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Abstract

Sustainable energy systems of the future will need more than
efficient, clean, and low-cost energy sources. They will also
need efficient price signals that motivate sustainable energy
consumption behaviors and a tight real-time alignment of
energy demand with supply from renewable and traditional
sources. The Power Trading Agent Competition (Power
TAC) is a rich, competitive, open-source simulation platform
for future retail power markets built on real-world data and
state-of-the-art customer models. Its purpose is to help re-
searchers understand the dynamics of customer and retailer
decision-making as well as the robustness of proposed mar-
ket designs. Power TAC invites researchers to develop au-
tonomous electricity broker agents and to pit them against
best-in-class strategies in global competitions, the first of
which will be held at AAAI 2013. Power TAC competitions
provide compelling, actionable information for policy makers
and industry leaders. We describe the competition scenario,
demonstrate the realism of the Power TAC platform, and an-
alyze key characteristics of successful brokers in one of our
2012 pilot competitions between seven research groups from
five different countries.

Introduction

Energy markets worldwide are undergoing momentous
change. In the European Union alone, required investments
into the liberalized, sustainable, smart electric grid of the fu-
ture are projected to run up to more than two trillion Euro
between 2011 and 2050, with total energy systems cost ris-
ing from 10.5% to 14.6% of the continent’s GDP (Euro-
pean Commission 2011). Key drivers behind these develop-
ments are the political desire for improved economic welfare
among consumers, as well as an increased share of electric-
ity production from renewable sources. Governments world-
wide are adopting ambitious agendas to promote these goals,
and research into “secure, clean and efficient energy” has
been identified as one of the key areas that require the imme-
diate attention of the scientific community (European Com-
mission 2013). Core issues to be addressed include (a) the
need for decentralized control mechanisms that deliver the
same degree of reliability previously afforded by monop-
olistic providers, and (b) the need for novel incentives for
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customers to shift electricity usage to times when renewable
sources are available (Ramchurn et al. 2012).

At their core, these are problems in decentralized, real-
time economic decision making that have long been under
study in the autonomous agents community, e.g. (Wellman,
Greenwald, and Stone 2007), and several authors have re-
cently used the results of this work to design agents that
solve selected aspects of the issues outlined above, e.g. (Pe-
ters et al. 2013; Reddy and Veloso 2011; Vytelingum et al.
2010). While the results of these authors are promising, we
find that they are limited in two important ways:

Limited Scope Energy markets are based on a complex in-
terplay among several markets on which future obliga-
tions with intricate properties are traded. Few research
groups command the resources required to build a robust,
validated simulation of this demanding environment be-
fore embarking on their actual research.

Limited Competitiveness and Comparability Each study
starts from a limited, self-built environmental model,
making results difficult to compare. This limits the im-
pact of research results and reduces the incentives for re-
searchers to be involved in this work.

We address these limitations with the Power Trading
Agent Competition (Power TAC, Ketter et al. 2012b, see
also www.powertac.org). Power TAC is a rich, open-source
simulation platform for future retail power markets coupled
with a series of annual competitions that challenge partici-
pants to build autonomous, self-interested agents that com-
pete directly with each other in this demanding environment.
We are hosting the first official Power TAC competition at
AAAI 2013 in Bellevue, WA.

Power TAC advances the state of the art in five important
ways: (1) It is the first comprehensive simulation platform
for future retail power markets. It supports research into
mechanism design, autonomous retail and wholesale elec-
tricity trading, and intelligent automation techniques cen-
tered on human preferences. (2) It provides a standardized
research infrastructure, alleviating the need for costly up-
front creation of environmental models, lowering barriers to
entry for new researchers, and promoting comparability be-
tween scientific studies in the field. (3) Its competitive na-
ture and the availability of state of the art benchmark strate-
gies will foster innovation. (4) The platform is used and
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supported by a growing community of researchers and de-
velopers who contribute state-of-the-art models for all facets
of the environment, leading to continuous improvements in
the simulation’s realism and sophistication. And (5) Power
TAC advances beyond earlier Trading Agent Competitions
by providing extensive facilities for experiment manage-
ment, data extraction, data visualization and analysis, and
mixed-mode games with human participation.

The paper is organized as follows. First, we give an
overview of related work in the agent, simulation and en-
ergy market literatures. Next, we describe the competition
scenario in some detail. And finally, we present a selection
of interesting insights based on one of our 2012 pilot tour-
naments.

Related Work

Electricity markets are undergoing a transition from regu-
lated monopolies to decentralized markets (Joskow 2008),
but so far the retailers in these markets are almost entirely
limited to purchasing power in the wholesale markets and
delivering it to their customers (Fleten and Pettersen 2005);
they have not had to deal with significant volumes of power
production among their customers. A critical unanswered
question is the extent to which self-interested behaviors of
market participants can effectively supplement hierarchi-
cal control of the physical infrastructure to balance sup-
ply and demand in such an environment. To answer this
important question we base our work on two major re-
search streams, computational sustainability and compet-
itive agent-based simulations.

The newly emerging computational sustainability field
studies the application of AI and other computational tech-
niques to sustainability issues, and smart grids are one focus
area for that community. For example, Voice et al. (2011)
explore market-based strategies for controlling the use of
“home” and other micro energy storage. And Ermon et
al. (2012) formalize the problem of optimizing real-time en-
ergy management of multi-battery systems as a stochastic
planning problem, and propose a novel solution based on
a combination of optimization, machine learning and data-
mining techniques.

Among the many important open questions and research
challenges posed by a power grid with large numbers of ac-
tive participants, e.g. (Ramchurn et al. 2012), only few can
be addressed by straightforward game-theoretic analysis (de
Weerdt, Ketter, and Collins 2011). The others are suffi-
ciently complex that they cannot be effectively addressed
by formal methods. To address these more complex is-
sues, a simulation-based technique known as Agent-based
Computational Economics (ACE, Tesfatsion 2002) has been
used to study electrical wholesale power markets, for ex-
ample (Sun and Tesfatsion 2007; Reddy and Veloso 2011;
Peters et al. 2013). Like other Trading Agent Competition
scenarios (Ketter and Symeonidis 2012), Power TAC ex-
tends the ACE paradigm by creating a rich economic simu-
lation and inviting research teams to develop their own soft-
ware agents to play the role of power retailers in the simula-
tion, and to enter them in annual competitions.

The Power TAC Scenario

The main elements of the Power TAC scenario are shown in
Figure 1. The scenario models a competitive retail power
market in a medium-sized city, in which consumers and
small-scale producers of electricity may choose among a
set of alternative electricity power providers, represented by
competing broker agents. The brokers are self-interested,
autonomous agents, built by individual research groups to
participate in the competition; the remainder of the scenario
is modeled by the Power TAC simulation platform. In the
real world, brokers could be energy retailers, commercial or
municipal utilities, or cooperatives.

In a tournament environment, simulations are run with
different numbers and combinations of broker agents, and
the agent that is most profitable over a range of scenarios is
the winner. Importantly, profit maximization does not pre-
clude other social desiderata such as fairness, utilization of
renewables, or certain levels of electric vehicle market pen-
etration. By properly setting the market’s economic mech-
anisms (Dash, Jennings, and Parkes 2003), market design-
ers can create incentive structures that lead self-interested,
profit-maximizing brokers towards socially desirable out-
comes. In a research environment, Power TAC may be
extended with experimental user-implemented mechanisms
that can then be subjected to broker competition to deter-
mine their effectiveness.

The simulation proceeds in a series of discrete timeslots,
each representing one hour in the simulation world. A typ-
ical tournament simulation runs approximately 60 days of
simulated time, although much longer simulations are pos-
sible. Time advances by one timeslot every five seconds,
so a simulation completes in about two hours. The actual
duration of the scenario is stochastic, to minimize the op-
portunity for brokers to exploit a predictable “end-of-game”
situation that, while it might win tournaments, has little re-
search value or relationship to the real world.

Customers and Tariff Market Brokers interact through
a retail tariff market with customer models that simulate the
households and businesses of a small city. Some customers
are equipped with solar panels and windmills, producing as
well as consuming power. All customers are assumed to be
equipped with smart meters; consumption and production is
reported every hour. Many customer models also include
controllable capacities or demand-side management capa-
bilities such as heat pumps or water heaters. These devices
can be remotely enabled or disabled to offset imbalances or
control costs, in exchange for lower rates.

Customer models exhibit sensitivity to weather conditions
(real-world weather reports and forecasts are used) and cal-
endar factors such as day of week and hour of day. The
models also respond to price changes (Gottwalt et al. 2011)
and have a range of preferences over tariff terms. For ex-
ample, some are willing to subscribe to variable-price tar-
iffs if they have the opportunity to save by adjusting their
power usage, while others are willing to pay higher prices
for the simplicity of fixed-rate or very simple time-of-use
tariffs. This behavior is supported by real-world pilots with
dynamic pricing schemes (EPRI 2012).

Many customer models are capable of adaptive capacity
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Figure 1: Main elements of the Power TAC scenario. Brokers are the competitors; markets, customers, energy suppliers, and
distribution utility are modeled by the Power TAC simulation platform.

management, allowing them to evaluate various possibilities
for capacity shifting and choose amongst the ones best suited
to the applicable tariff rates, while also considering the po-
tential choices of other customers that may be on the same
tariff (Reddy and Veloso 2012).

Tariff contracts may include usage-based and per-day
charges, fixed and varying prices for both consumption and
production of energy, rates that apply only above a speci-
fied usage threshold, signup bonuses, and early-withdrawal
penalties. Separate contracts may be offered for charging
electric vehicles, which could limit charging during high-
demand periods, or even offer to pay customers for feeding
energy back into the grid at certain times. Variable prices
may follow a fixed schedule (day/night pricing, for exam-
ple), or they may be fully dynamic, possibly with specified
advance notice of price changes.

Wholesale Market and Generating Companies Brokers
may buy and sell energy from retail customers, and they
may buy and sell energy for future delivery in a whole-
sale market, which is modeled on real-world markets such
as the European and North American day-ahead wholesale
power markets. At any given time, brokers may place orders
in the wholesale market to buy or sell power in 24 sepa-
rate auctions, the first for delivery in the following timeslot,
and the last 24 hours in the future. On the supply side, the
Power TAC platform includes large producers (or Gencos)
that simulate utility-scale power suppliers who sell their out-
put through the wholesale market. These suppliers represent
different price points and lead-time requirements, e.g. fossil
and nuclear power plants, gas turbines, and wind parks.

Distribution Utility The Distribution Utility (DU) mod-
els a regulated monopoly or government entity that owns and
operates the physical facilities (distribution lines, transform-
ers, etc.) and is responsible for real-time balancing of supply
and demand within the distribution network. It does this pri-
marily by operating in the regulating market, the real-time
facet of the wholesale market, and by exercising demand and
supply controls provided by brokers. The associated costs
are allocated to the brokers responsible for the imbalance. In
the real world, this balancing responsibility is typically han-

dled higher in the grid hierarchy, by the Independent System
Operator (ISO, North America) or Transmission System Op-
erator (TSO, Europe); the simulation implements a general-
ization of proposals to move some balancing responsibility
to the distribution level (Strbac 2008).

Power TAC is a market simulation. It abstracts away
most technical considerations, such as power factor and dis-
tribution losses, that arise from non-ideal behaviors of the
real power infrastructure. As long as volumes of delivered
power do not approach physical constraints, we can treat
most such phenomena as discounts, and fold them into the
market structures. For example, distribution losses can be
roughly accounted for by charging brokers a per-kilowatt-
hour fee for delivering power to their customers.

Brokers Brokers develop customer portfolios by offering
tariff contracts to a population of anonymous residential and
business customers, and by negotiating individual contracts
with larger customers (such as major manufacturing facil-
ities, or greenhouse complexes with many Combined Heat
and Power (CHP) units).1 Because controllable capacities
can reduce costs significantly, brokers can offer special tar-
iffs for them, and then make offers to the DU for the right
to exercise them to reduce imbalances. Given a portfolio of
customers, brokers compete with each other in the whole-
sale market to minimize the cost of power they deliver to
their consuming customers, and to maximize the value of
power delivered to them by their producing customers.

Insights from the 2012 Pilot Competitions

We have hosted several pilot competitions on the Power
TAC platform, including competitions at IJCAI 2011 in
Barcelona, at AAMAS 2012 in Valencia, and at IEEE SG-
TEP 2012 in Nuremberg.2 Teams from Croatia, Germany,
Greece, Korea, Mexico, Netherlands, UK, and the US en-
tered brokers in these tournaments, providing us with a full-

1The negotiation feature was not implemented for the 2012
tournaments.

2International Joint Conference on Artificial Intelligence, Au-
tonomous Agents and Multi-Agent Systems, and IEEE Conference
on Smart Grid Technology, Economics, and Policies, respectively
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Broker Research Group

AstonTAC Aston University Birmingham
CrocodileAgent University of Zagreb
LARGEpower Erasmus University Rotterdam
Mertacor Aristotle University Thessaloniki
MinerTA University of Texas at El Paso
SotonPower University of Southhampton
UTest University of Texas at Austin

Table 1: Participants in the 2012 Nuremberg pilot competi-
tion

scale validation of Power TAC, and broker developers with
opportunities to evaluate their strategies.

A credible simulation must emulate interesting real-world
phenomena, while abstracting away details that are unlikely
to contribute to the phenomena of interest. As part of our
validation, we expected several characteristic phenomena
to emerge from interaction between brokers and the Power
TAC platform. These included:

Competitiveness Broker performance should depend on
broker strategies, not on random draws. We expected con-
sistent, discernible performance differences between high
and low performers in the field.

Resilience to Competition We expected the best strategies
to keep their competitive edge under competition from ad-
ditional brokers.

Balancedness We expected that the best strategies would
perform competitively in all three markets: retail, whole-
sale, and regulating market.

Economic Realism We expected to re-discover a number
of fundamental economic truths in the competition re-
sults: prices should correlate with demand, wholesale
prices should be higher for shorter leadtimes, and profit
margins should fall with increasing competition.

We analyzed 51 games from the Nuremberg 2012 pilot
competition.3 Our analyses give insights into the key suc-
cess factors behind high-performing broker strategies, and
suggest important areas of future work for broker develop-
ers. Table 1 lists the participating brokers.

To get a sense of overall performance, we first analyzed
broker profit shares – the percentage of each broker’s profit
in all profits made during a game (see Figure 2). Inter-
estingly, we find pronounced differences in terms of profit
share magnitude, certainty, and resilience to competition.
AstonTAC, for example, does well on all three counts, with
profits that are high on average, stable over different games,
and relatively unaffected by the additional competition in-
troduced in 5-player games. Mertacor and LARGEpower,
on the other hand, play strategies that perform well in some
cases, but that are not as consistent. To understand the rea-
sons for these differences we analyzed the brokers’ actions
in Power TAC’s three principal markets: retail, wholesale,
and regulating market.

3The Nuremberg competition used the most recent beta version
of the Power TAC platform; for this analysis, we excluded games
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Figure 2: Average profit share of brokers in the Nuremberg
2012 pilot competition. Certainty is computed as the inverse
sample standard deviation. Small numbers indicate the num-
ber of games on which a data point is based. The default bro-
ker is an unsophisticated strategy provided by Power TAC
itself and models the incumbent monopoly.

Figure 3 shows the strategic positions of brokers in the re-
tail market for electricity consumption.4 As expected, there
is a clear relationship between the price level offered on
electricity tariffs and the share of customer demand served.
Mertacor, Aston TAC, and UTest are high volume play-
ers, offering competitive rates in exchange for significant
shares of the retail market. Mertacor, in particular, con-
sistently captures the majority of the market at extremely
low prices which cut into its own margins (see Figure 2).
SotonPower and AstonTAC are interesting in that their suc-
cesses appear to hinge on fundamentally different causes:
while Aston TAC aims to attract large volumes in the re-
tail market, SotonPower’s success is apparently based on a
more moderated combination of larger markups and other
factors discussed below. Importantly, the retail rates offered
are typically less than half the cost of the rates offered by the
incumbent monopoly (default broker), which illustrates the
benefits of competitive retail pricing to customers. Some-
what surprisingly, we find no discernible variation in retail
markups over different game sizes. This suggests that the
early-stage brokers studied here are not yet fully exploiting
their strategic options.

To offset the (expected) consumption of their retail cus-
tomers, brokers must acquire future supply commitments in

that were affected by technical flaws of the beta.
4Only AstonTAC and UTest also purchased power in the retail

market during the games that we analyzed; volumes were small in
relation to wholesale market activities.
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Figure 3: Retail market position of participating strategies.
Lighter coloring indicates higher market share uncertainty.

the wholesale market. Figure 4 illustrates brokers’ strategic
positions in this market. SotonPower’s low-volume strategy,
likely combined with high forecasting accuracy, allows it to
cover its electricity needs at extremely low prices, which ex-
plains at least part of its overall success. The relatively weak
brokers LARGEpower, Mertacor, and UTest are, conversely,
paying prices that are up to 1.6 times above market average.
Note that this is not solely a consequence of large volumes
and the corresponding need to invoke marginal, high-cost
providers of electricity. AstonTAC, for example, acquires
larger amounts of electricity than LARGEpower at lower
prices on average, suggesting better timing of wholesale pur-
chases or smarter use of bid prices. Mertacor pays the most
for wholesale power; together with its low-cost tariffs, this
largely explains its relatively weak performance.
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Figure 4: Wholesale market position of participating strate-
gies. Lighter coloring indicates higher market share uncer-
tainty.

We next looked at the market for balancing power (regu-
lating market, see Figure 5). This market is implicit in that
residual imbalance between consumption and production is
automatically offset by the DU in real-time. The penalties
(or rewards) that a broker incurs in the process are, however,
dependent on the overall imbalance on the grid at that in-
stant, as well as on their own imbalances. As a result, it can

be worthwhile for a broker to risk an imbalance if it has the
opposite sign from the overall imbalance. This relationship
makes the regulating market an interesting strategic element
for brokers.

As expected, the figure shows no simple connection be-
tween the level of imbalance and the corresponding reward
or penalty to the broker. Some general trends, however, can
be observed: undersupply (lower half of the figure) gener-
ally leads to higher penalties than the rewards afforded by
oversupply (upper half of the graph). This is reflective of
the asymmetric balancing mechanism employed in Power
TAC (de Weerdt, Ketter, and Collins 2011), and it illustrates
the difficulties in explicitly using the balancing market as
part of a strategy. AstonTAC, Mertacor, and to a lesser ex-
tent LARGEpower, are mostly well-balanced. They some-
times do incur sizable penalties, however, as a result of small
errors on large volumes. MinerTA and SotonPower gen-
erally make larger mistakes on smaller volumes, and these
mistakes are more favorably distributed between over- and
undersupply, leading to smaller overall balancing penalties
or even to rewards in the balancing market. UTest makes
large, systematic errors on large volumes, leading to hefty
penalties.

�10

0

10

0.1 1.0 10.0
Log Unbalancedness

Lo
g 

B
al

an
ci

ng
 M

ar
ke

t P
ro

fit
 [M

on
ey

 U
ni

ts
]

Broker
AstonTAC
LARGEpower
Mertacor
MinerTA
SotonPower
UTest

Total Distribution
Volume [kWh]

0.0e+00
2.5e+07
5.0e+07
7.5e+07
1.0e+08

Figure 5: Balancing market positions. Each point repre-
sents one broker/game combination; larger symbols indicate
higher overall volumes. Notice the log-log scaling.

To gain a deeper understanding of the dynamics of these
games, we finally looked at results in individual games.
These analyses shed further light on broker performance dif-
ferences, and they suggest interesting questions for future
research. For the sake of brevity, we discuss only selected
examples here. Figure 6 shows the relationship between
purchase volume and price in the wholesale market for two
complete example games. Interestingly, two very different
patterns emerge: the game in the left panel is characterized
by the expected upward sloping relationship between vol-
ume and price. As higher-cost providers of electricity need
to be activated to cover demand, prices rise. Whereas the
game in the right panel shows a general upward tendency,
it also shows pronounced signs of economic regime (Ket-
ter et al. 2012a) transitions (including an “outlier regime” in
the upper right-hand corner of the panel), and of start-game
effects (lighter dots on the lower left) as brokers adapt to
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the market. From a theoretical perspective, it is interesting
to consider the properties of the participating strategies that
lead to this behavior. Power TAC enables the replay of indi-
vidual games to support this type of research.

game�545: default broker,MinerTA,SotonPower game�577: default broker,LARGEpower,SotonPower

20

30

40

50

60

25

50

75

0 25 50 75 100 0 30 60 90
Wholesale Purchases [MWh]

A
ve

ra
ge

 P
ric

e

0

500

1000

1500
Time

Figure 6: Wholesale prices as a function of volume. Each
dot represents the clearing price for one timeslot, lighter dots
are earlier timeslots. Left: default broker vs. MinerTA vs.
SotonPower; right: default broker vs. LARGEpower vs. So-
tonPower

While Figure 6 suggests a somewhat homogenous whole-
sale market, it is worth noting that wholesale bidding in
Power TAC is actually highly complex. In addition to de-
ciding the optimal bid price and volume, a broker also needs
to factor the optimal leadtime into its decision. Recall that
for any given timeslot in which electricity is needed, there
are 24 separate but interrelated auctions ranging from 1 to
24 hours in advance. Figure 7 shows the impact of leadtime
on prices for two selected games. Both panels show the gen-
eral downward-sloping price trend for increasing leadtimes
that economic theory would suggest. However, there are ir-
regularities in these graphs that underline the importance of
reasoning about leadtimes and order limits. First, the graphs
explain the high prices that Mertacor and UTest are paying
in the wholesale market. In the left panel, Mertacor cov-
ered all its electricity demand in the 2-hour-ahead auction
at prices that are close to double the prices of longer lead-
times. In the process, it drives up prices for AstonTAC and
LARGEpower, while SotonPower controls its exposure to
this effect through limit orders. An analogous observation
holds true for UTest in the right panel. LARGEpower (left
panel) placed all its orders as market orders. This leads to
relatively good balancing performance, as only forecasting
error and no uncertainty in order filling impact its results,
but it is also subject to unpredictable fluctuations in whole-
sale prices that will hamper its risk management efforts.

Conclusions and Future Work

Our energy-hungry civilization must somehow adapt itself
to the availability of renewable sources. This will require a
combination of new technology and public policy that works
with real people and institutions. The Power TAC project
intends to contribute by providing a robust research platform
for testing market-based approaches to energy sustainability.

e�493: AstonTAC,default broker,LARGEpower,Mertacor,SotonPowergame�567: default broker,MinerTA,UTest
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Figure 7: Leadtime effects in the wholesale market; left
panel: AstonTAC vs. default broker vs. LARGEpower vs.
Mertacor vs. SotonPower; right panel: default broker vs.
MinerTA vs. UTest

The annual competition model, along with availability of the
platform and a set of working agent implementations, has
been an effective driver of research activity in domains as
diverse as robot soccer, disaster response, and supply-chain
management.

The preliminary analyses we presented are evidence of the
realistic macro-level behavior emerging from broker interac-
tion with Power TAC, and of significant performance differ-
ences between different approaches to retail electricity trad-
ing. Once the participating strategies are fully developed,
tools like empirical game theory (Jordan, Kiekintveld, and
Wellman 2007) can be leveraged to generate compelling, ac-
tionable insights into novel technologies and public policies
for future sustainable energy systems.

The Power TAC platform, including the simulator, broker
agent framework, log analyzer, and tournament manager, is
an open-source project, designed and documented to be ac-
cessible to advanced students. Access to the software and
documentation, along with a repository of broker agent im-
plementations, will be maintained through the powertac.org
website. We look forward to many years of vigorous com-
petition and high-impact research results.
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