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Abstract-This tutorial paper proposes a subclass of cellular 
neural networks (CNN) having no inputs (i.e., autonomous) as 
a universal active substrate or medium for modeling and gen- 
erating many pattern formation and nonlinear wave phenomena 
from numerous disciplines, including biology, chemistry, ecology, 
engineering, physics, etc. Each CNN is defined mathematically 
by its cell dynamics (e.g., state equations) and synaptic law, which 
specifies each cell’s interaction with its neighbors. We focus in this 
paper on reaction4iffusion CNNs having a linear synaptic law 
that approximates a spatial Laplacian operator. Such a synaptic 
law can be realized by one or more layers of linear resistor 
couplings. 

An autonomous CNN made of third-order universal cells and 
coupled to each other by only one layer of linear resistors provides 
a unified active medium for generating trigger (autowave) waves, 
target (concentric) waves, spiral waves, and scroll waves. When 
a second layer of linear resistors is added to couple a second 
capacitor voltage in each cell to its neighboring cells, the resulting 
CNN can be used to generate various turingpatterns. Although the 
equations describing these autonomous CNNs represent an excel- 
lent approximation to the nonlinear partial differential equations 
describing reaction-diffusion systems if the number of cells is 
sufficiently large, they can exhibit new phenomena (e.g., propaga- 
tion failure) that can not be obtained from their limiting partial 
differential equations. This demonstrates that the autonomous 
CNN is in some sense more general than its associated nonlinear 
partial differential equations. 

To demonstrate how an autonomous CNN can serve as a unify- 
ing paradigm for pattern formation and active wave propagation, 
several well-known examples chosen from different disciplines are 
mapped into a generic reaction-diffusion CNN made of third- 
order cells. 

Finally, several examples that can not be modeled by reac- 
tion-diffusion equations are mapped into other classes of au- 
tonomous CNNs in order to illustrate the universality of the CNN 
paradigm. 

I. INTRODUCTION 

S INCE ITS inception in 1988 [l], cellular neural networks 
(CNNs) have been widely studied for both static and dy- 

namic image processing applications [2]-[ lo]. In these applica- 
tions, the input u(t) to the CNN at any time t is usually a 
gray-scale image, coded as a capacitor voltage at each cell 
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n;j at location (ij) in a Cartesian coordinate system.’ The 
output image in this case is caused directly by the input image. 
In this paper, we propose to use the CNN for an entirely 
different class of applications where no external input image 
is applied, and where the output image at any time t is due 
exclusively to initial conditions. The initial conditions can be 
a random field, (e.g., for Turing pattern formation), a noisy 

image (e.g., a blurred finger print), an incomplete image (e.g., 
for associative memory), etc. The corresponding output will be 
a desired pattern, a sharpened image, ‘a reconstructed picture, 

etc. 
In this paper, the terms “patterns” and “waves” will.be used 

in their broadest possible context. In particular, a “pattern” can 
be a still image, or a recurrent image (e.g., a nonlinear standing 
wave), and a “wave” can be a traveling pulse (e.g., a soliton) 
or pulse train, a trigger wave, a target (concentric) wave, a 
spiral wave, a scroll wave, or even a chaotic wave, etc. These 
phenomena, though still poorly understood at this point in 
time, are universal and robust in the sense that they have been 
observed and reported from almost every scientific and social 
disciplines (e.g., astronomy, biology, chemistry, demography, 
ecology, economics, engineering, . . . physics, . . . , zoology). 
Our goal in this paper is to demonstrate how a subclass of 
autonomous cellular neural networks can provide a unifying 
paradigm for explaining and controlling these fascinating 
phenomena from so many diverse disciplines whose only 
common denominator is the ubiquitous nonlinearity endowed 

upon them. 

II. CELLULAR NEURAL NETWORKS: A 

FORMAL MATHEMATICAL DEFINITION 

A cellular neural network (CNN) is a high-dimensional 
dynamic nonlinear circuit having a mainly locally-recurrent 
circuit topology; namely, a local interconnection of simple 
circuit units called cells, or artificial neurons. The resulting 
net or array may have any architecture, including rectangular, 
hexagonal, toroidal, spherical, etc. In this tutorial paper, we 
will consider only a rectangular array for simplicity. 

In most applications, all cells and their interconnections 
are assumed to be identical although the original concept 
of a CNN given in [l] includes the possibility of variable 
interconnections and circuit parameters. The key concept that 

‘We use the term cell to mean an artificial neuron in this paper. 
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m (i+lJ+l) 

Fig. 1. A CNN cell rz;j (bottom) located at site (ij) in a rectangular 
architecture and its synaptic input current I& consisting of contributions from 
the states ~;+k,~+l of its neighbor cells, shown for a sphere of influence S;j 
consisting of only eight nearest neighbors (middle section) and from the inputs 

u;+k,j+l of its neighbor cells (top). The weighting coefficients akl and bkl 
can be any nonlinear functions of the state variables, may contain time delays, 
and may vary with location. For the usual space-invariant CNN, all cells are 
identical, i.e., ak(,bkl do not depend on ij. 

distinguishes a CNN from other neural networks is that the 
interconnections among cells be mainly2 local in order to 
minimize the chip area occupied by connecting wires. To 
simplify our notation in this paper, however, we will assume 
all cells and their interconnections to be identical. In addition, 
we will consider only one-, and two-dimensional CNN arrays 
even though most concepts on CNNs are applicable to any 
dimension n > 3 as well. In view of these assumptions, it 
suffices for us to examine only one cell and its interconnection 

circuitry with the neighboring cells, as shown in Fig. 1. 
The basic CNN cell nij shown at the bottom of Fig. 1 

contains in addition to the dynamical circuit core characterized 
by its state vector xij, an input Wij, a threshold (dc bias) 
Zij, an output yij, and a synaptic input current I$. This 
synaptic current depends on the input Ui+k,j+l (t) and the state 
zi+k,j+l(t) of all cells located within a prescribed sphere ofin- 
$uence S$, or neighborhood size, which in this paper consists 
simply of the eight nearest neighboring cells. The contribution 
from the input Ui+k,j+l(t) of each neighbor cell ni+k,j+l E 
Sij is modeled by a linear controlled source bklUi+k,j+l, as 
shown in the upper part of Fig. 1. The contribution from the 

‘The term “mainly” is used to allow the possibility of global coarse 
graining (e.g., the addition of global controlling wires in the CNN universal 
machine [2]-[3]), an important feature found in higher brain functions [4]. 

state x;+k,j+l(t) of each neighbor cell ni+k,j+l is modeled 
by a nonlinear controlled source aklf(~i+k,j+l), where f(.) 
is a prescribed nonlinear scalar function of xi+k,j+l(t), as 
depicted in the middle part of Fig. 1. In this figure, the 
synaptic input current I&(t) is uniquely specified by only 
16 synaptic coe@cients akl and bkl associated with the eight 
nearest neighbors of cell nij. These coefficients are usually 
listed as entries (along with two nonsynaptic coefficients a00 
and boo) of the following two tables, generally referred to as 
the feedback template A and feedforward (input) template B, 
respectively: 

piE$qmi’ 

Template A Template B 

The central coefficients a00 of template A and boo of template 
B pertain to the corresponding feedback and feedforward 
contributions inside the cell n;j itself in the original first- 

order CNN cell proposed in [l]. To emphasize that they are 
independent of the neighboring cells, we have separated them 
from the eight “synaptic” controlled current sources in Fig. 1. 
Although the self-feedback coefficient aaa pertains to circuitry 
inside the cell proper in Fig. 1, it is singled out and included 
in the A template with the other synaptic coefficients (which 
is external to the cell nij) because it is sometimes useful to 
use aaa as a controlling or bifurcation parameter [l], as in 
Fig. 3(a), or to combine it with the synaptic circuitry to achieve 
a simpler circuit realization of certain classes of CNNs (e.g., 

Fig. 5, the reaction-diffusion CNN in Section IV). 
The synaptic input current I$(t) shown entering the cell 

n;j in Fig. 1 accounts for the contributions of all neighbor 
cells lying within the prescribed sphere of influence S;j of 
cell nij. These contributions are analogous to the inputs from 
the “dendrites” of biological neurons. In such neurons, the 
“synapse” is used to convert the electrical signal coming from 
the output (axon) of a neighbor neuron into a “chemical” 
signal. In other words, the synapse in a biological neuron can 
be interpreted as a nonlinear controlled source, as depicted 
in the middle part of Fig. 1, except that in a real neuron, 
there are thousands of such controlled sources, working at 

a relatively slow time scale (milliseconds). In the current 
generation of CNN chips, there are only eight controlled 
sources; but they are at least a million times faster, i.e., in 
nanoseconds. The key idea of the CNN universal chip [2]-[3] 
is to trade the extremely high speed of VLSI chips with the 
enormous number of biological synapses in our modest attempt 
to mimic rudimentary brain functions. 

Fig. 1 shows only the simplest case where each synaptic 
controlled source is controlled by only one state variable 
of a neighboring cell, as in the original CNN cell proposed 
in [l]. In the most general case, each synaptic controlled 
source may depend on several state variables from a neighbor 
cell (characterized by higher-order dynamics). In addition, the 
coefficients akl and bkl may be nonlinearfunctionals of not 
only the neighbor states xi+k,j+l and inputs &+k,j+l, but also 
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Fig. 2. An autonomous CNN cell does not have external inputs 

(Wj =w+!%,j+1 = 0). Each synaptic controlled current source is 
shown here as a nonlinear function of its present state z;~ and its neighbor 
state z;+k,j+l for each ICZ E S;j. The synaptic coefficients akl are listed 
in an A template. 

possibly its own state xij and input ~;j.~ For example, akl f(‘) 
may be any mathematical operation (e.g., nonlinear delay 
operator, convolution operator, Volterra series operator, etc.) 
on the internal state Xij(t) and its neighbor state Si+k,j+l(t). 
To emphasize this generalization, we introduce an asterisk “*” 
between akl and f(.), as shown in Fig. 2. Some examples of 
operators that can significantly increase the processing power 
of the CNN are 

1) akl * f(si+k,j+l(t),zij(t)) = aklf(%+k,j+l(t - T) 

- xij (t - T)) 

t 

2) akl * f(xi+k,j+l(t),xij(t)) = akl 
J’ 

qt - T) 
0 

3) akl * f(%+k,j+l(t)) = akl where xij 2 vZZ3 ; uij & Eij; and I& is the synaptic input 

current defined by 
.h,(t-Tl,t-T2 )...) t-7,) 

’ %+k,j+1(71) ’ ’ .X;+k,j+l(Tn) dT1 h-2. . . dT,. 

The internal circuit core of each cell nij in Fig. 1 can be 
any dynamical system defined by an evolution equation, or 
even a semigroup in the most abstract version. In this paper, 
nij will be made of lumped circuit elements and hence its 
dynamics is simply described by its associated state equations. 
For example, in the simplest class of CNN proposed in [l], 
the basic cell reproduced and shown in Fig. 3(a) is described 
by the following first-order state equation: 

IzYj = C aklf(Xi+k,j+l) + C bkl’G+k,j+l (2.2) 
klES,, klESij 
kZ#O,O kl#O,O 

and f(.) is the only nonlinearity defined by 

f(x) 2 $ [Ix + 11 - Ix - 111. (2.3) 

In this paper, aJirst-order cell nij is characterized by 

aoof(xij) - boouij - I - If’ 1 (2.1) 

“uij “Xii “Yij 

(a) 

(b) 

1; / 

+ iR 

:il 

+ 

c xij “R 

-I- 
T 

Cc) 

Fig. 3. (a) The original first-order CNN cell n;j with input voltage 

Vu%3 = Eij, state voltage Vz%3, and ourprrt voltage Vu%, = a~~of(z,,), 
where f(~,~) is shown in (b). For simplicity, we will often delete V and 
simply write u;j, zij, and yzj for input, state, and output, respectively. The 
linear voltage-controlled current source I,, (i, j; kl) denotes the contribution 
from the input u;+k,j+l of each neighbor cell located within the sphere 
of influence S;j of cell n,j. The linear voltage-controlled current source 
I,,(i, j; LX’) denotes the contribution from the state V,,, of each neighbor 
cell inside S;j. (b) An autonomous (u;j = 0) first-order CNN cell from (a). 
The synaptic current I:? includes all current contributions from the neighbor 
cells within S;j. (c) A generic autonomous first-order CNN cell. The nonlinear 
resistor can have any 21~ - in characteristic. The characteristic shown on 
the right corresponds to the composite characteristic of the resistor-controlled 
source and dc bias combination in (b), where uz3 > l/RI and I = 0. If 
at3 < l/R,, the composite VR - in curve will be monotone increasing. 

ki;ij = -g(Xij) + I.fj (2.4) 

31f the coupling relationship is linear, then z;j and uij can be separated 
and imbedded inside the cell proper, as in Fig. 1. where g(xij) is any scalar function of xij. 
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For a general (not necessarily space-invariant or isotropic) 
CNN whose cells are made of time-invariant circuit elements, 
each cell nij is characterized by its4 CNN cell dynamics where 

xcu E R” and z,, 1~~ are usually scalars. In most cases, the 
interactions (spatial coupling) with the neighbor cells ni+k,j+r 
are specified by a CNN synaptic law: where the repeated index 

,0 is to be interpreted (analogous to the standard Einstein 
notation in physics) as a summation of contributions from 
each neighbor cell n,+p located within the prescribed sphere 
of influence S, about n,. In this paper, S, will usually 
include only the 8 nearest neighbors, although most concepts 
and results on CNN are applicable-mutatis mutandis-to a 
sphere S, of any size, including the extreme case where each 
cell is connected to all other cells (fully-connected case). In 
the equations below S, will also denote the index set of 
the neighborhood, i.e., for the eight nearest neighbor case, 

kl E S, H k,l E {-l,O,l},(k,Z) # (0,O). 
The first term atxcu+p in (2.6) is simply a linearfeedback 

of the states of the neighboring nodes n,+o, and can be written 
in the following explicit form: 

(2.7) 

The second term At * fp(xa,xa+p) in (2.6) provides 
an arbitrary nonlinear coupling, including infinite-dimensional 
functional operators, between neighboring cells. In the original 
CNN cell proposed in [I], this coupling is nonlinear but 
memoryless; namely 

A: * fp(Xa,Xa+p) = c @ij,kZf(xi+k,j+l). (2.8) 
LlES, 

Observe’that the first spatial coupling term aEx,+p in (2.6) 
can be considered as .a special case of the second spatial 
coupling term-hence the reason for ,using the same letter A 
for both terms. However, since there are many examples of 
CNNs [ 1 l]-[ 171 where only a linear spatial coupling is used, it 
is convenient to introduce it in (2.6) as a separate contribution. 
In the usual case where the second nonlinear coupling term in 
(2.6) is absent, we will often use Ai instead of at. 

The third term Bi * ua+p(t) in (2.6) accounts for the 
contributions from the external inputs of each neighbor cell 
that is located within S,, where again in the most general 

4We will often denote the index ij by Q and kl by p for simplicity. 

case * can be any functional or operator. In most cases of 
interests, we have simply 

B,p * %+~(t) = c bij,kl%+k,j+l. (2.9) 
k1ES.a 

In more general cases, &j,kl, &j&, and bij,kl can be matrices. 
We conclude this section by summarizing the following 

formal mathematical definition of a cellular neural network: 
An N x N cellular neural network is defined mathematically 

by four specifications: 

41 
3) Boundary conditions (see Section IV-A); 

For analytical investigations, it is often necessary to assume 
an autonomous CNN of injinite size, i.e., N -+ co. In this 
case, the boundary conditions are replaced by the prescribed 
behavior of the solution at .infinity. 

We will assume space invariance or isotropy which means 
that the coefficients &j&l and &j,kl are independent of ij and 

will be denoted henceforth as iLkl and ukl, similarly with &j,kl 
and bij,kl. 

III. AUTONOMOUS CELLULAR NEURAL NETWORKS 

In this paper, we assume .that there are no inputs, i.e., 
~~ij(t) = 0 so that the basic CNN unit of Fig. 1 reduces to 
that shown in Fig. 2, where for the sake of generality, the 
synaptic contribution @lf(xi+k,j+l) in Fig. 1 is replaced by 
the operator akl * f(ti+k,j+l, zij) introduced earlier. We will 

henceforth refer to this zero-input CNN as an autonomous 
cellular neural network. Unless otherwise stated, we will 
choose the output variables of each cell to be some internal 
state variable, i.e., r&(t) = ~$(t), k = 1,2, . . . m, where 

x$(t) denotes the kth component of the state vector xij(t). 
Because of this trivial identity, the output terminal yij in cell 
nij of Fig. 1 will usually be deleted. 

A. Some Generic Autonomous CNN Cells 

Stripping the input Eij and coupling term I,,(i, j; kl) from 
the neighboring inputs from Fig. 3(a), and grouping all cou- 
pling terms &(i, j; 51) from all neighbor cells n.;+k,j+l, kl E 
S, (kl # 0,O) into the synaptic input current I$, we obtain the 
simplified CNN cell shown in Fig. 3(b). Observe that the non- 
linear controlled source aaaf(x~j) across the output resistor 
R, in Fig. 3(a) with (k, 1) = (0,O) represents a self-feedback 
term and is therefore separated from I;“j and added in parallel 
with the resistor R, in Fig. 3(b). This nonlinear controlled 
source aoaf (xij) is equivalent to a nonlinear resistor with a ‘u- 
i characteristic i = - a00 f ( TJ) , which can be combined with the 
parallel resistor R, to obtain the composite nonlinear resistor 
shown in the generic autonomous first-order CNN shown 
in Fig. 3(c). The symmetric 21~ - iR characteristic shown 
in Fig. 3(c) is only an example illustrating the equivalent 
transformations from the original cell in Fig. 3(a). 
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For the purpose of this paper, we will allow the nonlinear 
resistor to be described by an arbitrary 7/R - iR curve. In 
this case, the dc bias current source in Fig. 3(b) can also be 
absorbed into this nonlinear resistor with a composite UR - iR 
characteristic i = g(vR) so that our generic autonomous 
Jirst-order CNN cell dynamics is simply given by (2.4), as- 
suming C is normalized to unity. For this CNN to support 
a nonhomogeneous spatial pattern or nonlinear active waves, 
this nonlinear resistor must clearly be locally active, i.e., its 
VR - iR characteristic must have a region having negative 
slopes, assuming the synaptic coupling is locally passive. 

Another CNN cell that has been widely used for pattern 
formation and active wave propagation [ 1 l]-[ 171 is the generic 
autonomous third-order CNN cell shown in Fig. 4(a) and (b). 
Observe that this circuit reduces to Chua’s circuit [18] upon 
short circuiting the resistor Ro and setting the synaptic currents 
I%? and I,$ to zero. The state equations of this generic cell 
are given by 

iij = k[-yij - Rozij]. (3.1) 

For analytical 0~ simulation purposes, it is often more con- 
venient to use the following dimensionless version of (3.1) 
[18]: 

(3.2) 

Again, this CNN cell dynamics contains only one nonlinear- 
ity h(.), which may be any (not necessarily symmetric or 
Piecewise-linear) scalar nonlinear function h: Iw + R. 

In general, we can define a CNN cell of any order n > 3, 
with multiple synaptic coupling, as depicted in Fig. 4(c). 

B. Linear Synaptic Laws via Resistor Couplings 

In this paper, we will focus on an important subclass of 
autonomous CNN defined by the following linear synaptic 
law: 

I& = c ~klxi+k,j+l (3.3) 

k,lG{-l,O,l} 
(kd)#(O.O) 

where i&l are scalars defined by an a template. The linear 
self-feedback term &,x~j has been absorbed into the cell 
nij itself. This subclass is important not only because it 
has a particularly simple circuit realization, but also because 
most research to date on Turing patterns and active wave 
propagations [l l]-[17] are based on a difSusion mechanism, 
which we will show to be a special case .of (3.3). For the 
linear synaptic law (3.3), the eight controlled sources in Fig. 2 
and the linear self-feedback term iLooZij can be reali:ed by 9 
linear resistors connected as shown in Fig. 5. In particular, the 
conductance of each linear resistor between nodes (kl) and 

1.; ‘R iR m / Ro + + + 
CP 

L 
Yij Cl Xij ” 

zij- - - 

(4 

r- R iFl % + + + m CP 
L 

Yij Cl Xij “F 

Z ij 

L 
- 

(b) 

N 
/ \ y 

id 
Tii 
Site (i,j) 

1; ... 1% I; 

General 

Yii 
Site (i.j) 

\ tri T 

Cc) 

Fig. 4. (a) A generic autonomous third-order CNN cell (Chua’s oscillator) 
with one synaptic input current It3 entering capacitor C1. (b) Same as (a) 

but with two synaptic currents If,’ and Iz”, entering capacitors C’1 and Cz, 
respectively. (c) An arbitrary nth order CNN cell with “m” synaptic input 
currents, where m 5 R. 

(i + k, j + 1) is simply equal to &l. The conductance aGo of 
the ninth linear resistor (shown in a vertical position in Fig. 5) 
is equal to 

ago = - c ;kl. 

k,&{-l,O,l} 

(3.4) 

Using these conductances, it is easy to verify that KCL applied 
to all nine linear resistors connected at node (ij) of Fig. 5 is 
precisely given by 

f$ Ix c &kl(xi+k,j+l - xij) - &+ij (3.5) 

kc,&{-l,O,l} 

where xij and Xc;+!++1 denote the node-to-ground voltages 
from nodes (ij) and (i + k, j + Z), respectively and this is equal 
to Itj + iLooxij, where I$ is the synaptic input current given by 

(3.3) as prescribed by the eight noncentral elements of the a 
template, and &ooZij is the self-feedback current prescribed by 
the central element of a, which is not inside the cell in Fig. 5 
because it has been absorbed within the vertical resistor agO. 

For higher-order CNN cells [such as those show? in 
Fig. 4(b) and (c)] having a linear synaptic coupling be- 
tween corresponding capacitors, a separate layer of linear 



564 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 10, OCTOBER 1995 

,* ‘8’ 
00 

t (iJ+U 
. 0.1 

@ 

%,l 

i 
-1 ,o (i-1 ,I+1 ) 

(l-1 J) 

“-8 
1 ii 

i template 
- 

Fig. 5. A CNN cell with a linear synaptic law (with S;j containing only 
eight nearest neighbors) is equivalent to replacing the eight controlled sources 
in Fig. 2 plus the linear self-feedback term &nz;j by eight linear resistors 
having conductunces ckl and a linear self-conductance agO (vertical resistor). 

The linear synaptic weights Gkl are listed in an A template to distinguish 
them from the coefficients akr associated with nonlinear synaptic laws. Here, 
akl = 0. For the discrete Laplacian operator templates [(4.3) and (4.4)], 
the coefficient cc0 is equal to 0 and the corresponding linear resistor is not 
necessary. 

resistor couplings can be similarly implemented for each 
additional set of couplings, defined by a new A-template, 
between corresponding capacitors. For example, the two-layer 
coupling shown in Fig. 6 can be used for generating Turing 
patterns, which requires two “diffusion” mechanisms having 
significantly different diffusion coefficients Di and Ds [19]. 

Finally, it is important to note that unlike in Figs. 1 and 
2, where each basic cell unit is simply connected directly to 
its neighbors through the indicated eight neighboring nodes in 
order to realize the CNN, the nodes in the resistive coupling 
case in Figs. 5 and 6 can not ,be directly connected unless the A 
template is symmetric. This increase in the wiring complexity 
is, however, only an illusion, in view of the “no loading” 
assumption already built into the definition of a controlled 
source [20]. In any physical (hardware) realization of the 
controlled source, additional buffering circuitry will be needed 
to interconnect me cells in Figs. 1 and 2 to their neighbor 
cells. These buffer circuitry can be implemented into CNN 
explicitly by inserting a nullator-norbtor [21] combination 
between each resistor and its neighboring node, as shown in 
Fig. 7(a) for a one-dimensional CNN. Each nullator-norator 
combination in Fig. 7(a) can in turn be simply realized by 
one op amp connected in a feedback “follower” configuration 
[22], as shown in Fig. 7(b). 

However, if the A template specifying the linear synaptic 
law is symmetric, then it is easy to see that no buffers are nec- 
essarv and corresuondina neiehborine nodes can be connected 

Linear 

Resistive - 
Grid 1 

hear 

Resistive - 
Grid 2 

I “=Yt ” ii Site 0.1) I 
T 

Fig. 6. Same as Fig. 5 except that there are now two synaptic current inputs 
i”: and j!?, 
23 13 

I a* !Y -(a +a +a 0.0 - 0.0 0.1 O.-l ) I 

(b) 

Fig. 7. For a nonsymmetric a template, each CNN cell in Fig. 5 can 
not be connected directly to neighboring cells but must be buffered by 

nullator-norator pairs, as in (a), or by dual op-amp followers, as shown in (b). 
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directly, as will be the case in realizing the reaction-d@usion 
CNNs in the next section. This class of autonomous CNN 
consists of mth order cells (m 2 1) coupled to each other 
by one or more layers of linear resistors. They are described 
mathematically by the state equations 

i: = f(z) + AZ (3.6) 

where z E Wmn2 for an n x n CNN, and A is-a band matrix 
qf dimension mn2 x mn2 (assuming the cells are numbered 
consecutively from left to right and from top to bottom). For 
example, a 100 x 100 reaction-diffusion CNN made of the 
generic third-order cells shown in Fig. 4(a) would consist of 
3 x lo4 nonlinear ordinary differential equations. 

IV. REACTION-DIFFUSION CELLULAR NEURAL NETWORKS 

In this section, we present several standard autonomous 
CNN architectures that can be designed to generate pat- 
terns and waves, including trigger waves (autowaves), target 
(concentric) waves, spiral waves, and scroll waves (for three- 
dimensional CNNs) [l l]-[17]. These CNNs will be called 
reaction-diffusion CNNs because they are described mathe- 
matically by a discretized version of the following well-known 
system of nonlinear partial differential equations-generally 
referred to in the literature as reaction-diffusion equations 

[ 1915: 

where u E W”, f E W”, D is an m x m diagonal matrix whose 
diagonal elements Di are called the diffusion coefficients, and 

A d2Ui d2Ui 
v2ui = - - 

ax2 + dy2 ' 
i = 1,2,...,m (4.2) 

is the Laplacian operator in R2. 
There are several ways to approximate the Laplacian op- 

erator V2ui in discrete space by a CNN synaptic law with 
an appropriate A-template [23]. In this paper, we will choose 
the following templates for one- and two-dimensional reac- 

tion-diffusion CNNs: 
I) One-dimensional discretized Laplacian template Al 

AI: /11-2/1/ (4.3) 

2) Two-dimensional discretized Laplacian template A2 

(4.4) 

Note that this is a special case of the synaptic law (3.3). 
Since the coefficients of the template Al and A2 sum to zero, 
in the resistor coupling realization of Fig. 5, the resistor uzo 
can be deleted. 

5 We will often follow the usual notation in the literature [ 191 by choosing 
u;j for state variables and (2, y) for spatial variables in R2. 

q...~..~, 

(4 

D 

(b) 

Fig. 8. (a) A one-dimensional autonomous CNN whose end terminals can 
either tend to &x as in the case of a CNN of infinite size or terminated 
by prescribed boundary conditions. (b) A one-dimensional autonomous CNN 
Ring. 

A. One-Dimensional Reaction-Di#usion CNN 

A canonical example of a one-dimensional reaction- 
diffusion CNN containing N cells is shown in Fig. 8(a), 
where each solid black box denotes a CNN cell of any order. 
The left-most node with voltage u. and right-most node with 
voltage ZIN+~ are deliberately left unconnected here in order 
to accommodate various boundary conditions, as well as the 
possibility of a CNN of injinite size. Assuming the third-order 
cell dynamics given by (3.2) (with k = 1) for each celi, 
and choosing the above one-dimensional Laplacian template 
Al with a diffusion coefficient D1 we obtain the following 
discrete version of reactidn-diffusion equations (Here, we 
chang6 notation from wj to x~j): 

izi = a[yi - h(xi) + D(x+ - 2xj - q+l)] 

?jj = xj - yj + zj 

ij = -py.j - yzj j = 1,2;..,N. (4.5) 

Note that (4.5) is yet undefined mathematically because it 
contains two undefined variables-x0 (when j = 1) and xiv+1 
(when j = N). These two end variables must be defined by 
specifying the boundary conditions to be imposed upon the 
CNN. The following three boundary conditions are typical.6 

1) Fixed (Dirichlet) Boundary Condition: 

x0 !I 210 = El 

xN+l 2 UN+1 = E2. (4.6) 

Here, the CNN is simply clamped at its ends to some fixed 
potential, say at ground potential (El = E2 = 0). 

6Pattems and waves are usually observed with boundary conditions (2) and 

(3). 
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2) Zero-Flux (Neumann) Boundary Condition: 

x0 e 210 = ?I1 
A 

xN+l = UN+1 = UN. (4.7) 

Equation (4.7) is the discrete version of the zero-outward 
derivative condition du/dx = 0 imposed at each end of a one- 
dimensional continuum medium. When using a standard circuit 
simulator, (4.7) can be implemented by connecting a unity- 
gain voltage-controlled voltage source from each end node to 
ground and controlled by the node voltage of its neighbor. 

3) Periodic (Ring) Boundary Condition: 

A 
x,, = ‘&, = UN 

A 
xN+l = t’N+l =2)1. (4.8) 

This boundary condition is equivalent to connecting the two 
ends of the CNN in Fig. 8(a) together (after deleting one of the 
two end resistors) to obtain the CNN ring shown in Fig. 8(b). 

Every known trigger wave7 phenomena from continuum 
media (e.g., chemical reaction, combustion, epidemic wave, 
etc.) that have been reported to date in the literature have 
also been successfully simulated by a one-dimensional CNN, 
often with only a relatively small N 2 50 [l l]-[17]. This 
observation may not appear surprising since as N + co, 
(4.5) approaches the nonlinear partial differential equation 
(4.1). What is surprising is that this intuitively reasonable 
observation is true only in one direction: there exists some 
phenomena, e.g., the propagation failure phenomenon, in a 
one-dimensional CNN, which can be proved [24] to be im- 
possible to occur in its associated reaction-diffusion partial 
differential equation [l l] as N --) 0~). Roughly speaking, the 

“propagation failure” phenomenon is said to occur when a 
voltage pulse traveling along a CNN (with diffusion coefficient 
0) at velocity ?~g > 0 suddenly stops propagating (i.e., 21~1 = 
0) when D is reduced below some small but positive value. 
This phenomenon is similar to the nerve propagation failure 
phenomenon widely reported from patients suffering from 
multiple sclerosis: beyond a certain stage of this dreaded 
disease, pinching the patient’s finger tip will no longer elicit a 
painful sensation. Neurologists have spent many years trying 
to simulate and explain this phenomenon using (4.1) without 
success until proven only recently in [24] to be impossi- 
ble. The fact that a one-dimensional CNN has no problem 

producing this phenomenon shows in some sense that the 
class of reaction-diffusion CNN is more general than its 
continuum version modeled by a nonlinear partial differential 
equation. This observation is counter-intuitive and could have 
far reaching significance, even for no other applications than 
a mere understanding of some possible mechanisms that can 
cause nerve transmission failure. 

B. Two-Dimensional Reaction-Diffksiom CNN 

A canonical example of a two-dimensional reaction- 
diffusion CNN containing n x n cells is shown in Fig. 9. 
Assuming the discretized Laplacian template A2 in (4.4), 
and using the third-order cell dynamics given by (3.2) (with 

7Also known as autowaves in the Russian literature. 

Fig. 9. The reactiondiffusion CNN formed by connecting single synap- 
tic-input CNN cells [Fig. 4(a)] to each node of a linear resistor grid. All 
resistors are assumed identical with conductances equal to D. 

k = l), we obtain the following discrete version of the 

reaction-diffusion equations:8 

iii = 4Yij - h(Xij) + D(Xi+1,j + x;-1,j + x;,j-1 

’ + xi,j+1 - 4Gj)] 

?kj = xij - yij + z;j 

.iij = -py;.j - 7zi.j i,j = 1,2,...,N. (4.9) 

Again, appropriate boundary conditions must be imposed at 
i, j = 0 and i, j = N + 1. We can consider again three typical 

cases: 
1) Fixed (Dirichlet) Boundary Condition: 

xi(J a vi0 = El, i= 1,2,..,,N 

xi,N+l b ‘u&N+1 = ~72, i = 1,2,...,N 
A 

xoj = ‘uoj = E3, j = 1,2;..,N 
A 

xN+l,j = vN+l,j = E4r j = 1,2&N. (4.10) 

2) Zero-Flux (Neumann) Boundary Condition: 

A 
Xi0 = Vi0 = Vii, i = 1,2,...,N 

xi,N+l ’ vi,N+l = ViN, i = 1,2,. . , N 

A 
xoj = “Oj = wpj, j = 1,2,...,N 

A 
xN+l,i = vN+l,j = vN,j, j = 1,2,...,N. (4.11) 

3) Periodic (Toroidal) Boundary Condition: 

Xi0 A ViO=Vihfy i = 1,2,...,N 
A 

xi,N+l = ‘%,N+l = ‘uil, i = 1,2,...,N 
A 

“oj = V,,j =VNj, j = 1,2,...,N 

xN+l,i ’ “‘N+l,j = vlj, j = 1,2,...,N. (4.12) 

81n some applications, e.g., in modeling heart muscles, it may be desirable 
to choose different diffusion coefficients along the vertical and horizontal 
directions. Also, a rectangular rather than a square CNN may be preferred. 
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Fig. 10. Same as Fig. 9 but with dual synaptic-input CNN cells. The 
conductance of the resistors in the top layer is generally different from those 
in the second level. 

C. Dual-Layer Two-Dimensional Reaction-Diffusion CNN 

In order to obtain Turing patterns, it is necessary to have 
two diffusion mechanisms having significantly different coeffi- 
cients D1 and D2 (e.g., 02 > 5001) [19]. This requires a CNN 
having two layers of resistor couplings, as shown in Fig. 10. 
Assuming the discretized Laplacian template A2 and using 
the “dual-coupled” third-order cell shown in Fig. 4(b), we 
obtain the following discrete version of the reaction-diffusion 
equations (with k = 1) 

‘ii = a[Yij - h(kij) + D,(xi+l,j + xi-l,j + xi,j-l 

+ Xi,j+l - 4Xij)] 

yij = Xij - ~ij + ‘ii + D,(YY;+I,~ + yi-l,j + yi,j-l 

+ Yi,j+l - 4Yij) 

iij = -@yij - yzij i,j = 1,2;. . ,N. (4.13) 

V. MODELING WELL-KNOWN NONLINEAR REACTION- 

DIFFUSION PARTIAL DIFFERENTIAL EQUATIONS VIA CNN 

In this section, we will illustrate how nonlinear reac- 
tion-diffusion partial differential equations (pde) from various 
disciplines can be modeled by a reaction-diffusion CNN. 

A. Example from Genetics (Fisher’s Equation) 

In 1937, Fisher [25] showed that under certain assumptions, 
the “rate of increase” in frequency v of an advantageous 
gene in a population can be modeled by a nonlinear reac- 
tion-diffusion pde whose dimensionless form is 

dv 
- = v(1 - v) + g. 
at 

This classic equation, also known as the “diffusional logistic” 
equation, has since been found to be useful in many other 
applications and has been widely studied [26]. We summarize 
here two imuortant nronerties of (5.1): 

Property 5.1 [26]: Consider (5.1) over the spatial domain 
-(L/2) 5 x 5 L/2, where L denotes the length of the 
domain. Assume: 

1) Dirichlet Boundary Condition: v(-(L/2)) = v(L/2) = 
0 

2) Initial Condition: v(x,O) = Q(X) > 0, Q(X) $ 
0, -(L/2) <x < L/2 

where vo(x) is any user-specified function of 2. Then the 
following holds: 

a) If O<L<r, then v(x,t) + 0 as t + cc 
b) If L > X, then v(x,j) -+ G(x) as t --+ CS, 
where 

L 
0, xx-- 

G(x) = 
2 

vm, x=0 (5.2) r 

0, x2 
2 

is a unique, and hence globally attracting, positive solution. 
In (5.2), v, = 0 when L = 7r, and increases monotonically 

to unity as L --+ co, and 

dG(x) 
>o, for -‘<x<O 

- = 
dx 

=o, x = o2 (5.3) 

a forO<x<g. 

Property 5.1 guarantees that if L > n, then all solutions of 
Fisher’s equation with zero boundary conditions and positive 
initial conditions are attracted to a time-independent non- 
constant function of x; i.e., v(x, t) + G(x), as shown in 
Fig. 11(a). If we code a rectangular bar of length L, centered 
at x = 0 by a gray scale (black when v = v, and white 
when v = 0), we would obtain the nonhomogeneous pattern 
shown in Fig. 11(a), provided L > n-. On the other hand, if 
L < r, property 5.1 asserts that the rectangular bar will be 
homogeneously white, i.e., there will be no nonhomogeneous 
pattern in this case. 

We can model Fisher’s equation (5.1) by the one- 
dimensional CNN shown in Fig. 8(a) with the generic first- 
order cell shown in Fig. 3(c), where C = 1 and the nonlinear 

resistor ‘UR - iR characteristic is given by iR = -vR( 1 - VR), 
as shown in Fig. 1 l(b). Fisher’s Equation with L > x gives us 
our first mathematically rigorous example of a homogeneous 
medium of finite length that exhibits a nonhomogeneous 
pattern in dc steady state. Using the method developed in 
[35], we can prove that the corresponding CNN realization 
of Fisher’s Equation with zero boundary conditions exhibits 
a nonhomogeneous pattern if the number of cells is greater 
than three. 

Property 5.2 [26]: Consider Fisher’s equation (5.1) over 
any boundary interval xa ‘5 x 5 x6 in the spatial domain. 
Assume: 

1) Zero-flux (Neumann) boundary condition: i.e., dv/dx = 
0 at x = xa and x = Xb. 

2) Initial condition: v(x,O) = vo(x) 

where Q(X) is any user-specified function satisfying 0 5 

vo(x) 5 1. 
Then the followine holds: 
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x=0 

(a) 

(b) 

> “R 

(cl 

Fig. 11. (a) Sketch of a nonconstant pattern V(Z) over the closed interval 

-(L/2) 5 z 5 L/2 for Fisher’s Equation (5.1), where L 2 a. The pattern 

is depicted below the curve V(Z) by a gray-scale image where the center 

z = 0 is shown in jet black corresponding to the maximum voltage u = om , 

and where the edges at z = &L/2 are shown in white corresponding to the 

minimum voltage 2) = 0. (b) The VR - in characteristic of the nonlinear 

resistor for the first-order CNN cell of Fig. 3(c) for Fisher’s Equation. (c) The 

VR - in characteristic for the FitzHugh-Nagumo Equation. The area above 

the horizontal axis is shown less than the area below the horizontal axis, 

a) If wu(5) = 0 for all z a 5 x 5 xb, then w(~,t) = 0 for 
all t 2 0. 

b) If va(z) is not identically zero, then 

,lim w(s,t) = 1. 
t-+cc 

We can interpret property 5.2 as asserting that if the gene 
population can be modeled by Fisher’s equation with a zero- 
flux boundary condition, then the introduction of even a 
small amount of advantageous genes will lead to a uniform 
frequency of the gene equal to unity in the steady state, i.e., 
as t -+ 00. In terms of the above gray-scale coding, property 
5.2 asserts that the rectangular bar will become all white 
(if initially all white) or all black in steady state. In other 
words, there will be no patterns under the zero-flux boundary 
condition. 

Remarks: The conclusion of Property 5.2 remains valid if 
the ‘UR - in characteristic is generalized to any continuous 

function satisfying the properties: 

g(O) =9(l) = 0 
d’uR) < 0 forO<uR<l 

g’(O) < 0 

g’(1) > 0. -(5.4) 

In this case, (5.1) assumes the following form (sometimes 
refered to as the generalized Nagumo equation [27]): 

dv 
- = -g(w) + g. 
at 

(5.5) 

B. Example from Ecology 

Except for the degenerate initial condition vu(~) c 0, 
Property 5.2 asserts that the generalized Fisher’s equation (5.5) 
with g(.) satisfying (5.4), has only one stable homogeneous 
dc steady state for all x. In this section, we consider the 
situation where there are two stable dc steady states by 
considering the more general ?JR - iR characteristic shown in 
Fig. 11(c). Observe that g(wR) = 0 has three zeros; namely, 
at 21~ = 0, E, and 1. This generalized model arises in many 
areas, including selection-migration models and other bistable 
population models. It is also found in a degenerate form of 
Nagumo’s equation [26], 1271 where g(vR) in (5.5) is given 
by: 

g(vR) = wR(w~ - l)(wR - E). (5.6) 

Using a similar proof, the following general theorem holds: 
Theorem 5. I [26]: Assume the nonlinear resistor character- 

istic iR = g(VR) satisfies the following properties Over some 
bounded interval where 0 <: E < 1 [see Fig. 1 I(c)]: 

1) do) = g(E) = g(1) = 0 
2) g(wR) > 0 for wR E (0, E) 
3) g(uR) < 0 forvR E (E, 1) 

4) g’(O) > 0 

5) g’(l) > 0 
1 

6) G(1) e 
s 0 g(w) dw < O. 

(5.7) 

Then under zero-flux boundary conditions, all solutions of (5.5) 
tend to either w = 0 or u = 1, whereas v = E is unstable. 
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Theorem 5.1 asserts that the limiting form of the one- 
dimensional reaction-diffusion CNN in Fig. 8(a) having first- 
order cells (see Fig. 3(c)) satisfying (5.7) -with C = 1 and 
zero-flux boundary conditions has a b&able steady state. 

Many electronic devices and circuits can be synthesized, 
with appropriate dc bias, to obtain a WR - in characteristic 
satisfying (5.7), such as the curve shown in Fig. 11(c). Note 
that condition 6 of (5.7) means that the area bounded by the 

VR - iR characteristic above the UR-axis must be smaller than 
that below the VR-axis. This condition is easily realized by 
connecting a dc current source in parallel with the nonlinear 
resistor as in the first-order CNN cell in Fig. 3(c). Moreover, 
by connecting a dc voltage source in series with the resulting 
nonlinear resistor, the VR-~R curve of the composite nonlinear 
resistor (i.e., including the parallel current source and series 
battery) resembles the nonlinear curve of Fig. 1 l(c) (except 
for its piecewise-linear character) and satisfies (5.7). Since 
the introduction of the series battery clearly does not affect 
the qualitative dynamics of the resulting state equations, it 
is expected that the autonomous reaction diffusion CNN 
made of such first-order cells will behave like Theorem 
5.1 when the number of cells is sufficiently large; namely, 
we have two (b&able) dc steady states. This conclusion is 
similar to the complete stability theorem proved in [l]. By 
choosing appropriate initial conditions, a traveling “trigger” 
or “auto” wave can be initiated that switches from one 
stable state to the other [ll], [12]. Such phenomena have 
been exploited for global optimization and image processing 
applications. 

C. Example from Mathematical Biology 
(FitzHugh-Nagumo Equation) 

The most widely-used mathematical model of excitation and 
propagation of impulse (action potential) in nerve membranes 
is the FitzHugh-Nagumo Equation whose dimensionless form 
is given by [19], [28] 

?&-(~~*)~y+!?!g 
dY 
-=&(X--Y) 
at 

where b and E are dimensionless constants. Note that (5.8) is 
a nonlinear reaction-diffusion pde with diffusion coefficients 
D1 = 1 and 02 = 0. The corresponding reaction-diffusion 
CNN is simply the basic one-dimensional CNN shown in 
Fig. 8(a) with D = D1 = 1, and where the CNN cell is 
given by the second-order circuit shown in Fig. 12, where the 
VR - iR characteristic of the nonlinear resistor is defined by:9 

iR = g(?&) = +;. 

Observe that this circuit is a special case of the generic third- 
order CNN cell of Fig. 4(a) where L = 0, and Cz < 0. The 
original circuit given in Fig. 2 by Nagumo et al. [27], which 

91n its inost general form, the FitzHugh-Nagumo equation includes also a 
constant “dc bias” term in each equation of (5.8). This corresponds to simply 
connecting a dc current source across capacitors Cl and Cz, respectively. 

Fig. 12. The CNN cell for the FitzHugh-Nagumo Equation (5.8) consists of 
a second-order circuit with one synaptic input current. 

has the same qualitative behavior as Fig. 12, is also a special 
case of Fig. 4(a) with R = C, = 0, and with the nonlinear 
resistor modeled by a tunnel diode in series with a battery. In 
other words, the FitzHugh-Nagumo Equation or the original 
Nagumo active pulse transmission line can now be unified 
under the umbrella of a one-dimensional reaction-diffusion 
CNN where the cells are a degenerate special case of Chua’s 
oscillator [ 181. This observation is important because many 
papers involving autowaves, spiral waves, and scroll waves 
have been published on this particular reaction-diffusion CNN 
[l l]-[17], and the results from these papers can be trans- 
lated in an almost one-to-one manner to nerve transmission 
mechanisms predicted by the FitzHugh-Nagumo equation and 
vice-versa. Moreover, since the FitzHugh-Nagumo equation 
is only a caricature of the classic Hodgkin-Huxley equations’0 
for nerve conduction [29] to be presented in Section V-G, 
it follows that with appropriate choice of circuit parameters, 
the generic third-order CNN cell of Fig. 4(a) represents a 
more general and versatile model of nerve conduction than 
the FitzHugh-Nagumo equation, which is currently the model 
of choice in simulating the mathematical neurophysiology 
of nerve conduction because it is much simpler than the 
Hodgkin-Huxley equations. It may even be possible for this 
one-dimensional reaction-diffusion CNN to exhibit certain 
phenomena observed in real nerve propagation but which has 
been found wanting [28] in the Hodgkin-Huxley equation. 

D. Example from Nonequilibrium Thermodynamics 
(The Brusselator Equation) 

One of the most widely studied nonlinear reaction-diffusion 
pde is the Brusselator, whose dimensionless equation assumes 
the form, [30]-[31] 

dX 
-=a-((b+1)X+X2Y+D;V2X 

ifi 
- = bX - X2Y + D2V2Y 
at 

where 

(5.10) 

is the two-dimensional Laplacian operator in R2. 

loHodgkin and Huxley were awarded a Nobel Prize in Physiology for work 
reported in this paper. 
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Fig. 13. The CNN cell for the Brusselaror Equation (5.9) consists of a 

second-order circuit with two synaptic input currents. 

Tyson named this equation the Brusselator in honor of 
the famous institute in Brussels headed by Nobel Laureate 
I. Prigogine where it was developed [31]. The Brusselator has 
been the object of intense investigations since 1968 because 
it is the simplest equation that exhibits most of the important 
phenomena observed from the classic Belousov-Zhabotinskii 
Reaction, as well as other phenomena that demonstrate self 
organization. 

The CNN version of the Brusselator is simply realized 
by the dual-resistive grid reaction-diffusion CNN shown in 
Fig. 10, where the conductances of the two resistive grids are 
set equal to the diffusion coefficients Dr and D2, respectively, 
and where the cells are given by the second-order CNN cell 
shown in Fig. 13, which contains only linear elements and a 
single nonlinear voltage-controlled current source that outputs 
a current equal to $212. 

E. Example from Biology (Meinhardt-Gierer Equation) 

Our next example is taken from developmental biology 
where the subject of morphogenesis, or the genesis of forms 
and structures, of higher organisms has been a most chal- 
lenging research topic since Turing’s seminal work in 1952 
[32]. In particular, let us consider the following well-known 
reactiondiffusion pde, among several others, due to Meinhardt 
and Gierer [19], [33]: 

8X ax2 -=- 

:h 
Y 

- ,8X + D1V2X 

_ zz ax2 - yY + D2V2Y. 
at 

The CNN version of the Meinhardt-Gierer equation is also 
given by the dual resistive-grid CNN in Fig. 10, where the 
conductances of the two resistive grids are equal to D1 and 
D2, respectively, and where the cells are realized by the 
second-order CNN cell shown in Fig. 14. Observe that we 
now require two nonlinear voltage-controlled current sources 
compared to only one in the Brusselator CNN cell. The 
Meinhardt-Gierer Equation (5.11) is a simple but fundamental 
mathematical model that clearly demonstrates the so called 
“activation” and “inhibition” mechanisms so fundamental in 
understanding the formation of many stable patterns in an 
otherwise homogeneous medium, such as the autonomous 
reaction-diffusion CNN. In (5.1 l), the state variable X is 
called the “activator” because an increase in the value of X 
about its equilibrium value could further increase the value of 

Fig. 14. The CNN cell for the Meinhardt-Gierer Eq’ktion (5.11) consists of 

a second-order circuit with two synaptic input currents. 

Fig. 15. The CNN cell for the Meinhardr-Giere Equation (5.12) consists of 

a third-order circuit with one synaptic input current. 

X [33] (assuming Q: > 0). Conversely, the state variable Y is 
called the “inhibitor” because an increase in the value of Y 
could have the opposite effect. In control system jargon, the 
“activator” corresponds to a “positive” feedback mechanism, 
whereas the “inhibitor” corresponds to a “negative” feedback 
mechanism. In terms of the CNN cells in Fig. 13, the capacitor 
voltage wr plays the role of the activator, and the capacitor 
voltage 212 plays the role of the inhibitor, two opposing 
mechanisms that are often necessary in the formation of a 
stable pattern in many reaction-diffusion CNNs [34]-[36]. 

Another pattern formation reaction-diffusion pde also due 
to [33] calls for the following third-order state equations: 

ax 1 ----x 

z- 

ii 

TY -=-.- 

- =X:Z+DV’Z. 
at 

(5.12) 

The CNN version of (5.12) is given by the single-grid re- 
action-diffusion CNN in Fig. 9, where the cells are realized 
by the third-order cells shown in Fig. 15. In this case, both 
capacitors Cr and Cz inhibit each other. However, observe 
that a small increase in the value of X about its equilibrium 
value in (5.12) could cause a decrease in the value of Y, which 
in turn would lead to a further increase in X. Hence, these two 
inhibitors when coupled together actually plays the equivalent 
role of an activator! Such an equivalent inhibition-activation 
mechanism could again give rise to a stable pattern provided 
the diffusion coefficient D is sufficiently large. In some sense, 
we have traded one layer of resistive grid by increasing the 
order of the CNN cell. 
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F. Example from Chemistry (Oregonator Equation) 

A more complicated but realistic model of the spiral 
wave phenomenon observed in the well-known Belousov- 
Zhabotinskii Reaction [30] in chemistry has been described 
by Field and Noyes at the University of Oregon in 1974 [37] 
and called the Oregonator to relate it to the simpler but less 
realistic Brusselator. 

The dimensionless form of the Qregonator is given by: .’ 

E~=X+Y-Q,X~-XY+D~V~X 

8Y 
-=-Y+pZ-XY+D2V2Y 
at 

6g=X-Z+D,V”Z. (5.13) 

Assuming the most general case where there are three diffusion 
coefficients D1, D2, and Ds, we can realize a corresponding 
Oregonator CNN consisting of three resistive grids whose 
conductances are set equal to Dl,D2, and 03, respectively. 

The corresponding CNN cell is realized by the third-order 
circuit shown in Fig. 16, which requires a nonlinear resistor 
described by in = g(wR) = WV& - OR and two nonlinear 
voltage-controlled current sources. 

G. Example from Neurophysiology 
(Hodgkin-Huxley Equations) 

We conclude this section by showing how the celebrated 
Hodgkin-Huxley equation can also be realized by a one- 
dimensional reaction-diffusion CNN. In keeping with the 
historical significance of this equation, we will adopt the same 
notations used originally by Hodgkin and Huxley [29] in 
reproducing their equations as follows: 

dV 1 
at=-c gNam3h(V -ENS) 

+ gKn4(V - EK) + sL(V - EL) - g 

$ =@b~(V)(l- m) - &(V)m 

2 = m(V)(l - h) - /‘&(V)h 

g = Lyn(V)(l - n) - P,(V), (5.14) 

where 

&n(V) = 
0.1(25 - V) 

e0.1(25-V) _ 1 

pm(v) = 4e-(V/18) 

cYh(V) = 0.07e-(V’20) 

Ph(V) = l eo.1(30-v) + 1 

Qn(V) = 
O.Ol(lO - V) 

eo.l(lo-v) 

,&(V) = 0.125e-(V/80). (5.15) 

The first three terms with subscripts Na, K, and L in 
the first equation of (5.14) correspond to the three physical 

Fig. 16. The CNN cell for the Oregonator Equation (5.13) consists of a 

third-order circuit with three synaptic input currents. 

current contributions IN,, IK, and IL due to the flow of 
sodium, potassium, and leakage ions, as indicated in the 
original Hodgkin-Huxley circuit model shown in Fig. 17(a). 
Here, C denotes the capacitance of the nerve membrane 
and the two linear resistors with arrowheads denote time- 
varying conductances whose instantaneous values are given 
respectively by 

gNa(t) = %vam3(t)h(t) 
gK(t) =SKn4(t) 

(5.16) 

(5.17) 

where gNa, ijK, and ?jL in (5.14) are constant parameters. 
The two time-varying conductances in Fig. 17(a) are defined 

by the usual Ohm’s law 

iNa = gNa(+‘Na 

and 

iK = gK(t)VK 

except that gNa(t) and gK(i!) are unusual not only that they 
are time-varying functions, but also they are not prescribed 
functions of time that would be the case for a circuit-theoretic 
definition of a legitimate time-varying conductance. Instead, 

their values at any time t depend on the values of the four 
state variables V(t), m(t), h(t), and n(t) that are solutions of 
the fourth-order nonlinear partial differential equation (5.14) 
at time t. In fact, gNa(t) and gK(t) are not time-varying 
conductances from a circuit-theory perspective. Rather, they 
represent two memristive devices [38] defined by the state 
equations (5.14) with a respective readout map 

iNa = gNh.(m, h, v)wNa 

and 

iK = gK(% v)vK 

where the coefficients gNa(‘) and gK (.) defined by 

gNa(m, h, V) a gNam3h(V - ENS) 

gK(n, v) 2 jjKn4(V - EK) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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Fig. 17. (a) The Hodgkin-Huxley circuit model shown at one point on 
the nerve axon consists of a linear capacitor C, a sodium time-varying 
conductance so,, a sodium battery ENS, a potassium time-varying 
conductance grc(t), a potassium battery EIC, and a constant conductance 
?jL in series with battery EL used to model the leakage ions. All circuit 
elements’are assumed to be expressed in per unit length of the nerve 
axon. In other words, this circuit model unit is distributed uniformly 
throughout the length of the nerve, resulting in a fourth-order nonlinear 
partial differentiai equation. (b) The CNN cell for the Hodgkin-Huxley 
equation consists of a lumped circuit containing in’addition to a linear 
capacitor, a linear resistor, three batteries, but also two memristive devices 

llliVLl and AJr<, each one described by a fourth-order nonlinear state 
equation (5.14) and a scalar nonlinear readout map. (c) A nonlinear circuit 
realization of the Hodgkin-Huxley cell in terms of only conventional 
circuit elements: four linear capacitors, one linear resistor, one battery, 
and four memoryless nonlinear voltage-controlled current sources, which 
are multiterminal nonlinear resistors [22] in the context of nonlinear circuit 
theory. Such circuit elements can be realized using only basic IC circuit 
components (e.g., bipoku and MOS transistors). 

are called memristive conductances because they have the unit 
of conductance in Siemens. Observe that they are nonlinear 
functions of the state variables. These memristive conductances 

have memory because the initial values of the four state 
variables V, m, h, and n must be specified at t = to before their 
values at any time t > to can be calculated from the fourth- 
order state equation (5.14). Since these memristive devices 
are higher-order generalizations of the memristor, the fourth 
fundamental circuit elemenr introduced in [39], the two time- 
varying conductances shown in the Hodgkin-Huxley circuit 
model in Fig. 17(a) should be replaced by memristive device 
symbols in order to accurately describe the nature of these 
two circuit elements, as shown in the corresponding Hodgkin- 
Hujtley CNN cell in Fig. 17(b). 

One of the truly spectacular triumphs of the Hodgkin- 
Huxley Equation is their prediction, via numerical solutions, 
that the nerve impulse, i.e., the action potential, propagates 
along the nerve membrane of a squid axon in the form of a 
trgveling wave moving at a velocity of 18.8 m/s, which differs 
from the experimentally measured velocity of 21.2 m/s by 
only lo%! Inspite of the Nobel Prize recognition, and the fact 
that (5.14) has remained the foundation of neurophysiology 
for over four decades, no one has yet successfully built 
an artzjicial nerve based on this equation. The main reason 
for this is the failure among the numerous researchers on 
the Hodgkin-Huxley equation to recognize the two “strange” 
circuit elements gNa(t) and gK(t) as memristive devices and 
not time-varying conductances. Once their nature are correctly 
identified, they can be synthesized by various nonlinear circuit 
modeling methods [40]. One such circuit realization is shown 
in Fig. 17(c), where, the two memristive devices are realized 
via five nonlinear voltage-controlled current sources and four 
linear capacitors. These nonlinear controlled sources can in 

turn be realized using standard circuit components, e.g., op 
amps and multipliers. 

We close this section by posing a challenge for future 
Ph.D. researchers to design and fabricate a VLSI chip of 
the Hodgkin-Huxley CNN cell shown in Fig. 17(c) or its 
many possible equivalent circuit realizations. The substitution 
of these chips for the cells in the one-dimensional CNN 
shown in Fig. 8(a) would yield the first and no doubt historic 
artificial “neural” transmission line that mimics the dynamics 
of real nerves to the extent predicted by the Hodgkin-Huxley 

equation. Needless to say, any practical electronic circuit 
realization of the Hodgkin-Huxley CNN cell must scale up 
the impulse propagation velocity by at least six orders of 
magnitude. This extremely high-speed nerve fits perfectly with 
the futuristic scenario of an artificial CNN-based electronic 
brain. 

VI. AUTONOMOUS CNN WITH INDUCTOR SYNAPTIC LAWS 

The cells in the reaction-diffusion CNN considered in 
Section V are all coupled by linear resistors. To illustrate 
the generality of the CNN as a unifying paradigm, we will 
present several examples in this final section where the cells 

are coupled by inductors. 
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node j-l 0 node j 0 node j+l 

/ / 

0 
/ 

CNN Cell 

CNN Cell 

I - I - I - 
FDNR FDNR FDNR 

Fig. 18. A CNN realization of the Sine-Gordon Equation (6.5) with linear 
Fig. 19. An equivalent CNN realization of the Sine-Gordon Equation (6.5) 
with usual linear resistor synaptic couplings between cells. 

inductor synaptic couplings between cells. 

A. The Sine-Gordon CNN 

Consider the one-dimensional CNN shown in Fig. 18, where 
the CNN cells consist of a linear capacitor in parallel with 
a nonlinear inductor described by ij = g(cpj), and where 
these cells are coupled to each other by linear inductors 
with inductance L. In terms of the CNN circuit topology 
defined in Fig. 2, we can identify the following corresponding 
components: 

1) CNN Cell Dynamics: 

d% 
dt 

-llj. 

2) CNN Synaptic Law:” 

Ij” =iL, - iLj+l = $+1- 2% + cpj+d 

A 1 
=- 

L 
V2Pj 

(6.1) 

(6.2) 

(6.3) 

where cpj(t) = J! o. uj(~)d~ is the jlux-linkage at node j. 
Observe that the synaptic law (6.3) is a discrete Laplacian of 
the flux linkage ‘pj. Substituting (6.2) and (6.3) into (6.1), we 
obtain 

= ;v2$9j, j = . . . 0, 1,2,. . . k - 1, k, k + 1,. . . . 

(6.4) 

” In terms of the autonomous CNN cell structure defined in Fig. 2, we have 
the following A template: 

Suppose we choose the nonlinear inductors to be Josephson 
junctions described by ij = g(cpj) = sin ‘pj, and suppose we 
choose normalized parameters L = C = 1 and let the number 
of cells N tend to co, then (6.4) reduces to the following 
famous Sine-Gordon Equation from physics: 

(6.5) 

The Sine-Gordon Equation is of great interests among physi- 
cists not only because it is one of the very few nonlinear 
.pde that has an exact analytical solution, but also because it 
has a stable soliton solution [41]. In view of this property, 

we can assert that, in addition to trigger waves, spiral waves, 
and scroll waves, some autonomous CNNs can have soliton 
solutions. For a recent example of soliton solutions in CNNs, 
see [42] and [44]. Such solutions are gaining importance in 
optical communication systems. 

B. Resistor-Coupled Sine-Gordon,CNN 

To illustrate the applications of higher-order circuit ele- 
ments [40] and equivalent circuit transformations, consider 
the resistor-coupled reaction-diffusion CNN shown in Fig. 19, 
where each CNN cell consists of a nonlinear resistor (described 
by ij = sin vj) in parallel with a frequency-dependent negative 
resistor (FDNR) with unit conductance (G = 1) .l* 

1) CNN Cell Dynamics:13 

d$) 

*= 
-[sin wj - Ij”] 

_ v(l) dVi 
dt 3’ 

2) CNN Synaptic Law: 

Observe the operator * defining the synaptic controlled sources is defined by I; = 7l-1 - 2vj + ?Jj+1. (6.8) 

aj * f(UJ+l, Vj) = a] 
.I 

t [q(T) - q+1(r)ldr 
“The FDNR shown in Fig. 19 is a 2-terminal linear element introduced in 

-cc [21] and is defined by i = G(d’v/dt’). It is a special case of the family of 

=a?(% -'pj+1) 
higher-order circuit elements introduced in [40]. 

13We adopt the notation in [40] to define the nth-order voltage by 

where we have deleted the first subscript i to avoid clutter. vcn) k d”v/dP In the FDNR we have n = 2, and i = Gvc2). 
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Substituting (6.7) and (6.8) into (6.6), and letting N + 00, 
we obtain again the Sine-Gordon Equation 

in terms of the voltage variable V, instead of the flux-linkage 
variable cp in (6.5). This example shows that it is possible to 
obtain soliton solutions in an autonomous CNN without using 
inductors. 

From a circuit-theoretic perspective, this example is also 
important because it shows that the same dynamics from a 
reciprocal lossless LC circuit, such as the CNN in Fig. 18, 
can be obtained from an active reciprocal RC circuit; such 
as the CNN in Fig. 19. Indeed, by using the family of 
higher-order circuit elements introduced in [40], an almost 
unlimited hiera&y of higher-order CNNs can be synthesized. 
The nonlinear dynamics of such high-order systems is truly 
mind boggling and will no doubt form an interesting and 
challenging fundamented subject of future research. 

C. Toda Lattice CNN 

Consider next the nonlinear LC transmission line shown in 
Fig. 20, where the capacitors and inductors are both nonlinear 
and characterized by a strictly-monotonically increasing, or 

bijective, qc - UC and cp~ - in characteristics &, (.) and 

~~~ (.), respectively. 
I) Nonlinear Capacitor: 

wj = k, (qc, ) (6.10) 

node 0 

\ 

node 9 node @, 

Fig. 20. A CNN realization of the Toda lattice Equation (6.24)-(6.25) with 

nonlinear (exponential law) inductor synaptic couplings between cells. 

4) CNN Synaptic L.aw:14 

I; = iLj - iLj+l = GLj) - &uj,,). (6.17) 

Substituting (6.17) into (6.16) and making use of (6.14), 
we obtain the following state equations associated with the 
nonlinear LC transmission line 

(6.18) 

(6.19) 

wherej = . ..-1.0,1,2,...,Ic;... 
Let us consider next an example, where the nonlinear capac- 

itor and inductor characteristics are chosen to be exponential 
functions, similar to the pn-junction diode equation.15 

5) Nonlinear Capacitor: 

dqc 
iCj = dt 

dvc 
3 = C(vc,)$ 

where 

Vcj = 8cj (qc, ) = eqcj - E (6.20) 

is the associated small-signal capacitance [22] and qc, = 

Gc, (UC, ) is the inverse of the function 8cj (.) defined in (6.10). 
2) Nonlinear Inductor: 

iL3 = ;L, (CpLj) (6.13) 

VL 3 

where 

(6.14) 

(6.15) 

is the associated small-signal inductance [22] and (PLY = 

@Lo (in,) is the inverse of the function ~~~ (.) defined in (6.13). 
To show the nonlinear transmission line in Fig. 20 is an au- 

tonomous CNN, as defined in Fig. 2, we identify the nonlinear 
capacitors as the CNN cells, coupled by an inductor synaptic 
law between neighbor cells as follows: 

3) CNN Cell Dynamics: 

dvc, _ 1 --- 
dt 

p 
C(w!,) 3’ 

(6.16) 

where E is a constant parameter. The inverse function is 
therefore given by qc, = In (WC, + E) and its associated 

small-signal capacitance is 

cw = --& (6.21) 
3 

6) Nonlinear Inductor: 

(6.22) 

where I is a constant parameter. The inverse function is 
therefore given by (PLY = In (in, f I) and its associated 
small+ignal inductance is 

t40bserve that (6.17) can be recast into the operator form akl * 

f(G+k,j+r> Gj) = %,[W, “Lj (T)dT) - WC0 Wjfl(T) dT)l 
depicted in Fig. 2. 

15The nonlinear transmission line in Fig. 20 with these exponential nonlin- 

earities is sometimes called the Toda lattice in the physics literature [43]. 
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Subsituting (6.21) and (6.23) into (6.18) and (6.19), we obtain 
the following well-known state equations of the Toda Lattice 
[43]: 

% = (UC, + E)(iLj - iLj,,) (6.24) 

2 = (iLj + I)(wcj-l - “C,) 

wherej=~~~-1,0,1,2,~~~,Ic,~~~Itfollowsfromtheabove 
derivations that the Toda lattice is also an autonomous CNN. 

D. Lotka-Volterra (Prey-Predator) CNN 

For our last example, let us consider the Lotka-Volterra 
equation 

d?i _ 
dt- 

X&j-l - Xj+1) j = . . . -.I,(), 1,. . . ) k, . . . . 

(6.26) 

Equation (6.26) is a classic equation in ecology and theoretical 
biology; it is usually called the Prey-predator model [26]. 
Our objective in this final section is to show that the Lotka- 
Volterra equation can be transformed into the Toda lattice 
equations (6.24)-(6.25) of the preceding section. Hence, the 
Lotka-Volterra Equation can also be studied as an autonomous 
CNN. To establish this equivalence, let us group the equations 
with odd or even indexes in (6.26) separately to obtain the 
following two systems of coupled equations:i6 

d&j-l 
dt 

=X2j-l(X2j-2 - X2j) 

dXzj 
- = XZj(XZj-1 - X2jfl) 

dt 
j = . . . -1,0,1,2;..,k,... . (6.28) 

Equating (6.27) and (6.28) to zero, we obtain the following 
equilibrium points: 

X2+ =X2i = E, j = . . . -l,O, 1,2, . . . ) Ic, . . . 

x2+1 =xq+1 = I, j=...-1,0,1,2,...,k,... 

(6.29) 

for arbitrary values of E and I. Let us change variables by 
defining 

X2j k IJ~, + E 

A 
x2j-1 = iLj + I. (6.30) 

Substituting (6.30) into (6.28), we obtain 

% = (UC, + E)(& - iLj+J. 

Similarly, substituting (6.30) into (6.27), we obtain 

diLj _ 
- - (iL, + q(w-1 - w,). 

dt 

(6.31) 

(6.32) 

t61n a Prey-predator system, we can interpret zlj-1 as the population 

of prq’eys as a function of the discrete distance 2j - 1 and z2j as the 

population of predators as a function of the discrete distance Zj; j = 
. ..-l.O,l,...k,.... 

Observe that (6.31) and (6.32) are identical to the Toda 
lattice equations (6.24) and (6.25), respectively. Here, the 
capacitor voltage wcj can be interpreted as the variations in the 
population of an “even-numbered” species, (e.g., preys such 
as rabbits, phytoplanktons) about some equilibrium popula- 
tion equal to E. Similarly, the inductor current ~~~ can be 
interpreted as the variations of an “odd-numbered” species 
(e.g., predators such as foxes, planktons, etc.) about some 
equilibrium population equal to I. 

One immediate bonus of the above identification of the 
Lotka-Volterra Equations (6.27)-(6.28) with the nonlinear LC 
transmission line of Fig. 20 is that this model represents a 
conservative system since the total energy is conserved in the 
LC transmission line. This same conclusion can be proved 
mathematically by exhibiting a first integral of the motion 
in the corresponding nonlinear reaction-diffusion pde [26]. 
However, this task is nontrivial and nonintuitive. In contrast, 
since the LC transmission line in Fig. 20 is lossless, we 
had obtained the same conclusion for free! This example 
demonstrates the value of the CNN paradigm as a unifying 
framework. 

VII. CONCLUDING REMARKS 

Although this tutorial paper focuses only on reaction- 
dzfhusion CNNs, it is clear from the numerous examples 
presented in the preceding sections that any nonlinear higher- 
order, (e.g., [44]), and/or time-varying (nonautonomous) 

system of pde’s can be simulated by a CNN by synthesizing 
the appropriate synaptic “lumped circuit” coupling whose 
continuum limits represent the associated partial derivative op- 
eratcii, e.g., f(t)(a4u(x, t)/ax4), (a/ay)(u(x, y)(f3”u/ax3). 

-, etc. Such complicated synaptic couplings can no 
longer be realized by layers of resistive, inductive, or 
capacitive grids, as in reaction-diffusion CNNs. However, 
by using the concepts developed in [23], [40], such complex 
synaptic couplings can always be realized by using nonlinear 
controlled sources and higher-order circuit elements. It is 
in fact in such applications where the higher-order circuit 
elements introduced in [40] will play an essential if not 
indispensable role. 

Observe that the nonautonomous first-order CNN cell nij 
in Fig. 3(a) becomes autonomous for constant (dc) inputs 
Eij. This induces a constant current source equal to b,~oEij, 
which can be combined with the dc threshold current source 
I in Fig. 3(a) and (b). In other words, the space-invariant 
nonautonomous CNN widely used to date for processing 
static images [7] is equivalent to an autonomous CNN with 
a space-varying threshold current 1;j for each cell n;j. This 
observation is important because it transforms the static image 
processing problem into a bifurcation problem where the tools 
from nonlinear dynamics can be brought to bear. 

The unifying power of the CNN paradigm can be exploited 
in at least two directions: engineering and nonengineering 
applications. For engineering applications (e.g., signal, image, 
and information processing, pattern recognition, artificial intel- 
ligence, etc.) nonconventional technology can be developed by 
mimicking the CNN-based operating mechanisms (e.g., hyper- 
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acuity) of many marvelous biological systems. For example, 
by studying how the electric fish manages to use its array of 
extremely inaccurate neurons to generate extremely accurate 
directional acoustical information to fence off enemies and 

avoid obstacles, a CNN has recently been synthesized to 
achieve similar “hyperacuity” performance [45]. 

For researchers outside of engineering, the CNN paradigm 
will find increasing applications in view of the large and 

rapidly expanding body of knowledge being generated in the 
CNN research community. By simply translating any such 
nonengineering but, CNN-based phenomenon into a corre- 
sponding CNN paradigm, many tools, results, and concepts 
developed for CNNs can be used to understand, explain, 
and control such phenomenon. For example, a CNN can 
be developed to model the spread of a deadly virus, or 
an epidemic, in a community so that effective methods for 
presenting a further spread to a larger area can be instituted.17 
In addition to the advantage of not having to numerically solve 
a system of nonlinear pdes, which is generally extremely costly 
and time consuming,‘8 one can often manage to fine tune 
a CNN to better model a given situation. This approach is 
similar to the “breadboarding” approach used by electronic 
engineers to design and optimize a new electronic product. 
Such flexibility is a luxury that can not be achieved by working 
directly with a complicated system of nonlinear pdes. 

But above all, by virtue of the sheet-like nature of brain 
tissues, where neurons are distributed along planar layers” 
[48], the CNN provides an ideal substrate and active medium 
for modeling many brain functions, including sensory informa- 
tion processing. Indeed, regardless of the nature of the sensory 
modality (visual, auditory, olfactory, taste, etc.), all such input 
information must be transformed by the brain and mapped into 
corresponding “images’‘-in view of the “sheet-like” topology 

of the brain. The recognition that the CNN paradigm is 
applicable to any setting where information is being processed 
as a transformed planar image has been exploited recently 
in the physiological modeling of the retina by [49]. Similar 
applications can no doubt be profitably carried out for the 
other sensory modalities, and eventually into mimicking the 
higher brain functions partially mapped out in of the recent 
inspiring book [48, (p. 156, Fig. 52)] . One can not help but 
be inspired by this awesome wiring diagram of the brain, 
which metaphorically resembles the layout of a massive VLSI 

chip. Portions of this figure could possibly be simulated by 
interconnections of some futuristic complex of CNN chips. 
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