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Abstract— The autonomous acquisition of object represen-
tations which allow recognition, localization and grasping of
objects in the environment is a challenging task, which has
shown to be difficult. In this paper, we present a systems
for autonomous acquisition of visual object representations,
which endows a humanoid robot with the ability to enrich
its internal object representation and allows the realization of
complex visual tasks. More precisely, we present techniques for
segmentation and modeling of objects held in the five-fingered
robot hand. Multiple object views are generated by rotating
the held objects in the robot’s field of view. The acquired
object representations are evaluated in the context of visual
search and object recognition tasks in cluttered environments.
Experimental results show successful implementation of the
complete cycle from object exploration to object recognition
on a humanoid robot.

I. INTRODUCTION

For humanoid robots operating in human centered en-

vironments the ability of adaptation is a key issue. Au-

tonomous adaptation to new tasks, domains, and situations

is a necessary prerequisite for performing purposeful assis-

tance functions in such environments. The combination of

sophisticated sensor systems in humanoid platforms together

with the ability to interact with the environment allows

autonomous exploration in order to gain and consequently

adapt knowledge about the surrounding world in a goal-

oriented manner.

In the field of visual perception, an important aspect of

world knowledge generation consists of the acquisition of

internal representations of objects. While many available and

published recognition systems rely on representations which

have been acquired offline, exploration provides the oppor-

tunity to autonomously acquire internal representations. The

benefits of such capabilities are two-fold: First, autonomous

acquisition of internal representations of objects simplifies

the generation of new object knowledge. Second, together

with the ability of recognizing known and identifying un-

known object instances in the environment, autonomous

acquisition allows to adapt to changing environments as

required in a human-centered world.

As a consequence, we follow an integrated perspective

on visual object modelling and recognition. The goal is to

equip the humanoid robot ARMAR-III [1] with the ability

to acquire object representations autonomously which can

then be used for object search and recognition in future

tasks. In previous work [2], we proposed a system for active

Fig. 1. The proposed approach allows to acquire representations of objects
held in the hand of ARMAR-III.

object search on a humanoid robot which is based on multi-

view appearance-based representations. The representations

were build from object images captured offline in an ob-

ject modelling center and accurate segmentation could be

achieved using a black background. In this work we focus on

the autonomous generation of suitable object representations

on the humanoid system. For this task, we propose an ap-

proach which combines object-hand and object-background

segmentation in order to build a multi-view model of the

object. Furthermore, we evaluate the applicability of these

autonomously acquired representations in the active visual

search task.

Fig. 1 illustrates the acquisition of object representations

on the humanoid robot platform ARMAR-III. During the

acquisition process, unknown objects are held in the five-

fingered hand. The focus is put on the acquisition of the

appearance based part of object representations which can be

used for a visual search task. The acquisition of geometric

representations as required for grasping is difficult based on

visual input only. Rather, the generation of the geometric

part involves haptic as well as visual information which is

beyond the scope of this paper.

Consequently, for this work, objects are put into the robot

hand by a human assistant. The goal is then to generate

different view angles of the object in order to cover as

much visual information as possible. The views of the object

captured with the robot’s cameras contain major parts of the



hand and the scene. In order to process the object views

and to derive viable representations, object-background and

object-hand segmentation has to be performed. Therefore, we

propose a segmentation approach which allows to determine

regions in the image which belong to the object based on

a set of cues which are generated using visual as well

as proprioceptive information. The segmented views are

combined to form a multi-view object representation. As will

be shown in the results section, the acquired representations

are well-suited for active object search and recognition.

The remaining of this paper is organized as follows: The

next paragraph gives an overview of related work in the field

of humanoid robotics. In Section II, the humanoid platform

ARMAR-IIIb is introduced and the movement generation is

discussed. The approach for segmentation and generation of

object representations is introduced in Section III, before we

present experimental results in Section IV.

A. Related Work

Object recognition for humanoid robots has been subject

to a vast amount of research. In most systems, the focus is

put on reliable recognition and pose estimation as required

for manipulation tasks. The underlying representations are

usually generated offline, in many cases with the knowledge

of exact 3D geometry.

Fitzpatrick et al. [3] were among the first to follow a

different approach. In their work visual information is ex-

tracted through autonomous exploration of the environment.

Therefore, the humanoid robot Cog moves its manipulator

over a planar surface. If the robot hits an object placed

on that surface, the movement of the object is exploited

in order to perform object-background segmentation. The

authors highlight that following the causal chain from the

robots action allows to develop visual competence. While

the theoretical impact of this work has been immense, it

does not focus on generating object representations suitable

for online object search and recognition.

Goerick et al. [4] follow a different approach and focus on

object representations and their application in recognition.

In their system, the acquisition of object representations

is performed online, while a human assistant presents an

unknown, or partly unknown object in his hand in front

of a camera. The input image is decomposed in a disjunct

set of segments using the adaptive scene dependent filters

(ASDF) [5]. In order to select segments which belong to the

object, disparity information and the location of the object

in the center of the camera are used. In contrast to their

work and as aforementioned, in our approach the ability to

interact with the environment is exploited. This allows us

to move the object out of the visual field of the robot and

create a background representation. Thus, the segmentation

in cluttered environments is facilitated.

The work of Orabona et al. [6] deals with attentional

mechanisms which are used in combination with the move-

ment of the end-effector in order to compose an object of

parts which move in a homogeneous manner. While the

presented work is promising, the necessity of translational

motions of the end-effector in order to group object parts

would slow down the acquisition process significantly, espe-

cially when rotation is used to generate different view angles

as is the case in our system.

In contrast to the aforementioned research, Stasse et al.

take an integrated view on object learning and visual search

[7]. The goal of the Treasure Hunt Project is to perform

object modelling online and use the resulting visual repre-

sentations in search tasks on the humanoid platform HRP-2.

For the acquisition of models, unknown objects are placed

on a table. The robot captures object images at different

viewpoints in order to develop an object representation valid

for multiple viewpoints. Segmentation is performed using

dense disparity maps and texture information. Furthermore,

the motion of the robot is exploited in order to discard

spurious matches of features between two object views. The

resulting representation, composed of collected 3D features,

is then used for complex visual search tasks which involve

determining salient parts of the scene in the perspective

cameras of the robot and matching based on SIFT descriptors

in the foveal cameras [8]. To our knowledge this is the

first system that combines autonomous object modelling and

visual search on a humanoid platform. In contrast to the

work of Stasse et al. our approach acquires views of an

object in the hand of the robot. We believe that multi-sensory

object representations, as required e.g. for grasping, can only

be generated through a direct physical interaction with the

objects.

The proposed approach makes use sensori-motor prim-

itives introduced in our earlier work [9]. In contrast to

the segmentation and object learning proposed in [10] the

focus is put on general probabilistic methods that support

the integration of different segmentation techniques and

on hand-object segmentation. We develop a sensor fusion

scheme, based on Bayesian methods, which allows to per-

form segmentation based on different cues, such as back-

ground subtraction, disparity and hand localization exploiting

proprioceptive sensors. In combination with the movement

generation proposed in [9], multiple views of objects are

revealed. Based on the generated views, multi-view object

representations are constructed. In the experiments we will

demonstrate the feasibility of the resulting representations in

an active object search task on a humanoid system.

II. PLATFORM AND MOVEMENT GENERATION

A. The Robot Platform

The system for autonomous object representation and

active object search is developed for the humanoid robot

ARMAR-IIIb, which is a copy of the humanoid robot

ARMAR-III (see [1], [11]). The underlying embodiment is

a crucial factor for the design of active approaches. Thus, in

the following, we give a brief overview of the structure of

the ARMAR-IIIb humanoid robot.

From the kinematics point of view, the robot consists of

seven subsystems: head, left arm, right arm, left hand, right

hand, torso, and a mobile platform. The head (see [12]) has

seven DoF and is equipped with two eyes, which have a



Fig. 2. Trajectory on the 3-D view sphere generated by the utilized control
scheme, similar to [9].

common tilt joint and can pan independently. Each eye is

equipped with two digital color cameras, one with a wide-

angle lens for peripheral vision and one with a narrow-angle

lens for foveal vision. The upper body of the robot provides

17 DoF: 2×7 DoF for the arms and three DoF for the torso.

The arms are designed in an anthropomorphic way: three

DoF for each shoulder, two DoF in each elbow and two

DoF in each wrist.

Each arm is equipped with a five-fingered hand [13] with

11 DoF (two for each finger and one for the palm) which are

actuated with fluidic actuators. Each DoF is equipped with

position and pressure sensors. A position and force control

schema is realized based on a simplified model of the fluidic

actuator [14].

B. Movement Generation

The goal of the movement generation consists of revealing

as many different view directions of the object in the hand of

the robot as possible. For this tasks, we resort to the control

scheme proposed in [9], which introduces a systematic

method to control a robot in order to achieve a maximum

range of motion across the 3-D view sphere.

The movement is controlled in the velocity space of

position and orientation of the robot hand, both given in

the camera coordinate system. For the acquisition of object

representations, the rotation of the object in the view plane

is dispensable and can be ignored. Consequently, the task of

controlling the object position and orientation has 5 DoF. As

aforementioned, the arm of ARMAR-III has 7 DoF which

leaves 2 DoF of redundancy for our task. As already shown

in [9], the redundancy of the system can be utilized to avoid

joint limits which results in a higher range of motion across

the view sphere.

In summary, the controller is defined by the equation

q̇ =

(

Jpos
Jrot

)† (

ẋ

θ̇

)

+ Pn q̇n,

where ẋ and θ̇ are the desired position and rotation velocities

in the camera coordinate system, Jpos and Jrot denote the

positional and rotational part of the arm Jacobian and q̇ is

the vector of joint velocities. For joint limit avoidance, a

secondary task q̇n is defined and projected into the null space

of the Jacobian using Pn.

For our experiments we used a fixed position x0 in the

camera coordinate system which is optimal in terms of stereo

processing and allows to fit typical household objects within

the camera images. The rotation of the object is performed

around the two relevant axes in the camera coordinate frame.

Fig. 2 visualizes the resulting reachable orientations of the

hand during our experiments.

III. AUTONOMOUS OBJECT ACQUISITION

Fig. 3 illustrates the components involved in the au-

tonomous acquisition of object representations. The object in

the hand of the robot is observed with one stereo camera pair,

which is kept static during the procedure. The five-fingered

hand as well as the robot arm offer proprioceptive sensor

information in terms of joint angles. Both, camera images

and joint angles are made available for three different sensor

modules which together constitute the object segmentation in

the fusion step. For each view captured along the trajectory,

one segmented object view is calculated. The segmented

views are accumulated and processed in the modelling step

in order to derive a multi-view object representation.

To obtain a segmentation of an unknown object in cluttered

environments we select different types of sensors and deploy

a segmentation fusion yielding the final object segmentation.

In particular, our system uses three segmentations generated

by three different probabilistic sensor models.

The background sensor performs background subtraction

based on the eigenbackground approach in order to determine

the area covered by the object and the robot arm in the cam-

era images. Since a completely static head cannot be guaran-

teed during execution of the trajectory, the eigenbackground

subtraction method produces false-positive foreground in

areas with high intensity gradient in the background. To

compensate for these false-positives, a disparity sensor is

deployed in order to detect background pixels based on their

distance to the robot. Finally, a hand localization sensor is

used to perform object-hand segmentation. Proprioceptive

information as well as camera images are used in a particle

filter approach to subtract the robot arm and hand from the

object view, thus maintaining only the object in the final

segmentation.

A. Sensor Models

All sensor models share a common probabilistic concept

which accommodates uncertainty that arises in the perception

of the robot. The general approach of the sensor models

is to generate occupancy probability grids based on Bayes

filters with static state assumption [15]. More precisely,

we use binary Bayes filters since the segmentation in our

case estimates a fixed binary quantity. The underlying idea

of occupancy grids is to represent the field of vision of

the robot as a field of binary random variables in a grid.

A sensor model calculates the posterior estimate over the

binary variables conditioned on the measurement data such

as camera images up to time t.

Each sensor model possesses an occupancy grid which

is updated recursively by applying an inverse measurement
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Fig. 3. The system takes input from the camera images and the joint angle sensors in the arm and the hand of the robot. The segmentation is composed
from the fusion of background, disparity and hand localization sensors. From all segmented object views, the object representation is modelled.

model p(m | z1:t). Here z1:t are the measurements up to time

t and m = {mi}Ni=1 is the grid corresponding to the field of

view. Each element mi denotes the cell with the index i and

corresponds to the i-th pixel in the field of vision. To avoid

numerical instabilities for probabilities near zero or one, we

use the log odds representation of occupancy:

lt,i = log
p(mi | z1:t)

1− p(mi | z1:t)
(1)

The recursive occupancy grid update for the i-th cell is

then given by

lt,i = lt−1,i + log
p(mi | zt)

1− p(mi | zt)
− l0, (2)

where l0 is the prior occupancy probability in the log odds

ratio.

In the following we describe the implementation of the

three sensor models. A brief introduction to the underlying

algorithms is given and the inverse measurement model

p(mi | zt) is derived.

1) Background Sensor: The main segmentation cue is

the background subtraction (Fig. 4). Therefore, the eigen-

background approach [16] is deployed which models the

background variation based on eigenvalue decomposition by

applying principal component analysis (PCA) on a sample of

N images. In this way, the background can be represented by

the mean image µb and the M eigenvectors corresponding

to the M largest eigenvalues. Let φ̃i denote the i-th sample

image vector and φi = φ̃i − µb is the i-th mean normalized

image vector. To perform PCA the covariance matrix C

of A = [φ1 φ2 . . . φN ] has to be determined. Since the

dimension of C is large, the computation of eigenvalues

and eigenvectors is impracticable. Instead, the eigenvalues

λ̃i and eigenvectors υ̃i of CT = ATA are computed.

The eigenvalues λi and eigenvectors υi of C can then be

recovered using

λi = λ̃i, υi =
Aυ̃i
√

λ̃i
. (3)

Assuming the eigenvalues are in descending order we deter-

mine the number of used eigenvectors M by a ratio weight

γ using

M = min
k

{k ∈ [1, N ] |
∑k

i=1
λi

∑N

j=1
λj

> γ}. (4)

Once the eigenbackground model is computed, each mean

normalized input image It − µb is projected onto the

eigenspace expanded by the eigenbackground vectors:

Ĩt = ΦT
M (It − µb) (5)

where ΦM = [υ1 υ2 . . . υM ] is the eigenbackground matrix.

Ĩt is then backprojected onto the image space to determine

the static parts pertaining to the background

ψt = ΦM Ĩt + µb (6)

and the reconstructed background ψt (see Fig. 4) is sub-

sequently subtracted from the input image to obtain the

distance image

∆t = |It − ψt|, (7)

as depicted in Fig. 4(c).

In order to calculate the conditional probability and update

the occupancy grid of the background sensor model, we map

the distances ∆t onto probabilities by means of the Gaussian



(a) Input image (b) Reconstructed background
image ψt

(c) Distance image ∆t (d) Occupancy grid after 10 iter-
ations

Fig. 4. Processing steps and output of the background sensor using eigenbackgrounds

(a) Disparity map (b) Disparity occupancy grid af-
ter 10 iterations

(c) Localization of the hand (d) Occupancy grid of hand lo-
calization

Fig. 5. Results of the disparity and hand localization sensors

cumulative distribution sigmoid function

p(mi | ∆i
t) =

1

σ∆t

√
2π

∫ ∆
i

t

−∞

exp

{

− (t− µ∆t
)2

2σ2
∆t

}

dt, (8)

where µ∆t
is the mean and σ∆t

the standard deviation of the

distances in ∆t. Thus, the sigmoid function is determined

adaptively and outliers maintain a lower probability. The

resulting occupancy grid after 10 updates is illustrated in

Fig. 4(d).

2) Disparity Sensor: To eliminate remaining background

parts which result from small movements of the cameras,

we construct the disparity map Dt (see Fig. 5(a)) given the

calibrated stereo images. A fixed threshold δ is used to set

the margin between foreground and background depth. The

conditional probability of the inverse measurement model is

then easily obtained by

p(mi | Di
t) =

{

pB if Di
t < δ

1− pB otherwise
, (9)

where pB is the background probability with pB > p(mi)
and p(mi) is the prior probability of the cell. Fig. 5(b)

illustrates the resulting occupancy grid.

3) Hand Localization Sensor: While the first two sensors

perform foreground-background segmentation, object-hand

segmentation is accomplished using the localization of the

robot hand in the camera images. The goal is to identify the

area covered by the robot hand and arm. The robot hand

is localized using a particle filter approach [17] to estimate

position, orientation and finger joint configuration of the

hand. A reduced model of the hand with 6 DoF is used,

thus the dimension of the configuration space is 12.

As cues for the particle filter, ratings for the color qc, the

edges qe and the edge directions qd of the finger tips and the

color of a marker qm attached to the wrist of the robot are

calculated. The conditional probability p(z|s) of an image z

given the particle configuration s is calculated according to

p(z) ∝ ewcqc + weqe + wdqd + wmqm ,

where wc, we, wd and wm are weighting factors for the

different cues. In order to derive a precise estimate of the

configuration and pose of the hand, simulated annealing is

deployed which supports convergence to a local optimum

[18]. For the initialization of the particles we use the pose

and configuration of the hand as determined from the propri-

oceptive sensors as well as the result of the last estimation.

In order to detect cases where the fingertips are not

clearly visible in the image, the reliability rpf of the particle

filter estimation spf is calculated using heuristics which

determine the visible parts of the hand. To handle cases

with low reliability a new pose is predicted using the last

estimation and the proprioceptive sensors. The rating rpred
of the predicted configuration spred is the product of the

rating of the last particle filter estimation and a factor β that

incorporates the uncertainty of the prediction.

The configuration sused that provides the localization

result is calculated as a weighted mean of the particle filter

estimation spf and the prediction spred. From the calculated

ratings the weight w is determined as

w =
rpf

rpf + rpred
.

The combination of predicted configuration and particle filter

estimation is calculated using

si,used = f(si,pf , si,pred, w).

For elements si corresponding to the translation of the

end-effector and the joint angles of the fingers f denotes

the linear interpolation. The orientation of the end-effector

is calculated using spherical linear interpolation. Another



Fig. 6. Object representation using an aspect graph with 36 views as
generated with the proposed approach

particle filter iteration is performed in order to find a local

optimum in the proximity of the interpolated configuration.

After localization, the hand model is projected into the

input image to determine the area covered by the hand as

shown in Fig. 5(c). In order to model occlusion of the hand

by the object, a cylinder approximates the extent of the object

within the robot hand. The diameter and orientation of the

cylinder are calculated using the positions of characteristic

points of the hand. With the resulting image, the occupancy

grid update is carried out using the following conditional

probability:

p(mi | Hi
t) =

{

pH if Hi
t belongs to the hand

1− pH otherwise
(10)

with the probability pH > p(mi) of the hand area. The

resulting occupancy grid is depicted in Fig. 5(d).

B. Object Segmentation

The object segmentation is composed of the occupancy

grids resulting from the three proposed sensor models:

• Background sensor model occupancy grid m∆

• Disparity sensor model occupancy grid mD

• Hand localization sensor model occupancy grid mH

The probabilities m∆
i , m

D
i and mH

i are recovered from the

log odd ratio in (1). Since the three resulting probabilites

reside in different observation spaces, a fusion based on the

occupancy grids is not possible. Hence, we apply a logic

operation to fuse the probabilities and thus obtain the final

object segmentation as follows:

Si
t =

{

Iit (m∆t

i > δS) ∧ ¬(mDt

i > δS) ∧ ¬(mHt

i > δS)

0 otherwise

(11)

where δS ∈ [0.5, 1] is a probability threshold. m∆t

i > δS
specifies whether a cell is a foreground cell or not, mDt

i >

δS states if the i-th cell belongs to the background and

mHt

i > δS indicates if the cell belongs to the hand or not.

The resulting segmentation mask St is post-processed using

morphological operations to erase scattered noise pixels.

C. Object Modelling

As stated above, the goal of the segmentation of unknown

objects is to generate an object representation which is

suitable for object search on a humanoid robot as presented

in [2]. The modelling step comprises all necessary steps

to build such a representation from the segmented object

views. In our case, objects are represented using a multi-

view appearance-based representation, called aspect graph

[19]. Each node in the aspect graph corresponds to a specific

view of the object. From the set of segmentations generated

along the executed trajectory, we select object views in

such a way that an equidistant distribution over the view

sphere is approximated. Fig. 6 shows an example of a view

sphere generated by the proposed approach. Each view is

then processed using feature extraction methods. For the

object search procedure, Color Cooccurrence Histograms

[20] and SIFT features [21] are extracted for each object

view. To reduce the amount of required features and to derive

prototypical views, clustering in feature space is performed

using vector quantization methods.

IV. EXPERIMENTAL RESULTS

A. Setup

All experiments on object segmentation were carried out

on the humanoid robot platform ARMAR-IIIb. In order to

show the robustness of the approach we chose a common

background which contains a typical amount of clutter. Un-

known objects were put into the hand of the robot by a human

assistant. Segmentation was performed each 8 seconds along

the trajectory (see Section II-B). Thus, about 90 object views

for each object were generated. For image capturing we

used the perspective stereo camera pair equipped with 6mm

lenses.

The parameters for the sensors were chosen as follows.

The eigenbackground model was calculated from 60 sample

images and we used γ = 0.98 as a ratio weight of the

eigenvalues in order to determine the M best eigenvec-

tors expanding the eigenbackground space. Disparity was

extracted in a range of 0 to 200 pixels. The number of

particles for hand localization was set to 3000. Four particle

filter iterations with decreasing variance were performed for

each localization. All occupancy grids were updated with

10 iteration for each object segmentation cycle. The general

probability threshold δS of the occupancy grid was set to

0.78. The probability constants pH and pB were set to 0.75.

B. Object View Acquisition

In order to evaluate the proposed approach we manually

segmented all views of one object. From the manual segmen-

tation and the autonomous segmentation, the number of true-

positive and true-negative object pixels were determined. Fig.

7(a) illustrates the resulting rates over all views of the object.

In average, 90% of the object and 97% of the background

could be recovered.

In Fig. 7(b) a more critical measure was used in order to

judge the quality of the segmented images. Therefore, the

number of segmented object pixels were set into relation to

the number of expected pixels from the ground truth. Thus,

the size of the autonomously segmented areas relative to the

object size is measured. From the beginning of the trajectory

up to view 30 a stable performance of about 110% size
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become less visible which results in inaccurate hand-object
segmentation.
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Fig. 7. Segmentation results for all generated rotations of one object

relative to the ground truth is achieved. Starting with view

40 the smallest side of the object becomes visible. Thus,

the expected segmented area is smaller which results in a

peak at view 51. In the second half of views, starting from

index 60, the extent of the object increases. As illustrated

in Fig. 7(c) the fingertips are not clearly visible in these

cases. Consequently, the hand localization relies mostly on

prediction, which is affected by inaccuracies in the kinematic

model of the arm. Hence, the segmentation of the hand is not

optimal which results in more false-positive object pixels.

In order to show the generality of the proposed approach,

20 objects were segmented autonomously. In this experiment

we did not perform the complete movement but used ex-

emplary orientations of the end-effector from the beginning

of the trajectory. As can be seen in Fig. 8, for all objects

good segmentation results could be achieved. Compared to

the manual segmentation, a true-positive rate of 87% and a

true-negative rate of 96% could be achieved in average. As a

consequence of the application of eigenbackgrounds, object

parts which share the same intensity with the background

cannot be recovered.

C. Object Search

In order to demonstrate the feasibility of the multi-view

representations generated from the segmented object view for

object recognition, we apply one exemplary representation

in an active visual search procedure. As described in [2] the

goal of our visual search system consists in filling a scene

memory with occurrences of searched object instances in

the scene while performing saccadic eye movements using

the active stereo camera system. A successful search for an

object results in focusing the correct object instance in the

foveal cameras after several saccadic eye movements.

The aspect graph for the test object resulting from the

modelling step comprised 36 distinct viewpoints which were

clustered to 3 prototypical views. For the search experiment

we used a cluttered scene as depicted in Fig. 9(a). The

searched object was presented in different view angles which

were covered by the generated multi-view representation.

Fig. 8. Segmentation result for 20 test objects

Fig. 9(b) illustrates the scene memory content after 22

saccadic eye movements. As depicted, the instance of the

test object could be found and stored. In Fig. 9(c) the final

focus of one foveal camera is depicted for two object views.

V. CONCLUSION

In the proposed work, we demonstrated autonomous acqui-

sition of multi-view representations on a humanoid platform.

The presented approach exploits the ability of a humanoid

robot to actively change the perceived world in order to

generate knowledge about previously unknown objects. An

object segmentation procedure is presented which allows to

segment views of objects held in the hand of the robot even

in cluttered environments.

The probabilistic formulation of the different sensor mod-

els together with the application of occupancy grids results



(a) Scene setup used for the visual search task (b) Content of the scene memory after 22 saccadic
eye movements

(c) Resulting focus of the
system for two different
orientations of the object

Fig. 9. Results of the visual search task using an autonomously acquired object representation

in a extensible fusion scheme for segmentation. Based on the

segmented object views, an object representation suitable for

object recognition is generated.

The experiments show that the autonomous segmentation

is very accurate. Inaccuracies occur in cases where the

fingertips are not visible or the object itself is too similar to

the background. Finally, we could demonstrate the complete

cycle from visual object exploration to recognition in an

active visual search task.
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