
Autonomous Adaptive Exploration using

Realtime Online Spatiotemporal Topic Modeling

Yogesh Girdhar, Philippe Giguère, and Gregory Dudek

1 Introduction

Exploration of dangerous environments, such as underwater coral reefs and ship-

wrecks, is a difficult and potentially life threatening tasks for humans, which natu-

rally makes the use of an autonomous robotic system very appealing. Exploration

through the use of an autonomous agent can find uses in many different scenarios.

For example, continuous monitoring of a coral reef could be used to alert a biol-

ogist of any harmful changes such as disease or physical damage; surveillance of

border regions of a property or nation to detect any security anomalies; and plane-

tary exploration by a rover. In all of these examples, we are essentially interested in

identifying surprising observations, and collecting more information about them.

This paper presents such an autonomous system, which is capable of autonomous

exploration, and shows its use in a series of experiments to collect image data in

challenging underwater marine environments. We presents novel contributions on

three fronts. First, we present an online topic-modeling based technique to describe

what is being observed using a low dimensional semantic descriptor. This descriptor

attempts to be invariant to observations of different corals belonging to the same

species, or observations of similar types rocks observed from different viewpoints.

Second, we use the topic descriptor to compute the surprise score of the current

observation. This is done by maintaining an online summary of observations thus

far, and then computing the surprise score as the distance of the current observation

to the summary, in the topic space. Finally, we present a novel control strategy for
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Fig. 1 Each incoming observation made by the robot is a set of visual words, and their corre-

sponding locations. We continuously refine topic labels for each word using an realtime online

Gibbs sampler, taking into account the spatiotemporal correlation of topic labels. Observations are

hence represented using a distribution over these spatiotemporal topics, which the summarizer then

uses to build the summary. Surprise of a new observation is its distance to the closest sample in the

summary. If this surprise is above a threshold, we add the new observation to the summary. The

surprise score of the current observation is used to control the speed of the robot. Higher surprise

score of an observation results in slower speed for the robot.

an underwater robot thats allows for intelligent traversal; hovering over surprising

observations, and swimming quickly over previously seen corals and rocks. Fig. 1

shows an overview of the proposed approach.

Exploration, in the context of robotics, has been studied before. Work has been

done on autonomous mapping of challenging environments [30], [18], frontier ex-

pansion [33], minimizing uncertainty [32], and utility based exploration[14]. New-

man et al. [20, 22] have described a system for mapping and semantically labeling

urban environments. The semantic labeling framework utilizes a bank of SVM clas-

sifiers to label different regions of the scene with one of the pre-defined class labels

such as grass, road, wall, or bush. One disadvantage of using such an approach for

exploration tasks is that it requires prior knowledge about the kind of labels which

the robot might encounter.

As robots collect more and more visual data on their exploration sorties, the task

of summarizing the videos collected by the robot so that the any surprising events

encountered by the robot are included in the summary, becomes extremely important

for the human operator. Several techniques have been studied for such task, such as
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use of PCA to ensure visual and geographic coverage[8], and ONSUM[11], a system

for identifying most surprising images from a stream of incoming images.

In the underwater robotics domain, there is body of work on autonomous ocean

monitoring using robots. Smith et al. [28] have looked at computing robot trajecto-

ries which maximize information gained, while minimizing the deviation from the

planned path. Das et al. [7] have presented techniques to autonomously observe ad-

vecting oceanographic features in the open ocean. Rigby et al. [23] have proposed

the use of Gaussian Process to first infer a probabilistic map of benthic features

using data from a prior survey, and then plan a path, which results in maximum

information gain.

Our focus in this paper is on traversing an environment similar to how a tourist

might do so in a new city; stopping and recording any surprising sights, while mov-

ing fast when nothing new is in sight. This is similar to the vacation snapshot prob-

lem described in [4].

We used an untethered amphibious robot (Aqua [25]), with an in-house designed

autopilot, to carry the exploration task. Images were taken with a downward-looking

camera, with all computations performed onboard. Its propulsion is based on six

flippers that can provide motion in five degrees of freedom. By using a novel com-

bination of gaits, the robot was able to move at various speeds while maintaining its

orientation, despite external disturbances. This was necessary in order to complete

this exploration task.

In Section 2 we present a realtime online spatiotemporal topic-model (ROST)

for describing a stream of word observations in a low dimensional semantic space.

In Section 3 we describe the idea of extremum summaries that are used to compute

surprise score of an incoming observation. Finally, in Section 4 we describe the

control strategy used by Aqua to do surprise-based exploration of the environment.

2 Topic Modeling

To have meaningful summaries, and thus a meaningful surprise score, we must use

an image descriptor that is sensitive to thematic changes in the scene, while being

immune to low level image changes. We do this via the use of a topic modeling

framework, which describes an incoming observation using a low dimensional de-

scriptor, each dimension of which ideally corresponds to absence or presence of

different objects or high-level visual patterns in the world.

2.1 Latent Dirichlet Allocations

Topic modeling methods were originally developed for text analysis. Hoffman [16]

introduced the idea of probabilistic Latent Semantic Analysis(pLSA) for text docu-

ments, which modeled the probability of observing a word wi in a given document



4 Yogesh Girdhar, Philippe Giguère, and Gregory Dudek

 --- --- - --
- -- - -----
- -- - - -- -
 ----- - - --
- -- - -----
- -- - - -- -
- -- - -----
- -- - - -- -  

 --- --- - --
- -- - -----
- -- - - -- -
 ----- - - --
- -- - -----
- -- - - -- -
- -- - -----
- -- - - -- -  

 --- --- - --
- -- - -----
- -- - - -- -
 ----- - - --
- -- - -----
- -- - - -- -
- -- - -----
- -- - - -- -  

 --- --- - --
- -- - -----
- -- - - -- -
 ----- - - --
- -- - -----
- -- - - -- -
- -- - -----
- -- - - -- -  

words

fr
eq

.

words

fr
eq

.

words

fr
eq

.

Po
lit

ic
s 

   
 .

   
 R

el
ig

io
n 

 .
Sc

ie
nc

e

Po
lit

ic
s 

   
 .

   
 R

el
ig

io
n 

 .
Sc

ie
nc

e

Po
lit

ic
s 

   
 .

   
 R

el
ig

io
n 

 .
Sc

ie
nc

e

Po
lit

ic
s 

   
 .

   
 R

el
ig

io
n 

 .
Sc

ie
nc

e

Dirichlet(α)

Dirichlet(β)

Politics ScienceReligion

documents

topics

fr
eq

.

fr
eq

.

fr
eq

.

fr
eq

.

. . .

. . .

Fig. 2 Latent Dirichlet Allocation (LDA) is a popular technique for describing a set of documents

as a mixture of topics, which are themselves a described as distribution over words. Both the topic-

word and document-topic distributions have Dirichlet priors which biases these distributions in

favor of being sparse.

M as:

P(wi = v|M) =
K

∑
k=1

P(wi = v|zi = k)P(zi = k|M). (1)

where wi takes a value between 1 . . .V , and zi is the hidden variable or topic label

for wi, which takes a value between 1 . . .K, where K is a much smaller than V .

The central idea is the introduction of a latent variable z, which models the under-

lying topic, or the context responsible for generating the word. Each document M in

the given corpora is modeled using a distribution θm(k) = P(zi = k|M) over topics,

and each topic is modeled using a distribution φk(v) = P(wi = v|zi = k) over the

set of vocabulary words. During the training phase, these distributions are learned

directly using an EM algorithm.

The distribution of topics in a document gives us a low dimensional semantic

description of the document, which can be used to compare it with other documents

semantically. The problem with this approach is that since the dimensionality of the

model is very large, a lot of training data is required. Moreover, it is easy to overtrain

for a given data set.

Latent Dirichlet Allocation (LDA), proposed by Blei et al. [2] mitigate the train-

ing problem by placing Dirichlet prior on θ and φ . Placing Dirichlet priors encour-

ages the distributions to be sparse, which has been shown to give semantically more
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relevant topics. Fig. 2 shows the graphical model for LDA. Griffiths et al. [15] sub-

sequently proposed a collapsed Gibbs sampler for LDA, where the state is topic

assignments for all the words in all the documents, which is different from original

variational approximation based approach proposed by Blei et al.

2.2 Topic Modeling for Visual Observations

The success of LDA-based topic modeling methods for semantic clustering and

classification of text documents has led to their use in the computer vision domain.

The general idea being that a textual word could be replaced by visual words, such as

ones described by Sivic et al. [27]. To generate a visual vocabulary, we first extract

visual features such as SIFT[19] or SURF[1] from an unrelated dataset, with high

visual diversity. These features are then clustered using the k-means algorithm, with

V clusters corresponding to the desired vocabulary size. The cluster centers of these

V clusters represent the visual words in the vocabulary. Now, to extract visual words

from a given image, first we extract its SURF features, and then map each feature to

the index of the closest visual word in the vocabulary.

Both SIFT and SURF features are 128 dimensional floating points vectors, and

doing nearest neighbor queries require computing L1 distances between these two

vectors, which can be computationally expensive for large number of features. More

recently, binary feature descriptors such as Oriented BRIEF (ORB) [24], have been

shown to perform well. Distance between two binary feature vectors is typically

computed by taking the Hamming distance between the bit strings, which can be im-

plemented very efficiently using XOR operations that are available on all computers.

Hence, such binary feature descriptors are much more appropriate for applications

requiring realtime operation.

Bosch et al. [3] used pLSA for scene classification and object discovery using

such visual words. Works by Fei-Fei et al.[9], and Sivic et al.[26] have demonstrated

the use of LDA to model image content, and automatic generation of meaningful

object hierarchies.

2.3 Topic Modeling for Robots

Semantic modeling of observation data captured by a mobile robot faces additional

challenges compared to semantic modeling of a collection of text documents, or

image that are mutually independent.

• Robot observations are generally continuous in space and time, and hence the

corresponding semantic descriptor must also be continuous. We must take into

account the location of the observed visual words during the refinement, and use

it to compute topic priors that are sensitive to changes in time and location of the

robot.
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Fig. 3 Spatiotemporal Topics: As a robot observes the world, we would like its observations to

be expressed as a mixture of topics with perceptual meaning. We model the topic distribution of

all possible overlapping spatiotemporal regions or neighborhoods in the environment, and place

a Dirichlet prior on their topic distribution. The topic distribution of the current observation can

then be inferred given the topic labels for the neighborhoods in the view. Modeling neighborhoods

allows us to use the context in which the current observation is being made to learn its topic labels.

To guarantee realtime performance, we only refine a constant number of neighborhoods in each

time step, giving higher priority to recently observed neighborhoods.

• The topic model must be updated online and in realtime, since time between two

observations is constant. When computing topic labels for a new observation,

we must also update topic labels for previous observations in the light on new

incoming data.

We address these challenges through the use of a Realtime Online Spatiotemporal

Topic modeling (ROST) framework, which we describe in the following sections.

2.3.1 Spatiotemporal Topic Smoothing

Let Mt = ({wi},{xi}) be the observation at time t, consisting of observed visual

words {wi} which take a value between 1 . . .V , and their associated spatial coordi-

nates {xi}. The neighborhood of word at (xi, t), denoted by Gi, is the set of all words

observations in its spatiotemporal neighborhood. This neighborhood could either be

defined using k nearest neighbors, or using a radius search. Instead of computing

topic distributions over documents in a traditional LDA [2], or image windows in
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(a) (b)

(c) (d)

Fig. 4 Example of topics learned on images of the ocean floor taken by the Aqua robot, for a single

trajectory. Each visual word is marked by a circle, the size of which corresponds to the size of the

visual feature. Histograms depicting the content of each color-coded topic are shown below.

Spatial-LDA [31], we compute topic distributions over these spatiotemporal neigh-

borhoods (Fig. 3). Modeling topic distribution over neighborhoods allows us to use

spatiotemporal context in which an observation is being made, which in turn results

in much faster convergence as is shown later in our results.
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Fig. 5 Each cell shown corresponds to an observation with multiple visual words. We refine the

topic label for a word wi in an observation by taking into account the spatiotemporal context Gi of

the observation.

Given a location and time (xi, t), we use the following generative model for the

observed word wi:

1. Word distribution for each topic k:

φk ∼ Dirichlet(β )

2. Neighborhood for an observation at (xi, t) :

Gi = {M j : M j ∈ Neighborhood(xi, t)}

3. topic distribution of the neighborhood Gi :

θGi
∼ Dirichlet(α)

4. Topic label for a location (xi, ti):

zi ∼ Discrete(θGi
)

5. Word observed at location (xi, ti):

wi ∼ Discrete(φzi
)

where x∼ Y implies that random variable x is sampled from distribution Y .

2.3.2 Gibbs Sampling

Similar to the Gibbs sampler proposed by Griffiths et al.[15], we define the posterior

topic distribution of word wi of observation Mt , with neighborhood Gi:
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P(zi = k|wi = v,z−i,w−i,Gi) ∝ P(wi = v|zi = k)P(zi = k|Gi) (2)

=
nv

k,−i +β

∑
V
v=1(n

v
k,−i +β )

·
nk

Gi,−i +α

∑
K
k=1(n

k
Gi,−i +α)

, (3)

where nw
k,−i counts the number of words of type w in topic k, excluding the current

word wi, and nk
Gi,−i is the number of words with topic label k in neighborhood Gi,

excluding the current word wi, and α,β are the Dirichlet hyper-parameters. Note

that for a neighborhood size of 0, Gi =Mt , and the above Gibbs sampler is equivalent

to the LDA Gibbs sampler.

2.3.3 Realtime Online Gibbs Sampling

Several different strategies exist in the literature to do online refinement of the topic

assignment on streaming data [29, 5]. The general idea is to initialize the topic label

of the current observation with random labels, and then do a batch refinement of

the entire dataset, every time a new document is added. This allows for previous

topic assignments to be updated in the light of new observed data. Convergence

is guaranteed because in the limit of time going to infinity, the algorithm behaves

like a batch Gibbs sampler. However, the problem with such approach is that as the

number of observations grow, the model update time grows linearly.

In the context of robotics, the number of refinements between two observation

needs to be constant. Hence we randomly sample the observations from a Beta(a,1)
distribution, with a > 1, giving higher picking probability to recent observations.

This ensures that topic distribution for new observations quickly converge, while

older observations are less likely to change their topic assignments. In this work, we

set a = 2 for all experiments. However, increasing the value of a with time might

lead to better results for long experiments. Algorithm 1 shows the realtime topic

refinement algorithm.
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while true do

while no new observation do
Randomly sample r ∼ Beta(a,1)
i← ⌊t ∗ r⌋
foreach w j in Mi do

(*update the topic label for word in the observation *)

G j← Neighborhood(x j, i)
z j ∼ P(z j = k|w j = v,z− j,w− j,G j)

end

end

t← t +1

M←M∪{Mt}
end

Algorithm 1: Refine topic labels, given the current assignment of topics (z) for

the set of all observed words(w), their locations(X), and observation times(t).

Figure 4 shows examples of topics which were learnt by running the above topic

model on an underwater image sequence containing 2000 images.

3 Summaries and Surprises

Summarizing observations made by a robot has recently gained popularity in

robotics[21, 12]. Our goal, however, is to compute a summary which assists in eval-

uating the novelty of a new observation. We do this by maintaing a summary that

is representative of all of observations made thus far, and then compute the surprise

score as the distance to the this summary.

3.1 Cost Function

Imagine each observation to be a point in a high dimensional Euclidean space. We

then pose the summarization problem as a sampling problem, where we would like

to identify observations belonging to the summary set, which minimizes the maxi-

mum distance of any observation to its closest observation in the summary.

Let Mt = {M1, . . . ,Mt} be the set of all observations till time t. We maintain a

subset of k observations as the summary S = {S1, . . . ,Sk}, S ⊆Mt , such that the

maximum distance of an observation to its closest summary sample is minimized.

The cost function is thus defined as:

Cost(S|Mt) = max
i

min
j

d(Mi,S j), (4)
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Fig. 6 Extremum vs k-medoids Summaries. The dataset consists of 200 points generated randomly

around a circle in R
2. The summaries generated by the two algorithms are shown in the first row.

Since there are no outliers in the dataset, the summaries seem similar. In the second row, we add

8 extra samples from a different distribution, which are all outliers in the context of the other

points. Adding these outliers highlights the differences between the two strategies. We see that

extremum summary favors picking the outliers, whereas the k-medoids summary ignores these

outliers completely. In the last row, we reduce the summary size and see the differences exaggerated

even more. The extremum summary is almost entirely made up of the outliers, whereas the k-

medoids summary is only representative of the mean.

where d is the distance function, which measures distance as the symmetric KL di-

vergence between the corresponding topic distributions, which we describe in Sec 2.

Such a summary is sometimes called as an Extremum Summary [12], because min-

imizing the above cost function is essentially minimizing the distance of the worst

outlier to the summary. This is different from a more typical a k-medoids clustering

based summary, which tries to minimize the mean distance of an observation to the

closest summary.

If the distance function obeys the triangle inequality, which is true in our case,

then not only is this problem NP-hard, but Huse and Nemhauser [17] showed that

any α-approximation of this problem is also NP-hard for α < 2. Gonzalez [13]

proved that the simple greedy solution of recursively picking the farthest samples,

has an approximation ratio of 2, which is likely the best we can do unless P=NP.

Figure 6 highlights the characteristic difference in summaries generated by the

extremum summary algorithm, and the k-medoids algorithm. The dataset consists

of 200 points generated randomly around a circle in R
2. The summaries generated

by the two algorithms are shown in the first row. Since there are no outliers in

the dataset, the summaries seem similar. In the second row of Fig. 6, we add 8

extra samples from a different distribution, which are all outliers in the context of
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the other points. Adding these outliers highlights the differences between the two

strategies. We see that extremum summary favors picking the outliers, whereas the

k-medoids summary ignores these outliers completely. In the last row of Fig. 6, we

reduce the summary size and see the differences amplified. The extremum summary

is almost entirely made up of the outliers, whereas the k-medoid summary is still

only representative of the mean.

Although a k-medoids summary might be useful when we want to model the

mean properties of an environment, if however, we are interested in identifying the

range of what was observed, then an extremum summary is more useful since its

objective function ensures that each observations is close to at least one of the sum-

mary samples.

The novelty or surprise of a new observation ξ (Mt |S) is defined as its Hausdorff

distance to the summary [11].

ξ (Mt |S) = min
j

d(Mt ,S j). (5)

In other words, the summary is chosen to minimize the maximum distance an

observation has to the closest observation in the summary. Now, if a new observation

is farther still, it is considered as surprising.

3.2 Online Summarization

In the online case, Charikar et al. [6] have proposed a simple strategy where after

each pick, the picking threshold is doubled. This leads to a summary which is guar-

anteed to have a cost less than 8×‘optimal’. However, since the topic assignment of

samples in the summary are continuously being refined, we instead set the threshold

dynamically to 2×‘minimum inter-sample distance in S’, as illustrated in Fig. 7.

To control the summary size, we simply use the greedy offline summarization al-

gorithm on the summary to keep the summary of desired size. In our prior work[12],

we have studied the rate of growth of the summary, when the threshold is set to the

mean distance of a summary sample to the remaining summary. This is useful in the

case when we want the summary size to grow with the data.

4 Robot Control

Given the surprise score of the current location, we would like the robot to change

its exploration speed such that it spends more time at locations with high surprise

score. Achieving this goal has two challenges. First, smoothly mapping the surprise

score of the observation to the speed of the vehicle, and second, maintaining the

depth and attitude of the vehicle at different speeds.
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Fig. 7 (a) Given a summary, represented here by the ‘+’ sign, we define the threshold score for

updating the summary as twice the smallest inter-sample distance H. When a new observation M

arrives, we compute its surprise: the distance to the closest summary sample. If the surprise ex-

ceeds the threshold 2H, then the summary is updated to include the new observation. The updated

summary and the threshold are shown in (b).

4.1 Surprise based Speed Control

Let qt = ξ (Mt |S)/2H be the normalized surprise score of an incoming observation

at time t. We then set the speed(v) of the robot by mapping the surprise score through

a sigmoid function:

v(t) =
1

1+ eγ(qt−0.5)
, (6)

where γ controls the responsiveness of the robot. A higher γ made the scheduling of

the forward velocity v more aggressive. The use of this sigmoid function allows the

robot to smoothly transition between being completely still when the observation is

is surprising enough to update the summary, to moving at full speed when traversing

over a previously seen environment. We calculated γ empirically, and found γ = 10

to perform well during our sea trials. A plot of the sigmoid function with γ = 10 is

shown in Fig. 8.

4.2 Depth and Attitude Control

A major difficulty in operating underwater robots, especially at low speed, is the

fact that they move with six degrees of freedom (x, y, z and the three Euler angles

roll φ , pitch θ , and yaw ψ) in a dynamic fluid. Their motion relies on the dynamic

pressures induced by the moving water impacting the different surfaces. Some of

these surfaces are specifically designed to facilitate the control of the robot: in our

case, these are the 6 flippers. A unique characteristic of our robot is that these six

surfaces serve both as propulsion mechanism as well as control surfaces. Thrust is

generated by oscillating these flippers rapidly around an offset angle. At the same
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Fig. 8 Mapping a surprise score to robot speed using a sigmoid function results in smooth tran-

sition between being completely when something surprising has been observed, to moving at full

speed when observing what has been observed before.

(a) (b) (c)

Fig. 9 Pictures showing the flippers’ angle due to the action of the autopilot system, during one

of the sea trials. (a) the robot is performing a heave-up maneuver to maintain depth and attitude

at zero forward speed, corresponding to strategy S2. (b) the robot is executing a combined heave

up, pitch up and slow forward speed maneuver. (c) the robot is performing a pitch-up maneuver at

high speed, corresponding to strategy S1.

time, this offset angle means that, on average, a lift force will be generated by the

dynamic pressure impinging on them [10]. Thus, the dynamics and controllability

of the robot will be heavily dependent on the forward velocity.

We employed two different strategies to maintain depth. At higher forward veloc-

ities (v > 0.2), depth was maintained via pitch angle changes, and the robot execut-

ing such maneuver can be seen in Fig. 9(c). When the robot had no forward velocity

(v = 0), maintaining depth required the use of a heaving thrust. This motion was

accomplished by having the 6 flippers pointing upward or downward, as shown by

the robot in Fig. 9(a). This way, the net thrust produced by the oscillating flippers

does not induce forward motion. Attitude stabilization was still possible with this

leg configuration, by means of a forward/aft differential thrust for pitch corrections

and left/right differential thrust for roll corrections. For low velocities (v < 0.2),

the robot flippers were placed so as to generate both heaving and forward motion

(Fig. 9(b)). All of these pictures were taken from a single trial, demonstrating the

need to adapt the locomotion strategy in order to satisfy motion requirements.
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In Extension 1(part 3), we show a live demonstration of the underwater vehicle,

as it traverses an underwater environment.

5 Experiments

5.1 Evaluation of Spatiotemporal Topics

To test the effectiveness of the proposed spatiotemporal topic modeling, we used ar-

tificially generated datasets, for which the ground truth is known. Each dataset was

generated in the following manner. As shown in Fig. 10(a) column 1, we generated

ground truth topic labels such that each column corresponds to an observation, and

each pixel corresponds to a word. Each dataset has 8 objects(disks), spanning mul-

tiple observations, and are placed randomly. Each object has a topic label z ∈ [0,K)
that is chosen randomly from one of the K = 5 topics. Topic labels are shown by

the pixel color. Given the topic label of a word z = k, we generated word labels

by randomly picking v ∈ [0,V ) from distribution P(v|z). We used vocabulary size

V = 100. The vocabulary was equally divided between the K topics such that V/K

words were preferred exclusively by each topic. To add noise, we used a non-zero

probability of emitting a word not related to the given topic.

P(v|z) ∝

{

V/K +η if v is related to z

η otherwise
(7)

We used η = 0.1 for all our experiments. As a result, the probability that the

sampled word was preferred by the given topic was 0.71, and with probability 0.29

the sampled word was preferred by another topic. Examples of the resulting words

are shown in Fig. 10(a) column 2. We can see that original pattern is invisible to

human eyes. Finally, we used these generated words as input to the proposed spa-

tiotemporally smoothed topic model, and refined the topics in batch mode for 80

iterations. A neighborhood size of 1 implies that while refining each observation,

represented as a column in the dataset image, we take into account the two adjacent

columns. A neighborhood size of 0 corresponds to the traditional LDA, where each

column is refined independently. Fig. 10(a) columns 3,4 show the resulting topic la-

bels. We used hyper-parameter values α = 0.1 and β = 1.0 for all our experiments.

We experimented with 100 randomly generated datasets, out of which the first 10

are shown in Fig. 10(a). We see that in most cases, use of the proposed technique

results in much more accurate topic labels.

To quantitatively evaluate these results, we computed the Mutual Information be-

tween the ground truth topic labels and the proposed methods. Mutual Information

I(X ,Y ) essentially measures the reduction in Entropy of a random variable X , after

observing random variable Y .
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(a) Artificially generated datasets along with the topics computed by the topic models.
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(b) Mutual Information between the computer topic labels and the ground truth.

Fig. 10 We generated 100 artificial datasets out of which we show the first 10 in (a). Each column

corresponds to an observation, and each pixel corresponds to a word. The color of the pixel corre-

sponds to the topic/word label. In (b) we show the Mutual Information between the results and the

ground truth. We see that topic model which takes into account its two adjacent neighbors (G1),

consistently outperforms the topic model which does not use the neighborhood information (G0).

I(X ,Y ) = H(X)−H(X |Y ) (8)

= ∑
x,y

P(x,y) log
P(x,y)

P(x)P(y)
(9)
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To compute Mutual Information between the ground truth labels, and the topic

model generated labels, we set x to topic label from the ground truth, y to the topic

labels produced by the topic models. Figure 10(b) shows the box-whisker plot of

the mutual information between the ground truth, and the two topic models, for 100

datasets. The box corresponds to 75% and 25% quantiles, and the line in the mid-

dle is the median mutual information across all datasets. The whiskers show the

minimum and maximum range of the Mutual Information score. We see that the

proposed spatiotemporal topic model clearly outperforms traditional LDA, as it has

higher Mutual Information score.

5.2 Perplexity Convergence

Computing perplexity is a common way of evaluating language models. Per word

perplexity of a document could be intuitively interpreted as the uncertainty in recre-

ating the word labels from the topic label distribution being used by the model to

describe a document.

Per word perplexity of an observation Mt is defined as:

Perplexity(Mt) = exp

(

−
∑

W
i log p(wi|Mt)

W

)

, (10)

where W is the number of words in observation Mt , and wi is the ith word in the

observation. The log likelihood of a word in an observation can be computed using

an expression similar to Eq. 3, with the difference that instead of considering P(z|G),
the probability of a topic given its neighborhood, we use P(z|M), the probability

of a topic given the observation to which it belongs. Computing perplexity of an

observation, instead of a neighborhood, allows us to compare the performance of

ROST, with normal LDA, which ignores the spatiotemporal neighborhood.

In Fig. 11(a), we plot the perplexity of an observation, immediately before we

receive the next observation; i.e., we refine the model until the next observation is

available, and then we output the perplexity. We see that ROST consistently con-

verges to a lower perplexity, when compared to a simple LDA based refinement.

In the latter, we do not bias the refinement towards the present time, and do not

take into account the spatiotemporal neighborhood of the observations. To make

LDA work in realtime, we sample the observations to be refined uniformly from all

observations thus far.

Even though ROST uses temporally biased refinement, in Fig. 11(b) we see that

the final observation perplexity, measured after all observations have been process,

is almost indistinguishable from LDA.

The dataset used in Fig. 11 consists of 1500 images observed in an underwater

environment. Each image was of size 1024x640, and was split into non-overlapping

windows of size 160x160. Each of these sub-windows was considered as an ob-

servation, for a total of 42000 observations. Each observation had maximum of 6
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Fig. 11 Per image perplexity for a dataset consisting of 42000 observations at 1500 time step, in an

underwater environment. (a) shows perplexity of a new observation computed online, immediately

before the next observation was processed. We see that ROST consistently has lower perplexity,

compared to LDA. (b) shows perplexity of the observations in the dataset, after the last observation

was made. We see that final perplexity of LDA and ROST is similar.

neighbors, 4 spatial and 2 temporal, forming its neighborhood. We used a vocabu-

lary size of 5180, of which 5000 were ORB features, and 180 were words describing

hue of a region. The dataset had a total of 1.63M words. The observations were made

at the rate of 5Hz.

5.3 Evolution of Topics in an Indoor Environment

Topics learned by ROST evolve over time as more data is observed. Fig. 12 shows an

example of this topic evolution in and indoor environment. The images (a)-(d) are in
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temporal sequential order, and show the growth of the topic model as time elapses.

The circles correspond to extracted visual words, and the color corresponds to the

different topic labels. Initially, we see that the entire scene is labeled with the same

topic label, as is shown in Fig. 12(a). After a few time steps, we see that ROST is

successfully able to segment the scene using two topics corresponding to the upper

and lower half of the room (Fig. 12(b)). Eventually, we see that many more topic

labels are being used to represent different parts of the room (Fig. 12(c,d)).

In Extension 1(part 1), we show a video demonstration of ROST topic labels

being used to summarize an indoor environment. The video shows different topics

quickly converging to different parts of the room, such as: the bookshelf, the ceil-

ing, the windows, and the pin-up board. The video also show the summarizer using

these topic distributions to pick images from different parts of the scene. An orange

box around a summary image identifies the summary image closest to the current

observation.

5.4 Underwater Enviroments

Some examples of the topics learned in an underwater environment are shown in

Fig 4, and also in Video Extension 1(part 2). We see that the topics are represen-

tative of underlying physical phenomenon, and do well in describing scenes where

a mixture of these exist. Red and blue topics are being used to represent rocks in

the dataset, yellow for the sand-rock boundary, and cyan for the fire coral and the

white rope. We set both summary size and topic size to 6 for our experiments. The

hyper-parameters for the LDA were determined empirically.

Fig. 13(a) shows an example of the final summary generated by our online topics

based summarizer from a sample trajectory. The corresponding histograms show

the distribution of topics in the image. Fig. 13(b) shows uniformly sampled images

over the same trajectory, presented here for comparison. We see that the proposed

algorithm was able to recognize different species of corals (images 2 and 3), and

the accidental inclusion of a diver’s hand with a rope (image 6). When these images

were observed, the robot evaluated them as surprising, and as a result, slowed down

to a halt. Once these images were added to the summary, the surprise score falls

instantly, and the robot continued forward in search for new surprises.

In Video Extension 1(part 3), we show a live demonstration of an AUV as it

traverses an underwater environment. Its speed is controlled by the surprise score,

and as a result we see the robot stopping over different, previously unobserved visual

features, and then moving on at higher speeds when there is nothing of surprise.
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6 Conclusion

We have demonstrated a novel autonomous robotic system that can be used to assist

in semantic exploration of an environment. This required the development of a novel

exploration technique, which first semantically models the scene, and then controls

the speed of exploration based on the surprise score by the semantic model.

We presented ROST, a realtime online spatiotemporal topic modeling framework,

which attempts to model semantics of the streaming observed visual data. Using

ROST, we compute a surprise score of incoming observations, which is sensitive to

presence of high-level patterns in the scene, such as different coral species, rocks,

and sand. We showed that the proposed technique results in significantly better topic

labels, when compared with Latent Dirichlet Allocation based topic model. More-

over, the topic labels computed using ROST converge quickly, and are suitable for

use in autonomous agents working with realtime constraints.

Given a fixed trajectory, we demonstrated the robot traversing it with a non-

uniform speed, stopping at locations containing surprising observations, and moving

at high speeds over seemingly boring or previously observed regions. The resulting

summaries produced by our system were able to capture the visual diversity of the

underwater environment.

Our ongoing future work is focused on developing better realtime online topic

modeling techniques, such as the use of nonparametric hierarchical Dirichlet pro-

cesses, and their use in control of different robotic platforms for exploration tasks.
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Appendix A: Index to Multimedia Extensions

Extension Media Type Description

1 Video Demonstration of ROST topic modeling framework,

and its use in an underwater robot for autonomous ex-

ploration.
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(a)
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(c)

(d)

Fig. 12 Topics learned by ROST evolve over time to capture the growing complexity of the scene.

The figures are temporally sequenced, and show more topics being used to label different parts of

the scene as more time elapses.
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(a) Topics

(b) Uniform

Fig. 13 (a) A summary of six images generated online by the system. The histogram shows the

distribution of visual topics in an image, each color corresponding to a different topic. (b) For

comparison we show images sampled uniformly over the robot trajectory.


