
https://doi.org/10.1007/s00170-021-07432-5

ORIGINAL ARTICLE

Autonomous 3D geometry reconstruction
through robot-manipulated optical sensors

Carmelo Mineo1 ·Donatella Cerniglia1 · Vito Ricotta1 · Bernhard Reitinger2

Received: 2 April 2021 / Accepted: 3 June 2021

© The Author(s) 2021

Abstract

Many industrial sectors face increasing production demands and the need to reduce costs, without compromising the quality.

The use of robotics and automation has grown significantly in recent years, but versatile robotic manipulators are still

not commonly used in small factories. Beside of the investments required to enable efficient and profitable use of robot

technology, the efforts needed to program robots are only economically viable in case of large lot sizes. Generating robot

programs for specific manufacturing tasks still relies on programming trajectory waypoints by hand. The use of virtual

simulation software and the availability of the specimen digital models can facilitate robot programming. Nevertheless, in

many cases, the virtual models are not available or there are excessive differences between virtual and real setups, leading

to inaccurate robot programs and time-consuming manual corrections. Previous works have demonstrated the use of robot-

manipulated optical sensors to map the geometry of samples. However, the use of simple user-defined robot paths, which

are not optimized for a specific part geometry, typically causes some areas of the samples to not be mapped with the

required level of accuracy or to not be sampled at all by the optical sensor. This work presents an autonomous framework to

enable adaptive surface mapping, without any previous knowledge of the part geometry being transferred to the system. The

novelty of this work lies in enabling the capability of mapping a part surface at the required level of sampling density, whilst

minimizing the number of necessary view poses. Its development has also led to an efficient method of point cloud down-

sampling and merging. The article gives an overview of the related work in the field, a detailed description of the proposed

framework and a proof of its functionality through both simulated and experimental evidences.
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1 Introduction

1.1 Motivation

This work is motivated by the need to develop an effective

approach to measure the geometry of workpieces. In recent

years, the use of robotics has increasingly penetrated

the manufacturing and the construction industries [1–3].

Besides being attractive to make production phases more

cost-effective, robotics and automation have been used
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to speed up quality inspections [4, 5] and to operate

in hazardous environment precluded to human access

[6, 7]. Many industrial automated systems are based on

robotic arms that manipulate actuators and sensors through

predefined tool paths in structured environments. The robot

tool paths are typically defined on the digital Computer-

Aided Design (CAD) models of the parts to be machined,

assembled, disassembled and/or inspected. The process of

generating robot tool-paths using simulation software is

known as Off-Line Path-planning (OLP) [8]. Unfortunately,

the digital models often differ from their respective real

counterparts and time-consuming human intervention is

required to correct the software OLP robot paths and ensure

they meet the required levels of accuracy [9]. Therefore,

highly versatile robotic arms that could be used for flexible

autonomous systems are still mainly used to automate

repetitive tasks in large industries with well-structured

environments. Indeed, besides of the investments required

to enable efficient and profitable use of robot technology,
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the efforts needed to program robots are only economically

viable in case of large lot sizes. Research efforts have been

put into developing more intuitive programming methods

to reduce the programming time [10]. In some specific

scenarios (e.g. robotic welding), the path inaccuracy is

corrected by seam tracking based on laser profiling

sensors for real-time program adaptation [11]. However,

the adaptation strategy is limited to simple workpiece

geometries. More promising approaches use computer

vision to reconstruct the real workpiece geometry and

automatically generate robot programs for each new part

[12]. Besides three-dimensional (3D) object reconstruction

becoming important in numerous industrial applications

such as smart manufacturing, industrial automation and

Industry 4.0 [13], there exists a wide variety of applications

that would benefit from real-time computer vision systems,

capable of autonomous object reconstruction. It is the case

of virtual reality (VR) games and simulations, augmented

reality (AR) applications or systems that include obstacle

detection [14].

1.2 Related work

A plethora of methods and systems have been proposed for

the acquisition of the geometry of real-life objects, ranging

from those which employ active sensor technology, passive

sensor technology or a combination of various techniques.

The data produced by a 3D scanner is point cloud of

the object surface. A well-established classification of the

sensors used for 3D reconstruction divides them into two

types: contact and non-contact sensors [15]. Contact 3D

scanners probe the subject through physical touch, while the

object is firmly held in place [16, 17]. Non-contact solutions

can be further divided into two main categories: active and

passive. Passive 3D scanning solutions rely on detecting

reflected ambient radiation. Most solutions of this type

detect visible light because it is a readily available ambient

radiation, but other types of radiation (e.g. infrared) could

also be used. Passive methods can be very cheap, because in

most cases they do not need particular hardware but simple

digital cameras. On the other hand, active scanners emit

some kind of radiation or light and detect its reflection or

attenuation [18]. Regardless of the deployed technique, 3D

scanners have much in common with cameras. Like most

cameras, they have a cone-like field of view and can only

collect information about surfaces that are not obscured.

While a camera collects colour information about surfaces

within its field of view, the main objective of a 3D scanner is

to collect distance information about the surfaces within its

field of view. Many types of 3D scanning sensors have been

designed and used in real applications. Among the scanning

sensors, the ones that can be easily integrated with robotic

arms to perform automated object reconstruction, can be

divided into two categories. The first category comprises

the depth cameras (also known as 3D cameras). Depth

cameras are designed to return point clouds. Such devices

can consist of two conventional grey-scale cameras (stereo-

cameras [19]) or sensors that provide RGB colour and

depth for each pixel (RGB-D cameras [20]). The second

category comprises all those devices that use the controlled

emission and reception of light signals (laser beams) as

fundamental measurement tool [21]. In the reception phase,

a laser scanner can use different techniques for calculating

the distance between the laser source and the point hit by the

laser beam. According to the technique used, laser scanners

are based on trigonometric calculation (triangulation), time-

of-flight (when they calculate the distance through the time

elapsed between the emission of the laser and the reception

of the return signal [22]), or on phase difference (when

the calculation is performed by comparing the phase of

the emitted signal and the return signal [23]). For most

practical situations, a single acquisition from one point of

view will not produce a complete model of the subject of

interest. Multiple scans, even hundreds, from many different

directions are usually required to obtain information about

all sides of the subject. Several works have advanced

the process of bringing the point clouds, originating from

multiple scans, into a common reference system (a process

that is usually called alignment or registration). The merged

point clouds create the complete 3D model. This whole

process, going from the single range map to the whole

model, is usually known as the 3D scanning pipeline [24,

25]. Complete 3D reconstruction of a scene is typically

achieved by establishing a relative motion between the

scanning system and the object to reconstruct, while data

is captured by the system. Hand-held 3D scanners rely

on the user to move slowly around the object, visiting

all object areas of interest, while data is acquiring. When

a scanning system is manipulated by a robotic arm, the

problem of determining the scanning path arises. Previous

works have obtained good automated 3D reconstructions of

parts by moving a robot-manipulated 3D scanner around a

given component through a predefined path, along which

multiple views of the scene are collected. In [26], the

authors proposed using a robot arm to move a non-contact

passive 3D scanning system, following spiral paths lying

on paraboloid primitives and stopping at regular intervals

with the camera pointing at the centre of the paraboloid, to

collect photogrammetric views of relatively small industrial

parts. Although this may be an acceptable scanning path

for some objects, it can cause some portions of the part

to not be scanned at all, some other areas to not be

scanned to a satisfactory or acceptable extent and/or, on

the contrary, some remaining areas to be over-sampled.

Fixing the path trajectory and the spacing with which

data is captured produces sub-optimal 3D reconstructions,
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since the acquisition path is not targeted to any specific

object. Manual determination of optimal view poses for

surface scanning is a time-consuming and expert-dependent

task and, despite of the efforts, redundant views are

usually deployed. OLP software allows simulating the

reachability of view poses and avoiding collisions, when

the approximate CAD model of the part to reconstruct is

available. Nevertheless, finding the optimum set of view

poses for a robot-manipulated 3D scanning system, in order

to efficiently reconstruct a given scene using the minimum

number of views is still an open problem [27, 28]. It is known

under the name of View Pose Planning (VPP) [17, 29].

1.3 Contribution

This work presents a mathematical framework for adaptive

and incremental 3D reconstruction of specimens, through

the use of a robot-manipulated optical 3D scanner. It

allows computing the next optimal view pose after each

measurement view. Compared with previous works [30,

31], the proposed approach does not require any prior

knowledge about the shape of the object, meaning that

the formulation creates a best-guess representation of the

subject of the 3D scanning and updates it after each

measurement data. Crucially, the method is suitable to

obtaining measurable/quantitative results, since it seeks

to reach a user-defined target sampling density, which is

provided as fundamental input parameter. Such sampling

density is expressed as number of points per surface unit

(e.g. points/mm2). Compared to other recently published

works, the present approach does not make use of neural-

network paradigms [28], exhibiting more deterministic

performance. The framework is accompanied by the

definition of meaningful stopping criteria, whose fulfilment

leads to the termination of the iterative computation of the

next view pose and the output of the final result in the

form of merged point cloud and reconstructed tessellated

model (triangular mesh surface). The framework has not

been developed to work only with specific sensor hardware

and is adaptable to operate with data streams obtained

through a generic range scanning sensor, either depth

camera or 3D laser scanner type sensor. Its development

has also led to an efficient method for point cloud down-

sampling and merging. The framework functionality has

been tested through MATLAB-simulated data, obtained

from synthetic views of a computer graphics 3D test model

developed at Stanford University [32]. The MATLAB-based

code is openly available (https://doi.org/10.5281/zenodo.

4646850) and can be used by the research community for

future developments. In order to validate the framework

in experimental scenarios, the control computer has been

interfaced with a robot arm and a low-cost RGB-D camera

to reconstruct the geometry of a 3D printed version of

the Stanford University test model and of an additional

industrial test piece.

1.4 Article structure

The remaining of the article is structured as follows.

Section 2 describes the theoretical foundations of the

framework. Section 3 illustrates the experimental setup, the

hardware components and the interfacing platforms utilized

for the validation tests. The results arising from simulations

and synthetic data sets are illustrated in Section 4. The

results obtained through real sensor data sets are presented

in Section 5. Finally, Section 6 draws the conclusions and a

prospect of future work.

2 Theoretical foundations

This section starts defining all the metrics of 3D scanning

sensors and of point clouds, which are used herein

to describe the theoretical foundations of the approach

presented in this work and discuss the simulations and

the experimental results. Then, it describes the approach

used for incremental merging of the point clouds acquired

from different view poses. Finally, this section focuses on

explaining the method elaborated to select the next best

acquisition view pose and suitable stopping criteria for

adaptive incremental 3D reconstruction.

2.1 Definition of metrics

Before any algorithm can be described, it is necessary to

define all the parameters and variables that intervene in

the mathematical formulation of the problem of interest.

Figure 1a and b show, respectively, point clouds collected

through a depth camera type sensor and a laser scanner

type sensor. An orthogonal reference system is centred at

the sensor data origin. Like a conventional RGB camera,

a depth camera has a pyramidal sampling volume, whose

dimension depends on the horizontal field-of-view angle

(ϑ) and on the vertical field-of-view angle (θ). These angles

are bisected by the −→w vector. Like in conventional RGB

cameras, depth cameras allow obtaining equally spaced 3D

point samples arranged in a rectangular grid, whose number

is equal to the product of the sensor horizontal and vertical

pixel resolution (respectively Rh and Rv), when sampling a

flat surface parallel to the
−→
u − −→v plane. The total surface

area sampled on such plane, at distance d from the
−→
u − −→v

plane, is equal to:

Adepth−camera = a ∗ b =
(

2d ∗ tan

(
ϑ

2

)) (
2d ∗ tan

(
θ

2

))

= 4d2 ∗ tan

(
ϑ

2

)
tan

(
θ

2

)
(1)
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Fig. 1 Fundamental working parameters for a depth camera sensor

(a) and a laser scanner sensor (b), representation of the vectors for

the computation of the local sampling density on an example surface

(c–d), local sampling densities (e–f) and centrality factors (g–h) com-

puted for all points collected by the generic depth camera and laser

scanner

Assuming that the Cartesian coordinates of the sampled

point Pi ≡
[
xi, yi, zi

]
are given with respect to the

reference system (
−→
u , −→v , −→w ) of the 3D scanning, the

distance di between the plane
−→
u −−→v and the parallel plane

for a sampled point, is di = zi . A laser-based 3D scanner,

schematically represented in Fig. 1b, operates the deflection

of the sampling laser beam in angular coordinates. In this

work, the angles θ and ϑ are defined as the angles that

the position vector forms with the x-z and y-z plane,

respectively. Typically, the user can set the desired scanning

range, defining lower and upper limits, with −π ≤ ϑmin <

0, 0 ≤ ϑmax ≤ π , −π ≤ θmin < 0 and 0 ≤ θmax ≤ π .

Moreover, the user can usually set the number of points to be

captured in such angular ranges. As a result, when sampling

the detectable portion of the inner surface of the sphere with

radius r centred at the sensor origin, a laser scanner allows

obtaining equally spaced 3D point samples arranged in a

rectangular spherical grid. The total area sampled on such

portion of the spherical surface is equal to:

Alaser−scanner = r2 ∗
∫ ϑmax

ϑmin

dϑ ∗
∫ θmax

θmin

cosθ dθ

= r2 ∗ (ϑmax − ϑmin) ∗ [sin (θmax) − sin (θmin) ] (2)

For the purposes of this work, it is crucial to define the local

sampling density, given as sampled number of points per

squared unit of length (e.g. points/mm2), for every sampled

point. Figure 1c and d represent the points captured by a

depth camera and a laser-based sensor through scanning

a generic surface. Asampling vector (
−→
s i) is defined for

the ith sampled point (Pi), as the unitary vector normal to

that surface for Pi where the sensor would acquire equally

spaced samples. Whereas
−→
s i is always perpendicular to the

flat surface parallel to the
−→
u − −→v plane at distance di for

the depth camera type sensor, it is always normal to the

surface of sphere centred at the sensor origin with radius ri ,

for the laser-scanner type sensor. Therefore, in the case of

a depth camera,
−→
s i is equal to −−→w , while it is always the

radial vector pointing to the sensor origin (
−→
s i = O − Pi),

in the case of a laser scanner. Indicating with
−→
n i the vector

normal to the scanned surface and with γi the angle that this

vector forms with
−→
s i , the local sampling density (ρi) at the

ith sampled point, in case a depth camera or a laser scanner

is used, is herein defined as:

ρi =
RhRv

A
depth−camera
i

∗ cos (γi)

=
RhRv

4d2
i ∗ tan

(
ϑ
2

)
tan

(
θ
2

)
−→
s i

−→
n i∣∣−→s i

∣∣ ∣∣−→n i

∣∣ (3)

ρi =
RhRv

Alaser−scanner
i

∗ cos (γi)

=
RhRv

r2
i (ϑmax − ϑmin) [sin (θmax) − sin (θmin) ]

−→
s i

−→
n i∣∣−→s i

∣∣ ∣∣−→n i

∣∣ (4)

It is worth highlighting that Rh, Rv , ϑ , θ , ϑmax , ϑmin,

θmax and θmin are known working parameters of the sensor
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and di , ri and
−→
s i can be easily computed using the

coordinates of the acquired point and the known pose

of the scanning device. The only variable that must be

approximated is
−→
n i , which is the local normal of the

scanned surface at the point Pi . Indeed, the surface is not

analytically known before the scan and the objective of

the scan is to reconstruct the shape of the surface. In this

work, the local normal is inferred through fitting a local

plane to neighbouring points [33], in order to approximate

its perpendicular vector. The orientation of the normal is

set based on the knowledge of the sensor pose, making

sure that the absolute value of γi (the angle formed by
−→
n i with

−→
s i) is smaller than π/2. Figure 1e and f give a

representation of the local sampling densities computed for

all points collected on the example surface by the generic

depth camera and laser scanner. Referring to the notation

given in Fig. 1a and b, the same scanning resolutions and

angular ranges are used for the depth camera and laser

sensor (Rh = 6, Rv = 4, ϑ/2 = ϑmax = −ϑmin = π/6

and θ/2 = θmax = −θmin = π/9). The same colormap and

colour bar limits have been set in Fig. 1e and f to facilitate

the comparison of the different local sampling densities

relative to the points sampled through the depth camera and

the laser scanner. As expected, the low values (∼ 10−3)

are due to the low horizontal and vertical resolution used

for the sake of producing clear schematic representations.

Much higher resolutions are typically used to obtain useful

results in real applications. The last metric used by this

work is named as centrality factor (σ ). The centrality factor

is a nondimensional parameters, whose value is comprised

between 0 and 1, being σ = 1 for a point measured at the

centre of the sensor field-of-view and σ = 0 for points

measured at the boundary of the field of view. This factor

is computed as in Eqs. 5 and 6 for depth cameras and laser

scanners, respectively:

σi = min

(
1 −

∣∣∣∣tan−1

(
xi

zi

) ∣∣∣∣
(

2

ϑ

)
, 1 −

∣∣∣∣tan−1

(
yi

zi

) ∣∣∣∣
(

2

θ

))

(5)

σi = min

⎛
⎝ 1 −

∣∣∣tan−1
(

xi

zi

)
− ϑmax+ϑmin

2

∣∣∣
(

2
ϑmax−ϑmin

)
,

1 −
∣∣∣tan−1

(
yi

zi

)
− θmax+θmin

2

∣∣∣
(

2
θmax−θmin

)
⎞
⎠ (6)

2.2 Incremental down-sampling andmerging

As it was said in the introduction, in most situations, the

acquisition of a single point cloud from one point of view

cannot produce a complete 3D reconstruction of an object.

Multiple point clouds, collected with different sensor poses

are typically required. The alignment/registration process of

bringing the multiple point clouds into a common reference

system is quite straightforward, when the accurate position

and orientation of each sensor pose are available, which

is always the case for robot-manipulated 3D scanners. In

this work, it is assumed that the sensor data origin is

accurately calibrated as robot Tool Central Point (TCP)

and all collected point clouds get registered into the

manipulation robot base reference system, using the sensor

pose (position Cartesian coordinates and orientation Euler

angles), obtained as feedback from the robot controller.

Therefore, the resulting merged point cloud may be intended

as the set of all points collected through all sensor views.

At first glance, it would be possible to think the sensor

should be positioned at a distance from an object surface

that allows capturing as many points as are needed to reach

the desired target density. If such target density is denoted

with ρ∗, expressed as number of points per surface unit

(e.g. points/mm2), the optimum sensor view distance (d∗
g )

or view radius (r∗
g ) can be extrapolated from Eqs. 7 and 8,

for depth cameras and laser scanners respectively:

d∗
g =

1

2

√
RhRv

ρ∗tan
(

ϑ
2

)
tan

(
θ
2

) (7)

r∗
g =

√
RhRv

ρ∗ (ϑmax − ϑmin) [sin (θmax) − sin (θmin) ]
(8)

The subscript “g” is given to d∗
g and r∗

g , since they purely

derive from geometrical considerations. Placing a depth

cameras at distance d∗
g or a laser scanner at radial distance

r∗
g allows reconstructing the object geometry exactly at

target density only when a planar (for depth cameras)

or a spherical surface (for laser scanners) is the surface

under inspection. This is far from any real applications,

when a generic surface is to be mapped. Moreover, most

manufacturers of 3D scanners specify that the sampling

inaccuracy/noise of their sensors depends on the distance of

the captured points. Assuming the expected measurement

noise of a 3D scanner is defined as a percentage of sampling

distance (ε = noise/d or ε = noise/r), it is possible

to compute the maximum distance that allows mapping a

surface with measurement noise smaller than or equal to n∗:

d∗
n =

n∗

ε
or r∗

n =
n∗

ε
(9)

These limit values are denoted with the “n” subscript,

since they originate from measurement noise considera-

tions. Thus, in practical application, the optimum view

distance (d∗ or r∗) is chosen as the lower value between d∗
g

and d∗
n (d∗ = min(d∗

g , d∗
n)) or r∗

g and r∗
n (r∗ = min(r∗

g ,

r∗
n)). Some sensors with high values of percentual noise (ε)

force mapping objects/environments at distances that lead

to sampling densities much higher than the target density

(e.g. when d∗
n ≪ d∗

g or r∗
n ≪ r∗

g ). Moreover, due to the

overlap between the field of view of the 3D scanning sen-

sor positioned at different locations, simply appending all

collected points to a comprehensive point cloud may lead
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to vast regions with too many redundant points. This means

that many more points, compared to those required to fulfil

the target sampling density, are collected in some regions of

an object, making the merged point cloud difficult to pro-

cess in timely fashions and to store in physical memories.

For these reasons, solutions to down-sample the collected

points and obtain a uniform point density across the result-

ing point cloud are typically found in many works [14, 34].

Although down-sampling algorithms have been presented

elsewhere, it is worth describing what down-sampling and

merging algorithms were implemented in this work, for the

sake of making the entire incremental 3D reconstruction

pipeline as clear as possible. Figure 2a gives an explanatory

scene, showing an initial state point cloud (originating from

two sensor data sets captured at O1 and O2) and a dense

point cloud, newly received from the sensor at O3. The new

point cloud is intentionally assumed to have a point density

much higher than the target sampling density and captured

with a noticeable spatial overlap with the field of view of the

sensor in O1 and O2. Therefore, referring to this scene, it

is possible to describe the process of merging the j th point

cloud data set with the initial state point cloud, originating

from all previously acquired data sets (from the 1st to the

(j − 1)th sensor pose). The average distance between any

point of an ideal point cloud, which maps the surface of an

object with the target density (ρ∗), and its closest neighbour

point should be equal to l = ρ∗−1/2. Indeed, any square of

area l2 lying on the surface of the object should contain only

one of the sampled points. This assumes that approximating

the object surface to a plane is acceptable, in the neighbour-

hood of the square. In these terms, down-sampling a point

cloud to meet the target density requirement would consist

in finding all squares with side equal to l that lie on the

reconstructed object surface and contain more than one sam-

pled point. Wherever multiple points are detected within a

square, only one point should be kept as a representative of

them. This process is quite computationally expensive for

large point clouds.

In this work, a much more efficient sub-optimal

algorithm has been found, which uses cubic containers

rather than squares. The area of the largest planar surface

that can be inscribed in a cube is
√

2 times larger than area

of the square face of the cube. Therefore, in this work the

volume containing the points of both the initial and new

cloud is partitioned with cubes of side l∗ =
(√

2ρ∗
)−1/2

.

Indicating with Pi≡ [px
i , p

y
i , pz

i ] the ith point of the initial

state cloud and with Qk≡ [qx
k , q

y
k , qz

k ] the kth point of the

new cloud, being k ∈ N | 1 ≤ k ≤ (Rh ∗ Rv), the

local normals (
−→
n i and

−→
n k) are computed as described in

Fig. 2 Initial state points and

new incoming points (a).

Grouping points into cubes of

side equal to the target sampling

density (b). Example of

selection of maximum sampling

density point in a cube

containing only one old point,

only new points and both old

and new points (c). Resulting

merged and down-sampled new

initial state (d)
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Section 2.1 through fitting a local plane to the six closest

neighbouring points, taken from the whole set of points (old

and new), before the down-sampling of the new cloud is

performed. Thus, the stack indices, along the x, y and z

direction (ax
i , a

y
i , az

i , bx
k , b

y
k and bz

k ∈ Z), of the respective

cubes (Ai and Bk) that contain the two points are calculated,

dividing their Cartesian coordinates by l∗ and rounding to

the closest integer numbers. As it is illustrated in Eqs. 10

and 11, working with arrays, a computer can efficiently

compute the set of all cubes comprising the initial state

points (A) and the set of cubes for new points (B). Through

the intersection of A and B (12), it possible to identify the

set C of cubes that contain both initial state points and new

points. The set Aold (subset of A), which contains cubes

with only one initial state point, is defined as the difference

between set A and set C (13). Finally, the set Bnew (subset

of B), which contains cubes with only new points, is defined

as the difference between set B and set C (14). The cubes

belonging to these sets are represented in Fig. 2b.

The merged initial state point cloud is assumed to be

already down-sampled, since it is intended to be the result of

the down-sampling and merging operations performed right

after the acquisition of the (j−1)th point cloud. Figure 2c

gives close up examples of the points found within cubes

belonging to Aold , Bnew and C, where the points from the

initial state cloud are displayed as circles, the points from

the new cloud are showed as squares and the colour of the

points is related to their respective local sampling densities

(ρ).

A =

⎡
⎢⎢⎢⎢⎣

. . .

Ai−1

Ai

Ai+1

. . .

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

. . . . . . . . .

ax
i−1 a

y

i−1 az
i−1

ax
i a

y
i az

i

ax
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C = A ∩ B = {x | (x ∈ A) ∧ (x ∈ B)} (12)

Aold = A − C = {x | (x ∈ A) ∧ (x /∈B)} (13)

Bnew = B − C = {x | (x ∈ B) ∧ (x /∈A)} (14)

The down-sampled and merged point cloud, which will

constitute the updated initial state cloud, will have a number

of points equal to the sum of the cubes in all three sets,

since only one point per cube is to be selected. This allows

a computer to allocate the memory space required for such

point cloud. Each cube of Aold contains one and only one

initial state point, which is transferred to the updated initial

state. Every cube in Bnew comprises points of the new cloud

and the point which presents the maximum local sampling

density is selected to become part of the updated initial

state. Finally, each of the cubes in C always contains one

point from the old cloud and one or more points from the

new cloud; among them, the point with the maximum local

sampling density is selected as representative. Therefore,

in this work, the point representative of each volumetric

partition is not randomly selected among those present in

every cube, but the local sampling density (ρ) is used as

a quality propriety to select the best point. This typically

allows only the points that carry lower measurement noise

levels to be transferred to the updated initial state cloud

and to progress along the 3D reconstruction pipeline. It

should be noted that the approach used in this work

performs efficient incremental down-sampling and merging

in a single pass, since merging takes place during down-

sampling. Furthermore, the indexing of the points, operated

through Eqs. 10 and 11, minimizes the computational effort.

Figure 2d shows the updated initial state point cloud.

2.3 Next best view pose computation

In order to automate the acquisition of data for object

reconstruction, it is necessary to be able to select the sensor

poses through a suitable algorithm. Assuming the first

sensor pose is human-defined and no additional information

about the object geometry is provided to the algorithm,

this work introduces an approach able to maximize the 3D

reconstruction of the object surface, while minimizing the

number of sensor poses required to achieve this objective.

The 3D geometry mapping is operated incrementally,

meaning that the system updates the object reconstruction,

in the form of a merged point cloud and a tessellated

triangular surface, right after each new point cloud is

acquired by the sensor from a new pose. Following the

acquisition of the J th point cloud from the sensor at pose

OJ , the set of all visited sensor poses (O1, O2, . . . , OJ )

and the updated initial state point cloud (as illustrated

in Section 2.2) are used to compute the next best view

pose (OJ+1). This is the pose that allows maximizing the

mapping information that can be retrieved from the sensor

to reconstruct the real geometry.
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In this work, a tessellated mesh that reconstructs the

mapped object surface (with a level of detail corresponding

to the user-defined target sampling density) is computed

at each step, by applying the Poisson-based surface

reconstruction algorithm described in [35] to the updated

initial state point cloud. As example, the subplots in Fig. 3

show the reconstructed surface relative to the updated initial

state point cloud given in Fig. 2d.

Therefore, it is checked if line-of-sight exists between

the barycentre of each mesh triangle and every visited

sensor pose. For the barycentres that are within the field of

view of the sensor at a given pose, the ray casting method

presented in [36] is used, determining whether the line

segment that links each barycentre to the sensor pose has

only one intersection with the mesh and if this intersection is

at the barycentre. Therefore, the sampling densities relative

to each sensor pose are computed according to Eq. 3 for

depth cameras and Eq. 4 for laser scanners (see Fig. 3a–

c). Indicating with ρi,j the sampling density of the ith

barycentre, relative to the j th sensor pose, the cumulative

value (see Fig. 3d) at the ith barycentre is computed as:

ρ̂i,J = min

(
ρ∗ ,

J∑

1

ρi,j

)
(15)

The selection of the minimum value between ρ∗ and∑J
1 ρi,j , which is operated in Eq. 15, should not surprise the

reader, since it is promptly justifiable as the mathematical

consequence of the down-sampling described in Section 2.2.

2.3.1 Objective function definition

In this work, it has been observed that all values of ρ̂i ,

with 1 ≤ i ≤ T (where T is the number of triangles in

the Poisson reconstruction mesh), may exceed the target

sampling density ρ∗ even when some areas of the object

are still to be mapped. This is likely to happen when the

object surface is sampled with a standoff distance smaller

than d∗
g (for depth cameras) or r∗

g (for laser scanners). In

such case, it is difficult to use ρ̂i alone to formulate an

objective function, which is suitable to determine the next

best sensor pose (OJ+1) and valid stopping criteria for the

incremental 3D reconstruction. Moreover, it is important

that the next sensor pose does not coincide with any of the

previously visited poses (O1, O2, . . . , OJ ). However, ρ̂i

does not convey enough information about such previous

poses. This problem is solved by defining the cumulative

centrality factor σ̂i (see Fig. 3h) as:

σ̂i,J = max(σi,1, σi,2, . . . , σi,J ) (16)

where σi,j is the centrality factors of the ith barycentre,

Fig. 3 Sampling density relative to each sensor pose (a–c), cumulative

sampling distance (d), centrality factor relative to each sensor pose (e–

g), cumulative centrality factor (h) and corrected cumulative sampling

density (i)
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relative to the j th sensor pose, as it is defined in Eq. 5 for

depth cameras and Eq. 6 for laser scanners (see Fig. 3e–

g). The value of the cumulative centrality factor is always

comprised between 0 and 1, being equal to 0 at the boundary

of the cumulative surface mapped from all sensor poses and

equal to 1 at the intersection between the sensor pose view

directions and the mapped surface (see Fig. 3h). As a result,

σ̂i is rich of information about all previous sensor poses.

Therefore, a parameter herein named as corrected cumu-

lative sampling density (λi,J ) is introduced for the defini-

tion of the objective function. λi,J is the product of the

cumulative sampling density and centrality factor (λi,J =
ρ̂i,J ∗ σ̂i,J ) (see Fig. 3i). The corrected sampling density

inherits its unit from ρ̂i (e.g. points/mm2), since σ̂i is nondi-

mensional. Whereas the colour of the triangles in the surface

reconstruction mesh shown in Fig. 3a–d depends on the

barycentres sampling density and cumulative sampling den-

sity, it depends on the centrality factor and cumulative

centrality factor in Fig. 3e–h and on the corrected cumula-

tive sampling density in Fig. 3i. It is worth highlighting that

the same colormap and colour bar limits ([0, ρ∗] for Fig. 3a–

d and i and [0,1] for Fig. 3e–h) are used to facilitate the

comparison of the plots.

Thus, this work defines the objective function F (OJ+1)

as the difference between the theoretical number of

points necessary to map the surface represented by the

reconstructed mesh, with uniform target density equal to

ρ∗, and the prediction of number of points sampled at the

(J + 1)th step. Indicating with ai the area of the ith triangle

of the mesh, calculated through Heron’s formula, we have:

F (OJ+1) =

(
ρ∗

T∑

1

ai

)
−

(
T∑

1

λi,J+1ai

)
(17)

where
∑T

1 ai is, recognisably, the total mesh area and

λi,J+1 is the cumulative corrected sampling density, inferred

through assuming a new point cloud is collected with the

sensor positioned at the pose OJ+1.

2.3.2 Searching through the multi-dimensional space

The best next sensor pose is the pose that minimizes the

objective function, given in Eq. 17. A sensor pose is a vector

with six coordinates (O =
[
ox, oy, oz, oA, oB , oC

]
), being

ox , oy and oz the Cartesian coordinates of the sensor origin

and oA, oB and oC the Euler angles of the sensor reference

system. Since F (OJ+1) is a non-continuous function of six

variables, it is not possible to find its minimum analytically.

In this work, the multi-dimensional search space is probed

through computing the value of the objective function at

several test poses. The test poses are chosen conveniently, to

speed up the selection of the optimum next sensor pose. The

approach deployed in this work consists in offsetting the

barycentres of the mesh triangles, where λi,J < ρ∗, along

the triangles normals by d∗ (for depth cameras) or r∗ (for

laser scanners). The resulting points are sorted according to

the ascending order of the corrected cumulative sampling

density of their parent triangles and the first K points are

selected as suitable positions. This defines the poses in

Cartesian coordinates. Figure 4a shows the first five test

positions for the example mesh surface. The definition of

the Euler angles, which describe the orientation of the test

sensor poses, requires particular attention. Indeed, since the

field of view of depth cameras and laser scanners does not

present axial symmetry, the amount of surface a sensor can

map is affected by the rotation of the sensor around its view

axis. Therefore, a number (H ) of different orientations of

the field of view with respect to the view axis are considered

for each test position, for the sake of better probing the

search space. Adopting the opposite of the parent triangle

normal vector as view axis direction (−→w k) for the kth test

position, the other two vectors
−→
u k,h and −→v k,h (relative to

the hth orientation of the sensor pose reference system with

respect to −→w k) are computed through Rodrigues’ formula

[37]. Indicating with αh the angle that defines the hth

orientation, it is possible to assume that the orientation at αh

and at αh ± π would map the same amount of surface, for

depth cameras and laser scanners. It is worth noting that this

assumption implies −ϑmin = ϑmax and −θmin = θmax , for

laser scanner type sensors. Therefore, in this work, αh has

been defined as:

αh = π ∗
(h − 1)

H
(18)

with 1 ≤ h ≤ H . This produces constant-spaced test

orientations in the range [0 , π). This concept is illustrated

in Fig. 4b. Once the vectors of the sensor pose orthogonal

reference system are known, it is straightforward to extract

the Euler angles from the relative rotation matrix (Rk,h =[ −→
u k,h

−→v k,h
−→w k

]
) [38].

Thus, the total number of test poses is equal to K ∗ H ,

since we have H sensor orientations for each of the K

positions. The experimental validation undertaken by this

work has led to determine that K = 20 and H = 5 are good

values for practical applications, resulting in a total of up to

100 test poses. All constraints given by real physical setups

are considered by discarding any positions that cannot

be reached by the sensor manipulator, due to kinematic

limitations and or collisions. There, unsuitable positions are

prevented from being used as test poses. Therefore, the

number of items belonging to the set of test poses (T ) may

be limited by the physical constraints (robotic reachability

and/or collision avoidance).

Figure 5a shows the evaluation of the objective function

value at the test poses for the given example. The minimum

function value is obtained at the 45th test pose, relative
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Fig. 4 The first five test view point and direction (a) and illustration of the selection of four sensor orientations for each selected test direction (b)

to k=9 and h=5 (αh= 4
5
π radians). Then, this is taken

as the next best pose (OJ+1). Figure 5b illustrates the

sensor fiend of view at OJ+1. Interestingly, this approach

conveniently defined the next best pose to map the portion

of the objective surface that has been sampled the least

by previous poses, due to the high local surface gradient.

Fig. 5 Evaluation of the objective function value at the test poses (a) and

illustration of the determined next best pose for the given example (b)

Undoubtedly, selecting the best next pose among a large

but finite number of test poses, used to probe the objective

function in the multidimensional search space, may lead to

choosing a pose corresponding to a local minimum of the

objective function rather than the absolute minimum. This

has been deemed acceptable for the scope of this work.

2.4 Stopping criteria

Once the next best pose is defined, it is used to control

the sensor manipulation system and acquire a new point

cloud at the specified location. Then, the new point cloud is

down-sampled and merged with the initial state point cloud

and these steps can repeat again, incrementally generating

a 3D reconstruction of the object of interest. Hence, it

is immediate to understand the need of defining suitable

stopping criteria, which regulate the interruption of the

iterative reconstruction process. The described framework

exposes meaningful variables that are suitable for this scope.

In this work, it was deemed satisfactory to stop the iterative

data capture and 3D reconstruction when the objective

function (evaluated at OJ ) is null or when the set of test

poses is empty.

F (OJ ) = 0 ∨ T = {} (19)

3 Experimental setup

The presented framework has been validated through sim-

ulated and real data sets. The experimental setup consists

of an Intel� RealSenseTM Depth Camera D435i. It is a

low-cost 3D active infrared stereo camera with expected

measurement noise ε = 0.02 (2% of distance), a min-

imum depth distance of 280mm at maximum resolution

(1280×720) and of 175 mm at lower resolution (640×480).
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The depth camera is manipulated through a KUKA KR10-

R1100-2 robot. The robot has six degrees of freedom, a

reach of up to 1100 mm and a stated pose repeatability of

± 0.02 mm. Given the limited working envelope of the robot

in use, the depth camera was used with a depth frame res-

olution of 640 × 480 points, in order to allow all-round

mapping of small objects. The sensor horizontal and verti-

cal field-of-view angles were, respectively, ϑ = 74◦ and

θ = 62◦. A bespoke data acquisition software module was

developed, using the Interfacing Toolbox for Robotic Arms

(ITRA) [39, 40], to synchronize the robotic sensor manip-

ulation with data collection. The depth camera data origin

was calibrated as robot TCP, using the hand-eye calibra-

tion procedure described in [41]. Collision avoidance wa

ensured for all the robotic trajectories, to move from any

actual robot pose to the next pose, implementing the effec-

tive solution proposed in [42]. A MATLAB-based simu-

lation environment was developed through integrating the

virtual CAD model of the camera with the virtual model of

the robot. In order to make the results of this work replicable

and comparable with the outcomes of future investigations,

an openly available computer graphics 3D test model, devel-

oped in 1994 at Stanford University [32, 43], was used.

The model, often referred as Stanford Bunny consists of

a tessellated surface with 69451 triangles, determined by

3D scanning a ceramic figurine of a rabbit. The model was

imported in the virtual simulation environment. Figure 6

shows the real and the virtual experimental setup used for

the investigations of this work.

Both the robot and a true-scale 3D printed version of the

reference sample are placed onto a levelled optical table.

The robot manipulator is firmly bolted onto the table by

means of a 20-mm-thick steel flange. The sample is suppor-

ted and raised from the table surface through an 80-mm-high

plinth that positions the barycentre of the Stanford Bunny

base at an offset of 435 mm along the x-axis and the y-axis

and an offset of 60 mm along the z-axis, with respect to the

robot base reference system. The simulation environment is

a virtual twin version of the real environment.

4 Simulations

A MATLAB-based function was developed to generate a

synthetic sensory point cloud for any given pose of the

sensor. This was achieved by implementing a ray casting

algorithm (based on [36]) to find the intersection points

between the sampling directions (originating from the

sensor) and the triangular mesh of the reference sample. The

simulations of this work have the objective of validating

the robustness of the 3D reconstruction approach. Given

the stated maximum measurement noise of the utilized

sensor (2% of distance), the distance between the test

Fig. 6 Real (a) and virtual (b) experimental setup, showing the

Intel� RealSenseTM Depth Camera D435i, mounted onto the KUKA

KR10-R1100-2 robot, and the 3D printed Stanford Bunny test model

poses and the target surface was limited to 200 mm, which

gives an expected maximum deviation of 4 mm between

the sampled point clouds and the real geometry. Figure 7

shows the simulated incremental 3D reconstruction of the

Stanford Bunny, using the presented framework to meet
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Fig. 7 Simulated full 3D

reconstruction of Stanford

Bunny with target density ρ∗ =
0.05 points/mm2, through an

initial starting pose (a) and four

autonomously generated sensor

poses (b–e)

a user-specified target sampling density of ρ∗ = 0.05

points/mm2 (5 × 104 points/m2). This value of target density

was chosen, since it corresponds to a length of a down-

sampling cube side edge l∗ = 3.76 mm, which is similar

to the expected amplitude of the measurement noise of the

sensor in use, when mapping surfaces at average distance of

200 mm. Indeed, measurement noise much higher than the

average distance between the points may negatively affect

the accurate estimation of the surface normals. Only the

first pose was defined a priori. All following poses were

autonomously defined as best next poses, using the approach

described in Section 2. The sensor poses were constrained

to stay above the base of the sample (oz > 60mm), in order

to avoid collisions between the robot and the optical table

and map the visible surface of the object (the whole

surface excluding the sample base). Figure 7 illustrates the

achieved reconstruction process, which was simulated using

the pose given in Fig. 7a as starting pose. The simulation

demonstrates the possibility enabled by the presented

framework to reconstruct complex surface geometries, with

a minimum number of effective and autonomously chosen

sensor poses. The simulation was repeated using four other

starting poses. All simulated reconstructions met the first

stopping condition in Eq. 19, effectively reaching the tar-

get sampling density throughout the surface of the referen-

ce sample. Although the screenshots relative to these addi-

tional simulations are not presented here, in order to limit

the length of this article, all relevant quantitative results are

summarized in Table 1.

As it was expected, some user-specified initial poses

are more convenient than others and this influences the

whole reconstruction process. This causes the number of

necessary sensor poses to vary. Nevertheless, it is interesting

to note that all simulated reconstructions led to very similar

results, in terms of number of points in the down-sampled

cloud, number of triangles in the reconstruction mesh and

extension of the mapped surface, despite of the difference

in the starting pose and consequent next best poses used

Table 1 Simulations

quantitative results. The first

column relates to the

simulation illustrated in Fig. 7.

The following columns regard

the other simulations, which

were run using different

starting poses

Initial pose (coordinates in [mm] x = 435 x = 635 x = 435 x = 235 x = 435

and angles in [deg]) y = 435 y = 435 y = 635 y = 435 y = 235

z = 350 z = 150 z = 150 z = 150 z = 150

A = 95 A = -90 A = 0 A = 90 A = 180

B = 0 B = 0 B = 0 B = 0 B = 0

C = 180 C = 90 C = 90 C = 90 C = 90

Num. poses required 5 5 4 6 7

Num. raw points 231707 227070 191858 297023 343165

Down-sampled points 5131 5234 5109 5242 5256

Num. mesh triangles 35433 35313 35133 37459 36389

Reconstructed surface [mm2] 51163 52106 51206 51824 51904
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Fig. 8 Full 3D reconstruction of Stanford Bunny with target density

ρ∗ = 0.05 points/mm2, through an initial starting pose (a) and six

autonomously generated sensor poses (b–g)

in the reconstruction pipeline. The values of the mapped

surface extension are very close to the area of the Stanford

Bunny surface (excluding its base), which is 51954 mm2,

as measured from the reference sample original tessellated

mesh. The small deviations, between the extension of the

reconstructed surfaces and the reference area, are smaller

than 1.6%. They are thought to have been caused by the

fact that the reference virtual model and the reconstructed

model are, obviously, not represented by the same set of

triangulated points.

5 Sensor data results

Real-data reconstructions were undertaken by means of the

physical laboratory setup described in Section 3. Figure 8

illustrates the reconstruction of the Stanford Bunny, with

target sampling density ρ∗ = 0.05 points/mm2, using

the first pose in Fig. 7 as initial sensor pose. The real

system required a total of seven poses to obtain the full

reconstruction of the reference sample, which exceed the

respective simulation by two poses. This is caused by the

fact that the real sensor typically fails to return some of the

surface points that are within the sensor field of view. This is

evident if one compares Fig. 8a with Fig. 7a. The extension

of the surface mapped through the real data in Fig. 8a is

smaller than the ideal reconstruction relative to the same

view pose, given in Fig. 7a. The variable reflectivity of the

sample causes some areas of the surface to reflect too little

or too much light, impeding accurate sampling (within the

sensor acceptance thresholds). This leads to the deviation of

the real deployed sensor poses from the simulated poses. It

is worth pointing that more sophisticated sensors, capable

of returning less compromised point clouds, would produce

better adherence with simulated pose coordinates and pose

sequencing. Nevertheless, the real data reconstructions

Fig. 9 CFRP automotive sample used as additional test case
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performed in this work proved the capability of the proposed

framework to flexibly adapt to real scenarios and different

starting poses and to be used with low-cost sensors.

In order to further demonstrate the flexibility of the pro-

posed framework, an industrial specimen was reconstructed

using the same data acquisition setup. The specimen was

a 4-mm-thick carbon fibre reinforced plastic (CFRP) shell

sample, moulded into a curved contour by the automotive

industry. Composite parts often suffer geometry distortion

due to their elastic spring back when they are extracted from

the curing mould, which makes geometry mapping a requi-

rement for dimensional assessment or for programming suc-

cessive robotic machining. The sample had a rectangular

size of circa 250 × 600 mm (Fig. 9). For the curvatures of the

sample surface, this specimen was deemed representative of

the challenging geometries often found in composite sam-

ples, where the mapping of the lateral surface of stiffening

stringers and ribs requires bespoke sensor view pose plan-

ning. Figure 9 shows the contour of the sample surface for

the section corresponding to the maximum geometry height.

The sample was uniformly sprayed with a removable

white matte powder (Spray-Rotrivel U, manufactured by

CGM s.r.l), which gave an approximately Lambertian finish

with a reflectance spectrum flat in the visible spectral region

[44]. This maximized the mapping performance of the depth

camera in use. Figure 10 shows the reconstruction of the

test sample through the approach presented in this work.

The first point cloud was acquired through a user-defined

pose, capturing the central part of the sample (Fig. 10a). The

target sampling density (0.05 points/mm2) was achieved

throughout the sample surface, through eleven successive

autonomously computed poses (Fig. 10b–l).

The resulting reconstructed surface was compared with

the ground-truth point cloud, which was acquired by a

Hexagon ROMER Absolute Arm RA-7520SE (Fig. 11).

This is a metrology tool, based on a passive arm equipped

with a laser profiler and high-accuracy encoders. The stated

precision of the scanning system is 53µm. Figure 11b shows

the deviation map, between the reconstructed geometry and

the ground-truth point cloud. The deviations are within

the expected range of 0–4 mm, since the sensor had an

accuracy of 2% and the average sensor standoff used for

the data collection was set to 200 mm. Nevertheless, the

discontinuities in the error distribution in the deviation map

Fig. 10 Full 3D reconstruction of CFRP automotive test sample with target density ρ∗ = 0.05 points/mm2, through an initial starting pose (a) and

eleven autonomously generated sensor poses (b–l)
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Fig. 11 Acquisition of

ground-truth point cloud

through the Hexagon ROMER

Absolute Arm (a). Map of

deviation between the

reconstructed geometry and the

ground-truth (b)

seems to suggest that it may also be partially caused by the

propagation of the inaccuracy in the calibration of the robot

TCP (the camera centre) onto the registration of the point

clouds.

6 Conclusions and future work

Several applications require a digital model of an object to

create a virtual twin of the part and/or to inform automated

systems that need to interact with it. In most situations, the

acquisition of a single point cloud from one point of view

cannot produce a complete 3D reconstruction of an object.

Multiple point clouds, collected from different poses are

typically required. Manual determination of optimal view

poses for surface scanning is time-consuming and expert-

dependent. Moreover, when the scanning sensor is manipu-

lated by a robotic arm, it is necessary to consider the robot

kinematic constraints and avoid collisions. Finding the opti-

mum set of view poses for a robot-manipulated 3D scanning

system, in order to efficiently reconstruct a given object

using the minimum number of views, is still an open pro-

blem. This article presented a mathematical framework for

automating the 3D reconstruction of specimens. The app-

roach is suitable to be used with two large families of 3D

scanners: depth cameras and laser scanners. Compared with

previous works, the presented framework does not need

a priori information about the shape of the object, since it

incrementally creates and updates the digital reconstruction

of the part. The method allows mapping the surface of an

object to meet a user-defined target sampling density. Effi-

cient incremental down-sampling and merging is performed

in a single pass, through an indexing algorithm that minimi-

zes the computational effort. The framework code is made

publicly available, at https://doi.org/10.5281/zenodo.4646850,

and can be used by the research community for future

developments. The robustness of the approach was tested

through simulated data. In order to validate the framework

in experimental scenarios, a computer was interfaced with

a robot arm and an RGB-D camera to reconstruct the geo-

metry of a 3D printed version of a reference test model

and of an industrial test piece. The investigations proved the

capability of the proposed framework to flexibly adapt to

real scenarios and different starting view poses and to be

used with low-cost sensors.

The selection of the best next pose among a large but

finite number of test poses, used to probe the objective

function in the multidimensional search space in this work,
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may lead to choosing a pose corresponding to a local mini-

mum of the objective function rather than the absolute mini-

mum. Although this has been deemed acceptable for the

scope of this work, future work should focus on enhancing

the ability to converge to deployable poses corresponding

to the absolute minimum of the objective function for all

sampling steps.
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