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Abstract

We propose several examples of smooth low-order autonomous dynamical systems which have apparently uniformly hyperbolic attractors.

The general idea is based on the use of coupled self-sustained oscillators where, due to certain amplitude nonlinearities, successive epochs

of damped and excited oscillations alternate. Because of additional, phase sensitive coupling terms in the equations, the transfer of excitation

from one oscillator to another is accompanied by a phase transformation corresponding to some chaotic map (in particular, an expanding circle

map or Anosov map of a torus). The first example we construct is a minimal model possessing an attractor of the Smale–Williams type. It is

a four-dimensional system composed of two oscillators. The underlying amplitude equations are similar to those of the predator-pray model.

The other three examples are systems of three coupled oscillators with a heteroclinic cycle. This scheme presents more variability for the phase

manipulations: in the six-dimensional system not only the Smale–Williams attractor, but also an attractor with Arnold cat map dynamics near a

two-dimensional toral surface, and a hyperchaotic attractor with two positive Lyapunov exponents, are realized.

c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Hyperbolicity is one of the central concepts in the

mathematical theory of dynamical chaos. In a hyperbolic

attractor all trajectories are of saddle type, all have

stable and unstable manifolds of the same dimension, and

there are no tangencies between the stable and unstable

manifolds. Motions on the strange hyperbolic attractors

demonstrate strong chaotic properties and allow a rather

complete mathematical description; see, e.g., Ref. [1].

Hyperbolic strange attractors are structurally stable (robust);

they can be characterized both topologically (in terms of

symbolic dynamics) and probabilistically (in terms of the

Sinai–Bowen–Ruelle measures).

There are two popular mathematical examples of low-

dimensional hyperbolic strange attractors: the Plykin attractor

and the Smale–Williams solenoid [2,1]. The Plykin attractor

∗ Corresponding author. Tel.: +49 331 977 1472.
E-mail address: pikovsky@stat.physik.uni-potsdam.de (A. Pikovsky).

occurs in a special delicately organized map in a domain on

a plane with three holes. The Smale–Williams attractor appears

in a mapping of a toroidal domain into itself in phase space of

dimension 3 or more.

Until very recently, only geometrical constructions of

the hyperbolic strange attractors were known. An important

problem to address is: can such constructions be realized by

Poincaré maps of systems governed by differential equations

allowing a physical realization?

The possibility of hyperbolic strange attractors appearing in

systems arising from the perturbation of quasiperiodic motions

on tori of dimension 3 and more was discussed by Newhouse

et al. [3], although without a concrete example being presented.

Attempts to compose a three-dimensional set of ordinary

differential equations with an attractor of Plykin type in the

Poincaré map have not yet resulted in a construction that could

be implemented as a physical system [4,5]. As regards the

Smale–Williams solenoids, it was shown that an attractor of

such a type may appear as a result of a codimension one

bifurcation [6], but again, no explicit examples of differential

0167-2789/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2007.05.008
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Fig. 1. Construction of the Smale–Williams attractor.

Fig. 2. Illustration of the action of the Arnold cat map.

equations manifesting this phenomenon were delivered.
Quite recently one of us has advanced a physically

realistic example of the Smale–Williams attractor in the four-

dimensional Poincaré map of a non-autonomous periodically

driven system of two coupled self-oscillators [8]. Later, such

a system was designed as an electronic device and studied

experimentally [9]. Similar constructions of coupled non-

autonomous self-oscillators were used to implement dynamics

associated with the Arnold cat map [10] and with the robust

strange nonchaotic attractor [11].
In the present paper we exploit the approach of Ref. [8] to

introduce examples of autonomous coupled oscillator systems

with hyperbolic strange attractors. Four models we propose are

termed below as A, B, C, and D.
Model A consists of two asymmetrically coupled oscillators.

The underlying amplitude equations are similar to those in

the predator-pray model. The amplitudes associated with two

subsystems become large or small alternately, and the process

of the excitation transfer from one subsystem to another and

back is accompanied with a doubling of the phase variable, i.e.

it corresponds to the expanding circle map (sometimes called

the Bernoulli map [12]). In the three-dimensional Poincaré map

the system has an attractor of the Smale–Williams type. We

stress that this is a flow model of minimal dimension (four) to

have such an attractor.
Models B, C, and D are composed each of three coupled

autonomous self-oscillators, and the phase space dimension

is six. We select the underlying amplitude equations to be

symmetric. Choosing a particular structure of the coupling

terms responsible for the transfer of the excitation from

one oscillator to another, it is possible to arrange not only

the Smale–Williams attractor (model B), but also a system

possessing an attractor located near a two-dimensional toral

surface with dynamics of phases governed by the Arnold cat

map (model C), and a system manifesting a hyperchaotic

attractor with two positive Lyapunov exponents (model D).

2. Smale–Williams attractor and toral hyperbolic maps

The Smale–Williams attractor is considered in most texts

on chaos theory (in some of them it is even used as a

cover picture). The construction is based on a mapping of a

toroidal domain in a three-dimensional space into itself, as

illustrated in Fig. 1. One iteration of the map corresponds

to a longitudinal stretch of the torus with contraction in

the transversal directions, and insertion of the doubly folded

“tube” into the original domain. Note that this mapping cannot

be produced by a continuous flow in the three-dimensional

phase space. A minimal dimension for a continuous-time

system to perform such a transformation is four; in such a

case the Smale–Williams attractor should occur in the three-

dimensional Poincaré map.

For the transformation depicted in Fig. 1 an essential

property is the doubling of the cyclic coordinate around the

torus:

φt+1 = 2φt , (1)

which is known as one of the expanding circle maps, or

the Bernoulli map [12]. In general, the transformation of the

angle variable φ may be non-uniform, but in any case it

must be monotonous and possess the characteristic topological

property: one turn of the pre-image by 2π is accompanied with

a rotation by 4π for the image. In other directions, transversal

to the coordinate φ, the mapping has to be contracting.

Another textbook example of hyperbolic dynamics is the so-

called Arnold cat map (a representative of a general class of

Anosov diffeomorphisms of torus)

(

φt+1

ψt+1

)

=
(

2 1

1 1

) (

φt

ψt

)

, (2)

defined on a torus 0 ≤ φ < 2π , 0 ≤ ψ < 2π . Because of the

identity
(

2 1

1 1

)

=
(

1 1

1 0

) (

1 1

1 0

)

this map may be represented as a twofold application of the

transformation

φt+1/2 = φt + ψt (mod 2π),

ψt+1/2 = φt (mod 2π),

which is equivalent to the Fibonacci map

φt+1/2 = φt + φt−1/2. (3)

We illustrate iterations of this map in Fig. 2 using the traditional

picture of a cat face.

Eigenvalues of the linear transformation (2) are (3 +√
5)/2 ≈ 2.618 and (3 −

√
5)/2 ≈ 0.382, respectively. For
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Fig. 3. Illustration of the phase transfer in the forced self-sustained oscillators with ω0 = 1: solution of Eqs. (6) and (7) within the interval −20 < t < 20 with

ǫ = 0.1 (a) and solution of Eqs. (8) and (9) within the interval −20 < t < 20 with Γ = 0.05, ǫ = 0.01 (b).

every trajectory there is a one-dimensional unstable manifold

and a one-dimensional stable manifold; they are associated with

the directions of the two eigenvectors. It is worth noting that the

map (2) is invertible and area-preserving.

In the class of non-invertible maps on the two-dimensional

torus one can introduce a linear map with two eigenvalues larger

than 1 in absolute value, e.g.

(

φt+1

ψt+1

)

=
(

1 3

1 0

) (

φt

ψt

)

. (4)

Here the eigenvalues are (
√

13 + 1)/2 ≈ 2.303 and (−
√

13 +
1)/2 ≈ −1.303. Each trajectory has two unstable directions,

and this situation is called hyperchaos. Similar to the Arnold cat

map, this hyperchaotic map can be represented as a composition

of simpler transformations with a use of the identity:
(

1 3

1 0

)

=
(

1 1

1 0

) (

0 1

1 0

) (

0 3

1 0

)

.

Thus, we can write the hyperchaotic map as a composition of

three maps:

φt+1/3 = 3φt−1/3, φt+2/3 = φt ,

φt+1 = φt+2/3 + φt+1/3. (5)

A common feature of the above mappings is that the

discrete-time dynamics is considered in terms of variables that

are 2π -periodic, i.e. they are defined on a circle or on a torus.

In the following sections we show how one can implement such

mappings with the help of coupled oscillatory systems.

3. Manipulation of phases of driven oscillations

In the context of realistic physical systems, we may

interpret a cyclic coordinate defined modulo 2π as a phase

of oscillations. For example, in a self-oscillatory system a

particular state on the periodic limit cycle can be characterized

by the phase, which is nothing other than the coordinate along

the cycle (normalized by 2π ). We now describe how one can

accomplish a transfer of the phase from one oscillator to another

accompanied with its appropriate transformation.

Suppose we have a signal f (t) which is nearly sinusoidal

f (t) = cos(ω0t+ψ). At first glance, by forcing a self-sustained

oscillator with the signal f (t), one could easily transfer the

phase ψ to this oscillator. However, a usual self-sustained

oscillator, being forced periodically, although adjusting its

phase to that of the external force, does not forget completely its

own phase prior to forcing. This is illustrated in Fig. 3(a). The

data are obtained from a computer solution of the equations

u̇ = ω0w + (1 − u2 − w2)u + ǫ f (t), (6)

ẇ = −ω0u + (1 − u2 − w2)w, (7)

describing a self-sustained oscillator with frequency ω0 and

unit amplitude of the limit cycle, driven by the signal f (t).

Starting with the limit cycle at t = −20 with the initial

phase of the oscillations φin = arctan w(t=−20)
u(t=−20) , we integrate

Eqs. (6) and (7), and at t = 20 calculate the resulting phase

φout = arctan w(t=20)
u(t=20) . Observe a nontrivial dependence of the

output phase φout both on the phase of the forcing ψ and on the

initial phase φin. Here we do not have the phase transfer of the

required topological class.
A mechanism that gives us the possibility to obtain the phase

doubling consists of the following [8]. Consider a self-oscillator

undergoing a transition from damped to excited state due to

a slow variation of the parameter responsible for the birth of

the limit circle (the supercritical Andronov–Hopf bifurcation).

While the amplitude of the oscillator in the damped stage is

extremely small, the forcing f (t) dominates, and the phase of

oscillations is ψ + const. As the parameter varies, the oscillator

becomes active, the amplitude of the limit cycle grows, and the

phase preserves the shift ψ .
Let us demonstrate the phase transfer from the driving force

to the oscillator. For this, we arrange the parameter responsible

for the growth rate of small oscillations in Eqs. (6) and (7), to

vary from negative to positive values:

u̇ = ω0w + (Γ t − u2 − w2)u + ǫ f (t), (8)

ẇ = −ω0u + (Γ t − u2 − w2)w, (9)

where the coefficient 0 < Γ ≪ 1. For t → −∞ the oscillator

is highly damped, and the forced solution is u ≈ −ǫ f (t)/Γ t ,
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Fig. 4. The phase portrait of the system (10) (left panel), the time courses of the variables ai and the growth rates µi (right panel). Black solid line: i = 1; red short

dashed line: i = 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

w ≈ 0. For large positive times the amplitude of oscillations is

large u2 + w2 ≈ Γ t , but the phase remains that of f (t), i.e.

ψ + const. We illustrate the mechanism of the phase transfer

in Fig. 3(b). Again, the process started at t = −20 and ended

at t = 20. Now one can see that the output phase φout does

not depend on the initial phase φin but depends linearly on the

phase of the forcing ψ , i.e. φout = ψ + const.

In our example the phase transfer takes place in a situation

of resonant excitation of the oscillator in the course of its

passage from the damped to the active stage. Numerics show

that the resonance condition is not necessary to achieve the

desired phase transfer. Even with a large difference between the

driving frequency and that of the oscillator, the pictures similar

to Fig. 3(b) can be observed in a wide range of the forcing

amplitudes ǫ and the rates of the parameter variation Γ .

On the basis of the phase transformation ψ → φ in

the model (8) and (9) we can easily construct any linear

transformation Aψ1 ± Bψ2 → φ, with positive integers A

and B. Indeed, if we have processes x1 = cos(ω0t + ψ1)

and x2 = cos(ω0t + ψ2), we may use the signal f (t) =
x A

1 x B
2 , which has spectral components at frequencies (A ±

B)ω0 with the phases Aψ1 ± Bψ2. In the case of the non-

resonant excitation transfer, we have to ensure prevalence of

the spectral component possessing the desired phase. It may be

accomplished, e.g., by means of careful selection of particular

expressions for the driving terms in the equations combining

x1, ẋ1, x2, ẋ2. For example, given process x = cos(ω0t + ψ),

we obtain a pure signal with the doubled phase by choosing

f (t) = x ẋ = − 1
2ω0 sin(2ω0t + 2ψ).

For simplicity of presentation, we have considered above the

phase transfer from purely sinusoidal signals. However, it is

clear that the mechanism holds also for any signal allowing the

sine approximation on some finite time interval, which contains

the moment of the rate change sign in the self-oscillator driven

by this signal; outside of this interval the time dependence for

the signal can be arbitrary. In paricular, in Fig. 3 the integration

is in the range −20 < t < 20; this means that the form of the

signal outside this interval is irrelevant. Thus, the mechanism

will work for signals consisting of nearly sinusoidal patches,

like those in Fig. 11.

4. Coupled oscillators with alternating excitation

In this section we construct autonomous coupled oscillator

models that naturally demonstrate alternations between decay

and growth of the amplitudes of the oscillations. With some

additional terms in the equations we will be able to ensure

exchange of the excitation between the oscillators accompanied

by the phase evolution governed by chaotic maps discussed in

Section 2.

Let us start with the modified predator–pray equations

written down in terms of strictly non-negative variables a1

and a2 (which may by interpreted as the pray and predator

populations):

ȧ1 = µ1a1, ȧ2 = µ2a2, (10)

where

µ1 = 1 − a2 +
1

2
a1 −

1

50
a2

1, µ2 = a1 − 1. (11)

The system has a limit cycle which passes very close to the

saddle fixed point at the origin a1 = 0, a2 = 0, and goes around

the unstable focus at a1 = 1, a2 = 37
25 (Fig. 4). During this

process, the growth rates µ1,2 alternately change sign.

Now, let us regard a1 and a2 as squared amplitudes of two

oscillators and represent them as ai = x2
i + y2

i , where xi ,

yi are some new variables undergoing oscillations with some

frequency ω0. Specifically, we set

ẋ1 = ω0 y1 + µ1x1, ẋ2 = ω0 y2 + µ2x2,

ẏ1 = −ω0x1 + µ1 y1, ẏ2 = −ω0x2 + µ2 y2,
(12)

where µ1,2 are defined by the relations (11). As the values

ai = x2
i + y2

i obey the Eq. (10), we have a situation where

two oscillators alternately undergo growth and decay. In (12)

the phases of two oscillators are uncoupled. Below, in the next

section, we will introduce additional coupling to ensure the

phase transfer from one to another oscillator in the course of

this process.

Now let us turn to a system of three coupled elements

governed by the equations

ȧ1 = µ1a1, ȧ2 = µ2a2, ȧ3 = µ3a3, (13)
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where the variables ai are assumed to be non-negative, and

µ1 = 1 − a1 −
1

2
a2 − 2a3,

µ2 = 1 − a2 −
1

2
a3 − 2a1,

µ3 = 1 − a3 −
1

2
a1 − 2a2.

(14)

Note a symmetry with respect to a cyclic transposition of the

variables ai . There are three saddle equilibrium points (a1 =
1, a2,3 = 0), (a2 = 1, a1,3 = 0), and (a3 = 1, a1,2 = 0)

connected by orbits forming the so-called heteroclinic cycle

or contour (Fig. 5). An arbitrary initial state of this system

evolves in such a way that the orbit approaches the contour

ever more closely. Visiting the neighborhoods of the saddle

points, it resides there for longer and longer (infinitely growing)

time intervals. (See, e.g., [13] for a detailed description of the

heteroclinic cycle.)

Again, we introduce the oscillatory variables xi , yi , i =
1, 2, 3, and set ai = x2

i + y2
i . Then, we write down the evolution

equations for the oscillating variables xi and yi with frequencies

ωi as follows:

ẋ1 = ω1 y1 + µ1x1, ẋ2 = ω2 y2 + µ2x2,

ẋ3 = ω3 y3 + µ3x3,

ẏ1 = −ω1x1 + µ1 y1, ẏ2 = −ω2x2 + µ2 y2,

ẏ3 = −ω3x3 + µ3 y3.

(15)

Oscillations in these three subsystems alternately grow and

decay in accordance with Fig. 5. The quantities µi determine

the growth rates of the amplitudes ai and vary during the

evolution in the range −1 < µ < 0.5. In the next section we

will consider several ways of adding coupling terms in Eq. (15)

to obtain different variants of the phase transfer between the

alternately exciting oscillators.

5. Coupled oscillators with hyperbolic attractors

This is the main section of the paper. We will formulate

oscillator models possessing the hyperbolic attractors. Each

model consists of two or three oscillators, which become

excited alternately because of the appropriate mutual amplitude

nonlinearity. At the beginning of an active stage, each oscillator

adopts the phase of excitation from its partners, with a

transformation corresponding to a certain chaotic map. This

excitation transfer is ensured by additional terms introduced in

the equations at the final step of our construction of the models.

As basic tools for computer study of the dynamics we will

exploit Poincaré maps and iteration diagrams illustrating the

phase transformation in the course of the excitation transfer,

calculation of the Lyapunov exponents, and characterization of

the processes with correlation functions.

5.1. Model A: Smale–Williams attractor in a system of two

coupled oscillators

Let us complement the model (12) with additional coupling

terms in the first equations for the oscillators 1 and 2

proportional to x2 y2 and x1, respectively, and arrive at the

following model A:

ẋ1 = ω0 y1 +
(

1 − a2 +
1

2
a1 −

1

50
a2

1

)

x1 + εx2 y2,

y1 = −ω0x1 +
(

1 − a2 +
1

2
a1 −

1

50
a2

1

)

y1,

ẋ2 = ω0 y2 + (a1 − 1)x2 + εx1,

ẏ2 = −ω0x2 + (a1 − 1)y2,

(16)

where

a1 = x2
1 + y2

1 , a2 = x2
2 + y2

2 .

and ε is the coupling constant. In the numerical investigation

below, we fix the parameters ω0 = 2π , ε = 0.3. For

this parameter set, we checked different initial conditions and

observed that all of them lead to the same attractor.

Now, in the course of transition of the second oscillator to

the active stage, it is forced by the term x1 and adopts the

phase from the first oscillator. In turn, the first oscillator at the

transition to the active stage is forced by the term x2 y2. Hence,

in accordance with the mechanism explained in Section 3, the

phase doubling will occur during the transfer of the excitation.

Fig. 6 shows typical time dependences for the variables x1,2,

y1,2 obtained from computer solution of Eq. (16). Amplitudes

of two oscillators alternate, approximately like those in Fig. 4.

Let us demonstrate that the phase doubling indeed takes

place. To do this, one can construct the Poincaré map

in the following way. In the four-dimensional phase space

{x1, y1, x2, y2} we define a surface S = x2
1 + y2

1 − x2
2 − y2

2 = 0

(it corresponds to a condition of equality of the instantaneous

amplitudes for two oscillators). Then, we consider intersections

of this surface with trajectories in the direction of the growing

value of S. Let an initial point on the surface S be associated

with a three-dimensional vector vn , and the next intersection

of the surface in the same direction yield the image vector

vn+1. Thus, we have a three-dimensional Poincaré map vn+1 =
T(vn).

In accordance with the computations, at the selected

parameter values the average time interval between the

intersections of the surface S = 0 is approximately Tav =
7.245. It is a characteristic time interval between the bursts in

Fig. 6.

At successive intersections of the surface S = 0 we define

the phases of the second oscillator as ϕ = arg(x2 + iy2) and

plot them on the diagram ϕn+1 versus ϕn . It is shown in Fig. 7.

Clearly, it looks topologically similar to the expanding circle

map ϕn+1 ≈ 2ϕn + const.

Fig. 8 shows two projections of the attractor for the Poincaré

map. In fact, both portraits possess a Cantor-like transversal

structure, but only one level of it is visually distinguishable on

the panel (a).

We may imagine a toroidal domain in the three-dimensional

phase space of the Poincaré map, where the phase ϕ

corresponds to the angle counted around the “hole” of the torus.

Application of the map T corresponds to a twofold longitudinal

stretch of the torus, transversal compressing, and embedding as
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Fig. 5. (a) A heteroclinic contour in the system (13). (b) State variables ai versus time; observe oscillations with a growing period. The corresponding local growth

rates alternate between positive and negative values. Black solid line: i = 1; red short dashed line: i = 2; blue long dashed line: i = 3. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Oscillations described by Eq. (16) with parameter values ω0 = 2π , ε = 0.3. Variables y j are shown with dashed red lines. Left panel: a projection on the

plane (x1 + x2, y1 + y2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the doubly folded “tube” inside the original domain. Thus, the

attractor of the map T is just a hyperbolic chaotic attractor of

the Smale–Williams type.
Lyapunov exponents for the model A at the chosen

parameter values have been computed using a standard method

of Benettin et al. (see, e.g., [14]) by means of a simultaneous

solution of Eq. (16) and the respective linearized equations for

variations. The results are

λ1 = 0.0918 ± 0.0002,

λ2 = −0.000004 ± 0.00003,

λ3 = −4.074 ± 0.002,

λ4 = −4.3936 ± 0.0005.

The positive exponent λ1 indicates the presence of chaos,

while the zero exponent λ2 corresponds to a perturbation

associated with a shift along the orbit. The other two Lyapunov

exponents are negative and are responsible for the approach of

trajectories to the attractor.
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Fig. 7. Iteration diagram for the phases of the second oscillator at successive

intersection of the surface S in model (16) with the same parameters as in Fig. 6.

For the Poincaré map, the Lyapunov exponents may be

obtained with a relation Λ = λTav (with exclusion of a zero

one). The largest Lyapunov exponent is close to the value

expected from the approximation based on the expanding circle

map (1). Indeed, ρ1 = exp[λ1Tav] = 1.945 that is close to

the factor 2, which would correspond to the uniform phase

doubling.

From the calculated Lyapunov exponents, we can estimate

the Lyapunov dimension of the attractor with the Kaplan–Yorke

formula [14]. It yields

DL = m +

m
∑

i=1

λi

|Λm+1|
≈ 2.0225,

where m = 2. Respectively, for the attractor of the Poincaré

map we obtain

d = D − 1 = 1.0225.

Fig. 9 shows a three-dimensional portrait of the attractor of

the flow system in the space (x2, y2, a1). Rotation of the orbit

approximately in the horizontal plane corresponds to an epoch

Fig. 9. Portrait of the attractor of the model A (parameters ω0 = 2π , ε = 0.3)

in the three-dimensional space (x2, y2, a1 = x2
1 + y2

1 ). It is worth noting that

the fixed point at the origin, at which the orbits pass nearby, possess the stable

and unstable manifolds of dimension 2 (in contrast to those well-understood

Shilnikov situations [7], where one of the manifolds is one-dimensional).

In the picture the first oscillator is characterized only by real amplitude, so

information on its phases is lost in this graphical representation.

of excitation and slow decay for the second oscillator and of

silence for the first one. The excitation of the first oscillator

gives rise to the departure of the orbit from the origin with the

subsequent excitation of the second oscillator, its decay, and the

next return into a neighborhood of the origin.

In Fig. 10 we show a plot of the autocorrelation function

for the observable x1 + x2. One can see a rather fast decay of

correlations. However, the tail of the autocorrelation function

has slowly decreasing bursts at times ≈ nTav, where Tav is a

characteristic period for the amplitudes a1,2. The mentioned

feature is linked apparently with the fact that the amplitude

dynamics at ε = 0 is exactly periodic; at finite values of

ε, although chaos occurs, the correlations at a former period

remain relatively strong, at least for the amplitudes.

5.2. Model B: Smale–Williams attractor in a perturbed

heteroclinic cycle

Now, let us turn to the model of three oscillators with a

heteroclinic cycle (see Fig. 5 end Eq. (15)). To construct the

model B we set all the frequencies of the oscillators to be equal:

Fig. 8. Portraits of the attractor for the Poincaré map of the model A (parameters the same as in Fig. 6) in projections on the planes of the variables (x1, y1) and

(x2, y2).
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Fig. 10. Autocorrelation function of the observable x1 + x2 for the model A (parameter values the same as in Fig. 6). Insets show the regions of small time lags and

of the correlation tail.

ω1,2,3 = ω0, and add the coupling terms proportional to x2 y2,

x3 y3, x1 y1 in the first equation for each oscillator:

ẋ1 = ω0 y1 +
(

1 − a1 −
1

2
a2 − 2a3

)

x1 + εx2 y2,

ẏ1 = −ω0x1 +
(

1 − a1 −
1

2
a2 − 2a3

)

y1,

ẋ2 = ω0 y2 +
(

1 − a2 −
1

2
a3 − 2a1

)

x2 + εx3 y3,

ẏ2 = −ω0x2 +
(

1 − a2 −
1

2
a3 − 2a1

)

y2,

ẋ3 = ω0 y3 +
(

1 − a3 −
1

2
a1 − 2a2

)

x3 + εx1 y1,

ẏ3 = −ω0x3 +
(

1 − a3 −
1

2
a1 − 2a2

)

y3,

(17)

where

a1 = x2
1 + y2

1 , a2 = x2
2 + y2

2 , a3 = x2
3 + y2

3 ,

and ε is the coupling constant.

The added terms serve as germs for the excitation of each

oscillator at the beginning of the epochs of its activity. It takes

place just at each passage of the orbit near the fixed points on

the heteroclinic cycle. The oscillators become excited following

the order 1 → 3 → 2 → 1 → · · ·. Each new transfer

of the excitation is accompanied by the phase doubling in

accordance with the mechanism discussed in Section 3. In the

computations we fix ω0 = 1 and ε = 0.03. Similarly to the

model A, we observe only one attractor testing different initial

conditions.

Fig. 11(a) shows typical time dependences for x1, x2, and

x3, obtained from the computer solution of Eq. (17). Observe

that in the course of time evolution, three oscillators become

Fig. 11. (a): Time dependences for x1 (black solid line), x2 (short dashed red

line), and x3 (long dashed blue line), for model (17) with ω0 = 1 and ε = 0.03.

(b): Time dependencies of the symmetrized variables X = x1 + x2 + x3 and

Y = y1 + y2 + y3. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

excited one after another. The process is evidently not periodic,

although there is a rather well-defined mean period of the

amplitude dynamics (in contrast to the model without the added

coupling terms, cf. Fig. 5). In panel (b) we show the time

dependences for the symmetrized variables X = x1 + x2 + x3

and Y = y1 + y2 + y3. They demonstrate epochs of relatively

regular oscillations (2–3 periods), intermingled with transitions

that sometimes appear like phase slips. The latter can be seen

clearly on the plane (X, Y ), where they correspond to pieces of

the trajectory passing near the origin (see Fig. 12).

To give evidence for the doubling phase mechanism, let

us construct the Poincaré map; it will be done with some

additional modification taking into account the symmetry

of the system; namely, in the six-dimensional phase space

{x1, y1, x2, y2, x3, y3} we define three surfaces determined by
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Fig. 12. Projection of the attractor in the model B with ω0 = 1 and ε = 0.03 on

the plane (X, Y ). We use a gray coding proportional to the density of trajectories

to highlight often-visited regions in the phase space.

equations

S1 = x2
1 + y2

1 − x2
2 − y2

2 = 0,

S2 = x2
2 + y2

2 − x2
3 − y2

3 = 0,

S3 = x2
3 + y2

3 − x2
1 − y2

1 = 0,

(18)

and examine successive intersections of these surfaces in the

direction of growth of S j . The intersection of the surface S j = 0

by a trajectory corresponds to the condition that an amplitude

of the rising oscillator (x j , y j ) overtakes that of the previously

excited partner. The intersections follow in the order S1 →
S3 → S2 → · · ·.

Being given a point on a surface S j = 0, j = 1, 2, 3, it

is associated with a five-dimensional vector vn . On the next

intersection of a surface S by the trajectory started at vn , we

obtain a new vector vn+1 = T(vn). The spaces of images and

pre-images may be identified because of the cyclic symmetry

of the system. The usual Poincaré map will correspond to a

threefold iteration of the map T.
From the numerical simulations, we have estimated the

average time interval between the intersection of the surfaces

S j = 0, the value Tav = 10.96. For a sequence of successive

intersections of the surfaces S j = 0 at time instants tn we

define the phases of the oscillations as ϕn = arg(x j + iy j ).

The diagram ϕn+1 versus ϕn is shown in Fig. 13. The presence

of the phase doubling mechanism is evident from the picture:

the diagram looks topologically similar to the expanding circle

map (1).
Fig. 14 shows the projections of the attractor in the

Poincaré map onto three planes of the variables (x j , y j )

corresponding to three partial oscillators. Because of strong

transversal compression, the fractal structure of the attractor is

not distinguishable for the oscillators j (a) and j + 1 (b) whose

amplitudes are equal at the condition of the Poincaré section

S j = 0, but can be seen for the third oscillator j + 2 (c) whose

amplitude is small at this moment in time.
Furthermore, we calculated the Lyapunov exponents for the

system (17):

λ1 = 0.06305 ± 0.00004,

Fig. 13. The mapping ϕn → ϕn+1 obtained numerically for the model (17)

with ω0 = 1 and ε = 0.03.

λ2 = −0.000001 ± 0.00001,

λ3 = −0.2101 ± 0.0002,

λ4 = −0.2259 ± 0.0004,

λ5 = −0.3395 ± 0.0006,

λ6 = −1.9999349 ± 0.0000005.

One Lyapunov exponent is positive, the next one is close to

zero (it corresponds, clearly, to the perturbation directed along

the orbit), and the remaining four are negative.

For the map T, the Lyapunov exponents may be expressed

via the non-zero exponents of the flow system with the

formula Λ = λTav. Note that the value of the positive

Lyapunov exponent agrees well with that expected from the

approximation by the expanding circle map (with factor 2).

Indeed, exp[λ1Tav] = 1.996, which is very close to 2.

Calculation of the attractor dimension from the Kaplan–

Yorke formula yields for the flow system

D = m +

m
∑

i=1

λi

|λm+1|
= 2 +

λ1

|λ3|
≈ 2.30.

For the attractor of the Poincaré map T the Lyapunov dimension

is d = D − 1 = 1.30. As follows from the iteration diagram

for the phase variables of Fig. 13, application of the map T

implies a twofold stretch in the phase space along the phase

variable in the five-dimensional phase space, while in other

directions the evolution is accompanied by compression as the

respective Lyapunov exponents are negative. This observation

confirms that the map T has a hyperbolic chaotic attractor of

the Smale–Williams type.

To characterize statistical properties of the attractor, we

calculated the autocorrelation function for the observable

X = x1 + x2 + x3 (Fig. 15). The correlations decay rather

fast; however, as the inset in Fig. 15 demonstrates, there

exists a slowly decaying nearly periodic tail. Its origin is the

same as that in Fig. 10: although phases of oscillators are

strongly chaotic, the variations of the amplitudes appear to

be close to periodic, with a slow decay of correlations. A
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Fig. 14. Portraits of the attractor in the Poincaré map of model B (the same parameters as in Fig. 11) in projections onto planes of the variables (x j , y j ),

(x j+1, y j+1), and (x j+2, y j+2) (note that the indices should be taken as modulo 3). Panel (d) shows an enlargement of a region of panel (c) to make the fractal

transverse structure visible.

Fig. 15. Autocorrelation function of chaotic oscillations in the model B (the

same parameters as in Fig. 11). The inset shows the correlation tail in an

enlarged scale.

small contribution of this intrinsic amplitude regularity into the

correlation function appears as a tail in Fig. 15.

5.3. Model C: Arnold cat map in a perturbed heteroclinic cycle

Let us start again with the system possessing the heteroclinic

cycle (15) with ω1,2,3 = ω0. This time we introduce additional

coupling terms in the equations in such a way that each

partial oscillator is driven by a product of variables of two

other oscillators. We symmetrize the coupling terms to exclude

the presence of the non-oscillating components, which could

disturb the required phase transfer, and arrive at the following

model C:

ẋ1 = ω0 y1 +
(

1 − a1 −
1

2
a2 − 2a3

)

x1 + ε(x2 y3 + x3 y2),

ẏ1 = −ω0x1 +
(

1 − a1 −
1

2
a2 − 2a3

)

y1,

ẋ2 = ω0 y2 +
(

1 − a2 −
1

2
a3 − 2a1

)

x2 + ε(x1 y3 + x3 y1),

ẏ2 = −ω0x2 +
(

1 − a2 −
1

2
a3 − 2a1

)

y2,

ẋ3 = ω0 y3 +
(

1 − a3 −
1

2
a1 − 2a2

)

x3 + ε(x2 y1 + x1 y2),

ẏ3 = −ω0x3 +
(

1 − a3 −
1

2
a1 − 2a2

)

y3,

(19)

where

a1 = x2
1 + y2

1 , a2 = x2
2 + y2

2 , a3 = x2
3 + y2

3 .

For this model we use set ω0 = 1 and ε = 0.03. Again, trying



S.P. Kuznetsov, A. Pikovsky / Physica D 232 (2007) 87–102 97

Fig. 16. (a): Time dependences for x1 (black solid line), x2 (red short dashed

line), and x3 (blue long dashed line), obtained from the computer solution of

Eq. (19) for ω0 = 1 and ε = 0.03. (b) Time dependencies of the symmetrized

observables X = x1 + x2 + x3 and Y = y1 + y2 + y3. (For interpretation of

the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Fig. 17. Oscillations in system (19) for ω0 = 1 and ε = 0.03 in a projection

on the plane of the observables (X, Y ).

different initial conditions we always observed convergence of

the orbits to one attractor.

Fig. 16 shows the evolution of the variables x1, x2, and x3,

as functions of time obtained from the computer solution of

Eq. (19) after the decay of transients. In the course of time,

three oscillators become excited in the order 1 → 3 → 2 →
1 → · · ·. This whole process is not periodic. Symmetrized

observables X = x1 + x2 + x3 and Y = y1 + y2 + y3 manifest

oscillations with irregular phase and amplitude modulation; see

the bottom panel in Fig. 16 and the phase portrait on the plane

(X, Y ) in Fig. 17.

We can construct the Poincaré map in the same way as

described in the previous subsection, namely, in the six-

dimensional phase space {x1, y1, x2, y2, x3, y3} we define three

surfaces determined by Eq. (18) and examine successive

intersections of these surfaces by a trajectory. In this way we

define a mapping vn+1 = T(vn): the pre-image is a five-

dimensional vector vn associated with a point on the surface

S j = 0, and the image is a vector vn+1 on the next intersected

surface Sk = 0, which follows in accordance with the order

S1 → S3 → S2 → S1 → · · ·. Again, the spaces of images and

pre-images may be identified due to a symmetry of the system.
Fig. 18 shows projections of the attractor in the Poincaré

map onto three planes of the variables (x j , y j ) corresponding

to three partial oscillators. Because of strong compression in

the stable directions, the transversal structure of the attractor is

not distinguishable in the panels (a) and (b), but may be seen in

the panel (c).
For a sequence of successive intersections of the surfaces

S j = 0 we define the phases of the oscillations as ϕn =
arg(x j +iy j ). Fig. 19 demonstrates that they obey the Fibonacci

map (3) ϕn+1 = ϕn + ϕn−1 + const with a good accuracy. As

discussed in Section 2, the second iteration of the Fibonacci

map yields the Arnold cat map. Fig. 20 illustrates the action of

the map obtained from the numerical solution of Eq. (19) with a

traditional picture of the cat face. It may be compared to Fig. 2

above.
The Lyapunov exponents for model (19) were calculated by

the same algorithm as in the previous sections:

λ1 = 0.04786 ± 0.00009,

λ2 = −0.000001 ± 0.00001,

λ3 = −0.04840 ± 0.00005,

λ4 = −0.3184 ± 0.0004,

λ5 = −0.3673 ± 0.0004,

λ6 = −2.0000207 ± 0.0000002.

There is one positive exponent, one zero, associated with a shift

along the trajectory, and others negative.
Taking into account that the average time between the

intersection of the surfaces S j = 0 at the given parameters

is approximately Tav = 9.943, we can evaluate the Lyapunov

exponents for the map T as Λ = λT . The calculation yields

ρ1 = exp[Λ1] ≈ 1.6094 and ρ3 = exp[Λ3] ≈ 0.618.

The squared numbers ρ2
1 ≈ 2.59 and ρ2

3 ≈ 0.382 should

be compared with the eigenvalues for the Arnold cat map (2)

(3 +
√

5)/2 ≈ 2.618 and (3 −
√

5)/2 ≈ 0.382.
Note that for the Arnold map (2) a sum of the Lyapunov

exponents vanishes. In our case, the attractor in the Poincaré

map is concentrated close to a two-dimensional torus surface,

the dynamics of which are governed approximately by the

Arnold cat map. This assertion agrees with the fact that the sum

of the largest two non-zero Lyapunov exponents is very small

λ1 + λ3 ≈ 0.00054. In fact, due to statistical errors it is hard to

distinguish it from zero.
Therefore we conclude that the Lyapunov dimension of the

attractor is nearly D ≈ 3, and the dimension of the attractor in

the Poincaré map is d ≈ 2. This explains the visible absence of

a fractal structure in Fig. 18(c)–(d).
Fig. 21 shows a plot of the autocorrelation function for the

observable X = x1 + x2 + x3 obtained in the computations. The

correlations decay rather fast, without any visible tail.

5.4. Model D: Hyperchaotic attractor in a perturbed hetero-

clinic cycle

Let us introduce a system with a hyperchaotic hyperbolic

attractor. In contrast to two previous models, it will be non-
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Fig. 18. Projections of the attractor for the Poincaré map of the model C (the same parameters as in Fig. 16) onto planes of the variables (x j , y j ) (a), (x j+1, y j+1)

(b), and (x j+2, y j+2) (c) (notice that the indices should be taken modulo 3). Panel (d) shows an enlargement of a region of panel (c) to make the fine structure

evident. Contrary to the case of model B above, the attractor looks not like a fractal.

symmetric. In the system with the heteroclinic cycle (15) we set

ω1 = 3ω0, ω2,3 = ω0, and write down the following equations

of the model D:

ẋ1 = 3ω0 y1 +
(

1 − a1 −
1

2
a2 − 2a3

)

x1 + ε1x2
3 y3,

ẏ1 = −3ω0x1 +
(

1 − a1 −
1

2
a2 − 2a3

)

y1,

ẋ2 = ω0 y2 +
(

1 − a2 −
1

2
a3 − 2a1

)

x2 + ε2(x1 y3 + x3 y1),

ẏ2 = −ω0x2 +
(

1 − a2 −
1

2
a3 − 2a1

)

y2,

ẋ3 = ω0 y3 +
(

1 − a3 −
1

2
a1 − 2a2

)

x3 + ε3x2,

ẏ3 = −ω0x3 +
(

1 − a3 −
1

2
a1 − 2a2

)

y3,

(20)

where

a1 = x2
1 + y2

1 , a2 = x2
2 + y2

2 , a3 = x2
3 + y2

3 ,

and ε1,2,3 are the coupling constants. Below we set ω0 = 1,

ε1 = ε3 = 0.004, ε2 = 0.1. Starting with various initial

conditions the system is observed to arrive always to one

attractor.

As in the models B and C, the partial oscillators become

excited in the order 1 → 3 → 2 → 1 · · ·. At the moments in

time where the conditions (18) are fulfilled, we may define the

phases ϕ j of the rising oscillators as ϕ j = arg(x j + iy j ). Let us

examine how the transformations

ϕ1 → ϕ3 → ϕ2 → ϕ1 → ϕ3 → ϕ2 → · · ·

look. Oscillator 1 is driven by the force proportional to x2
3 y3.

It contains the third harmonic, which is in resonance with the

oscillator 1 and stimulates its excitation at the beginning of the

epoch of activity. Hence, it adopts the phase

ϕ1 = 3ϕ3 + const. (21)

Oscillator 3 in the course of the excitation is driven in resonance

by the force proportional to x2, so it adopts the phase from the

oscillator 2:

ϕ3 = ϕ2 + const. (22)

Finally, oscillator 2 is driven by the signal ∝ x1 y3+x3 y1. At the

beginning of the active epoch it is excited in a non-resonance

manner (this is the reason why we assign a relatively large value
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Fig. 19. (a) A three-dimensional representation of the dependence of ϕn+1 on

ϕn and ϕn−1 in model C with ω0 = 1 and ε = 0.03. (b) Dependence of ϕn+1

on ϕn + ϕn−1.

for ε2), and adopts the phase

ϕ2 = ϕ1 + ϕ3 + const. (23)

Observe that these relations are equivalent to (5) up to

a constant term. In Fig. 22 we demonstrate the empirical

mappings obtained from the numerical simulation of the

dynamics governed by Eq. (20).
The Lyapunov exponents for the model (20) evaluated from

the computations are the following:

λ1 = 0.01878 ± 0.00006,

λ2 = 0.00621 ± 0.00002,

λ3 = 0.00000 ± 0.000003,

λ4 = −0.36803 ± 0.0003,

λ5 = −0.43133 ± 0.0003,

λ6 = −2.000026 ± 0.000002.

The presence of two positive Lyapunov exponents affirms the

hyperchaotic nature of the dynamics. The third exponent is

close to zero, linked with a perturbation associated with a shift

along the orbit. Other exponents are negative that correspond to

the approach of trajectories to the attractor.

Because all consecutive transformations ϕ1 → ϕ3 → ϕ2 →
ϕ1 are different, one should consider the overall transformation,

e.g. with the surface of section S1, as the Poincaré map. The

average time between successive cross-sections evaluated from

the computations is Tav ≈ 41.475 = 3 · 13.825. From non-

zero exponents of the flow system, we estimate the Lyapunov

exponents for the Poincaré map as Λ = λTav. Observe that

ρ1 = exp[Tavλ1] ≈ 2.179 and ρ2 = exp[Tavλ2] ≈ 1.294. In

absolute values, these numbers are in good agreement with the

eigenvalues of the hyperchaotic map (4); indeed, (
√

13+1)/2 ≈
2.303 and (

√
13 − 1)/2 ≈ 1.303. The Lyapunov dimension of

the attractor estimated from the Kaplan–Yorke formula is 3.068.

We illustrate the time evolution of the oscillators in Fig. 23,

and the phase portrait in the symmetrized observables X =
x1 + x2 + x3 and Y = y1 + y2 + y3 is depicted in Fig. 24. The

autocorrelation function of the observable X = x1 + x2 + x3

is shown in Fig. 25. All these diagrams demonstrate the good

chaotic properties of the system (20).

6. Conclusion

The problem of constructing simple flow systems with

hyperbolic chaotic attractors appears to be of general interest

both from the fundamental and practical points of view.

Such examples would be important illustrations for the well-

developed mathematical theory of the hyperbolic systems.

In this paper, we present an approach based on the use of

coupled self-sustained oscillators with alternating excitation.

An additional coupling allows us to transfer the phases from

one partner to another, and simultaneously to transform them

according to a desired chaotic map on a circle or on a torus. This

idea of the phase manipulation for constructing the hyperbolic

Fig. 20. Diagram for the phases of successively exciting partial oscillators in the model C with ω0 = 1 and ε = 0.03, with the use of a picture of the cat face.
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chaotic dynamics is adopted from earlier works [8,9]. Here we

present for the first time examples of autonomous systems with

apparently hyperbolic attractors of different types. One of the

constructed models delivers an example of a system of minimal

possible dimension possessing the attractor of Smale–Williams

type. Methodologically, a new element in comparison with

Refs. [8,9] is to employ a non-resonance transfer of the

excitation between the oscillators.

In our analysis of the suggested models we start with a

qualitative consideration, and subsequently perform a careful

computer numerical study. An important component in each

case is a visual inspection of diagrams illustrating the phase

transfer, to be sure that it belongs to the desirable class, like the

expanding circle map or the hyperbolic toral maps. Numerical

studies include the calculation of the spectrum of the Lyapunov

exponents, positive exponents are then compared to those in the

underlying chaotic maps.

From our experience of the performed numerical studies,

we can say that the chaotic attractors observed in our models

surely look structurally stable being insensitive to concrete

selection of the parameters. For example, in the model A the

coupling parameter ε may be varied in an interval at least from

0.0004 to 0.3, and it does not change neither nature of the

attractor nor the approximate value of the largest Lyapunov

exponent for the Poincaré map. The same is true in respect

to the variation of other parameters, at least in an interval

about, say, ±10% of the presented value. In particular, the

frequency detuning may be introduced without any destructive

consequences. The particular form of combinations of variables

in the coupling terms is relevant, in agreement with the

argumentation developed in Section 3. It is, however, of no

significance, whether the coupling is introduced in the first, or

the second, or in both equations for a partial oscillator. It seems

that in the parameter range under consideration the attractor

is unique, as far as we can judge from the numerical studies.

Analogous observations hold also for the models B, C, and D.

An important issue we do not address in this paper relates

to possible bifurcation scenarios of the onset of hyperbolic

strange attractors, e.g. when applied to our models A, B, C, D.

Mathematical studies of which we are aware seem insufficient

in this respect.

Firstly, recall the so-called “Ruelle-Takens scenario” widely

discussed in the 1970s–80s. In fact, it does not clarify concrete

relevant bifurcation routs, although a possibility was proven of

appearance of hyperbolic strange attractors from perturbations

of quasiperiodic motions on tori of dimension of 3 and more

[3].

A consideration of codimension one bifurcations generating

the hyperbolic attractors by Shilnikov and Turaev [6] (cf. [15])

perhaps deserves attention in the context of our research. It

is remarkable that they incorporate three types of hyperbolic

attractor similar to those discussed in our paper. Nevertheless,

these studies scarcely help in an understanding of mechanisms

of birth of the hyperbolic attractors in our models. Indeed,

the blue-sky-catastrophe phenomena, including an unbounded

growth of the characteristic timescale at the threshold of the

disappearance of the attractors, are not observed in our models,

Fig. 21. Autocorrelation function of chaotic oscillations in the model C with

ω0 = 1 and ε = 0.03. The inset shows the correlation tail in an enlarged scale.

at least without some essential modification of them. Moreover,

in the Shilnikov and Turaev construction, the appearance of

the relevant topological property on the map for the angle

coordinate during the ”flight-time” dynamics between two

cross-sections in the phase space (see, e.g., Fig. 15 in the paper

[6]) is simply pre-assumed, leaving unanswered the question

of the mechanisms responsible for this property. In fact, these

mechanisms remain outside the problematics associated with

the saddle-node-like phenomena referred to as the blue-sky

catastrophes. Conversely, these mechanisms are for us the focus

of attention.

Our computations show that the hyperbolic strange attractors

do exist in some ranges of parameter, but certainly cease to exist

(at least in the old form) when the variations of parameters

become sufficiently large. Usually in such cases, we observe

complex objects that we still cannot classify and characterize.

We leave this task for future research.

As is observed in the calculations, the correlation functions

for our models in some cases manifest long-range tails of a

relatively small magnitude. We explain this by the presence

of an almost regular alternating evolution of the amplitudes

of coupled oscillators, while strong chaotization reveals itself

in the dynamics of the phases. In general, correlations in

continuous-time systems with hyperbolic attractors must not

demonstrate a perfect decay, and what we observe are examples

of such behavior. A detailed study of these correlation tails will

be published elsewhere.

Of course, a more rigorous mathematical treatment of

the suggested models is desirable. One possibility is to

apply a technique of computer verification of conditions

of hyperbolicity in terms of inclusions for expanding and

contracting cones in the tangent spaces at different points

of the attractor or in an absorbing domain containing the

attractor (In Ref. [16] this approach was applied to a

non-autonomous system possessing a hyperbolic attractor.).

Preliminary calculations, performed by I. R. Sataev (private

communication) confirm the hyperbolicity conditions for the

attractor in our model A at some particular parameter values. It

seems much more difficult to carry out analogous computations

for models B, C, D because of higher phase-space dimensions.
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Fig. 22. Numerically obtained phase transformations in model (20) with ω0 = 1, ε1 = ε3 = 0.004, ε2 = 0.1. These mappings should be compared with (21)–(23).

Fig. 23. (a): Time dependences for x1 (black solid line), x2 (red short dashed

line), and x3 (blue long dashed line), obtained from the computer solution of

Eq. (20) withω0 = 1, ε1 = ε3 = 0.004, ε2 = 0.1. Notice that the first oscillator

has a frequency three times greater than the other two. (b) Time dependencies

of the symmetrized observables X = x1 + x2 + x3 and Y = y1 + y2 + y3.

(For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Fig. 24. Oscillations in system (20) with ω0 = 1, ε1 = ε3 = 0.004, ε2 = 0.1

in a projection on the plane of observables (X, Y ).

Generalization of the heteroclinic cycle construction for

systems of more than three oscillators may give rise to more

far-reaching possibilities for the phase manipulations; that

could result in constructing hyperbolic chaotic attractors with

Fig. 25. Autocorrelation function of chaotic oscillations in the model D with

the same parameter values as in Figs. 22–24. The inset shows the correlation

tail in an enlarged scale.

stronger chaotic properties (larger number of positive Lyapunov

exponents, large values of them, fast decaying correlations,

broad frequency spectra).
We expect that the examples of hyperbolic attractors we

have introduced, or similar models, may be implemented as

real devices, e.g. in electronics, mechanics, optics. Contrary

to many other systems with chaotic behavior, the hyperbolic

strange attractors are structurally stable (robust). Such systems

may be useful for applications, e.g. as noise generators, or as

transmitters in chaos-based communications.
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