frequency of the log operation).

• It dynamically (and transparently) switches to the
best suited operating mode (incremental vs non-
incremental) depending on proper execution dy-
namics of the optimistic simulation run. This is
done on the basis of an innovative approach that
takes into account performance stability of each
operating mode vs variations of application and/or
environmental parameters.

While some of the above points are dealt with by
log/restore proposals in literature (as we shall discuss
in the related work section), none of them fully covers
the whole set of listed features.

ASM has been integrated (hence being available for
download) into the ROOT-Sim open source optimistic
simulation platform [10, 11] based on the C language
and MPI. We also report a performance study for an
assessment of ASM, which has been based on running
a suite of Personal Communication System (PCS) simu-
lation models on top of a 32-core HP ProLiant machine
equipped with 64 GB of RAM memory, which is rep-
resentative of current off-the-shelf commodity hardware
exploitable for scientific computing.

The remainder of this article is structured as follows.
In Section 2 related work is discussed. Section 3 presents
the complete ASM architecture, including memory man-
agement aspects and the performance models it relies
on. Experimental results are presented in Section 4.

2 RELATED WORK

Logging is the classical means to support recoverability
of the LP state in optimistic PDES systems. It relies
on (infrequently) saving the LP state image in order to
generate restoration points along the simulation time
axis. Several studies have provided analytical models
describing the expected log/restore overhead when ex-
periencing a given rollback pattern (e.g. in terms of
frequency of rollback occurrence at the LP) and when
taking state logs, namely checkpoints, at specific points
of the execution (for instance every χ events) [12–14].
By monitoring the independent parameters appearing
in the analytical expressions, the models can be used
to (dynamically) determine the settings that keep the
log/resore overhead at minimum values. More specif-
ically, taking checkpoints less frequently reduces the
log cost. However, the state to be recovered might not
be immediately available within the log, and would
need to be reconstructed by restoring an older snapshot
and by fictitiously reprocessing the intermediate events
up to the restoration point (this re-processing phase is
also known as coasting forward). Analytical models help
determining the well-suited balance among these two
opposite overhead tendencies.

The provided models target either non-incremental
logging or incremental logging, or the case where the
two approaches are used in combination (e.g. by taking
incremental logs between subsequent non-incremental
logs) [15] or are considered comparatively [16]. However,
these proposals have been mainly tailored for the eval-
uation of log/restore policies (once known the costs for
basic operations, such as the copy of the whole, or part
of, the LP state image into the log buffer), not to provide
log/restore architectures explicitly tackling transparency
of log/restore tasks to the application-level code.

The issue of transparency has been dealt with by
other studies. For incremental log/restore schemes this
has been done by either instrumenting application level
code (in order to transparently insert code portions
aimed at identifying state update operations) [17] or by
employing operator overloading schemes, as for the case
of the object-oriented proposal in [18]. These approaches
require compile-time identification of the memory por-
tions forming the actual state image of the LP, hence they
do not cope with dynamic memory. On the other hand,
the solution in [19] provides supports for transparency
in the context of dynamic memory based state layouts,
but limited to non-incremental logging.

Other proposals have provided log architectures based
on specialized hardware [20, 21]. They achieve some
level of transparency, while also offloading the CPU, at
the price of limiting the programming model, e.g., by
imposing contiguousness or static determination of the
memory area maintaining the state image of the LP.

The case of dynamic-memory based LP states has
been addressed by the proposals in [22, 23]. However,
the level of transparency is not maximized since ad-
hoc dynamic memory allocation/deallocation APIs are
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Fig. 1: Memory management architectural organization

used to notify the underlying simulation platform that
the corresponding operation needs to be rollbackable.

Full transparency, in combination with incremen-
tal logging, has been provided by the High-Level-
Architecture (HLA) oriented proposal in [24]. This ap-
proach exploits page-based memory update tracking
mechanisms relying on facilities offered by the under-
lying operating system. Hence the granularity accord-
ing to which incremental logs are taken cannot be set
arbitrarily, and cannot be optimized depending on the
actual needs. This proposal is suited for federations
of simulation components where a middleware layer
(namely the HLA Run-Time Infrastructure) is used to
operate distributed coordination and data exchange,
whose overhead tends to mask the one imposed by page-
based logging. It results less suited for traditional PDES
platforms, relying on highly optimized low-overhead
engine-level coordination and data-exchange facilities.

An approach to state recoverability which is orthogo-
nal to the aforementioned solutions is based on reverse
computing [25–27], where the forward execution code
(namely the native implementation of the application
level simulation code) is coupled with a reverse code
version which is in charge of backward compensating
(hence undoing) the updates performed on the LP state
in case a rollback occurs. The issue of automation of
the generation of the reverse code, which targets trans-
parency to the application programmer, is also faced in
[25]. This approach reduces the memory demand for
state-log buffers, while also nullifying the log overhead
(since logs are not taken at all). On the other hand, the
tradeoff is towards a potential increase of the restore
latency in case very long rollbacks occur, which would
require long reverse computing paths to reach the re-
quested state recovery point. This approach demands the
combination with periodic state logging in order (a) to
avoid excessively long backward computation phases,
and (b) to deal with non-reversible operations (such as
plain assignments within the state image).

3 THE AUTONOMIC STATE MANAGER

3.1 Memory Management Architecture

3.1.1 Memory Mapper and Allocator

ASM’s memory allocator relies on malloc, realloc,
and free wrappers which are transparently inter-
posed via simple compile time directives between the
application-level code and the standard malloc library
(see Figure 1). In order to allow rollbackable memory-
management operations, the wrapper must know the
identity of the calling LP. This is done by internally

assigning a unique identifier in the range [0, N − 1]
to each LP, where N is the total number of LPs
hosted by the local instance of the simulation plat-
form. This can be a single-threaded process within
a classical multi-process PDES platform, or a thread
within a multi-threaded platform organization [28]2. Us-
ing ASM_init(int num_LPs) the platform can notify
the number of locally hosted LPs to ASM, which in turn
allocates an array of num_LPs entries structured as:

• base_state_address, identifying the address
that should be passed to the event processing call-
back upon dispatching the LP so to allow it to
correctly access its state in memory;

• state_layout_info, identifying the address and
the current size of a metadata table keeping infor-
mation on the memory layout for the LP state.

The API void* set_current_LP(int LP_id,

time_t sim_time) exposed by ASM allows the
simulation platform to notify ASM what is the identity
of the local LP that is currently about to execute its next
simulation event. In this way, the wrapper can identify
the LP metadata it must refer to upon subsequent
malloc/free invocations by the application software,
and can be informed about the current logical time of
the dispatched LP. This is required to make memory
deallocations correctly rollbackable, based on the
relation between the advancement of the Global Virtual
Time (GVT) of the simulation and the simulation time
associated with free calls (see Section 3.1.2)3.

LP metadata, accessible via state_layout_info,
are organized into table entries structured as:

struct malloc_area {

int my_index, dirty_area;

size_t chunk_size;

void* where;

int total_chunks, in_use_chunks, dirty_chunks;

int next_chunk;

time_t last_access;

struct malloc_area *prev, *next;

}

Each entry is used to manage a block of given-size
contiguous memory chunks, and different blocks host
chunks with size corresponding to different powers of
2 (as supported by standard configurations of the mal-
loc library). The chunk_size field indicates the size
associated with the malloc_area entry. The where

field is initially set to NULL, meaning that the chunks’
block associated with that specific size has not yet been
reserved, i.e. malloc_area entry is currently not valid.

When a malloc call is issued by the application-
level code, the chunk size that best fits the request is

2. For platforms not adopting this strategy to identify LPs, a map-
ping between ASM’s strategy and any other one can be created.

3. Optimistic synchronization relies on both event-messages and
anti-messages, used to annihilate previously sent event-messages and
inform the original receiver of the occurred rollback (this may in turn
trigger a rollback in case the annihilated event-message was already
processed at the destination). The GVT value represents the commit
horizon of the simulation, namely the time barrier currently separating
the set of committed events from the ones which can still be subject to
rollback. This barrier corresponds to the minimum timestamp of not
yet processed or in-transit event-messages/anti-messages.
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Fig. 2: Memory mapper/allocator data structures

identified, a block of contiguous chunks is allocated by
the memory map manager via the underlying standard
malloc library, and its address is registered within the
where field, thus validating that malloc_area en-
try. This approach implements a pre-allocation strategy,
where a block of pre-allocated chunks is reserved for a
specific LP, thus improving memory locality for its state.

By default, the virtual address returned by the ASM
memory allocator upon the very first malloc call for a
specific LP is registered as the base_state_address

for that LP. However, the SetState(void* addr) API
is offered to the programmer to allow changes in the
base_state_address. Hence, the LP can notify the
underlying platform about any change in the memory
positioning of the data structure representing the current
root for the whole memory layout of its state.

For both time and space efficiency, each chunk within
a pre-allocated block is associated with a single bit that
indicates its current status, in term of whether it is in
use or not4. The resulting status bitmap is placed at the
head of the pre-allocated block of chunks, along with a
dirty bitmap. These support data structures are created
and managed only in case the corresponding block of
chucks is actually allocated. Figure 2 shows the exact
memory layout for the aforementioned data structures.

Upon a memory allocation, the in_use_chunks

counter is updated, and next_chunk in the involved
malloc_area is used to identify the most convenient
position for starting the bitmap search in order to iden-
tify a free chunk. The manipulation of next_chunk

follows a first-fit policy aimed at reducing both free
chunks and bitmap fragmentation by aggregating in-use
chunks in the initial part of the block.

When a block of chunks of a given size gets exhausted,
the metadata table is expanded via a standard realloc op-
eration, leaving available at least one new malloc_area

entry, which gets linked via the prev and next fields,
creating a list of entries used to manage chunks of a
given size. Also, a new block of contiguous chunks of
that size gets allocated. In this scenario, we can deduce
that chunks of that size are highly useful for serving
memory allocation requests for the LP. Consequently,
whenever we expand the metadata table and reserve a
new block of chunks, we double the block’s size. This
strategy further exalts memory contiguity for the LP
state, minimizing costs associated with malloc library
accesses, due to memory blocks pre-allocation.

Upon a free call, the associated chunk (and the
corresponding block) is not released. Instead it is marked

4. This is a main difference from the original malloc library, where
a complex header is associated with each managed chunk in order
to maximize flexibility in memory usage (e.g. by dynamically parti-
tioning or aggregating chunks according to the so-called “boundary
tagging” scheme [29]). Nevertheless, ASM exploits such a flexibility
by ultimately relying on the malloc library for actual virtual memory
allocation.

in the status bitmap as available for future allocations. In
this way, memory deallocations are correctly rollbackable
until they get eventually committed due to GVT ad-
vancement. Operatively, this is achieved by also exploit-
ing the last_access field within the malloc_area

entry, which is used to record the logical time associ-
ated with the last memory allocation/deallocation oper-
ation within the corresponding block, and to determine
whether a block formed by chunks that have all been
released can be really deallocated.

The explicit design choice to avoid per-chunk
metadata would require the scan of all the
malloc_area entries to check whether the entry
is active, and (in the positive case) whether the
chunk being released via the free call belongs to
it. To avoid such a scan, ASM has been equipped
with a software-level direct-mapped caching
subsystem, with cache lines formed by the tuple
⟨chunk address, chunk end address,malloc area index⟩.
Upon chunk allocation, the cache line is filled so that,
in case of a subsequent free operation associated
with that same chunk address, the wrapper retrieves
the corresponding malloc_area in O(1) time (unless
for cases where the same cache line is overwritten
during the run). A cache line is reset only when the
corresponding chunk gets really deallocated.

3.1.2 Non-Incremental Log/Restore Support

The support for non-incremental logging operations
(also termed full logs) linearizes and packs the LPs’
currently-allocated chunks in a properly-sized contigu-
ous log buffer (allocated via the malloc library), along
with metadata describing the current memory layout.
Further, in order to make the invocation of SetState()
rollbackable, the base_state_address value is also
logged. The trigger of the full log operation is a call
to the function take_full_log(void), which takes
the checkpoint for the current LP, namely the one the
identity and current logical time of which was notified to
ASM via the aforementioned set_current_LP service.
The log buffer is then linked to the head of a list of logs
ordered by logical time values passed through by the LP.

To minimize checkpoint size, malloc_area entries
that are not currently valid (i.e. those areas with no
chunks allocated) are not logged at all, while the logged
ones explicitly keep track (via the my_index field) of
their original location within the metadata table. The
chunks to be checkpointed are identified via a memory
block’s bitmap scan operation. Chunks with status bit
set are the only ones packed into the checkpoint buffer,
while the use bitmap is entirely logged, in order to allow
correct chunks restoration by providing information on
the correct positions they need to be copied back in their
memory block. As the dirty bitmap does not contain any
useful information for full logs, it is ignored.

Bitmap scanning is early stopped if the number of
bits that have already been found set is equal to
in_use_chunks. If only a few chunks are currently
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in use within a block, by the aforementioned chunk-
selection-for-allocation algorithm (i.e. the one which up-
dates the value of next_chunk), they are likely to be
placed in the initial portion of the memory block, which
helps making the early stop approach effective5.

On the other hand, when most of the chunks in a
memory block are currently in use, an orthogonal op-
timization has been introduced. Specifically, no bitmap
scanning is performed. Rather, the whole memory block
(including unused chunks as well) is copied with a single
memcpy call. The considerable benefit comes from the
fact that modern processors offer optimized instructions
to copy contiguous memory buffers of generic size (e.g.
the movs instruction on IA-32 compliant processors).
This optimization exploits a threshold-based mechanism
that switches between the two approaches (i.e. selective
vs non-selective) when the percentage of in-use chunks
within a memory block oversteps a given value, provid-
ing a hysteresis region for stability reasons.

The general API offered by ASM for trigger-
ing a restore operation of the state of the current
LP is state_restore(time_t requested_time,

time_t *restored_time). When operating in non-
incremental log mode, this function traverses the log-
chain searching for the most recent full log with log-
ical time less than or equal to requested_time.
The restoration procedure unpacks the state, by de-
linearizing memory chunks stored into the contiguous
log buffer and placing them back into the original mem-
ory blocks’ positions. malloc_area entries (maintained
by the same log buffers) are used to identify correct
original blocks, and are restored as well. The exact
chunk locations within the blocks are identified using
the logged bitmaps, which are also restored at the head
of the corresponding memory blocks. The only exception
is when the chunks within a given block were saved
non-selectively due to large block occupancy, which is
signaled via a special per-block flag inserted in the log
buffer. In this case the bitmap is restored but is not
used to identify the position of the chunks within the
block since it is directly determined by the layout of the
contiguous log buffer. Finally, ASM notifies the restored
logical time via the restored_time parameter.

Metadata table’s entries which were not valid at check-
pointing time are not present in the log buffer, yet they
must be reinitialized to make them compliant with the
restored state layout and its logical time. Specifically,
we reset the in_use_chunks field to zero and we set
the last_access field to the currently restored logical
time. However, memory blocks pointed by the where

field are not really released, although the associated
bitmap is reset. In fact, memory areas reserved for the
LP are never deallocated due to the effects of a rollback
operation. Also, when restoring valid malloc_area

entries, the current linking of the metadata table entries
(including the non-valid ones) is maintained. This allows

5. The only exception is when a very adverse sequence of operations
occurs, formed by several allocations and then a few deallocations,
leaving memory holes scattered across the whole block.

the previously described algorithms for memory alloca-
tion to be Piece-Wise-Deterministic (PWD), meaning that
the address of the allocated chunk is deterministically
selected, unless a new block allocation is really required.
In the latter case the address depends on the block
allocation address selected by the underlying malloc
library. Hence, ASM can serve a replayed sequence of
LP allocation requests (which has been already served
before the state restoration procedure) with the same
identical memory addresses. This allows supporting
coasting-forward operations correctly in case the over-
lying application complies with the PWD assumption
(even when the application logic strongly relies on the
addresses of allocated buffers). Hence, any optimized
strategy for selecting checkpointing intervals and for
balancing checkpoint-overhead reduction with coasting-
forward latency can be also employed for performance
optimization reasons, as we shall discuss later on.

3.1.3 Incremental Log/Restore Support

Incremental log operations for the current LP are sim-
ilar to full ones, although they are triggered via the
take_incremental_log(void) API offered by ASM.
Also, the incremental-log buffer is still linked to the log
chain according to increasing values of the logical time
of the current LP. However, actual packing operations
depend on extra information explicitly used to track
updates in memory chunks (see Section 3.1.5), as follows:

A: dirty_area is set and dirty_chunks is zero. In
this case the malloc_area is logged together with
the status bitmap. Yet the dirty bitmap and the
currently in-use chunks are not logged.

B: dirty_area is set and dirty_chunks is greater
than zero. In this case the malloc_area is packed
into the log buffer together with the status bitmap,
the dirty bitmap and the chunks that are currently
in use and which have been dirtied.

C: dirty_area is not set. In this case, no information
associated with the area is logged at all.

Further, independently of the actual case among
the aforementioned ones, data structures tracking dirty
data/metadata are reset.

We finally emphasize that incremental state log opera-
tions do not require to be forced at each simulation event,
but can be taken periodically. In fact they are based
on the recognition of memory portions that have been
dirtied since the last log, independently of the amount
of events actually performing the dirtying operations.

When a restore operation must be executed,
still invoked for the current LP via the generic
API state_restore(time_t requested_time,

time_t *restored_time), the latest incremental log
with time less than or equal to requested_time is
selected (its timestamp will then be returned via the
restored_time parameter). After, the following steps
are iterated by backward traversing the chain of logs:

1) A (not-yet-restored) malloc_area found inside the
log buffer is put back in place inside the meta-
data table. The associated status bitmap is also
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copied back from the log buffer (recall that indepen-
dently of the type of log, a logged malloc_area

is always associated with the corresponding status
bitmap to guarantee recoverability of chunk alloca-
tion/deallocation operations).

2) Each dirty chunk found inside the log and asso-
ciated with the malloc_area, which has not yet
been restored in a previous iteration while backward
traversing the log, is copied back in its correct
position inside the corresponding memory block.

The iterative restore procedure stops when all the ac-
tive malloc_area entries have been restored and all the
in-use chunks that have been dirtied are also restored.
Although in principles this could entail an indefinite
number of iterative backward steps along the log chain,
in practice the restore operation can be immediately
finalized once we find a full log while backward re-
traversing the log chain. In fact, all the in-use chunks
that have not yet been restored are immediately available
inside the full log for copy-back operations. Full logs
can be explicitly interleaved to incremental ones just for
performance optimization purposes, as we shall discuss.

3.1.4 Memory Recovery

As explained, incremental and non-incremental logs
are linked all together within per-LP lists, sorted
by simulation time. Obsolete logs can be discarded,
thus allowing virtual memory recovery, via the void

prune_logs(time_t new_GVT). This function scans
the log queue for each managed LP, finds the oldest full
log with time less than or equal to value of new_GVT,
and prunes all the logs with a lower simulation time.
Given the organization of the aforementioned recovery
procedures, maintaining at least one full-log with time
less than or equal to the newly computed GVT value
allows correct recoverability of the LP state (indepen-
dently of whether state restoration passes through the
management of incremental logs).

3.1.5 Memory Update Tracker

The incremental logging support is based on the ability
to know what memory regions have been modified since
the last log operation (incremental or non-incremental).
This task is carried out via an application-transparent
software injection technique, based on a Software Instru-
menting Tool (SIT) that we have specifically designed
for analyzing and rewriting relocatable ELF (Executable
and Linkable Format) objects generated by standard gcc

compilers for x86 64 architectures. SIT parses the object
generated after linking together all the application level
modules (except third party libraries), and identifies ev-
ery memory-write instruction, namely mov instructions
with a memory location as the destination. The instru-
mentation process is then supported via the insertion
of a call instruction to an assembly update_tracker

module, which performs the identification of the exact
memory address and the size (amount of bytes) in-
volved in the memory update operation. We note that
this is a typical approach to tracking memory-update

references (e.g. for program debugging [30]). However,
its adoption in optimistic PDES systems poses (more)
stringent performance issues, requiring the design of a
monitor performing memory-update tracking via very
few machine instructions, in order to not significantly
impact event execution latency.

In x86 64 architectures, the address of each memory-
write operation depends on a set of up to four parame-
ters, namely base, index, scale and displacement.
The former two parameters identify registers containing
actual values, while the latter two correspond to specific
values of fields inside the memory-writing instruction.
The instruction opcode tells which of those parame-
ters are relevant. Also, the opcode, together with its
prefixes, establish the real size of the memory area
touched by the write operation. To cope with perfor-
mance, instead of disassembling instructions at runtime
(which could be onerous especially due to the complex-
ity and variable format/length of the x86 64 instruction
set) compile-time disassembling information is cached
within the application-level code. In particular, the write
size and the aforementioned four parameters needed
to identify the actual write address are packed into a
structure which is pushed onto the stack by additional
instructions which are injected before the actual call
to the update_tracker module. The data structure
also maintains a flags field which is used to identify
which parameters are actually needed for recomputing
the target address. Hence it synthetically expresses the
outcome of the compile-time disassembly process for any
individual memory-write instruction. Overall, the data
structure pushed onto the stack has the form:

struct write_instruction {

unsigned int size;

char flags;

char base, index, scale;

long displacement;

}

Upon its activation, update_tracker retrieves the
write_instruction record from the stack, so that the
memory address for the write operation and the size of
the memory being dirtied can be easily computed by
the monitor via a few machine instructions6. To enforce
transparency, update_tracker saves the whole CPU
context (i.e. general purpose registers and the EFLAGS
register), and puts them back before returning control to
the actual memory-write instruction.

After the correct memory-write operation’s destination
address is computed, update_tracker invokes an in-
ternal routine which flags the dirty bit corresponding
to the involved memory chunk(s). For this task, the
software cache described in Section 3.1.1 is exploited
again in order to perform a reverse query which trans-
lates a generic memory address into the chunk(s) actu-

6. The only exception occurs when the write_instruction record
refers to movs or stos instructions, used for moving arbitrary size
memory blocks. These instructions keep the information for identifying
the destination address and the current size of the memory block being
written into predefined registers, namely EDI and ECX, which are
anyhow directly accessible by update_tracker, thus still allowing
it to operate via a very reduced amount of machine instructions.
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ally containing the memory buffers and the associated
malloc_area entry. This allows fast identification of
the bitmap to be involved in the update operation.

As a last note, for space constraints we cannot report
additional details related to code transformations by SIT,
such as those required for correctly handling indirect
jumps (namely register-jumps) within the instrumented
code. For these details we remaind the reader to [31].

3.1.6 Third Party Library Wrapper

When running in incremental mode, we would need
to capture memory changes caused by the execu-
tion of third-party libraries. These are however not
instrumented, which does not allow us to rely on
update_tracker. We have explicitly addressed the
case of update operations performed by third-party soft-
ware, just focusing on stdlib. Specifically, ASM provides
a set of function wrappers for all those functions which
produce in-memory changes by the application-level
software through pointers passing. The wrappers simply
throw back the call to the underlying standard-library
function, and then pass control to the memory-map
manager with explicit indication of the address of the
updated buffer, and the size of the updated memory
block. In case the size cannot be retrieved by the library
function signature (as for pointers to buffers used for
strings), the memory-map manager updates the dirty
bits for all the currently allocated contiguous chunks
starting from the pointed address. This is obviously a
conservative way of managing the memory map since
some chunks that have not been really dirtied by the
library are actually considered as dirty ones, thus being
subject to log/restore operations. However, correctness
is in no way touched, given that the wrapped stdlib
library functions are all stateless, thus posing no issue
on the side of memory log/restore.

As for stdlib functions which allocate new memory
buffers (i.e. strdup), ASM provides a set of wrap-
pers as well, which in turn re-implement the library
functionalities by relying on its memory allocator, thus
allowing the new memory buffers to be located within
the actual LPs’ state layout. Allocation/deallocation and
update operations of these buffers are therefore made
recoverable. We are currently working on techniques for
allowing the application code to automatically rely on
any (stateful) third-party library.

3.1.7 Dual Coding Mechanism

Memory-update tracking facilities should be enabled or
disabled depending on the log-mode selected for the
current phase of execution, in order to minimize the
actual execution overhead. The most immediate way to
achieve this goal is to insert a check on a particular
predicate at the very beginning of the tracking routine,
so that the monitor would simply return control to the
application-level code if actual updates are not required
to be identified. This is the case when running in full-
log mode. Nevertheless, such a solution would impose
overhead for non-useful housekeeping tasks, given that
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Fig. 3: The dual-coding generation process

we already know that the current log-mode is the full
one. Specifically, the creation of the stack frame with
the memory_write record and the actual call to the
update_tracker routine are de-facto useless tasks.

To overcome this issue, the SIT module has been aug-
mented in order to provide optimized coexistence of two
versions of the same application modules, according to a
dual-coding approach. Particularly, SIT allows generat-
ing two .text sections in the final executable, one contain-
ing a non-instrumented version of the application code,
the other containing the instrumented counterpart. These
sections are transparently placed into the executable
layout in different virtual memory sections, using some
standard facilities provided by the GNU linker ld. At
the same time, SIT allows accessing the functions entry
points (via function pointers) in such a way that the
simulation platform is able to call the LP dispatching-
callback via its standard API, and it is ASM’s burden
to make the pointers actually point the right code ver-
sion. Also, the replicated .rodata/.data/.BSS sections
associated with the two versions of the application
object code have been collapsed on the same virtual
addressing range in order to provide a single actual
copy of initialized and non-initialized data, accessible by
both the generated code versions. The whole dual-code
generation process by SIT is schematized in Figure 3.

The above scheme would only entail additional virtual
addresses consumption due to the presence of two ver-
sions of the application executable modules. However,
this should not represent a real problem given that
modern 64-bit processors enable extremely wide span
of virtual memory addressing and text sections usually
fill a reduced percentage of the virtual addressing range.

3.2 Log/Restore Overhead Modeling

After having enabled the optimized co-existence of in-
cremental and non-incremental log/restore modes, as
explained in the previous section, we provide the models
assessing the corresponding overhead per event (due
to both log and restore operations). These models bor-
row from the one presented in [12] for periodic non-
incremental logging, for which we provide both (i) a
specialization to capture internal mechanisms proper of
our advanced memory-map manager (i.e. the cost of
managing metadata identifying scattered memory lay-
outs), and (ii) an extension to accommodate the case of
incremental logging as supported by our architecture.
The model in [12] describes the log/restore overhead on
a per-LP basis. We inherit this feature in our modeling
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approach, thus providing a scheme allowing dynamic
optimization of the log/restore mode for any individual
LP. Consequently, from now on, overhead modeling
and optimization of the log/restore mode are implicitly
referred to what experienced for each single LP.

For the non-incremental case, borrowing from [12]
and recalling the aforementioned specialization, the
log/restore overhead per event can be expressed as

OHF =
SF

χF

δLB + Pr(SF δRB +
χF − 1

2
δe) (1)

where

δe is the average event execution cost.
SF is the average size of a full log.
δLB is the average cost for logging a single byte

belonging to the state image, which we consider
to include the per-byte cost for logging the
metadata kept by the memory-map manager.

δRB is the average cost for restoring one byte from
the log, again assumed to include the per-byte
cost for the restoring state layout metadata.

Pr is the rollback probability (frequency of rollback
occurrences over event executions).

χF is the selected log interval when operating ac-
cording to the non-incremental mode.

By the result in [12], the above overhead is minimized

for χF =
⌈√

2

Pr

δLBSF

δe

⌉

, and we denote as χopt
F the

optimal non-incremental log-interval according to this
equation. Also, as suggested in [12], an upper bound
of 40 is operatively selected for χopt

F in order to enable
efficient fossil collection of obsolete event-buffers7.

For the incremental mode, as supported by our ar-
chitecture, log operations no way require to be forced
at each simulation event, but can be taken periodically.
Accordingly, state reconstruction at whichever simu-
lation time can be supported via a mixture of state
restore from the log, and classical coasting forward.
Also, full logs can be (infrequently) interleaved with
incremental logs to enable fossil collection of incremental
log records with timestamp less than the timestamp of
the latest committed full log. These full logs are any-
way exploitable during recovery procedures since, while
backward traversing the log chain, the restore operation
of a complete state image gets finalized by extracting
from the log all the in-use chunks that have not yet
been restored via the scan of incremental logs, and
putting them back in place within the state layout. To
account for such optimized internal mechanisms offered
by the memory-map manager, the above equation can
be adapted as shown below to model the log/restore
overhead for the incremental mode

OHI=
SP

χI

δLB +
(SF−SP )

χIχI,F

δLB+Pr

[

SF δRB+
χI−1

2
(δe+δm)

]

+δm

(2)

where

SP is the average size of a partial (incremental) log.

7. Events with timestamp between the newly computed GVT and
the timestamp of latest available log preceding GVT cannot be garbage
collected to allow correct coasting forward.

XI is the selected log-interval when operating ac-
cording to the incremental mode.

XI,F is the interleave step between full and incre-
mental logs (number of incremental log opera-
tions after which a full-log is taken).

δm is the per-event cost for running the memory-
update tracking module.

In equation (2), the term SF δRB accounting for the cost
of state reload from the log is comparable to the one
in equation (1), due to the aforementioned mechanism,
according to which all the in-use chunks belonging to
the state image are restored (by retrieving them either
from the incremental logs along the log chain, or the first
full log found during the log chain backward traversing
procedure). Further, each event is charged with the
memory-update monitoring overhead δm, which also
appears during costing forward. By exploiting the same
arguments used in [12] for the minimization of the over-
head vs the log interval, we get that the optimum value
for the interval of incremental logs can be computed as

χI =
⌈√

2

Pr

δLBSP

δe+δm

⌉

, and we denote as χopt
I the optimal

interval according to this equation (which we still upper
bound by the value 40). This value is related to the
ideal case where χI,F tends to infinite. However, such an
unbounded value could prevent fossil collecting obsolete
logs. Hence we have opted for setting χI,F on the order
of 10, which, by literature results [32], is a well suited
setting providing no significant additional overhead due
to full logs, when interleaving full and incremental logs.

3.3 Autonomic Optimization

In ASM, the log/restore overhead models derived in the
previous section are not used to simply select as the
best operating log mode the one for which the corre-
sponding expected overhead is minimal (once identified
the best log-interval value). Instead, the selection step
keeps into account fluctuations that can affect the set of
parameters appearing within the overhead models (e.g.
the expected event execution cost δe), which cannot be
directly controlled since they depend on proper run-time
dynamics related to the simulation model execution. This
set includes all the parameters appearing within the
models, except the log-intervals χF and χI (or χI,F ), that
can be controlled at run-time by ASM.

Such an approach, aimed at proactively providing
stability of the optimal performance, well fits perfor-
mance optimization when the set of possible operating
modes is differentiated, each of them providing different
overhead sensibility vs parameter fluctuations and/or
variations. Literature approaches for log/restore opti-
mization do not cope with such a multiple operating-
mode scenario, which is the reason why sensibility of the
a-priori uniquely selected operating mode vs parameter
variations did not require to be addressed. Further, as
shown in literature [13], when dynamically optimizing
the parameters driving the log/restore subsystem in
optimistic PDES environments, the same optimization
process may give rise to secondary effects (particularly,
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throttling or thrashing effects) which slightly modify the
actual dynamics in terms of, e.g, the rollback probability
experienced by the LPs. Having an approach which
selects and configures the log/restore operating mode
on the basis of stability criteria vs variations of run-time
parameters can also cope with such indirect effects.

Overall, the best suited operating mode is selected on
the basis of on a cost function CF (χopt

F , χopt
I ) defined as:

CF (χopt
F , χopt

I ) = OHF (χ
opt
F )−OH(χopt

I ) (3)

and on the result of the integration of this cost function
over a multi-dimensional domain defined by the values
of the parameters (δe, δm, δLB , δRB , Pr, SF , SP ).

For each parameter x defining a dimension of the
integration domain, we integrate the cost function over
the interval x̄±αx̄, where we suggest α = 0.1 to capture
statistically relevant fluctuations of the parameters that
can be envisaged at the time the dynamic selection is
carried out. If the integration result is negative, then
the selected operating mode is non-incremental (with the
log-interval set to χopt

F ), otherwise the incremental mode
is selected (with log-interval set to χopt

I ). Assuming the
independence of the parameters defining the integration
domain (which is reasonable in our approach since
the mean values are operatively determined by direct
sampling of the corresponding stochastic processes – see
Section 3.4), the integral function for CF (χopt

F , χopt
I ) is

a polynomial that, after the substitution of the integral
domain variables, has the following expression:

(

2αS̄F

χ
opt
F

−

(χI,F − 1)2αS̄P + 2αS̄F

χ
opt
I χI,F

)

2αδ̄LB +

2αP̄r

(

χ
opt
F − χ

opt
I

2
2αδ̄e −

χ
opt
I − 1

2
2αδ̄m

)

− 2αδ̄m (4)

The above optimization procedure requires defining
a trigger for the evaluation of the integral function in
order to dynamically actuate the selection of the best
suited log-mode. We assume that the simulation run is
partitioned into a startup phase and a normal phase. For
the startup phase one of the two possible log modes
is selected by default, and is kept until the end of
that phase. Then, before starting the normal phase, the
integral function is evaluated by using the mean x̄ and
the corresponding relevant statistical fluctuation αx̄ for
the above parameters defining the integration domain,
on the basis of samples observed during the startup
phase. Actually, the mean can be computed in a very fast
incremental manner not requiring the store of individual
samples, thus not even impacting memory consumption.

Once the best suited log mode is selected at the end
of the startup phase, subsequent re-selections can occur
during the normal phase. The re-selection trigger is
based on the current value of the mean x̄ of any of
the parameters defining the integration domain, and a
predicate involving the values x̄∗ and αx̄∗ that were
used upon the last log mode autonomic selection. If
for whichever parameter x the expression |x̄ − x̄∗| >
αx̄∗ becomes verified during the run, then the integral
function is recalculated on the basis of current mean
values. The reason for such a trigger is that the last

dynamic selection of the best suited log mode has been
actuated on the basis of statistical parameter values x̄∗

and αx̄∗ that can be considered no more representative
of actual run-time dynamics and related fluctuations.
In case the current mean goes outside the integration
interval for the corresponding parameter, it is likely that
some relevant variation has actually occurred within
the run time dynamics, which requires re-evaluating the
decision about the best suited log/restore mode. In other
words, fluctuations (around expected parameter values)
accounted for in last log-mode selection step are no more
representative of the current system behavior. As a last
note, instead of using the arithmetic mean, we relied on
the exponential mean, with weighting parameter set to
0.1, which allows better reactiveness of the mean value
vs variations of the corresponding stochastic process.

3.4 Run-time Parameter Sampling

ASM relies on a run-time sampling process for com-
puting the mean of each parameter used to define the
integration boundaries within the multi-dimensional in-
tegration domain. One relevant difficulty is related to the
fact that the mean value of every parameter x appearing
in the performance models needs to be tracked over
time independently of the current operating mode of
the log layer (incremental vs non-incremental). This is
because the mean is used both to trigger the re-selection
process of the best suited log mode, and to determine the
outcome of the selection. Accordingly, the parameters
δm and SP , used to capture run-time costs proper of
the incremental log mode, require to be sampled (or
estimated) even when the non-incremental mode is cur-
rently operating. Ad-hoc schemes to address this issue
will be provided and discussed in this section. We do
not explicitly discuss how to sample Pr since we rely
on typical approaches (see [12]) based on counting the
number of rollbacks over an interval of executed events.

3.4.1 Event and Memory-Update Tracking Costs

To determine event and memory-update tracking costs,
ASM relies on a sampling mechanism based on the
hardware tick counter. This approach is not intrusive
since the current number of ticks can be retrieved via
a single machine instruction, namely rdtsc.

A per-LP counter Count is used to determine the
number of invocations of the memory-write tracking
routine occurring during the processing of each event.
In case the current log mode is incremental, the appli-
cation level modules whose execution is currently trig-
gered with invocation of the proper callback entry point
(according to the dual-version-code scheme presented
in Section 3.1.7) embeds the memory-update tracking
routine, which increments Count upon its execution.

In order to be able to determine such a counter value
also when running in non-incremental log mode (where
memory updates’ tracking is not active), we have slightly
modified the dual-version code generation procedure
in such a way that the code version running when
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non-incremental log/restore is active embeds a very
light instrumentation scheme where each memory-write
instruction is preceded by a single “INC m32” assembly
instruction allowing the update of Count. In this way, we
can infer the value of δim (namely the cost for memory
updates tracking for the i-th event processed by the LP)
by simply multiplying the i-th sample of the counter
value by an estimated value of the memory updates’
tracking routine δtracking . This approach requires instru-
menting memory-writes with negligible overhead (via a
single machine-instruction), hence not altering the valid-
ity of the overhead model in expression (1), describing
the case of non-incremental logging, which excludes
costs associated with instrumenting instructions.

Of course, to estimate an accurate value of monitor’s
execution time when running in non-incremental mode,
some samples coming from real execution of the moni-
toring routine should be used. To cope with this issue,
we can startup the simulation with incremental logging
as the default initial mode and exploit the estimation of
δtracking performed during the initial phase.

We note that the above mechanisms based on real-time
clocks directly fit cases where the computing platform
is dedicated to the parallel simulation run, as typical of
scenarios where performance is a critical factor. In case of
time-sharing with other applications, such an approach
needs to be complemented with solutions based on code
pre-analysis and lightweight run-time profiling [14].

3.4.2 Size of Full and Partial Logs

Samples Si
F of the full-log size can be taken inde-

pendently of the currently active log mode since the
memory-map manager keeps an accumulator recording
at any time the real memory occupancy of the LP state
image (in terms of the amount of bytes associated with
currently allocated chunks). Hence, Si

F samples are taken
by querying the memory-map manager.

A different approach is instead required for taking
Si
P samples of partial (incremental) logs. Specifically,

when the currently active log mode is incremental, the
memory-map manager updates a second accumulator
accounting for the amount of bytes associated with
chunks that have been dirtied since the last log. The
accumulator is updated on the basis of actual memory-
write operations that are tracked at run-time. The value
of this accumulator is directly used as a valid Si

P sample
when the incremental log mode is active.

In case the current log mode is non-incremental, the
above accumulator does not get updated. Hence, we
have decided to infer the value of Si

P according to
the following different approach. Each K × χopt

F non-
incremental log operations, we flag the corresponding LP
so that, after the subsequent event is executed by the LP,
we compare chunk by chunk the current memory image
content after the event with the last one packed within
the log buffer. The comparison is carried out only over
chunks that belong both to the memory image packed
within the log buffer, and to the current memory image,
hence taking into account the portion of the state layout

that is stable across the two subsequent snapshots. Ob-
viously, the cost of this operation depends on the value
of K and on specific optimizations for the comparison
of each couple of chunks. As for the second aspect, we
have developed efficient, ad-hoc assembly modules that
iteratively compare memory areas by fully exploiting
the size of CPU registers at each compare step, and
that exactly implement the early stop procedure upon
the detection of the first different byte between the two
chunks (which is not guaranteed by all implementations
of the classical memcmp() function). This matches the
chunk-based granularity offered by ASM’s log/restore
approach. Also, these modules are optimized in order to
maximize the likelihood of actual early stop in case of
different chunks between the two snapshots according
to the following scheme. Small size chunks are checked
within the comparison process by starting from the top
byte, and then going towards the bottom. Instead, for
large chunks, we have implemented a procedure that
checks the bytes in an interleaved mode starting from the
top and from 3/4 of the chunk size. The above approach
well fits typical programming practices, which tend to
structure records in such a way that the most frequently
touched data are at the top of the record and/or at
the bottom (see, e.g., pointers for linking between mem-
ory scattered dynamically allocated records). Hence, for
large chunks, it is better to check top/bottom portions
with higher priority. Also, starting from 3/4 of the chunk
size accounts for internal chunk fragmentation, due to
the typical un-correlation between the size of the record
to be placed by the application software within the
allocated chunk, and the actual size of the chunk that
best fists the allocation request. Once identified the dirty
chunks over the aforementioned stable portion of the
snapshot, the corresponding percentage p of dirty bytes
is applied to the total current state size Si

F to generate the
j-th SP sample as Sj

P = p × Si
F . Concerning the value

of K, we have used a static approach where K is set
to the value 20. Given that the cost associated with the
estimation procedure for a single SP sample is, at worst,
comparable with the one for a full-log operation8, this
would simply increase the real overhead experienced
when the non-incremental mode is active by, at worst,
5% of the corresponding logging overhead. By these
optimizations, the overhead for determining SP samples
when the non-incremental mode is operative is likely
negligible, thus again not altering the validity of the non-
incremental overhead model in equation (1).

3.4.3 Per-Byte Log/Restore Costs

The last parameters involved in the sampling process
are the per-byte log/restore costs, namely δLB and δRB .
However, δRB does not appear in the final formula
and we concentrate on δLB . To sample δLB , we have
again exploited rdts, in combination with the sampling

8. Memory compare operations are similar in cost to memory copies,
since they both involve similar memory/register data moves. Also, the
early stop approach should favor the latency of comparing the chunks
across the stable portion of the snapshot.
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process of SF and SP depicted in the previous section.
In particular, the latency of the i-th log operation, say
∆i

log , is sampled via rdts and is normalized to either
the corresponding SF sample, or the corresponding SP

sample, just depending on the currently active log mode.
Given that ∆i

log also accounts for the cost of manipu-
lating and logging metadata associated with the logged
chunks, the normalization allows taking samples for δLB

actually expressing how the metadata management cost
is charged on the log operation of each single byte.

4 EXPERIMENTAL RESULTS

4.1 The ROOT-Sim Platform

We have integrated ASM within the ROme OpTimistic
Simulator (ROOT-Sim) [10, 11], an ANSI-C/MPI-based
open-source optimistic simulation platform based on
the Time Warp protocol [8] and tailored for UNIX-like
systems. ROOT-Sim is designed as a general-purpose
solution, supporting differentiated simulation models
adhering to a very simple and intuitive programming
model. The platform transparently handles all the mech-
anisms associated with parallelization (e.g., mapping of
LPs on different kernel instances, namely processes).

The programming model supported by ROOT-Sim is
based on the following API: i) int ProcessEvent(int

me, time_type now, int event_type, void

*content, int size, void *state) – a callback that
gives control to the application for event processing. me
identifies the dispatched LP, now is the event timestamp,
event_type is event numerical code, content is the
buffer keeping size bytes of event payload, and
state is the pointer (to be set to the current value
of state_base_address) allowing the LP to access
its state in memory. ii) int ScheduleNewEvent(int

where, time_type timestamp, int event_type,

void *content, int size) – this function injects
a new simulation event within the system, to be
destined to whichever LP identified by where (the
other parameters have the meaning as before). iii) int

OnGVT(int me, void *state) – a callback that passes
control to the application, providing the LP snapshot
belonging to the committed-computation part.

By the API, the application programmer is requested
to reason on no aspect related to parallelism. She is
only requested to understand that what is coded within
the ProcessEvent callback will be executed specula-
tively. Hence, any audit on the simulation model state-
trajectory (when considering committed state updates)
will need to be carried out via inspection on the LPs’
states through the OnGVT callback.

4.2 Benchmark Application

We have run experiments to assess the overall perfor-
mance and behavior of ASM by relying on the Per-
sonal Communication System (PCS) benchmark, which
models a mobile network adhering to GSM technology.
Each LP models the state’s evolution of an individual

hexagonal cell, and the whole set of cells provides wire-
less coverage on a square region of variable size. Each
cell handles a parameterizable number N of wireless
channels, which are modeled in a high fidelity fashion
via explicit simulation of power regulation and interfer-
ence/fading phenomena, according to the result in [33].

The event types which can occur at any LP are: Start
Call, which simulates a new call installation on a target
cell; End Call which simulates a call termination; Handoff
Leave which simulates the leave of an on-going call from
the current residence cell; Handoff Receive which simu-
lates the installation of a call handed off from an adjacent
cell; Recompute Fading, which simulates the effects of
climatic variations onto the fading (and consequently
interference) phenomena for ongoing calls.

Upon the start of a call, a call-setup record is instanti-
ated via dynamically-allocated data structures, which is
linked to a list of already active records within that same
cell. Each record is released when the corresponding call
ends or is handed off towards an adjacent cell. In the
latter case, a similar call-setup procedure is executed at
the destination cell. Upon call setup, power regulation is
performed, which involves scanning the aforementioned
list of records for computing the minimum transmission
power allowing the current call setup to achieve the
threshold-level SIR value. Data structures keeping track
of fading coefficients are also updated while scanning
the list, according to a meteorological model defining
climatic conditions (and related variations).

This application is highly parameterizable. Beyond
the already mentioned number N of wireless channels
per cell, the set of configurable parameters entails: i)
τA, which expresses the inter-arrival time of subsequent
calls to any target cell; ii) τduration, which expresses the
expected call duration; iii) τchange, which expresses the
residual residence time of a mobile device into the cur-
rent cell. These parameters affect the utilization factor of
available channels, expressed as τduration/(τA ∗N). This
impacts the granularity of the events since the more the
busy channels, the more power-management records are
allocated and consequently scanned/updated during the
processing of different events. On the other hand, higher
values of the channel utilization factor lead to higher
memory requirements for the state image of individual
LPs. Both the above dependencies (namely, CPU demand
and memory) are anyhow bounded depending on the
total number N of per-cell managed channels.

To study the effects of ASM when considering dif-
ferentiated execution and memory access patterns for
the application layer, we use two different configura-
tions of the PCS application. In one configuration we
simulate 1024 cells, each one managing up to 1000
wireless channels, where the expected duration of a call
τduration has been set to 120 sec, the residual residence
time for an active call in the current cell τchange has
been set to the value 300 sec, while the inter-arrival
time τA has been varied during the simulation so to
generate a configuration where the actual load on the
cells depends on the period of the day. Specifically, 17
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Fig. 4: Variable τA
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hours of operativity of the cellular system have been
simulated (from 00:00 AM to 17:00 PM) with variations
of τA in the interval [0.64, 3.20], with peak intensity
of the workload during the morning until lunch time,
and minimum load very early in the morning (around
breakfast). Consequently, the utilization factor has been
varied in the interval [0.31, 0.06]. For this configuration
of the PCS model, climatic conditions have been set as
good and steady, thus not causing the need for frequent
recalculation of fading coefficients. We will refer this
configuration to as ”Variable τA”. On the other hand,
the second configuration of PCS has been parameterized
by having the expected inter-arrival time τA fixed to the
value 0.8 (giving rise to channel utilization values on the
order of 25%), which leads to focusing the simulation on
a morning operativity scenario, but where the climatic
conditions exhibit variations that lead to periods where
frequent recalculation of fading coefficients needs to be
operated. We will refer this configuration to as ”Frequent
fading recalculation”. Both the above configurations lead
to run time dynamics that vary, e.g., in terms of event
granularity and portion of the LP state that needs to
be updated by the events, however this is achieved in
different manners in the different scenarios.

4.3 Results

In all the configurations of the PCS benchmark, we have
evenly distributed 1024 LPs on top of 32 simulation-
kernel processes, each of them being mapped onto one
CPU-core. We have run experiments on a 32-core HP
ProLiant server equipped with 32GB of RAM and run-
ning Debian 6 on top of the 2.6.32-5-amd64 Linux kernel.

We report in Figure 4 and in Figure 5 the cumulated
committed events achieved by the parallel run vs wall-
clock-time. These values have been computed as the
average over ten runs (done with different pseudo-
random seeds), with a minimal variance observed across
different runs. This parameter (and the slope of the as-
sociated curve) indicates the speed according to which a
given platform configuration commits simulation events,
and hence how fast the configuration supports model
execution. We report five plots referring to (i) the case
in which ASM is active (ii) the case in which ASM is
active, but we always force the incremental log/restore
mode, with the corresponding optimized value for χI

and (iii) the case in which ASM is active but the full

log/restore mode is forced, with the corresponding op-
timized value for χF , (iv) the case where we force the
incremental log mode by having the application layer
directly calling the memory map manager for notifying
which portions of the state have been updated by event
processing, and (v) the case in which the application
code was modified so to avoid using dynamic memory,
hence leading to the situation where the state buffer
for each LP is pre-allocated at startup in the form of
an array of entries. The plots for cases (ii) and (iii)
express performance levels that could be achieved via an
optimized log/restore mode (adaptive in the selection of
the log interval) based on either the incremental or the
non-incremental log mode, as supported by ASM, but
not allowing autonomic switch between the two modes.
On the other hand, the plots for case (iv) represent
scenarios that benefit by optimal checkpoint interval
calculation and incremental state log/restore, but require
the intervention of the programmer in relation to some
of the tasks enabling incremental logging, thus offering
a transparency level which is strictly lower than the
one offered by ASM. Hence, this case allows quantify-
ing the performance penalty associated with full state-
management transparency as provided by ASM. Finally,
case (v) is representative of scenarios where no facilities
other than the bare minimal log and restore operations
are supported, and without any infrastructure allowing
for dynamic memory handling, thus requiring the state
to be contiguous and statically sized to the maximum
value admitted by the model parameterization. This is a
baseline for the evaluation of the advantages by ASM.

By the results, we see that, depending on the specific
phase within the simulation run, (e.g. early morning
vs lunch time for the variable τA configuration) forced-
incremental and forced-full modes alternately exhibit
better execution speed (which is indicated by the differ-
ent slope of the cumulated committed events curve while
the run is in progress). Anyway, the most important
outcome by the cumulated event rate plots is that ASM
always switches to the best performing mode (incre-
mental vs non-incremental) depending on the currently
simulated period, and hence depending on the actual
dynamics (e.g. in terms of state size, event granularity,
memory update pattern, etc.). The overall effect is that
ASM allows faster execution, on the order of 10% to 14%
over the other modes for the case of the variable τA con-
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figuration, and on the order of 11% to 27% for the case
of frequent fading recalculation. Given that the other
modes represent anyway optimized configurations, the
achieved improvements show high effectiveness by the
autonomic approach. Compared to configuration (iv),
ASM shows a slowdown varying between 10% and 20%.
However, configuration (iv) removes all the transparent
facilities provided by ASM in terms of identification
and notification to the memory map manager of the
portions of the LP state that have been dirtied. Finally,
compared to the baseline configuration (v), ASM has a
throughput increase ranging from 35% to 40%, which
indicates how an enhancement in programmability (via
the transparent support for dynamic memory allocation)
is strictly coupled with a non-negligible performance
increase.

In Figure 6 we report average per-process memory
usage for all the considered configurations. In particular,
we show average memory occupancy for the whole
simulation process (i.e., simulation-platform layer and
application-level model), for state logs, and for log meta-
data. In all the runs we have set the GVT (and memory
recovery) period to 1 sec, which gives rise to negligible
coordination overhead (given the tight coupling of the
underlying architecture) while allowing prompt release
of memory buffers. Also, the memory usage samples
refer to the state of the processes as observed right
before performing memory recovery. As we can see,
memory requirements for metadata is very reduced
(on the order of 1%) in any configuration, highlighting
memory efficiency by the data structures keeping track
of memory allocation. The overall average memory oc-
cupancy shows a greater variance when dealing with
phase-interleaved configuration of the PCS benchmarks,
due to the fact that some phases execute more coarse-
grained events and therefore require less logs per time
unit. In both the frequent fading recalculation and the
variable τA configurations, the forced full snapshot exe-
cution mode has a higher memory requirement, which
is a predictable result due to the higher amount of
information which is stored into a snapshot. However,
such a memory consumption remains significantly lower
than the one for the baseline case (v), especially for
the variable τA configuration, which gives rise to better
locality still favoring performance. At the same time,
the configurations relying on the forced incremental
snapshot mode and the one where the application layer
calls the memory map manager to explicitly update
the dirty portion of the memory map show a memory
usage for logs which is very comparable, indicating
similar dynamics in terms of logging frequency, which
confirms how the 10% to 20% performance loss by
ASM vs configuration (iv) is essentially related to the
overhead for transparently handling memory updates
via instrumentation. Finally, the memory usage for logs
by AMS always stands between the forced incremental
and the forced full ones, which reflects AMS’ behavior
switching from one configuration to the other.

We also report in Table 1 the execution time for run-
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of the early stopping scheme

PCS execution speedup by the parallel
configuration time run with ASM
variable τA 6400 25.6

frequent fading recalc. 4442 40

Tab. 1: Speedup values

ning the PCS applications (very same code used for the
parallel runs) in serial mode on top of a calendar queue
scheduler. By the data, the parallel runs with ASM allow
significant speedups, especially for the frequent fading
recalculation setting. Overall, the experimental study has
been carried out with competitive parallel executions.

To complement these results, we report in Figure 7
two additional plots related to the goodness of internal
tasks/dynamics within ASM. One plot expresses the
precision in the estimation of the dirty portion of the LP
state, when executing according to the non-incremental
mode. These data refer to the frequent fading recalcu-
lation setting, since with this configuration we have a
relatively stable size of the whole LP state but with
a very variable read/write access pattern within the
state image, which represents a good test case for the
target objective. We recall that the estimation is based
on chunk comparison between successive state images
only over the stable portion of the state snapshot (see
Section 3.4.2). In particular, we report the ratio between
the estimated size of the dirty portion of the LP and the
actual size (as observed by actually tracking memory
updates while executing according to the incremental
mode). The plotted curve refers to a fraction of the
whole simulated time interval, however, the data are
representative of the overall simulation model execu-
tion dynamics. By the data we see that the average
error in the estimation process is on the order of no
more than 20%. The second plot expresses the effects
of the early stop approach to chunk comparison (see
again Section 3.4.2). In particular, we report the ratio
between the actual number of compared bytes (across
two subsequent state images) and the total amount of
bytes forming the dirty portion of the reached state
image. Given that our implementation of the simulation
model collocates frequently accessed fields associated
with on-going call records at the top of the records,
the early stop approach provides actual advantages by
allowing chunk comparison to be executed only over 5%
of the stable portion of the snapshot. We expect such
an optimization to even provide scale-up advantages for
generic simulation models entailing scaled-up LP state
size, provided that the above common field collocation
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approach in the used memory chunks is adopted.

5 CONCLUSION

In this paper we have presented ASM, an inno-
vative autonomic state management subsystem tar-
geted at optimistic Parallel Discrete Event Simulation
(PDES) engines. ASM provides full transparency of state
log/restore to the application layer, and at-runtime auto-
nomic re-selection of the best suited log mode (incremen-
tal vs non-incremental) depending on the actual runtime
dynamics of the optimistic simulation run, accounting as
well for stability of the selected mode vs fluctuations in
such dynamics. Mode switching is supported by ASM
via an application transparent dual-coding mechanism,
allowing to run the application code that best fits the
requirements of the currently active log mode. Exper-
imental results for an assessment of the proposal have
been shown as well for a case study on a PCS simulation
application run on top of a 32-core NUMA machine.
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