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Abstract

We present a method for synthesizing animations of autonomous space, water, and land-based vehicles in games or

other interactive simulations. Controlling the motion of such vehicles to achieve a desirable behavior is difficult

due to the constraints imposed by the system dynamics. We combine real-time path planning and a simplified

physics model to automatically compute control actions to drive a vehicle from an input state to desirable output

states based on a behavior cost function. Both offline trajectory preprocessing and online search are used to build

an animation framework suitable for interactive vehicle simulations. We demonstrate synthesized animations of

spacecraft performing a variety of autonomous behaviors, including Seek, Pursue, Avoid, Avoid Collision, and

Flee. We also explore several enhancements to the basic planning algorithm and examine the resulting tradeoffs

in runtime performance and quality of the generated motion.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Interactive Animation

Keywords: Vehicle Motion, Path Planning, Steering Behav-

iors, Real-Time Animation, Online Search

1. Introduction

Realistically animating the behavior of autonomous vehicles

in interactive simulations presents a challenging research

problem with strong connections to research in the fields

of robotics, computer graphics, and artificial intelligence. In

particular, dramatically improved realism in the rendering of

computer games during recent years has raised the level of

expectation for synthesized animations. Reynolds has pre-

viously proposed several steering behaviors for controlling

the motion of autonomous creatures in virtual environments

[Rey99]. These behaviors produce compelling motions for

autonomous entities and are generalized improvements over

the original BOIDS model [Rey87]. However, it is difficult

to directly apply them to animate vehicles such as fighter

planes or spacecraft whose system dynamics typically in-

volve complicated control models and sustained high veloc-

ities.
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Figure 1: Generated example spacecraft trajectories in a

field of moving asteroid obstacles.

Our research focuses on extending the steering behavior

control model and combining it with online path planning

techniques to yield more visually realistic synthesized vehi-

cle animations. Our path planning framework is suitable for

controlling the motion of not only space, water, and land-

based vehicles, but potentially birds, bicycles, or a variety

of simulated entities with significant dynamics. We utilize

a physically based model of the available controls, offline
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trajectory preprocessing, and efficient online search to gen-

erate motion trajectories. Behaviors can be intuitively de-

signed for planning and coordinating the motions of mul-

tiple autonomous entities. We applied this framework to the

problem of generating motions for spacecraft and missiles,

which were implemented and evaluated in an interactive

game "Aeternalis". We also explored several enhancements

to the real-time path planning algorithm and analyzed their

effects on runtime performance and motion quality.

2. Background and Related Work

Our framework draws from research in both path planning

and real-time local steering algorithms. The goal is to inter-

actively generate high-quality paths for interactive dynamic

environments in real-time applications. We adopted a hybrid

approach to path planning, combining online search with the

notion of steering behavior functions as the guiding heuris-

tics of the search algorithm.

Offline path planning algorithms often emphasize accu-

racy and correctness at the cost of speed, and may take into

account full dynamics and detailed robot control models

when planning paths. With full dynamics, non-holonomic

constraints can be simulated with high fidelity. However, for

application domains such as interactive games, high accu-

racy is typically secondary to the speed of the algorithm. In

these domains, the rapid generation of interesting and visu-

ally plausible motion is required.

One popular path planning method which has been used

to plan motions for dynamic systems is the rapidly-exploring

random tree (RRT) [LaV98, LK99]. RRT-based methods

have also been used for real-time robot replanning systems

as described in [BV02]. The emphasis is on generating goal-

oriented paths for movement planning in both static and dy-

namic environments. In this paper, we consider the joint

problem of generating paths for many types of behaviors,

including those that are not goal-oriented, as well as gener-

ating animation trajectories which are visually pleasing.

In contrast to path planning algorithms which make use

of global information, reactive steering behaviors provide a

very different approach that uses local information [Rey99].

Offshoots of the original BOIDS model [Rey87] are ubiqui-

tous in graphics, and similar methods using potential fields

have been devised to modeling the actual flocking of ani-

mals [VSH∗99]. Various heuristics can be defined to gener-

ate complex group behaviors such as flocking and following.

The steering behavior approach uses a time-local approxi-

mation of steering forces which depend on the desired be-

haviors. Steering forces are typically very efficient to com-

pute relative to global path planning. However, steering be-

havior methods are susceptible to becoming trapped in local

minimum or other infinite behavior loops because they con-

sider only local information.

The problem of applying group behaviors to systems with

significant dynamics has been investigated by Brogan and

Hodgins [BH97]. They consider controlling herds of hop-

ping robots and bicycles [BH02]. Important issues con-

sidered include multi-agent control and group formations,

where the perceptive limitations of agents influence the out-

come of the simulation. These methods are still fundamen-

tally local techniques. In our approach, global path planning

occurs on top of a simulation that directly takes into account

the system dynamics and obstacle motion, making the sys-

tem much less prone to becoming trapped in local loops.

In the robotics literature, trim trajectories for heli-

copter control and the notion of composing them to form

obstacle-avoiding paths has been investigated by Fraz-

zoli [Fra01, FDF02]. This work uses a very detailed model

of the control and helicopter dynamics, which is above the

level required for interactive games. In addition, this work

focuses primarily on goal-oriented motion, and does not pro-

vide a mechanism for clearly expressing varied types of be-

haviors. Bayazit, et. Al. use environment preprocessing to

build a global roadmap of subgoals that can be combined

with local behavior rules [BLA02]. In [LJC01], simulated

crowds with leaders and followers were animated using de-

coupled planning and following behaviors. This research is

most closely related to our work in that it combines global

planning with reactive behaviors. These methods have not

yet been applied to systems with significant dynamics.

Another closely related branch of research relates to

Markov Decision Problems [GRD96]. In particular, the con-

tinuous and partially-observable versions of the general

problem (CMDP, POMDP) can be used as one formulation

of the planning problem. Extensive research aimed at solv-

ing MDPs efficiently has been developed [RP02, Sze01].

From this perspective, given the payoffs of choosing partic-

ular paths from a continuum defined by the possible control

model inputs, solving for the optimal policy corresponds ex-

actly to choosing the right sequence of control inputs that

generates the best path. We explore in greater detail the links

between our path planning problem and the associated tech-

niques for solving MDPs.

3. Path Planning Framework

The path planning framework described in this paper is com-

posed of several key components: (1) the steering behav-

ior interface, (2) a visually-plausible control model, (3) pre-

integration of the dynamics to enable real-time performance,

and (4) a search algorithm designed to operate with limited

time and information. Each of these components will be de-

scribed in greater detail in the following sections.

3.1. Steering Behavior Interface

Steering behaviors, as described in the original paper by

Reynolds [Rey99], present an intuitive method of control-

ling the motion of virtual agents. Each steering behavior is
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Figure 2: Steering behavior parameterized model.

denoted by the type of motion it produces, such as Seek,

or Wander, and several can be combined simultaneously to

produce highly complex behaviors. Formally, each steering

behavior can be thought of as a mapping from world-state

space to desired-velocity space. The steering behavior con-

trol algorithm then makes the proper adjustments so that the

vehicle achieves the desired velocity.

One interesting property of steering behaviors is that they

provide a universal method in which many different types of

behaviors can be expressed. Regardless of the input, the final

output of a steering behavior is simply a vector of desired

velocity. Thus, behaviors do not need to be goal-oriented

and can easily support motions such as wandering. The uni-

formity of output is also useful as it allows for the mathe-

matical combination of steering behaviors. Steering behav-

iors also reduce the interdependence between behaviors and

an entity’s control model, as the mapping between desired-

velocity and controls is orthogonal to the actual steering be-

havior functions.

Despite the numerous advantages, there are also draw-

backs to using steering behaviors. First, the mathematical

combination of different steering behaviors only has mean-

ing in some cases, and thus combining behaviors often re-

quires parameter tweaking by the designer. Furthermore,

steering behaviors rely on highly-local approximations in

both time and space and thus are poorly suited for non-

holonomic vehicles in highly constrained environments.

In our framework, we make several modifications to steer-

ing behaviors in order to make them suitable for path plan-

ning. Under these modifications, we have implemented sev-

eral steering behaviors from the Reynolds paper, including

Seek, Pursue, Avoid, Collision Avoidance, and Flee [Rey99].

The primary modification to the original algorithm involves

the input and output of the steering behavior functions. In

our model, a steering behavior takes as input a path and re-

turns a goodness value associated with the given path. Each

path represents a possible trajectory and is composed of sev-

eral parameters: a time offset which represents the starting

time of the path relative to the present time; an initial and

final position (which is used as a linear approximation of the

true path), the final orientation given by a quaternion and

the final facing direction given by a 3-vector. An example

path and associated parameters is shown in Figure 2. The

parameters for each path are passed as inputs to the steering

behaviors. p0 and p1 are points in world space, and d0 and

d1 specify the velocity of the craft at the beginning and end

of the path. The full orientation quaternion is also stored for

the beginning and end of the paths.

The goodness value returned as output from a steering be-

havior is a function of the input path and any auxiliary data

required by the steering behavior. For example, a behavior

which relates to collision detection may make use of a scene

description with bounding spheres representing the objects

in the scene, and execute ray-tests or do other geometric op-

erations on the scene. A simple behavior such as seeking to a

point may only take in a 3D point which represents the seek

target. The steering behavior returns higher values for paths

which are more desirable than others.

As an example, consider the Seek behavior. The auxil-

iary input to this behavior is a target point that the agent

should seek towards, which is represented as a floating point

3-vector. If we denote the initial and final positions of the

vehicle on the input path by p0 and p1, and the seek point by

t, then the seek function can be expressed as:

g =
1

4

(

1+
d1

‖d1‖
·

t− p1

‖t− p1‖

)

∗

(

1+
p1− p0

‖p1− p0‖
·

t− p1

‖t− p1‖

)

Note that paths where the vehicle faces towards the target

are given higher values, and paths which contribute more to

moving the ship closer to the target are also given higher

values. The bias and scale is applied to ensure the function

is positive and in the range [0,1].

The Flee, Pursue, and Avoid behaviors are similarly im-

plemented. The basic Seek and Flee behaviors simply seek

towards or escape from a single point, and thus have no

need for further information. The Pursue and Avoid behav-

iors take as input a target vehicle, and operate similarly but

instead use a simple linear velocity prediction to determine

the future position of the target at a given time in the future.

On the other hand, a behavior such as Collision Avoid-

ance makes use of significantly more information about the

scene. Our implementation of the function maintains a multi-

resolution hash space which contains bounding spheres for

the objects in the scene. These spheres are inflated by the ra-

dius of the steering vehicle, and input paths are evaluated by

ray-test queries. A goodness of one is returned in the case of

no collision, while a value of zero is returned in the case of

a collision. This binary collision function has some benefits

and drawbacks as compared to the original Collision Avoid-

ance function, which will be considered in Section 5.

Our implementation of steering behaviors uses an object-

oriented framework in which steering behaviors have a

clearly defined interface and thus can be easily combined

and composed in different ways. The Composite behavior

represents a multiplicative combination of different steering

behaviors. In our implementation, the designer can define

the behavior of a vehicle with a few simple statements:
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s1.Behavior = new Seek(0, 0, 100);

s2.Behavior = new Composite(

new Pursue(s1), new AvoidCollision());

Considering the issue of numerical bounding of combined

steering behaviors, we require that each steering behavior

returns a value in the range [0,1]. The need for this restriction

is discussed further in Section 3.3. An infinite value steering

behavior h(x) 7→ [0,∞) can be converted to a bounded form

f (x) 7→ [0,1] by simply using a formula such as:

f (x) = 1−
1

h(x)+1

We do not automate the modification of weights in this

framework, and give the designer full control over the

weights and gains on different steering behaviors. Thus, it

remains the responsibility of the designer to determine ap-

propriate weights and gains depending on the desired overall

behavior.

3.2. Control Model and Pre-Integration

The path planning framework places no constraints on the

complexity or simplicity of the control model used. The only

requirements for any control model are an input space which

is parameterizable and the ability to forward integrate and

generate vehicle trajectories under different control inputs.

For complex control models, integration is expensive and

unsuitable for online use. One solution is to attempt to pre-

integrate a collection of representative trajectories offline for

later use at runtime. The primary drawback is the potentially

tremendous storage costs - a full dynamics control model

involving rotational and linear velocity as well as variable

thrust, pitch, and yaw controls would require immense stor-

age in order to cover an adequate sampling of the space of

available controls. Moreover, because rotational and linear

velocity inputs may be unbounded, the difficulty of precom-

puting trajectories is exacerbated.

In this paper, we adopted a simplified control model

which produces visually pleasing vehicle animations while

remaining efficient enough to be stored compactly for real-

time use. The state space of a controlled vehicle is given by

the following parameters:

S = {X ,v,θ, θ̇}

X is a 3-vector which represents the current position of the

vehicle in world space. v is a scalar, and denotes the for-

ward velocity of the vehicle. The angular elements θ and θ̇

represent the orientation and angular velocity of the craft.

The orientation is stored as a quaternion in all implementa-

tions, while the angular velocity is separated into yaw, pitch,

and roll components depending on the domain and the set

of available controls. For the 2D case, only the yaw angular

velocity is used, while the 3D case requires at least both the

yaw and pitch angular velocities. The roll angular velocity

can be added to allow for the generation of more complex

motions, but the resulting model requires more storage and

increased running time. The model also assumes that the ve-

hicle maintains constant forward velocity v in the direction

that it instantaneously faces. In some cases, we restrict the

ability to accelerate or decelerate. The range of angular ve-

locities available to the craft along each rotational axis can

be bounded by arbitrary limits in order to simulate vehicles

of varying maneuverability.

Prior to runtime use, a fixed time interval is selected which

determines the frequency of control input changes. This in-

terval should be selected by the designer and depends on

the complexity of the environment and the degree to which

the steering behavior functions vary over time and space. In

our example domain, we used a value of one second. During

execution, the steering behavior selects a new set of con-

trol inputs after every interval. In our model of the vehicle,

the control inputs are simply target yaw, pitch, and roll an-

gular velocities. Once the appropriate target velocities are

selected, the craft’s actual angular velocity is linearly inter-

polated over the time interval from the angular velocity at

the start of the interval to the selected values.

This simplified model differs from more realistic, yet

computationally intensive models of vehicle dynamics. First,

although the vehicle’s angular acceleration is not explicitly

bounded along any axis, the bounds on angular velocities

and the time interval between selecting new angular veloci-

ties places implicit bounds on the vehicle’s angular acceler-

ation. Second, the simplified control model greatly reduces

the number of necessary pre-integrated trim trajectories as

compared to a full-blown dynamic simulation. In our case,

because the velocity is forward-aligned, the trajectories are

dynamics-state invariant and can be easily applied to any

position and orientation of the craft via simple linear trans-

forms. Finally, we note that the linear interpolation of an-

gular velocities results in generated trajectories that are C1

continuous but not C2 continuous. However, the motions still

appear smooth and pleasing to the human eye.

In our implementation, when pre-integrating the trim tra-

jectories, we note that a different trajectory results for ev-

ery pair of initial and final angular velocities. Thus, a model

with yaw and pitch requires O(n4) storage, where n is the

number of samples along each control input axis. For a

uniform sampling of the control model, bounds and incre-

ments are selected for each axis and the ship is forward in-

tegrated to determine the resulting set of trajectory samples.

For each trajectory, we store only the relative ending posi-

tion, facing vector, and orientation quaternion as if the ship

were initially placed at the origin with the identity rotation.

Stored as single-precision floating point values, this requires

12+12+16 = 40 bytes per path. The control models that we

experimented with contained between 300 and 80000 paths,

resulting in modest precomputation sizes ranging from 12

KB to 3.2 MB. The precomputation can be reused for all

vehicles using the same control model, as long as the angu-
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Figure 3: Trajectory traces for an autonomous animated spacecraft in 2D with only yaw control inputs. From left to right, trim

trajectories with initial yaw velocity 0.0 to 6.0 in increments of 1.0. In each image the paths result from choosing different end

angular yaw velocities of -12.0 to 12.0 in increments of 1.0 radians per second.

Figure 4: Trajectory traces for a spacecraft in 3D, with yaw and pitch control inputs. From left to right, the camera rotates

around the trajectory traces for clarity. In each image the paths result from choosing different end angular pitch and yaw

velocities of -6.0 to 6.0 in increments of 2.0 radians per second.

lar velocity bounds for those vehicles are less than or equal

to the bounds used in precomputation. Each vehicle can also

have a different velocity v, provided that it is constant during

the vehicle motion. This is possible because differences in

velocity simply result in trajectories that are scaled in length.

Symmetry can potentially reduce storage costs by reduc-

ing the number of initial-final state configurations which

need to be precomputed, but we do not take advantage of

these factors in our current implementation. One difficulty is

that the actual control model as well as the integration pro-

cess determines whether or not symmetry is applicable along

different control input axes.

An important issue that must be dealt with in any imple-

mentation is ensuring a high correlation between the offline

precomputed trajectories and the actual online integrated tra-

jectories of the vehicle. We use simple Euler integration with

a fixed timestep in both cases, which ensures that our paths

match exactly. Systems using variable simulation timesteps

with low-order integration may choose to either warp or in-

terpolate to ensure that the precomputation matches with the

simulation.

3.3. Online Search

The online search component of our framework is respon-

sible for selecting the sequence of control inputs to be used

at the start of each time interval. Given the current state of

the ship, the possible future states are generated using the

precomputed trim trajectories. Ideally, the search would se-

lect a sequence of control inputs that maximizes the sum of

the goodness returned by the steering behaviors for the infi-

nite sequence of path segments generated by the selection of

inputs.

While the original control input steering problem is con-

tinuous in both time and space, we approach the problem by

sampling and discretizing, both of which convert the contin-

uous decision problem into a discrete decision problem. As

control inputs are only selected at regular intervals, time dis-

cretization is already inherent to our control model. Further-

more, as we uniformly sample the control input space, we

also use this sampling as the basis for discretizing the set of

possible actions. Note that this decision is not forced on the

online search as it is still possible to use the preintegration to

generate values for continuous inputs via interpolation. We

discuss further effects of sampling in Section 5.

If we define a path by a sequence of discrete path seg-

ments p0, p1, ..., and a function g to be the value returned by

the steering behaviors when considering some path segment,

then the goodness of any path can be approximated by:

∞

∑
k=0

g(pk)

For the purposes of planning, the path sequences are infinite

and thus to obtain a reasonable comparison of infinite-valued

paths, we must apply a discount factor to future goodness

values. This practice is standard when solving for the opti-

mal policy in Markov decision problems. The modified eval-
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uation formula for a path is:

∞

∑
k=0

g(pk) ·d
k

In this case, d is a discount factor that is in the range (0,1).
If a bound is placed on goodness values, then we can nat-

urally place a bound on the sum. In our case, each steering

behavior returns a value in [0,1] and the result is combined

by multiplication. Thus, each term is bounded, and for some

path p of length l we can bound the total value of all paths

beginning with p by:

l−1

∑
k=0

g(pk) ·d
k±

dl

1−d

In our search, we select a depth that corresponds to a par-

ticular maximum error in the steering behaviors and simply

use the sum component of the formula. This selected depth

acts as a limited horizon in the search. In practice, due to the

breakdown of local approximations as we search further into

the future, adopting limits of about 15 to 20 states worked

reasonably well in our implementation. Further discussion

of the effects of local approximations on the search is given

in Section 5.

The search strategy we implemented is based on a form of

greedy search or best-first search. A new search is conducted

from the current state of the ship at the beginning of each

time interval when the new control inputs must be selected.

The pseudocode for the search is given in Algorithm 1. The

current state of the ship is denoted by s0 and is assigned

a depth of 0. The search space consists of two sets: V , the

set of visited states; and E, the set of expanded states. A

state s is considered visited once the path from s0 to s has

been evaluated. The state is considered expanded once the

control model has been sampled at s and trajectories leading

to successor states have been generated. V initially contains

only s0 while E begins as an empty set.

During the search routine, we repeatedly expand the state

with the best evaluation among the states visited but not yet

expanded until we have expanded all the visited states or

have run out of time. The process of expanding a state into

successors is accelerated by using the offline preintegration

described in Section 3.2. The end position for each path can

be computed with a matrix transformation. All or only a por-

tion of the precomputed paths are evaluated to future states,

depending on the specific search algorithm in use.

For each state that we visit, we compute a goodness met-

ric using the path between the state and its parent and pass it

into the steering behavior evaluation function. The resulting

value is then multiplied by the discount factor as mentioned

above, and added to the parent’s value in order to obtain the

goodness of the path. When the node is inserted into the

expanded set E, the value used is this value with an added

optimism factor f in the range of [−1,1] multiplied by the

remaining maximum bounds. Thus, if we let k be the depth

Algorithm 1: Pseudocode for online search.

V - set of visited states;

E - set of expanded states;

V = {s0};

E = {};

depth(s0)← 0;

t← 0;

while t < tmax or V = E do

sm = argmaxsi∈V−E {evaluation of si};

if depth (sm) ≤ Dmax then

Ssucc ={si |si = apply (controli, sm)};

depth (si) = depth (sm) + 1 ∀si ∈ S;
end

E = E + {sm};
V = V + Ssucc;

end

sbest = argmaxsi∈V {evaluation of si};

path = Retrace: control sequences s0→ sbest ;

return path;

of a state s, and s′ be the parent of s, then the value v(s) and

effective value ev(s) of the state s are given by:

v(s) = v(s′)+g(ps→s′)∗d
k−1

ev(s) = v(s)+
dk

1−d
∗ f

This formulation allows paths to be compared on the basis

of the infinite paths that go through the finitely explored path

segments. Thus, it is possible to compare paths of varying

length in a common format because of the bounding on pos-

sible path values. The optimism factor f represents an esti-

mation of the average steering behavior values for paths as

they grow to infinity. Although the effects of the optimism

factor on the search have not been fully explored, lower op-

timism factors tend to cause the tree to be biased towards

searching deeper, while larger optimism factors tend to bias

exploration among shallower nodes.

Once the search has terminated, we find the leaf state sbest

which has the highest evaluation among the visited states.

We can then trace back to s0 to find the sequence of paths

and control inputs to get from s0 to sbest . The first control

input in the sequence is returned as the selected input, and

the current implementation discards the other inputs as they

can potentially be invalidated by the time the vehicle arrives

at the end state and initiates the subsequent search.

The selection of sbest is not trivial, and different ways of

selecting the best state can yield different search outcomes.

One restriction that we place on the selection is that we only

consider the leaf states with depth greater than or equal to

some minimum value. This restriction helps to avoid the sit-

uation in which a shallow state is selected on the basis that

it has a fairly high value but it has not been extensively ex-
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Figure 5: Example search patterns for single-step, uniform sampling, and adaptive sampling. In the single-step case (left), a

small fan represents the trajectories being considered. In the uniform sampling case (center), the trajectory candidate tree is

extremely dense. The adaptive sampling case (right) represents a tradeoff between performance and path quality.

panded yet so the future paths are unknown. Depending upon

the severity of the nonholonomic constraints, if such a path

were to be selected, a future collision could be unavoidable

due to insufficient time and free space to escape. Selecting a

state with at least some minimum depth means that there is

some guarantee of goodness up to some time in the future.

Using the described search framework, we implemented

three different search algorithms which differ in the num-

ber and the maximum depth of states expanded. The search

strategies also differ in the method used to select the suc-

cessor states for each state that is being expanded. Figure 5

shows snapshots of the various search trees at runtime.

Single-Step Search: This type of search is used only for

comparison with the other methods. In this case, we only

expand the current state of the ship and visit all of its succes-

sors. Thus the number of states expanded and the maximum

depth of the search tree are equal to one. This search is the

most computationally inexpensive but suffers dramatically

in terms of generated path quality, much like local steering

methods.

Uniform Sampling Search: This strategy only visits a por-

tion of the successor states for each expansion through reg-

ular sampling of the control actions. Let kskip be the number

of control actions that will be skipped between samples, and

Ncr be the total number of control actions. The number of

states visited for every expansion is thus:

Nv =
Ncr

kskip

The maximum depth for a search state is restricted to a finite

number Dmax. Thus the total number of states visited for ev-

ery search is bounded the sum of all possible visited states

at each depth d:

Dmax

∑
d=0

(Nv)
d =

(Nv)
Dmax+1−1

Nv−1

Even with a rudimentary control model, the branching factor

is enormous with this type of search. The skip factor helps

to make this algorithm somewhat tractable.

Adaptive Sampling Search: The Adaptive Sampling

search algorithm is a variant of the Uniform Sampling al-

gorithm that reduces the states considered while maintain-

ing reasonably high quality paths. In this algorithm, instead

of simply expanding all paths for every node regardless of

depth, the number of paths expanded grows inversely pro-

portional with the depth of the state under expansion.

The number of states to expand at a particular depth is

given by a geometric sequence. In particular, the collapse

factor c is a parameter in the range (0,1). At each state of

depth d, the number of paths that should be expanded is

given by Nv ∗ cd . The general effect of adaptive sampling

is that the branches of the search tree grow more sparse as

the depth increases, significantly reducing the total number

of states being searched. The total number of states visited

is given by:

Dmax

∑
d=0

(Nv)
d · cTd

where Td represents the d-th triangular number. The growth

rate in this case is asymptotically smaller than that of Uni-

form Sampling search. As we only consider a subset of the

paths at each node, we select paths using a Monte Carlo pro-

cedure. A circular permutation array is generated at the start

of execution, and paths are looked up by indexing the per-

mutation array to find the true index of the path to sample.

4. Results

In order to determine the effectiveness of various online path

planning strategies, we conducted numerous experiments

under various conditions representative of typical usage sce-

narios. The first test measured the quality of paths generated

by each search algorithm across a range of different envi-

ronments. The numerical results are given in Figure 6, and
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each environment shown in the figures is described in detail

in subsequent paragraphs. For each configuration, the vari-

ous algorithms were run sixty times with randomized initial

obstacle positions. The performance of a run was measured

as the average value of the goodness of each path segment

selected during the run.

The 2D seek configuration consists of a distribution of as-

teroid obstacles within a rectangular region of space, with

a single vehicle placed to one side of the asteroid field. A

Seek steering behavior is attached to the vehicle, with the

seek target being a point on the far side of the field. In ad-

dition, a Collision Avoidance behavior is attached to encour-

age the ship to steer around the asteroids. The 3D case is

similar, but the asteroids are contained within a rectangular

volume and the control model involves both pitch and yaw.

In terms of path quality, the single-step algorithm performed

poorly and the uniform search performed best due to its high

sampling density. The adaptive search performed only mod-

erately worse than the uniform search. Several of the test

configurations are illustrated in Figure 8.

The 2D dynamic pursuit configuration involves a moving

asteroid field. The asteroids are spaced further apart and are

given an initial random linear velocity. In this case, multiple

ships were simulated, one seeking to the far side of the field

as before, while five others pursue the first. The seeker is

denoted in the data table by S while the goodness of the pur-

suers’ paths were averaged together and are listed as P. The

generated paths are visually smooth and take the motion of

the asteroids into account during the search. Some frames

from this animation are shown in Figure 9.

The 3D pursuit configuration is similar, but only has one

pursuer. The asteroids also do not move, but the density in

this case is roughly five times that used for the 3D seek con-

figuration. Example images from the 3D scenario animations

are shown in Figure 8. In the 3D meet configuration, two

ships start on opposite sides of a field and both pursue each

other. The typical resulting trajectories in this case involve

the two ships meeting somewhere inside the field and orbit-

ing around each other. The two ships are denoted by A and

B in the data table.

Averaging over all runs and configurations, the single-step

algorithm generates very poor paths when compared to uni-

form and adaptive search. The difference between the results

obtained by uniform and adaptive search is rather small, in-

dicating that the adaptive algorithm is still able to generate

high quality paths while searching far fewer states than the

uniform algorithm.

In order to examine the speed of the algorithms, a single

ship was considered in the 2D and 3D seek configurations.

The control model in the 3D case has 121 sampled control

inputs at each state as opposed to 17 inputs for the 2D case.

Figure 7 summarizes the average performance of the various

search strategies in the two environments. While the com-

plexity of the control model alone increases by a factor of 7

Single-Step Uniform Adaptive

2D Seek 0.400 0.880 0.827

3D Seek 0.704 0.959 0.922

2D Dyn Pursue(P) 0.748 0.845 0.876

2D Dyn Pursue(S) 0.905 0.913 0.862

3D Pursue(P) 0.804 0.880 0.820

3D Pursue(S) 0.789 0.792 0.929

3D Meet(A) 0.712 0.765 0.786

3D Meet(B) 0.663 0.699 0.703

Average 0.715 0.841 0.840

Figure 6: Average goodness of selected paths for various

search algorithms in different test configurations, and the

average across all configurations.

Single-Step Uniform Adaptive

2D 2.48 ms 48.33 ms 16.8 ms

3D 24.17 ms 437.33 ms 68.0 ms

Ratio ( 3D
2D ) 9.74 9.04 4.07

Figure 7: Average running times per search in the 2D and

3D asteroid environments.

when going from 2D to 3D, we note that the adaptive sam-

pling search grows by a smaller factor of 4.07. On the other

hand, both the single-step and uniform search algorithms

grow by a factor of 9, most likely due to the increased num-

ber of asteroids and thus requiring additional expensive in-

tersection testing. The adaptive sampling algorithm requires

65% less running time than the uniform sampling algorithm

in the 2D case, and the advantage grows to 84% when the

control model becomes more complex.

Many other configurations were also experimented with,

although the performance was not analyzed directly. One in-

teresting scenario was a fleet battle between two groups of

ships, with 15 ships on each side. Each ship was randomly

assigned to pursue another ship on the opposing side. The

simulation was able to run at interactive rates, and an exam-

ple frame is shown in Figure 8.

5. Limitations and Comparison

One difference between our current implementation of colli-

sion avoidance and the Obstacle Avoidance steering behav-

ior from [Rey99], is that our algorithm uses direct intersec-

tion testing instead of a local approximation strategy. The lo-

cal approximation involves building a bounding box around
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Figure 8: From left to right, trajectory traces for: 2D seeking for multiple vehicles, 2D fleeing for multiple vehicles, 3D pursuit,

and a large fleet combat simulation.

Figure 9: Frames from the 2D dynamic pursuit scenario. The red trails are left by the pursuers, and the blue trail is left by the

seeking ship. All ships interactively plan trajectories toward their target while simultaneously avoiding the moving asteroids.

the vehicle and extending the box forward in the direction of

the vehicle’s current velocity, and adding a steering force de-

pending on where the box intersects obstacles in the scene.

This type of avoidance strategy produces smoother steering

behavior output than the avoidance method described in this

paper. The direct intersection testing implemented in this pa-

per causes high-frequency steering behavior output due to

the binary nature of the returned value (0 on collision, 1 on

no collision). In the case of complex environments, however,

we have observed that this allows for paths with improved

trajectories. Environments such as those consisting of nar-

row corridors can also be difficult to navigate in the orig-

inal steering behaviors implementation without a designer-

specified path to follow.

Another limitation of our collision steering behavior is

that it does not take into account the curvature of the actual

selected path during intersection testing and instead simply

tests intersections with a ray from the initial path position to

the final path position. The curvature is instead taken into ac-

count by virtually expanding the radius of the objects in the

scene; however, this expansion many not take into account

the maximum possible path curvature.

The effect of discretization in both time and space on the

quality of generated paths is also an important issue. One

type of artifact observed involves the slight oscillation of the

controlled vehicle during near straight-line trajectories. We

term this artifact path aliasing, as it essentially corresponds

to undersampling of the control model during discretization.

Path aliasing occurs when the vehicle is unable to directly

select the control inputs that would yield a perfectly straight

trajectory, and instead must continuously select between the

two nearest discrete values on either side of the ideal control

input.

We reduce path aliasing through the use of several dif-

ferent techniques. The first strategy simply ensures that a

straight line trajectory is always considered at every state. In

many cases, this modification was enough to allow the os-

cillation to stabilize. In other situations, we implemented a

damping factor on the steering behavior which gave a slight

bias to paths that were straighter. Another potential solution

would be to use a non-uniform sampling of the control space,

biased towards paths nearer to straight line trajectories; how-

ever, this solution was not explored in the current implemen-

tation. In our experiments, the use of the first two solutions

mentioned above practically eliminated path aliasing com-

pletely.

Finally, another important issue concerns the effect of us-

ing local approximations during searches of relatively high

depth. It is important to keep in mind that while the search

may be inaccurate at high depths, the short time interval be-

tween replanning compensates for the potential inaccuracies

of individual searches. This issue is most important with mu-

tually dependent steering behaviors. In our framework, we

do not compute globally optimal paths for multiple vehicles

with mutually dependent steering behaviors as the computa-

tional cost would be prohibitive. Instead, the motion of other

vehicles is estimated using an approximate straight line ve-

locity and trajectories are determined for each ship individu-

ally. In practice, these approximations appear to be sufficient
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for generating satisfying animations of relatively complex

group behaviors.

6. Discussion and Future Work

In this paper, we have presented a framework for combin-

ing steering behaviors with online path planning and demon-

strated its ability to simulate complex group behaviors inter-

actively. A modified steering behavior control interface is

adopted that enables intuitive control over the trajectories

of simulated vehicles as well as a high degree of flexibil-

ity in manipulating the effects of each steering behavior. We

also formalize some restrictions on steering behavior values

and examine the effects of these restrictions on our ability

to search and solve the planning problem as a continuous

Markov decision problem. The proposed framework also of-

fers a simple control model that yields visual pleasing tra-

jectories that is efficient both in terms of performance and

storage requirements. We presented results from our imple-

mentation of this framework for simulated spacecraft in 2D

and 3D planning domains and examined the performance of

various search techniques and the quality of the generated

paths.

For future work, we intend to examine several issues in

greater detail. The first of these issues involves the trade-

offs between control space complexity and path planning

frequency under different domains. We note that planning

with real-time constraints prevents us from having both high

control model complexity and high path planning frequency.

We hypothesize that different domains have different opti-

mal path planning frequency and control model complexity.

These differences are due in part to the rate of change of the

steering behaviors as well as the density of objects in the

domain. We also intend to examine strategies for compress-

ing the offline control model which would allow for higher

sampling density and support more complex control models.

Currently, the uncompressed storage grows at a rapid rate

with respect to the sampling density and degrees of freedom

of the control model, especially considering the smoothing

process which makes each trim trajectory dependent on the

starting and ending control inputs for the specified time in-

terval. The ability to preintegrate for higher sampling densi-

ties and more complex control models would be very bene-

ficial in this framework. Other issues we are examining in-

clude adaptive planning horizons and adaptive path selec-

tion. Implementing these techniques would allow agents to

make more frequent decisions when in dense spaces, and

conserve CPU cycles by reducing the frequency of planning

when in low-constrained spaces.

We are also investigating methods for improving the on-

line search algorithm. We are currently developing a statis-

tical estimator that we can use to build bounds on the good-

ness of particular paths. This has the potential to consider-

ably reduce the workload of the online search algorithm. In

addition, we are also exploring the use of analytic algorithms

that do not require a discrete sampling of the continuous

state space. Such algorithms would significantly reduce path

aliasing by allowing for the selection of precise control in-

put parameters as opposed to selecting only from preexisting

sample points in the control space.
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